A Comparative Study of Real Workload Traces
and Synthetic Workload Models
for Parallel Job Scheduling *

Virginia Lo, Jens Mache, and Kurt Windisch

Department of Computer and Information Science
University of Oregon, Eugene, OR 97403
{lo, jens, kurtw}@cs.uoregon.edu

Abstract. Two basic approaches are taken when modeling workloads
in simulation-based performance evaluation of parallel job scheduling
algorithms: (1) a carefully reconstructed trace from a real supercomputer
can provide a very realistic job stream, or (2) a flexible synthetic model
that attempts to capture the behavior of observed workloads can be
devised. Both approaches require that accurate statistical observations
be made and that the researcher be aware of the applicability of a given
trace for his or her experimental goals.

In this paper, we compare a number of real workload traces and synthetic
workload models currently used to evaluate job scheduling and allocation
strategies. Our results indicate that the choice of workload model alone
—real workload trace versus synthetic workload models — did not signifi-
cantly affect the relative performance of the algorithms in this study (two
scheduling algorithms and three static processor allocation algorithms).
Almost all traces and models gave the same ranking of algorithms from
best to worst. However, two specific workload characteristics were found
to significantly affect algorithm performance: (a) proportion of power-
of-two job sizes and (b) degree of correlation between job size and job
runtime. When used in the experimental evaluation of resource manage-
ment algorithms, workloads differing in these two characteristics may
lead to discrepant conclusions.

1 Introduction

Simulation-based performance evaluation of parallel job scheduling strategies is
traditionally carried out using a synthetic workload model to generate a stream
of incoming jobs with associated job characteristics. Despite the acknowledged
rigor of simulation testing using stochastically generated workloads, there has
been a pressing need for more realistic performance evaluation to further val-
idate algorithm performance. Recently, the use of massively parallel machines
for high performance computing has grown rapidly, both in numbers and in the
maturity of the user communities. Systems administrators at national labs and

* This research was sponsored by NSF grant MIP-9108528.

supercomputing center sites have collected large amounts of workload trace data
and released them for use in the evaluation of new resource management algo-
rithms. Thus, researchers in performance evaluation have at their disposal two
valid methods for conducting simulations:

(1) Use of real workload traces gathered from scientific production runs
on real supercomputers and carefully reconstructed for use in simulation
testing.

(2) Use of synthetic workload models that use probability distributions
to generate workload data. We refer to the earliest synthetic workload models
as “naive” because they were based on little or no knowledge of real trace
characteristics (due to the fact that real traces didn’t exist). Recently, more
realistic synthetic models have been developed in which the model and its
parameters have been abstracted through careful analysis of real workload
data from production machines.

Both approaches require that many assumptions and accurate statistical ob-
servations be made, and that the modeler understands well the profile of the
targeted, real workload. Inaccurate assumptions or minor perturbations in any
proposed model may yield a workload that provides a poor evaluation of schedul-
ing strategies on the targeted system. Yet, there exists very little published lit-
erature that offers guidance to researchers concerning the use of real workload
traces and synthetic workload models for experimentation with scheduling algo-
rithms.

Our work aims to fill this void. Our goals are to determine the degree of
influence of workload choice and workload characteristics on performance and,
where possible, to isolate the causes of observed differences in performance re-
sults. We will begin to address issues such as those listed below and to propose
some rules-of-thumb to help guide the use of these workload traces and models
in simulation testing of scheduling algorithms.

— Real workload traces versus synthetic workload models: When should
one use real traces and when should one use synthetic workloads? Do the re-
sults of simulation with these two types of workloads reinforce each other? If
not, is it due to biases in the workload traces or inadequacies in the synthetic
model?

— Universality of workload traces: Given a choice among real workload
traces from different sites, how does one know which trace to use? If perfor-
mance evaluation results are discrepant, how does one know which results
are valhid?

— Sensitivity of scheduling algorithm performance to workload char-
acteristics: What specific workload characteristics might bias performance
results?

The experiments reported in this paper compare many real workload traces and
synthetic workload models; both analytically and through simulation, observ-
ing their effects on the performance evaluation of several classes of scheduling

and allocation strategies. Included were two scheduling algorithms: First Come
First Served and ScanUp [16], a multi-level queuing algorithm, and three static
allocation strategies: First Fit [24], Frame Sliding [3] , and Paging [17].

The real traces were captured from four production machines in use for scien-
tific computing at research labs and supercomputer sites around the world (two
IBM SP-2s, an Intel Paragon, and a Cray T3E). The synthetic models include
“naive” models and those developed by Downey [6, 5] and Feitelson [7] based on
their careful analyses of traces from production machines.

We conducted five distinct experiments: (a) real workload traces versus syn-
thetic workload models; (b) realistic synthetic workload models versus naive
synthetic models; (¢) a comparison of real workload traces across disjoint time
periods (at the same site); (d) a comparison of real workload traces across sites;
and (e) effects of specific workload characteristics: power-of-two jobsizes and cor-
relation between jobsize and runtime. These experiments led us to the following
general observations; more details are discussed in Section 5.

— The choice of workload alone did not significantly affect the relative perfor-
mance of the resource management algorithms. Almost all workloads (real or
synthetic, across sites, and for different time periods at the same site) ranked
the scheduling and allocation algorithms in the same order from best to worst
with respect to response time and system utilization. The choice of workload
did yield differences in more subtle aspects of algorithm performance.

— Two critical workload characteristics were found to significantly affect algo-
rithm performance: (a) proportion of power-of-two job sizes and (b) degree
of correlation between job size and job run time. When used in the exper-
imental evaluation of resource management algorithms, workloads differing
in these two characteristics may lead to discrepant conclusions.

As we shall see, for both real traces and synthetic models, 1t is critical that
one be aware of specific trace characteristics and the applicability of a given
trace for the researcher’s experimental goals.

The remainder of this paper is organized as follows: Section 2 gives the back-
ground for this study and surveys related work; Section 3 discusses real work-
load traces and synthetic workload models, and describes the specific traces and
models used in this study. In Section 4 we describe our experiments, including
the resource management strategies and performance metrics used. Section 5
discusses our experimental results, and Section 6 gives our conclusions.

2 Background and Related Work

This project was motivated by our desire to improve the quality of our own work
in performance evaluation of scheduling algorithms and to help facilitate the
comparability of (sometimes contradictory) results obtained in the scheduling
community. We would like to help develop a benchmark suite of real workload
traces and synthetic models for use in the resource management community.

Our focus is on job-oriented resource management for distributed memory
parallel machines, and on job-oriented workloads, where a job consists of a collec-
tion of one or more computational tasks to be run in parallel. The job scheduling
strategy involves the decision about which of many queued jobs is next to be
allocated resources. Job scheduling policies range from the classic First-Come
First Served algorithm to complex, multi-level queue models such as those im-
plemented by scheduling systems such as NQS, Load Leveler, PBS or EASY
[4, 14, 12, 13]. The job allocation strategy selects the set of processors to be allo-
cated to the job based on its jobsize request. We restrict our attention to static
allocation strategies rather than adaptive strategies: the former simply allocate
the requested number of processors.! Static allocation strategies fall into two
classes: contiguous and non-contiguous, based on whether or not the set of allo-
cated processors are directly connected by links in the interconnection network.
Research in job scheduling and processor allocation is thoroughly surveyed in
[8]; more recent work in this area includes that reported in [10] as well as our
own [17, 22, 18]. This project is distinguished from our previous work in that we
evaluate the experimental method, not the scheduling techniques themselves.

Some of the first researchers to use real traces from production machines to
drive their simulations include [19, 1, 18]. At the same time, analysis of this
emerging body of trace data was conducted by Feitelson and Downey in the
development of realistic synthetic workload models. Feitelson’s model combines
observations of five different parallel supercomputers in the evaluation of gang
scheduling strategies [7], and Downey’s model is based on detailed analysis of
the SDSC Paragon, utilized in experiments evaluating adaptive job scheduling
algorithms [6, 5]. The synthetic workload models developed by Downey and
Feitelson are used in our experiments and are discussed in more detail in Section
4.

Several studies statistically analyzed workload traces from production use of
real parallel supercomputers. Feitelson and Nitzberg analyzed the workload from
an Intel iPSC/860 located at NASA Ames, providing the first widely available
workload measurements from a real system [9]. Windisch et. al. [21] continued
this effort by analyzing traces from the Intel Paragon at the San Diego Super-
computer Center (SDSC), and comparing the workload to that of the NASA
iPSC/860. The workload characteristics analyzed in these studies included gen-
eral job mix, resource usage, system utilization and multiprogramming level,
runtime distribution, job submission statistics, and interarrival time distribu-
tions. Overall, the profiles of the two workloads were surprisingly similar. Hotovy
analyzed the evolution of the workload on an IBM SP-2 at the Cornell Theory
Center (CTC), concluding that workloads change in significant ways over time,
requiring adaptations in the scheduling mechanisms for efficient operation [11].

A few of the many studies of job scheduling and processor allocation algo-
rithms have offered insights into the effects of workload characteristics on those

! Adaptive allocation strategies for moldable jobs allocate a number of processors that
is a function of the number of free processors in the system and of characteristics of

the job.

algorithms. Of special interest to our study is Krueger’s work on scheduling and
allocation performance under workloads exhibiting negative correlations between
jobsize and runtimes [16]. As we shall see, our work further explains some of the
phenomena he observed. The only recent study that we know of that has focused
on the experimental methodology itself, i.e., the effect choice of workload has
on scheduling performance results, is that of Chiang et. al. [2]. They compare
the performance of several scheduling strategies over a wide range of workload
parameters and conclude that the discrepancies among various studies are due to
differences in the (synthetic) workloads used for performance evaluation. Neither
Krueger nor Chiang studied the effect of real workload traces on performance.

3 Workloads

A workload trace is a record of resource usage data about a stream of parallel
and sequential jobs that were submitted to and run on a given message-passing
parallel machine. Each job arrives, executes on one or more nodes for a period
of time, and then departs the system. The resources requested by these jobs
typically include jobsize (the number of requested processors), runtime, memory
requirements, I/O devices such as disks or network interfaces, and software re-
sources. Furthermore, every job in a workload is associated with an arrival time,
indicating when it was submitted to the scheduler for consideration.

Real workload traces captured from production machines can potentially pro-
vide a very high level of realism when used directly in performance evaluation
experiments. However, this usage comes with a number of caveats in the inter-
pretation of performance results. A given trace is the product of an existing
scheduling policy and thus is biased or affected by that policy. Human factors
must be considered when analyzing or utilizing workload data: human users of-
ten adapt their resource demands to the system or the scheduling policies, in
ways that do not reflect the actual needs of the job. Finally, workload traces
may not discriminate between a job’s direct resource needs and the resources
utilized by the operating system on behalf of the job; furthermore, traces may
not distinguish between inherent versus contention-related resource usage.

Synthetic workload models offer the convenience of a much more manage-
able experimental medium that is free of the idiosyncratic site-specific behavior
of production traces. This i1s both its advantage and a potential point of criti-
cism — the use of a tractable synthetic model provides a neutral, more universal
experimental environment but does not yield the realism and pragmatic testing
desired by some researchers. Sometimes the mathematical modeling smoothes
out perturbations that it is desirable to investigate.

Therefore, researchers should be cognizant of the details surrounding the
trace and consider how applicable a given trace is as a model of the target sys-
tem. They need to be mindful of their specific experimental goals; performance
evaluation by a site administrator at one of the supercomputing centers has a
much more focused and pragmatic goal than that performed by an academic
researcher developing new algorithms for future machines and environments.

3.1 Real Workload Traces

The traces described below were collected from a variety of machines at several
national labs and supercomputing sites in the United States and Europe. The
type of workload at all the sites consisted of scientific applications ranging from
numerical aerodynamic simulations to elementary particle physics. Trace data
was collected through a batch scheduling agent such as the Network Queuing
System, Load Leveler; PBS, or EASY. Traces that have been used for trace-
driven simulation were sanitized to remove user specific information and pre-
processed to correct for system downtimes, sporadic missing data, and then
reformatted for use in the simulator. In some cases, trace data may also be
manipulated in order to study specific phenomena (e.g. selective filtering to
remove interactive jobs). We briefly summarize the machine architecture, user
environment, and scheduling policies in force at each site. Our experiments used
traces from the first four machines in the list.

— SDSC Intel Paragon: The San Diego Supercomputer Center houses a 416
node Paragon machine. The scheduling policies are implemented through the
Network Queuing System (NQS) which queues jobs according to power-of-
two jobsizes, maximum runtime, and memory requirements (16 MB vs. 32
MB nodes). The (static) allocation algorithm is a block-based non-contiguous
strategy. The SDSC traces were taken from 1995-1996, in three-month groups.
[21, 20]

— CTC IBM SP-2: The Cornell Theory Center IBM SP-2 machine has 512
nodes connected by a high performance switch. The traces come from two
periods: July 1994-March 1995 with scheduling managed by IBM’s LoadLev-
eller and July 1995-Feb 1996 under LoadLeveller and Easy [11].

— NASA Ames IBM SP-2: The NASA Ames IBM SP-2 machine has 160
nodes connected by a high performance switch. The traces cover two years,
from August 1995 to August 1997. The scheduling policies are implemented
through the Portable Batch System (PBS) [15].

— KFA Cray T3E: The Forschungszentrum Jilich has a 512 node CRAY
T3E. Jobs are submitted through NQS. Job queues differ in maximum
(power-of-two) jobsize and maximum runtime. The (static) allocation al-
gorithm is contiguous. The traces were taken from March 1997 - September
1997.

— Other traces include those from the iPSC/860 at NASA Ames NAS, a 128
node hypercube; the ETH Paragon, a 96 node mesh; the Cray T3D at Pitts-
burgh Supercomputing Center, a 512 node torus-based machine; Argonne
National Laboratory’s 128 node IBM SP-1, a 512 node CM-5; and 126 node
shared memory BBN Butterfly at Lawrence Livermore National Laboratory’s
BBN Butterfly.

3.2 Synthetic Workload Models

Workload modeling of the nature required for resource management in dis-
tributed memory parallel machines is in its infancy due to prior lack of trace

data available for analysis. For the most part, performance evaluation studies
have relied on “naive” synthetic models, using classic probability distributions
such as exponential and uniform.

Dror Feitelson [7] analyzed trace data from five of the above machines, specif-
ically the NASA iPSC/860, ANL IBM SP-1, SDSC Paragon, LLNL Butterfly,
and ETH Paragon. His goal was to derive probabilistic models for use in his
experiments with gang scheduling algorithms. Feitelson proposed a harmonic
distribution to model jobsizes, and then hand tailored the model to emphasize
small job sizes and other “interesting sizes” that he observed across all five ma-
chines. These included powers-of-two, squares, multiples of 10, and full system
size requests.

He used a two-stage hyperexponential distribution to model runtimes and
enforced a linear relationship between jobsize and the probability of using the
distribution with the higher mean. This decision was based on observations of a
strong correlation between jobsize and job runtime on the NASA iPSC/860 and
a weak correlation on the ANL SP-1 and SDSC Paragon. (Our results relating
to correlation of jobsize and runtime are discussed in Section 5.)

Feitelson also modeled user job submission behavior, using a Zipf distribution
to model repeated submissions of the same job (job runlength). We note that
Feitelson chose to use an exponential distribution to model interarrival times;
our own studies of workload data have shown this assumption to be strongly
Jjustified [21].

Allen Downey [6, 5] focused his analysis on two machines, the SDSC Paragon
and the CTC SP-2. He proposed a uniform-log distribution for modeling job
lifetimes (approximated by the product of runtime and number of processors).
From his analysis of the SDSC trace data, he observed that this distribution
is accurate except for very small and very large jobs. Downey’s curve-fitting
analysis eliminated the smallest 10% and largest 10% of jobs. He used this model
to predict queue waiting times and verified the accuracy of his model using the
SDSC workload data 2. From his comparison of the SDSC and CTC workloads,
he noticed that the same (uniform-log) model is accurate for both machines/sites,
but the specific parameters differ significantly. Downey warned that researchers
will need to be very careful about use of these models, recommending that a
workload derived from one system should not be used to evaluate another. We
will discuss this precaution further in Section 5.

In a second study of the same machines, Downey derived a uniform-log distri-
bution for job cluster size (which we call jobsize) by smoothing out the observed
step function that characterized the raw trace data. He argued that the power-
of-two cluster sizes responsible for the step function reflected the power-of-two
NQS job queues, not the actual cluster size requirements of the jobs. This dis-
tribution and additional parameters involving variance in job parallelism were
used to develop a stochastic model for simulation of several known adaptive

2 Downey acknowledges that his results are prejudiced because he uses the same SDSC
trace to derive the prediction model and to evaluate it.

strategies.? Downey’s goal was to analyze the performance of these strategies in
terms of their sensitivity to specific workload characteristics.

Finally, the types of “naive” workload models that have been used over the
past decade of scheduling research include the following: The vast majority of
researchers have used exponential distributions to model interarrival times. Job-
sizes have been modeled using a variety of probabilistic models including uni-
form, uniform with step functions, normal, geometric, and exponential, while
runtimes have been modeled with exponential and hyperexponential distribu-
tions.

4 Experiments

4.1 Experimental Method and ProcSimity Simulator

In our experiments we observed the performance of various resource management
algorithms through simulation using real workload traces and compared those
results with simulations of the same algorithms using synthetic models. The
real workload traces that we used were the first four described in Section 3.
In all cases, we used batch jobs only, removing the interactive jobs from the
trace, since our focus is on batch scheduling. (Interactive jobs tend to have
drastically different workload characteristics.) The synthetic models used in these
experiments were those of Feitelson, Downey, and two naive models. The specific
workload information that was used as input to the scheduling and allocation
algorithms included job arrival time, jobsize and job runtime. Qur simulator
modeled a stream of jobs that arrive, execute for a period of time, and then
depart the system. We did not model message-passing behavior in this study.
We conducted five distinct experiments:

— real workload traces versus synthetic workload models

— realistic synthetic workload models versus naive synthetic models

— a comparison of real workload traces across disjoint time periods (at the
same site)

— a comparison of real workload traces across sites

— effects of specific workload characteristics: power-of-two jobsizes and corre-
lation between jobsize and runtime.

For all five experiments, we simulated a mesh topology. This mesh was used
in all of the experiments involving real workload traces, even if the trace was
captured from a machine with a different architecture. For the studies involving
the synthetic workloads and the SDSC workloads, we simulated a 16 x 22 mesh
to match the size of the SDSC Paragon batch partition. For studies involving
the CTC workload, we used a 16 x 27 mesh to match the size (but not the

? The type of allocation strategies studied by Downey are different from those studied
in this paper. Downey focused on allocation for moldable jobs, where a job’s cluster
size 18 based on the number of available processors or job characteristics. We focus
on static allocations in which the jobsize is a fixed request.

topology) of the CTC SP-2 machine. For the experiment investigating power of
two jobsizes, we used a 32 X 32 mesh.

All experiments were conducted using ProcSimity [23], a simulation tool we
developed for evaluating job scheduling and processor allocation algorithms for
distributed memory parallel machines. ProcSimity models a variety of network
topologies and several current flow control and routing technologies. ProcSimity
supports both synthetic job streams and trace-driven simulation. Our simulator
has been in use for several years at the University of Oregon and is currently in
use at a number of research sites including the Ministry of International Trade
and Industry in Japan, ETH Zurich, and academic institutions in the United
States.

4.2 Resource Management Strategies

We evaluated the performance of two scheduling algorithms and three static al-
location strategies, varying the type of workload used to drive the simulations.
A given job scheduling strategy determines which of many queued jobs is ad-
mitted to the system for execution. The allocation strategy selects a subset of
the physical processors for allocation to that job. We restricted our attention to
static allocation strategies in which the number of processors assigned to a job
1s fixed for the lifetime of the job.

Job Scheduling Strategies

— FCFS is the classic First Come First Served Scheduling Algorithm. FCFS is
a simple, single queue algorithm commonly used as a standard of comparison
or as a default algorithm.

— ScanUp [16] is a multi-queue job scheduling strategy in which jobs are
queued by jobsize. The scheduler services one queue at a time, from smallest
to largest, serving only those jobs that arrived in a given queue before it
selected that queue (thereby avoiding starvation). When it completes serving
the largest job queue, it begins again with the smallest. ScanUp was shown
to outperform a wide range of scheduling algorithms.

Allocation Strategies

Static allocation strategies can be classified as contiguous or non-contiguous,
based on whether or not the set of allocated processors are directly connected
by communication links in the interconnection network.

— Frame Sliding [3] searches for a rectangular block of processors by sliding a
window of the desired size across the mesh in horizontal and vertical strides
based on the width and height of the requested rectangle. Frame Sliding is
a contiguous strategy with marginal performance.

— First Fit [24] searches for a contiguous block of processors starting at a
reference point (e.g. lower left hand corner of the mesh). First Fit was shown
to have the best performance among all contiguous strategies in [17].

— Paging allocates processors by scanning the free list of processors in a fixed
order and allocating them to the job without regard to their contiguity.
Paging was shown to have the best performance among all non-contiguous
allocation strategies in [17]%. Because we do not model message-passing con-
tention in this study, its performance is the same as that of the whole class
of purely non-contiguous algorithms.

4.3 Performance Metrics
Performance was measured using the following metrics:

— average processor utilization: the percentage of processors allocated to
jobs at any given time, averaged over the entire workload.

— average response time: the elapsed time from when a job arrives for
scheduling to when it completes execution, averaged over the entire workload.
Response time includes both time spent in waiting queues and time spent in
execution.

auerade TEiponie time This metric normalizes average re-

ge runtime
sponse time so that results are more easily compared across workloads. This
metric 1s not the same as average slowdown. The differences and the reason
we chose slowdown ratio are discussed below.
. Efruntimexjobsize]

— system load: N —————-=
system size (total number of processors). This metric measures the offered
load relative to the size of the system, and appears as the independent vari-
able in the graphs of experimental results.

— sustainable load: the system load value below which average job response
times remain within reasonable bounds.

— slowdown ratio:

where A i1s the arrival rate and N 1s the

While we measured average response times in all experiments, the graphs
presented in this paper use slowdown ratio as the dependent variable (on the
y axis). An alternative metric is average slowdown, the expected value of the
quotient response time divided by runtime. We found that average slowdown is
a heavy-tailed distribution with very large values for outlier data points. These
outliers turned out to be jobs with very short runtimes (in the order of seconds)
whose response time was huge (in the order of tens of hours) because they were
blocked in the waiting queue behind a large and long-running job. We considered
using order statistics (e.g. displaying results for the 90% quantile), but found
slowdown ratio to be more suitable for this paper.®

It is important to realize that sustainable load, the system load value below
which average response time remains within reasonable bounds, is an important
focal point in performance evaluation. This critical point is visible as the “knee”
in the graphs of slowdown ratio and system utilization. Below the critical point,

* Since that time we have developed a superior algorithm called MC [18] that is con-
tiguous when a contiguous block exists, but non-contiguous otherwise.

® We plan to look further into the relative merits and utility of various performance
metrics.

the system load is at manageable levels so that the increase in job response time
is gradual and utilization continues to improve. At the knee, the job response
time suddenly begins to grow rapidly toward infinity. By the same token, the
system utilization levels off since the system is saturated with work. Thus, in
evaluating the relative performance of resource management strategies, we focus
our analysis on the phenomena observed near this saturation point.

Table 1. Ranking of Scheduling and Allocation Algorithms

Strategy Synthetic models|SDSC traces|CTC traces|NAS traces
N1|N2|D|F S1- 88 C1-C2 | N1-N3
Paging/ScanUp||{1 |1 |1 |1 2 1 1
Paging/FCFS |2 (2 |22 1 2 2
FF/ScanUp 3 13 1313 3 3 3
FS/ScanUp 4 |4 |44 4 4 4
FF/FCFS 5 5 (515 5 5 5
FS/FCFS 6 |6 |66 6 6 6
5 Results

5.1 Real Workload Traces versus Synthetic Workload Models

Our experiments showed that the choice of workload trace alone did not affect
the relative performance of the selected resource management algorithms. Al-
most all workloads (real or synthetic, across sites, and for different time periods
at the same site) ranked the algorithms in the same order from best to worst with
respect to slowdown ratio and system utilization. See Table 1. In addition, all
workloads strongly discriminated among the three allocation algorithms,; with
non-contiguous Paging clearly outperforming First Fit, and First Fit clearly
outperforming Frame Sliding. The distinctions between the two scheduling al-
gorithms were consistent across workloads but not as pronounced, with ScanUp
usually outperforming First Come First Served. In cases where rankings were
inconsistent, we conducted further experiments to identify causes for the differ-
ences. These are discussed in Section 5.5.

5.2 Realistic Synthetic Models versus Naive Synthetic Models

Table 2 gives the probability model and values of associated parameters for each
of the four synthetic models that we tested. Two of these models, Downey and
Feitelson, were realistic models derived through careful analysis of real workload
traces; two were naive models widely used in the scheduling literature. Downey
did not model job runtimes directly but derived a uniform log model for job

Table 2. Models, means, and parameters for the four stochastic workloads

Model Jobsize Runtime Inter-arrivals
Naive-1 uniform exponential exponential
@ = 98.2 nodes p = 1.0-8.0 pu =10
Naive-2 exponential exponential exponential
@ = 47.1 nodes p = 1.0-8.0 pu =10
Downey uniform log uniform log exponential
@ = 61.26 nodes p = 7142.72 sec. observed p = 967 sec.
varied
Feitelson harmonic 2-stage hyper-exponential exponential
hand-tailored
p = 22.75 nodes p = 1289.49 sec. @ = varied

lifetimes. We also determined that a uniform log model was accurate for run-
times by using linear regression over job runtimes from the SDSC Paragon Trace
(method of least squares). The maximum runtime was limited to 12 hours, the
limit for the trace from which Downey’s model was derived. We did not model
the repeated job submissions used by Feitelson (runlength).

As shown in Table 1, all four synthetic models ranked the scheduling and
allocation algorithms in the same order from best to worst. In Figure 1 it is in-
teresting to note that results from the two realistic synthetic models were similar
to each other as were results from the two naive models. This was true despite
the fact that each modeled jobsize and job runtime with very different probabil-
ity distributions. For example, with respect to system utilization, the two Naive
models show the noncontiguous allocation strategies clearly outperforming the
contiguous ones, with the choice of scheduling algorithm having a lesser effect.
This can be seen in Figure 1 in which the algorithms cluster into two groups
based on allocation strategy. In contrast, the Downey and Feitelson models show
the scheduling algorithm having a more pronounced effect on performance.

The Naive models also differed from Downey and Feitelson’s realistic syn-
thetic models with respect to performance under increasing system loads. With
the Naive models, performance of the system degrades more gradually as system
loads approach 1.0, while with the two realistic synthetic models, slowdown ra-
tios increase much more rapidly and earlier. As discussed in Section 5.5, these
differences might be attributed to differences in two specific characteristics of
the workload models.

Thus, it appears that the choice of synthetic model alone does not affect the
overall ranking of scheduling and allocation strategies, despite the fact that they
may use very different probability distributions in their models. The choice of
synthetic model does affect more subtle aspects of algorithm performance.

Slowdown Ratio

Slowdown Ratio

Slowdown Ratio

Slowdown Ratio

Naive-1 (Uniform Job Size Distribution)

Naive-1 (Uniform Job Size Distribution)

20 T T TT LT T T 1 T T T T T T T T T
;i Paging/ScanUp ; Paging/ScanUp —+—
1| [Paging/FCFS /--x-—- Paging/FCFS ---%---
'} FirstFit/ScanUp; -~ 08 FirstFit/ScanUp ---*--- i
15 Frameﬁiiding/SCanug &} i : FrameSliding/ScanUp &
@7 FirstFiFCF$ /-m-- § FirstFit/FCFS --m--
FrameSIidinglFCF,S -o-- = 06 FrameSliding/FCFS ---o---
/ N 6 b
L / 1 3 K
10 fE’ s &=
o 04 1
0
@
5 4
0.2 B
0 1 1 ! 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 0. 1 0 01 02 03 04 05 06 07 08 09 1
System Load System Load
Naive-2 (Exponential Job Size Distribution) Naive-2 (Exponential Job Size Distribution)
20 T T T T L T T T T 1 T T T T T T T T T
o | /Paging/ScanUp A Paging/ScanUp —+—
L Paging/FCFS -7 Paging/FCFS ---%---
|/ ¥ FirstFit/ScanUp -~ 08 FirstFit/ScanUp ---*---
15 | i {FrameSliding/ScanUp /& 4 : FramesSliding/ScanUp =)
{1 FirstFitlFCFS ~-m 8 FirstFit/FCFS —-m-— S -----x---]
¢ I “FramesSliding/FCFS ---¢/- = FrameSliding/FCFS ---
® B / N 06 4
10 |- 4 3
5 oaf
0
@
5 4
0.2
| | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 0. 1 0 01 02 03 04 05 06 07 08 09 1
System Load System Load
Downey Workload Model Downey Workload Model
20 T 1
! i & Paiding/ EanUb —— Paéing/§canub L
! i [Paging/FCFS -——x-—- Paging/FCFS ---x---
i W D% FirstFit/ScanUp ------ 08 FirstFit/ScanUp ---*--- h
15 + i I FrameSliding/ScanUp & 4 ! FramesSliding/ScanUp £
8 FirstFit/FCFS —-m--
T FrameSliding/FCFS ---©,
N 06 ~
10 |- 4 3
§ oaf .
2 FOOGEIEEEN0000 0@ - ~G -~~~ = 0= =~
[7)
5 4
0.2 B
0) 1 1 0 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
System Load System Load
Feitelson Workload Model Feitelson Workload Model
20 1
I * ‘;' P ding/SEanUb i ‘ Paéing/S‘canU‘p T
i Paging/FCFS --—x-— Paging/FCFS ---x---
| FirstFit/ScanUp --->:--- 08 FirstFit/ScanUp ---%--- i
15 | FraméSliding/ScanUp & 4 : FramesSliding/ScanUp =)
/| FirstFit/FCFS —-m— 5 FirstFit/FCFS —-m--
FrameSliding/FCFS --o - T 06 FrameSliding/FCFS -+ -¢. ¥ =% H~#
. g X r B
10 F {1 3
5 oal 4
2 : 8- BB 5E B B B 8-
>
5L 1l @
0.2 B
0 I 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

System Load

System Load

Fig. 1. Four Synthetic Workload Models: Naivel, Naive2, Downey, and Feitelson

5.3 Real Workload Traces over Disjoint Time Periods (at a Single
Site)

In this experiment, we compared performance results from the SDSC Paragon
traces over eight quarters in 1995 and 1996. We observed highly consistent re-
sults for all eight quarters, both in ranking and detailed behavior of scheduling
strategies. Due to space limitations we only show graphs for the first quarter
of 1995 and the last quarter of 1996 (see Figure 2). The strong consistency in
performance results is especially notable given the variation in workload char-
acteristics among the eight quarterly profiles. Table 3 shows the variation in
means for jobsize, runtime, and interarrival times and for system load among
the quarterly workloads.

We did the same comparison for the CTC SP-2 over two eight month periods
in 1994-95 and 1995-96, respectively. The results were similar to those of the
SDSC experiments. This is especially interesting because the scheduler changed
from LoadLeveller to LoadLeveller/EASY.

We conclude that workload traces from the same site but different time pe-
riods are consistent in their evaluation of scheduling algorithms because the
workload profile at a given site tend to be fairly stable over time (assuming a
mature production site). However, as we discuss below in Section 5.5, there are
other workload characteristics that are critical for performance.

Table 3. SDSC Workload Characteristics by Quarter

Quarter Mean Mean Mean Mean
Jobsize Runtime Interarrival Sys.Load
(nodes) (secs) (secs)
1995 Q1 22 8689 1100 .705
1995 Q2 21 8305 1042 .744
1995 Q3 29 8859 1516 741
1995 Q4 32 8245 1836 752
1996 Q1 23 12722 1590 782
1996 Q2 18 11376 1130 .865
1996 Q3 26 9660 1598 .698
1996 Q4 15 10945 1301 .545

Slowdown Ratio

Slowdown Ratio

SDSC 1st quarter 1995

SDSC 1st quarter 1995

20

15

10

20

15

10

T T T T 3
Paging/ScanUp —+—/ ; {
Paging/FCFS ---x
FirstFit/ScanUp --- %7
FramesSliding/ScanUp &/ ;
FirstFit/FCFS —-m~ 4
FramesSliding/FCFS ---¢- +

I

.

System Utilization

o
=
T

I
IS
T

T T T T
Paging/ScanUp —+—
Paging/FCFS -~
FirstFit/ScanUp ---%---
FrameSliding/ScanUp &
FirstFit/FCFS -
FrameSliding/FCFS ---&--

|
01 02 03 04 05 06 07 08 09 1
System Load

SDSC 4th quarter 1996

L
01 02 03 04 05 06 07 08 09 1

System Load

SDSC 4th quarter 1996

T T T T T
Paging/ScanUp —+— . H
Paging/FCFS ---x--- [! !
FirstFit/'ScanUp ---%*--- L)‘ !
FramesSliding/ScanUp & oA /
FirstFit/FCFS —-m-— (ST / 1
FrameSliding/FCFS --o— [¢ !

System Utilization

0.8 -

o
o
T

I
I
T

0.2

T T T T
Paging/ScanUp —+—
Paging/FCFS --
FirstFit/ScanUp ------
FrameSliding/ScanUp &
FirstFit/FCFS ---m—
FrameSliding/FCFS ---o---

I
01 02 03 04 05 06 07 08 09 1
System Load

0
0

01 02 03 04 05 06
System Load

Fig. 2. SDSC 1st Quarter 1995 and 4th Quarter 1996

0.7 08 09 1

5.4 A Comparison of Real Workload Traces across Sites and
Machines

Our goal for this set of experiments was to compare performance results based
on real workload traces from different machines at different sites. The workload
traces came from the following machines: SDSC Paragon, NASA Ames NAS IBM
SP-2, Cornell Theory Center IBM SP-2, and KFA Cray T3E (see descriptions
of each machine and user environment in Section 3).°

This set of experiments showed that, with one exception, the ranking of
the selected scheduling and allocation algorithms was not affected by the spe-
cific workload trace used. (See Table 1.) The exception occurred on the SDSC
Paragon for which FCFS slightly outperformed ScanUp as the top ranking algo-
rithm; for the NAS and CTC workloads, ScanUp was the best algorithm as was
true for all the synthetic traces as well.

All three workloads showed clear discrimination for non-contiguous alloca-
tion algorithms over contiguous algorithms; however, the degree of discrimination
varied among the different workloads. It is also interesting to look at the perfor-
mance of the FCFS algorithm alone. For the contiguous allocation algorithms
(First Fit and Frame Sliding), FCFS achieved utilization levels of at best 40%
on the NAS and CTC machines, but reached over 60% on the SDSC. See Figure
3.

Looking at the profiles of the workloads in Table 5, we found distinct differ-
ences in two areas, motivating the last set of experiments.

5.5 Effects of Specific Workload Characteristics

Effects of Proportion of Power-of-Two Jobsizes. One of the most obvi-
ous differences among workloads was the proportion of power-of-two jobsizes.
Downey’s model smoothed out the power-of-two step function while Feitelson’s
emphasized these sizes. Among the production traces, the proportion of power-
of-two jobsizes was very high, ranging from 84.2% for SDSC to 100% for the
iPSC/860, a hypercube machine.

We looked into the effect power-of-two jobsizes have on performance eval-
uation by creating three synthetic traces: one in which jobsize i1s taken from
an exponential distribution, one forced to have a minimum of 50% power-of-
two jobsizes, and one forced to have 100% power-of-two jobsizes. The traces for
50% and 100% sets were created so that the step function matched the initial
exponential distribution when smoothed. As seen in Table 4, as power-of-two
dominance increases, so do utilization levels for all resource management algo-
rithms. As a result, the sustainable load also increases with increasing dominance
of power-of-two jobsizes.

Another interesting phenomenon is the fact that with a 100% power-of-two
job mix, it is the scheduling strategy (not allocation strategy) that determines

5 We are still running experiments with KFA T3E.

Slowdown Ratio

Slowdown Ratio

Slowdown Ratio

SDsC

Sbsc
20 — - - 1 — T T
Paging/ScanUp —+— Paging/ScanUp —+—
Paging/FCFS ---x--- Paging/FCFS ---x---
FirstFit/'ScanUp ------ FirstFit/ScanUp ------
FrameSliding/ScanUp & 0.8 FrameSliding/ScanUp &
15 FirstFit/FCFS —-m-— - FirstFit/FCFS —-m-—
FrameSliding/FCFS ---o--- 5 FrameSliding/FCFS ---&-- "iiﬁ'-?ﬁ'-'ﬁ-‘i:g
g 0.6 B
10 43
5
2 04 B
>
@
5| 4
02 B
0 I | I I I I I 0 I
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
System Load System Load
NAS NAS
20 T T T T T T 1 T T T T
(R 1Paging/ScanUp —+— Paging/ScanUp —+—
: [i Paging/FCFS -~
I | FirstFit/ScanUp ---%--- FirstFit/ScanUp ---%---
i FrameSliding/ScanUp & 0.8 FrameSliding/ScanUp &
15 [| |FirstFitFCFS —-m— - FirstFit/FCFS —-m—
u‘ o FrameSliding/FCFS ---o-- c FrameSliding/FCFS -
o 7 g
: E 0.6
10 - 413
5
5 04r
>
@
5| 4
02
0 | I I I I I I I I 0 I I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
System Load System Load
CTC CcTC
100 - T T 1 — T T
P : Paging/ScanUp Paging/ScanUp —+—
] / ¢ Raging/FCFS - Paging/FCFS -
P 7 FigstFit/ScanUp ---- FirstFit/ScanUp ---*
80 - P FrameSliding/ScanUp - 08 | FrameSliding/ScanUp & e
o ! i / FirstFit/FCFS |--m-— FirstFit/FCFS - S
] *') FramesSliding/FCFS/--o-- < FrameSliding/FCFS ---o---
, P s
60 - fo 1§ o6r 8
5
5
40 12 oaf
>
3
20 B 0.2 B
0 I I I I I I I I 0 I I I I I I I I I
02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

System Load

System Load

Fig. 3. SDSC Paragon versus NAS SP-2 versus CTC SP-2

performance. ScanUp outperforms First Come First Serve, regardless of alloca-
tion strategy. This result is consistent with that of [16] in their experiments with
scheduling and allocation algorithms for the hypercube.

Table 4. Effects of Power-of-two Jobsizes on System Utilization and Sus-
tainable Load. Minimum and maximum utilization levels are across all algorithms.
Sustainable loads are shown for the worst performing algorithm FS/FCFS and the best
performing algorithm Paging/ScanUp.

Percent Min Max|Sust.Load Sust.Load |
Power-of-2|Util. Util.|FS/FCFS Paging/ScanUp

3.4% 41% 78% .36 .74
51.7% 45% 84% .39 .82
100% 63% 90% .48 .93

Effects of Degree of Correlation Between Jobsize and Runtime. Degree
of correlation between jobsize and runtime is of interest in the scheduling com-
munity because it reflects certain assumptions about the work model and the
type of scheduling algorithms needed. The fized work model and the notion of
adaptive scheduling for moldable jobs carry an implicit assumption that jobsize
and runtime are negatively correlated since they assume that the more proces-
sors given to a job, the more quickly it will finish execution. The independent
work model presumes that jobsize is unrelated to job runtime (zero correlation).

We note that a common assumption for many large production workloads is
that jobsize and runtime are positively correlated. Table 5 shows the range of
correlation coefficients relating jobsize to job runtime for some of the real work-
loads and synthetic models reported in this paper. We used Pearson’s r, which
presumes a linear relationship between the variables, to compute the correla-
tions. In reality, this relationship does not necessarily hold. Feitelson [7] noted a
strong positive correlation for the NAS iPSC/860 trace but found much weaker
relationships for other traces.

To test the effect of correlation on performance evaluation, we used the SDSC
workload as a base and manipulated the data to achieve correlations of -1, 0, and
+1 (see Figure 4). Our experiments show that for highly positively correlated
workloads, Krueger’s ScanUp algorithm, the best performing strategy in all other
studies, performed worse than FCFS for all three allocation strategies!!

The explanation lies in the correlation. Recall that ScanUp uses multi-level
queues, with each queue associated with a specific jobsize, from small to large.
Thus, with a strongly positive correlation, large, long-running jobs arrive in the
large-jobs queue while small, short-running jobs arrive in the small-jobs queue.
While ScanUp is serving the large-jobs queue, smaller sized jobs arrive at the
other queues. However, because all the large jobs are also long-running, these
smaller queues fill up and the response time for these smaller jobs increases

Slowdown Ratio

Slowdown Ratio

Slowdown Ratio

SDSC 4th quarter 1996 - Correlation = +1.

SDSC 4th quarter 1996 - Correlation = +1.0

20 1
l‘>aging/‘ScanU‘p 7] ' j ' l"aging‘lScanl‘Jp 7 ' '
Paging/FCFS ---%--- E 1 Paging/FCFS ---x-—--
FirstFit/'ScanUp ------ i FirstFit/ScanUp ------
FrameSliding/ScanUp & ! H 0.8 FrameSliding/ScanUp &
15 FirstFit/FCFS —-m-— ! FirstFit/FCFS —-m-—
FrameSliding/FCFS ---o-- /1 * - FrameSliding/FCFS ---&--
/ S
g 06} E
10 B
5
2 04 B
>
@
5|
02 B
0 | I I I I I I I I 0 I I I I I I I I I
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
System Load System Load
SDSC 4th quarter 1996 - Correlation = -1.0 SDSC 4th quarter 1996 - Correlation = -1.0
20 1
Il-’agmg/‘ScanU‘p — / i ' ' I‘Dagmg‘lScanl‘Jp 7 ' '
Paging/FCFS ---x--- // Paging/FCFS --
FirstFit/ScanUp ---*--- / / FirstFit/ScanUp ---%---
FramesSliding/ScanUp @~ ! 0.8 FrameSliding/ScanUp &
15 FirstFit/FCFS -~ - FirstFit/FCFS —-m—
FramesSliding/FCFS - c FrameSliding/FCFS -
=]
E 0.6
10 =]
ﬂE)
5 04r
>
@
5
02
0 I I 0 I I I I I I I I I
01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
System Load System Load
SDSC 4th quarter 1996 - Correlation = 0.0 SDSC 4th quarter 1996 - Correlation = 0.0
20 T 1
ll-’aging/‘ScanU‘p T / I‘Daging‘/Scanl‘Jp 1 ' '
Paging/FCFS --»--- | Paging/FCFS -
FirstFit/'ScanUp ---* FirstFit/ScanUp ---*
FrameSliding/ScanUp —&-+ 08 | FrameSliding/ScanUp & i
15 FirstFit FCFS - - FirstFittFCFS ---w- 7~ B
FrameSliding/FCFS ---o, c FrameSliding/FCFS ---o---
=}
g o6 L b
= | e e Sa
10 42
5
F 04r 4
>
3
5 4
0.2 B
0 L L I I I I I 0 I I I I I I I I I
05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

0.1

02 03 04

System Load

System Load

Fig. 4. Effects of Correlation between Jobsize and Runtime

Table 5. Trace Characteristics

Runtime and Jobsize Percent

Trace Correlation Power-of-2
Coeflicient Jobs

NAS iPSC/860 strongly pos. 100.0%
SDSC Paragon 0.20 - 0.35 84.2%
CTC SP-2 ~0 88.5%
NAS SP-2 ~0 51.2%
Feitelson 0.19 84.9%
Downey 0 16.9%
Naivel 0 6.3%
Naive 2 0 20.2%

rapidly, resulting in poor performance. In addition, when ScanUp serves several
large jobs in a row, fragmentation of the processor space is high, also diminishing
utilization. Thus, for positively correlated workloads, ScanUp suffers.

Looking back at Krueger’s performance evaluation experiments for ScanUp,
we see that he simulated ScanUp under non-correlated and negatively correlated
workload models, the latter based on the fixed work model. Thus, our results
are complementary to Krueger’s and together show that the performance of
algorithms is critically dependent on the correlation.

The effect of correlation between jobsize and runtime on performance results
is also illustrated by examining Krueger’s statement that “scheduling is more im-
portant than allocation.” Qur results confirm what Krueger concluded, however,
only for negatively correlated workloads. In that case, ScanUp did best under
all three allocation strategies. However, for non-negatively correlated workloads,
scheduling did not dominate.

The key observation is that correlation between jobsize and runtime has
strong effects on performance results. Thus, researchers need to take this factor
into consideration when choosing or designing workloads and when evaluating
algorithm performance.

6 Conclusions and Future Work

In this paper we investigated the use of real workload traces and synthetic work-
load models for performance evaluation of several parallel job scheduling algo-
rithms. Our long term goal is the development of guidelines for the effective use
of traces and models in scheduling research.

Our experiments showed that the choice of workload alone — real trace versus
synthetic model — did not significantly affect the relative performance of the
selected resource management algorithms (FCFS and ScanUp scheduling; First
Fit, Frame Sliding, and Paging allocation). Almost all workloads ranked the
algorithms in the same order from best to worst with respect to response time,
slowdown, and system utilization.

It also appears that the choice of synthetic model alone does not affect the
overall ranking of these scheduling and allocation strategies, despite the fact that
they may use very different probability distributions in their models. The choice
of synthetic model does affect more subtle aspects of algorithm performance.

We saw that workload traces from the same site but different time periods
are consistent in their evaluation of scheduling algorithms because the workload
profile at a given site tends to be fairly stable over time (assuming a mature
production site).

However, our experiments revealed clear differences in performance using real
workload traces from different machines at different sites. Our investigation of
the causes of this inconsistent behavior led us to two factors which significantly
affect performance evaluation results:

— As the proportion of power-of-two jobs in the workload increases, so
does system utilization. As a result, the sustainable load also increases with
increasing dominance of power-of-two jobsizes.

— We also found that correlation between jobsize and runtime has strong
effects on performance results. Scheduling algorithms that did well on a
workload with strong positive correlation did worse on a negatively correlated
workload, and vice versa.

Taken together, these results show that great care must be taken in the use of
both realistic workload traces and synthetic workload models. Naive synthetic
workload models are useful in qualitative performance analysis, giving a high
level evaluation of algorithm performance. Realistic synthetic workload models
provide more detailed performance analysis. Both provide a convenient exper-
imental medium in which parameters are more easily controlled. It is critical,
however, that the researcher be aware of the profile of the workload produced
by manipulation of the parameters in the context of his experimental goals.

Real workload traces provide a much more realistic simulation testbed but
again precautions are necessary. The idiosyncrasies of a trace from one site may
malke it unsuitable for algorithm testing at another site. In addition, real traces
must be carefully prepared for use in simulation testing of algorithms to remove
biases that affect performance results.

The experiments reported here open up more questions than they answer.
Some specific areas that we plan to investigate further include:

— Extension of these experiments to a broader range of scheduling algorithms.
Will these same results hold up when applied to adaptive scheduling? to
gang scheduling?

— Extension of these experiments to see if they hold up when evaluating algo-
rithms whose performance is more similar than those we selected for this
study? Will the various workloads differ in their ability to discriminate
among very similar algorithms?

— Investigation of other workload characteristics that affect performance, such
as effect of including interactive jobs and periodic job submissions patterns
(such as day/night submissions and repeated submissions).

7

We

Development of a benchmark suite of real workload traces and synthetic
workload models for distribution throughout the scheduling community. Use
of standardized suites would improve the ability of scheduling researchers
to compare experimental results and to reach more solid conclusions about
algorithm performance.

Acknowledgments

would like to thank the following people who provided workload traces and

information regarding the traces: Reagan Moore, San Diego Supercomputer Cen-

ter;

Steve Hotovy, Cornell Theory Center; James Jones, NASA Ames NAS; and

Bernd Mohr, KFA. Thanks to Vimala Appayya and Drina Guzman from the
University of Oregon for help with processing the traces. We also would like
to thank the referees for their careful reading of the manuscript and their very
insightful comments.

References

(1]

(2]

[10]

[11]

R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson, and D. A.
Patterson. The interaction of parallel and sequential workloads on a network of
workstations. In Proceedings SIGMETRICS 95, 1995.

S. H. Chiang, R. K. Mansharamini, and M. K. Vernon. Use of application charac-
teristics and limited preemption for run-to-completion parallel processor schedul-
ing policies. In Proceedings SIGMETRICS’94, 1994.

P. J. Chuang and N. F. Tzeng. An efficient submesh allocation strategy for mesh
computer systems. In Proceedings IEEE International Conference on Distributed
Computer Systems, 1991.

Intel Corp. Paragon Network Queuing System manual. October 1993.

A. B. Downey. A parallel workload model and its implications for processor allo-
cation. In Proceedings HPD(C’97, 1997.

A. B. Downey. Predicting queue times on space-sharing parallel computers. In
Proceedings of the 3rd Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, IPPS ’97, 1997.

D. Feitelson. Packing schemes for gang scheduling. In Proceedings of the 2nd
Workshop on Job Scheduling Strategies for Parallel Processing, IPPS ’96, 1996.
D. G. Feitelson. A survey of scheduling in multiprogrammed parallel systems.
Technical Report RC 19790 (87657), IBM Research Division, T.J. Watson Re-
search Center, Yorktown Heights, NY 10598, October 1994.

D. G. Feitelson and B. Nitzberg. Job characteristics of a production parallel
scientific workload on the NASA Ames iPSC/860. In Proceedings of the 1st.
Workshop on Job Scheduling Strategies for Parallel Processing, IPPS "95, April
1995.

D. G. Feitelson and L. Rudolph, editors. Job Scheduling Strategies for Parallel
Processing. Springer Lecture Notes in Computer Science, 1995-1997.

S. Hotovy. Workload evolution on the Cornell Theory Center IBM SP2. In Pro-
ceedings of the 2nd Workshop on Job Scheduling Strategies for Parallel Processing,
IPPS "96, 1996.

[12]
[13]

[14]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

http://science.nas.nasa.gov/Software/PBS /pbshome.html. PBS portable batch
system.

http://www.llnl.gov/liv_comp/dpcs/. LLNL distributed production control sys-
tem.

http://www.tc.cornell.edu/Papers/abdullah.jul96/index.html. Extensible Ar-
gonne scheduler system (EASY).

J. Jones. NASA Ames NAS, Personal communication, 1997.

P. Krueger, T. Lai, and V. A. Dixit-Radiya. Job scheduling is more important than
processor allocation for hypercube computers. IEEE Transactions on Parallel and
Distributed Systems, 5(5):488-497, May 1994.

V. M. Lo, K. Windisch, W. Liu, and B. Nitzberg. Non-contiguous processor
allocation algorithms for mesh-connected multicomputers. IEEFE Transactions on
Parallel and Distributed Systems, 8(7):712-726, July 1997.

J. Mache and V. Lo. Minimizing message-passing contention in fragmentation-
free processor allocation. In Proceedings of the 10th International Conference on
Parallel and Distributed Computing Systems, 1997.

J. Subhlok, T. Gross, and T. Suzuoka. Impacts of job mix on optimizations for
space sharing schedulers. In Proceedings of Supercomputing 96, 1996.

M. Wan, R. Moore, G. Kremenek, and K. Steube. A batch scheduler for the Intel
Paragon MPP system with a non-contiguous node allocation algorithm. In Pro-
ceedings of the 2nd Workshop on Job Scheduling Strategies for Parallel Processing,
IPPS ’96, 1996.

K. Windisch, V. Lo, D. Feitelson, B. Nitzberg, and R. Moore. A comparison of
workload traces from two production parallel machines. In Proceedings of the Sixth
Symposium on the Frontiers of Massively Parallel Computation, 1996.

K. Windisch, V. M. Lo, and B. Bose. Contiguous and non-contiguous proces-
sor allocation algorithms for k-ary n-cubes. In Proceedings of the International
Conference on Parallel Processing, 1995.

K. Windisch, J. V. Miller, and V. M. Lo. Procsimity: an experimental tool for
processor allocation and scheduling in highly parallel systems. In Proceedings of
the Fuifth Symposium on the Frontiers of Massively Parallel Computation, February
1995.

Y. Zhu. Efficient processor allocation strategies for mesh-connected parallel com-
puters. Journal of Parallel and Distributed Computing, 16:328-337, 1992.

