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supercomputing center sites have collected large amounts of workload trace dataand released them for use in the evaluation of new resource management algo-rithms. Thus, researchers in performance evaluation have at their disposal twovalid methods for conducting simulations:(1) Use of real workload traces gathered from scienti�c production runson real supercomputers and carefully reconstructed for use in simulationtesting.(2) Use of synthetic workload models that use probability distributionsto generate workload data. We refer to the earliest synthetic workload modelsas \naive" because they were based on little or no knowledge of real tracecharacteristics (due to the fact that real traces didn't exist). Recently, morerealistic synthetic models have been developed in which the model and itsparameters have been abstracted through careful analysis of real workloaddata from production machines.Both approaches require that many assumptions and accurate statistical ob-servations be made, and that the modeler understands well the pro�le of thetargeted, real workload. Inaccurate assumptions or minor perturbations in anyproposed model may yield a workload that provides a poor evaluation of schedul-ing strategies on the targeted system. Yet, there exists very little published lit-erature that o�ers guidance to researchers concerning the use of real workloadtraces and synthetic workload models for experimentation with scheduling algo-rithms.Our work aims to �ll this void. Our goals are to determine the degree ofinuence of workload choice and workload characteristics on performance and,where possible, to isolate the causes of observed di�erences in performance re-sults. We will begin to address issues such as those listed below and to proposesome rules-of-thumb to help guide the use of these workload traces and modelsin simulation testing of scheduling algorithms.{ Real workload traces versus synthetic workload models:When shouldone use real traces and when should one use synthetic workloads? Do the re-sults of simulation with these two types of workloads reinforce each other? Ifnot, is it due to biases in the workload traces or inadequacies in the syntheticmodel?{ Universality of workload traces: Given a choice among real workloadtraces from di�erent sites, how does one know which trace to use? If perfor-mance evaluation results are discrepant, how does one know which resultsare valid?{ Sensitivity of scheduling algorithm performance to workload char-acteristics:What speci�c workload characteristics might bias performanceresults?The experiments reported in this paper compare many real workload traces andsynthetic workload models, both analytically and through simulation, observ-ing their e�ects on the performance evaluation of several classes of scheduling



and allocation strategies. Included were two scheduling algorithms: First ComeFirst Served and ScanUp [16], a multi-level queuing algorithm, and three staticallocation strategies: First Fit [24], Frame Sliding [3] , and Paging [17].The real traces were captured from four production machines in use for scien-ti�c computing at research labs and supercomputer sites around the world (twoIBM SP-2s, an Intel Paragon, and a Cray T3E). The synthetic models include\naive" models and those developed by Downey [6, 5] and Feitelson [7] based ontheir careful analyses of traces from production machines.We conducted �ve distinct experiments: (a) real workload traces versus syn-thetic workload models; (b) realistic synthetic workload models versus naivesynthetic models; (c) a comparison of real workload traces across disjoint timeperiods (at the same site); (d) a comparison of real workload traces across sites;and (e) e�ects of speci�c workload characteristics: power-of-two jobsizes and cor-relation between jobsize and runtime. These experiments led us to the followinggeneral observations; more details are discussed in Section 5.{ The choice of workload alone did not signi�cantly a�ect the relative perfor-mance of the resource management algorithms. Almost all workloads (real orsynthetic, across sites, and for di�erent time periods at the same site) rankedthe scheduling and allocation algorithms in the same order from best to worstwith respect to response time and system utilization. The choice of workloaddid yield di�erences in more subtle aspects of algorithm performance.{ Two critical workload characteristics were found to signi�cantly a�ect algo-rithm performance: (a) proportion of power-of-two job sizes and (b) degreeof correlation between job size and job run time. When used in the exper-imental evaluation of resource management algorithms, workloads di�eringin these two characteristics may lead to discrepant conclusions.As we shall see, for both real traces and synthetic models, it is critical thatone be aware of speci�c trace characteristics and the applicability of a giventrace for the researcher's experimental goals.The remainder of this paper is organized as follows: Section 2 gives the back-ground for this study and surveys related work; Section 3 discusses real work-load traces and synthetic workload models, and describes the speci�c traces andmodels used in this study. In Section 4 we describe our experiments, includingthe resource management strategies and performance metrics used. Section 5discusses our experimental results, and Section 6 gives our conclusions.2 Background and Related WorkThis project was motivated by our desire to improve the quality of our own workin performance evaluation of scheduling algorithms and to help facilitate thecomparability of (sometimes contradictory) results obtained in the schedulingcommunity. We would like to help develop a benchmark suite of real workloadtraces and synthetic models for use in the resource management community.



Our focus is on job-oriented resource management for distributed memoryparallel machines, and on job-oriented workloads, where a job consists of a collec-tion of one or more computational tasks to be run in parallel. The job schedulingstrategy involves the decision about which of many queued jobs is next to beallocated resources. Job scheduling policies range from the classic First-ComeFirst Served algorithm to complex, multi-level queue models such as those im-plemented by scheduling systems such as NQS, Load Leveler, PBS or EASY[4, 14, 12, 13]. The job allocation strategy selects the set of processors to be allo-cated to the job based on its jobsize request. We restrict our attention to staticallocation strategies rather than adaptive strategies: the former simply allocatethe requested number of processors.1 Static allocation strategies fall into twoclasses: contiguous and non-contiguous, based on whether or not the set of allo-cated processors are directly connected by links in the interconnection network.Research in job scheduling and processor allocation is thoroughly surveyed in[8]; more recent work in this area includes that reported in [10] as well as ourown [17, 22, 18]. This project is distinguished from our previous work in that weevaluate the experimental method, not the scheduling techniques themselves.Some of the �rst researchers to use real traces from production machines todrive their simulations include [19, 1, 18]. At the same time, analysis of thisemerging body of trace data was conducted by Feitelson and Downey in thedevelopment of realistic synthetic workload models. Feitelson's model combinesobservations of �ve di�erent parallel supercomputers in the evaluation of gangscheduling strategies [7], and Downey's model is based on detailed analysis ofthe SDSC Paragon, utilized in experiments evaluating adaptive job schedulingalgorithms [6, 5]. The synthetic workload models developed by Downey andFeitelson are used in our experiments and are discussed in more detail in Section4. Several studies statistically analyzed workload traces from production use ofreal parallel supercomputers. Feitelson and Nitzberg analyzed the workload froman Intel iPSC/860 located at NASA Ames, providing the �rst widely availableworkload measurements from a real system [9]. Windisch et. al. [21] continuedthis e�ort by analyzing traces from the Intel Paragon at the San Diego Super-computer Center (SDSC), and comparing the workload to that of the NASAiPSC/860. The workload characteristics analyzed in these studies included gen-eral job mix, resource usage, system utilization and multiprogramming level,runtime distribution, job submission statistics, and interarrival time distribu-tions. Overall, the pro�les of the two workloads were surprisingly similar. Hotovyanalyzed the evolution of the workload on an IBM SP-2 at the Cornell TheoryCenter (CTC), concluding that workloads change in signi�cant ways over time,requiring adaptations in the scheduling mechanisms for e�cient operation [11].A few of the many studies of job scheduling and processor allocation algo-rithms have o�ered insights into the e�ects of workload characteristics on those1 Adaptive allocation strategies for moldable jobs allocate a number of processors thatis a function of the number of free processors in the system and of characteristics ofthe job.



algorithms. Of special interest to our study is Krueger's work on scheduling andallocation performance under workloads exhibiting negative correlations betweenjobsize and runtimes [16]. As we shall see, our work further explains some of thephenomena he observed. The only recent study that we know of that has focusedon the experimental methodology itself, i.e., the e�ect choice of workload hason scheduling performance results, is that of Chiang et. al. [2]. They comparethe performance of several scheduling strategies over a wide range of workloadparameters and conclude that the discrepancies among various studies are due todi�erences in the (synthetic) workloads used for performance evaluation. NeitherKrueger nor Chiang studied the e�ect of real workload traces on performance.3 WorkloadsA workload trace is a record of resource usage data about a stream of paralleland sequential jobs that were submitted to and run on a given message-passingparallel machine. Each job arrives, executes on one or more nodes for a periodof time, and then departs the system. The resources requested by these jobstypically include jobsize (the number of requested processors), runtime, memoryrequirements, I/O devices such as disks or network interfaces, and software re-sources. Furthermore, every job in a workload is associated with an arrival time,indicating when it was submitted to the scheduler for consideration.Real workload traces captured from production machines can potentially pro-vide a very high level of realism when used directly in performance evaluationexperiments. However, this usage comes with a number of caveats in the inter-pretation of performance results. A given trace is the product of an existingscheduling policy and thus is biased or a�ected by that policy. Human factorsmust be considered when analyzing or utilizing workload data: human users of-ten adapt their resource demands to the system or the scheduling policies, inways that do not reect the actual needs of the job. Finally, workload tracesmay not discriminate between a job's direct resource needs and the resourcesutilized by the operating system on behalf of the job; furthermore, traces maynot distinguish between inherent versus contention-related resource usage.Synthetic workload models o�er the convenience of a much more manage-able experimental medium that is free of the idiosyncratic site-speci�c behaviorof production traces. This is both its advantage and a potential point of criti-cism { the use of a tractable synthetic model provides a neutral, more universalexperimental environment but does not yield the realism and pragmatic testingdesired by some researchers. Sometimes the mathematical modeling smoothesout perturbations that it is desirable to investigate.Therefore, researchers should be cognizant of the details surrounding thetrace and consider how applicable a given trace is as a model of the target sys-tem. They need to be mindful of their speci�c experimental goals; performanceevaluation by a site administrator at one of the supercomputing centers has amuch more focused and pragmatic goal than that performed by an academicresearcher developing new algorithms for future machines and environments.



3.1 Real Workload TracesThe traces described below were collected from a variety of machines at severalnational labs and supercomputing sites in the United States and Europe. Thetype of workload at all the sites consisted of scienti�c applications ranging fromnumerical aerodynamic simulations to elementary particle physics. Trace datawas collected through a batch scheduling agent such as the Network QueuingSystem, Load Leveler, PBS, or EASY. Traces that have been used for trace-driven simulation were sanitized to remove user speci�c information and pre-processed to correct for system downtimes, sporadic missing data, and thenreformatted for use in the simulator. In some cases, trace data may also bemanipulated in order to study speci�c phenomena (e.g. selective �ltering toremove interactive jobs). We briey summarize the machine architecture, userenvironment, and scheduling policies in force at each site. Our experiments usedtraces from the �rst four machines in the list.{ SDSC Intel Paragon: The San Diego Supercomputer Center houses a 416node Paragon machine. The scheduling policies are implemented through theNetwork Queuing System (NQS) which queues jobs according to power-of-two jobsizes, maximum runtime, and memory requirements (16 MB vs. 32MB nodes). The (static) allocation algorithm is a block-based non-contiguousstrategy. The SDSC traces were taken from 1995-1996, in three-month groups.[21, 20]{ CTC IBM SP-2: The Cornell Theory Center IBM SP-2 machine has 512nodes connected by a high performance switch. The traces come from twoperiods: July 1994-March 1995 with scheduling managed by IBM's LoadLev-eller and July 1995-Feb 1996 under LoadLeveller and Easy [11].{ NASA Ames IBM SP-2: The NASA Ames IBM SP-2 machine has 160nodes connected by a high performance switch. The traces cover two years,from August 1995 to August 1997. The scheduling policies are implementedthrough the Portable Batch System (PBS) [15].{ KFA Cray T3E: The Forschungszentrum J�ulich has a 512 node CRAYT3E. Jobs are submitted through NQS. Job queues di�er in maximum(power-of-two) jobsize and maximum runtime. The (static) allocation al-gorithm is contiguous. The traces were taken from March 1997 - September1997.{ Other traces include those from the iPSC/860 at NASA Ames NAS, a 128node hypercube; the ETH Paragon, a 96 node mesh; the Cray T3D at Pitts-burgh Supercomputing Center, a 512 node torus-based machine; ArgonneNational Laboratory's 128 node IBM SP-1, a 512 node CM-5; and 126 nodeshared memoryBBN Buttery at Lawrence Livermore National Laboratory'sBBN Buttery.3.2 Synthetic Workload ModelsWorkload modeling of the nature required for resource management in dis-tributed memory parallel machines is in its infancy due to prior lack of trace



data available for analysis. For the most part, performance evaluation studieshave relied on \naive" synthetic models, using classic probability distributionssuch as exponential and uniform.Dror Feitelson [7] analyzed trace data from �ve of the above machines, specif-ically the NASA iPSC/860, ANL IBM SP-1, SDSC Paragon, LLNL Buttery,and ETH Paragon. His goal was to derive probabilistic models for use in hisexperiments with gang scheduling algorithms. Feitelson proposed a harmonicdistribution to model jobsizes, and then hand tailored the model to emphasizesmall job sizes and other \interesting sizes" that he observed across all �ve ma-chines. These included powers-of-two, squares, multiples of 10, and full systemsize requests.He used a two-stage hyperexponential distribution to model runtimes andenforced a linear relationship between jobsize and the probability of using thedistribution with the higher mean. This decision was based on observations of astrong correlation between jobsize and job runtime on the NASA iPSC/860 anda weak correlation on the ANL SP-1 and SDSC Paragon. (Our results relatingto correlation of jobsize and runtime are discussed in Section 5.)Feitelson also modeled user job submission behavior, using a Zipf distributionto model repeated submissions of the same job (job runlength). We note thatFeitelson chose to use an exponential distribution to model interarrival times;our own studies of workload data have shown this assumption to be stronglyjusti�ed [21].Allen Downey [6, 5] focused his analysis on two machines, the SDSC Paragonand the CTC SP-2. He proposed a uniform-log distribution for modeling joblifetimes (approximated by the product of runtime and number of processors).From his analysis of the SDSC trace data, he observed that this distributionis accurate except for very small and very large jobs. Downey's curve-�ttinganalysis eliminated the smallest 10% and largest 10% of jobs. He used this modelto predict queue waiting times and veri�ed the accuracy of his model using theSDSC workload data 2. From his comparison of the SDSC and CTC workloads,he noticed that the same (uniform-log)model is accurate for both machines/sites,but the speci�c parameters di�er signi�cantly. Downey warned that researcherswill need to be very careful about use of these models, recommending that aworkload derived from one system should not be used to evaluate another. Wewill discuss this precaution further in Section 5.In a second study of the same machines, Downey derived a uniform-log distri-bution for job cluster size (which we call jobsize) by smoothing out the observedstep function that characterized the raw trace data. He argued that the power-of-two cluster sizes responsible for the step function reected the power-of-twoNQS job queues, not the actual cluster size requirements of the jobs. This dis-tribution and additional parameters involving variance in job parallelism wereused to develop a stochastic model for simulation of several known adaptive2 Downey acknowledges that his results are prejudiced because he uses the same SDSCtrace to derive the prediction model and to evaluate it.



strategies.3 Downey's goal was to analyze the performance of these strategies interms of their sensitivity to speci�c workload characteristics.Finally, the types of \naive" workload models that have been used over thepast decade of scheduling research include the following: The vast majority ofresearchers have used exponential distributions to model interarrival times. Job-sizes have been modeled using a variety of probabilistic models including uni-form, uniform with step functions, normal, geometric, and exponential, whileruntimes have been modeled with exponential and hyperexponential distribu-tions.4 Experiments4.1 Experimental Method and ProcSimity SimulatorIn our experiments we observed the performance of various resource managementalgorithms through simulation using real workload traces and compared thoseresults with simulations of the same algorithms using synthetic models. Thereal workload traces that we used were the �rst four described in Section 3.In all cases, we used batch jobs only, removing the interactive jobs from thetrace, since our focus is on batch scheduling. (Interactive jobs tend to havedrastically di�erent workload characteristics.) The synthetic models used in theseexperiments were those of Feitelson, Downey, and two naive models. The speci�cworkload information that was used as input to the scheduling and allocationalgorithms included job arrival time, jobsize and job runtime. Our simulatormodeled a stream of jobs that arrive, execute for a period of time, and thendepart the system. We did not model message-passing behavior in this study.We conducted �ve distinct experiments:{ real workload traces versus synthetic workload models{ realistic synthetic workload models versus naive synthetic models{ a comparison of real workload traces across disjoint time periods (at thesame site){ a comparison of real workload traces across sites{ e�ects of speci�c workload characteristics: power-of-two jobsizes and corre-lation between jobsize and runtime.For all �ve experiments, we simulated a mesh topology. This mesh was usedin all of the experiments involving real workload traces, even if the trace wascaptured from a machine with a di�erent architecture. For the studies involvingthe synthetic workloads and the SDSC workloads, we simulated a 16 � 22 meshto match the size of the SDSC Paragon batch partition. For studies involvingthe CTC workload, we used a 16 � 27 mesh to match the size (but not the3 The type of allocation strategies studied by Downey are di�erent from those studiedin this paper. Downey focused on allocation for moldable jobs, where a job's clustersize is based on the number of available processors or job characteristics. We focuson static allocations in which the jobsize is a �xed request.



topology) of the CTC SP-2 machine. For the experiment investigating power oftwo jobsizes, we used a 32 � 32 mesh.All experiments were conducted using ProcSimity [23], a simulation tool wedeveloped for evaluating job scheduling and processor allocation algorithms fordistributed memory parallel machines. ProcSimity models a variety of networktopologies and several current ow control and routing technologies. ProcSimitysupports both synthetic job streams and trace-driven simulation. Our simulatorhas been in use for several years at the University of Oregon and is currently inuse at a number of research sites including the Ministry of International Tradeand Industry in Japan, ETH Zurich, and academic institutions in the UnitedStates.4.2 Resource Management StrategiesWe evaluated the performance of two scheduling algorithms and three static al-location strategies, varying the type of workload used to drive the simulations.A given job scheduling strategy determines which of many queued jobs is ad-mitted to the system for execution. The allocation strategy selects a subset ofthe physical processors for allocation to that job. We restricted our attention tostatic allocation strategies in which the number of processors assigned to a jobis �xed for the lifetime of the job.Job Scheduling Strategies{ FCFS is the classic First Come First Served Scheduling Algorithm. FCFS isa simple, single queue algorithm commonly used as a standard of comparisonor as a default algorithm.{ ScanUp [16] is a multi-queue job scheduling strategy in which jobs arequeued by jobsize. The scheduler services one queue at a time, from smallestto largest, serving only those jobs that arrived in a given queue before itselected that queue (thereby avoiding starvation). When it completes servingthe largest job queue, it begins again with the smallest. ScanUp was shownto outperform a wide range of scheduling algorithms.Allocation StrategiesStatic allocation strategies can be classi�ed as contiguous or non-contiguous,based on whether or not the set of allocated processors are directly connectedby communication links in the interconnection network.{ Frame Sliding [3] searches for a rectangular block of processors by sliding awindow of the desired size across the mesh in horizontal and vertical stridesbased on the width and height of the requested rectangle. Frame Sliding isa contiguous strategy with marginal performance.{ First Fit [24] searches for a contiguous block of processors starting at areference point (e.g. lower left hand corner of the mesh). First Fit was shownto have the best performance among all contiguous strategies in [17].



{ Paging allocates processors by scanning the free list of processors in a �xedorder and allocating them to the job without regard to their contiguity.Paging was shown to have the best performance among all non-contiguousallocation strategies in [17]4. Because we do not model message-passing con-tention in this study, its performance is the same as that of the whole classof purely non-contiguous algorithms.4.3 Performance MetricsPerformance was measured using the following metrics:{ average processor utilization: the percentage of processors allocated tojobs at any given time, averaged over the entire workload.{ average response time: the elapsed time from when a job arrives forscheduling to when it completes execution, averaged over the entire workload.Response time includes both time spent in waiting queues and time spent inexecution.{ slowdown ratio: average response timeaverage runtime . This metric normalizes average re-sponse time so that results are more easily compared across workloads. Thismetric is not the same as average slowdown. The di�erences and the reasonwe chose slowdown ratio are discussed below.{ system load: � E[runtime�jobsize]N where � is the arrival rate and N is thesystem size (total number of processors). This metric measures the o�eredload relative to the size of the system, and appears as the independent vari-able in the graphs of experimental results.{ sustainable load: the system load value below which average job responsetimes remain within reasonable bounds.While we measured average response times in all experiments, the graphspresented in this paper use slowdown ratio as the dependent variable (on they axis). An alternative metric is average slowdown, the expected value of thequotient response time divided by runtime. We found that average slowdown isa heavy-tailed distribution with very large values for outlier data points. Theseoutliers turned out to be jobs with very short runtimes (in the order of seconds)whose response time was huge (in the order of tens of hours) because they wereblocked in the waiting queue behind a large and long-running job. We consideredusing order statistics (e.g. displaying results for the 90% quantile), but foundslowdown ratio to be more suitable for this paper.5It is important to realize that sustainable load, the system load value belowwhich average response time remains within reasonable bounds, is an importantfocal point in performance evaluation. This critical point is visible as the \knee"in the graphs of slowdown ratio and system utilization. Below the critical point,4 Since that time we have developed a superior algorithm called MC [18] that is con-tiguous when a contiguous block exists, but non-contiguous otherwise.5 We plan to look further into the relative merits and utility of various performancemetrics.



the system load is at manageable levels so that the increase in job response timeis gradual and utilization continues to improve. At the knee, the job responsetime suddenly begins to grow rapidly toward in�nity. By the same token, thesystem utilization levels o� since the system is saturated with work. Thus, inevaluating the relative performance of resource management strategies, we focusour analysis on the phenomena observed near this saturation point.Table 1. Ranking of Scheduling and Allocation AlgorithmsStrategy Synthetic models SDSC traces CTC traces NAS tracesN1 N2 D F S1 - S8 C1 - C2 N1 - N3Paging/ScanUp 1 1 1 1 2 1 1Paging/FCFS 2 2 2 2 1 2 2FF/ScanUp 3 3 3 3 3 3 3FS/ScanUp 4 4 4 4 4 4 4FF/FCFS 5 5 5 5 5 5 5FS/FCFS 6 6 6 6 6 6 65 Results5.1 Real Workload Traces versus Synthetic Workload ModelsOur experiments showed that the choice of workload trace alone did not a�ectthe relative performance of the selected resource management algorithms. Al-most all workloads (real or synthetic, across sites, and for di�erent time periodsat the same site) ranked the algorithms in the same order from best to worst withrespect to slowdown ratio and system utilization. See Table 1. In addition, allworkloads strongly discriminated among the three allocation algorithms, withnon-contiguous Paging clearly outperforming First Fit, and First Fit clearlyoutperforming Frame Sliding. The distinctions between the two scheduling al-gorithms were consistent across workloads but not as pronounced, with ScanUpusually outperforming First Come First Served. In cases where rankings wereinconsistent, we conducted further experiments to identify causes for the di�er-ences. These are discussed in Section 5.5.5.2 Realistic Synthetic Models versus Naive Synthetic ModelsTable 2 gives the probability model and values of associated parameters for eachof the four synthetic models that we tested. Two of these models, Downey andFeitelson, were realistic models derived through careful analysis of real workloadtraces; two were naive models widely used in the scheduling literature. Downeydid not model job runtimes directly but derived a uniform log model for job



Table 2. Models, means, and parameters for the four stochastic workloadsModel Jobsize Runtime Inter-arrivalsNaive-1 uniform exponential exponential� = 98.2 nodes � = 1.0-8.0 � = 1.0Naive-2 exponential exponential exponential� = 47.1 nodes � = 1.0-8.0 � = 1.0Downey uniform log uniform log exponential� = 61.26 nodes � = 7142.72 sec. observed � = 967 sec.variedFeitelson harmonic 2-stage hyper-exponential exponentialhand-tailored� = 22.75 nodes � = 1289.49 sec. � = variedlifetimes. We also determined that a uniform log model was accurate for run-times by using linear regression over job runtimes from the SDSC Paragon Trace(method of least squares). The maximum runtime was limited to 12 hours, thelimit for the trace from which Downey's model was derived. We did not modelthe repeated job submissions used by Feitelson (runlength).As shown in Table 1, all four synthetic models ranked the scheduling andallocation algorithms in the same order from best to worst. In Figure 1 it is in-teresting to note that results from the two realistic synthetic models were similarto each other as were results from the two naive models. This was true despitethe fact that each modeled jobsize and job runtime with very di�erent probabil-ity distributions. For example, with respect to system utilization, the two Naivemodels show the noncontiguous allocation strategies clearly outperforming thecontiguous ones, with the choice of scheduling algorithm having a lesser e�ect.This can be seen in Figure 1 in which the algorithms cluster into two groupsbased on allocation strategy. In contrast, the Downey and Feitelson models showthe scheduling algorithm having a more pronounced e�ect on performance.The Naive models also di�ered from Downey and Feitelson's realistic syn-thetic models with respect to performance under increasing system loads. Withthe Naive models, performance of the system degrades more gradually as systemloads approach 1.0, while with the two realistic synthetic models, slowdown ra-tios increase much more rapidly and earlier. As discussed in Section 5.5, thesedi�erences might be attributed to di�erences in two speci�c characteristics ofthe workload models.Thus, it appears that the choice of synthetic model alone does not a�ect theoverall ranking of scheduling and allocation strategies, despite the fact that theymay use very di�erent probability distributions in their models. The choice ofsynthetic model does a�ect more subtle aspects of algorithm performance.
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5.3 Real Workload Traces over Disjoint Time Periods (at a SingleSite)In this experiment, we compared performance results from the SDSC Paragontraces over eight quarters in 1995 and 1996. We observed highly consistent re-sults for all eight quarters, both in ranking and detailed behavior of schedulingstrategies. Due to space limitations we only show graphs for the �rst quarterof 1995 and the last quarter of 1996 (see Figure 2). The strong consistency inperformance results is especially notable given the variation in workload char-acteristics among the eight quarterly pro�les. Table 3 shows the variation inmeans for jobsize, runtime, and interarrival times and for system load amongthe quarterly workloads.We did the same comparison for the CTC SP-2 over two eight month periodsin 1994-95 and 1995-96, respectively. The results were similar to those of theSDSC experiments. This is especially interesting because the scheduler changedfrom LoadLeveller to LoadLeveller/EASY.We conclude that workload traces from the same site but di�erent time pe-riods are consistent in their evaluation of scheduling algorithms because theworkload pro�le at a given site tend to be fairly stable over time (assuming amature production site). However, as we discuss below in Section 5.5, there areother workload characteristics that are critical for performance.Table 3. SDSC Workload Characteristics by QuarterQuarter Mean Mean Mean MeanJobsize Runtime Interarrival Sys.Load(nodes) (secs) (secs)1995 Q1 22 8689 1100 .7051995 Q2 21 8305 1042 .7441995 Q3 29 8859 1516 .7411995 Q4 32 8245 1836 .7521996 Q1 23 12722 1590 .7821996 Q2 18 11376 1130 .8651996 Q3 26 9660 1598 .6981996 Q4 15 10945 1301 .545
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5.4 A Comparison of Real Workload Traces across Sites andMachinesOur goal for this set of experiments was to compare performance results basedon real workload traces from di�erent machines at di�erent sites. The workloadtraces came from the followingmachines: SDSC Paragon, NASA Ames NAS IBMSP-2, Cornell Theory Center IBM SP-2, and KFA Cray T3E (see descriptionsof each machine and user environment in Section 3).6This set of experiments showed that, with one exception, the ranking ofthe selected scheduling and allocation algorithms was not a�ected by the spe-ci�c workload trace used. (See Table 1.) The exception occurred on the SDSCParagon for which FCFS slightly outperformed ScanUp as the top ranking algo-rithm; for the NAS and CTC workloads, ScanUp was the best algorithm as wastrue for all the synthetic traces as well.All three workloads showed clear discrimination for non-contiguous alloca-tion algorithms over contiguous algorithms; however, the degree of discriminationvaried among the di�erent workloads. It is also interesting to look at the perfor-mance of the FCFS algorithm alone. For the contiguous allocation algorithms(First Fit and Frame Sliding), FCFS achieved utilization levels of at best 40%on the NAS and CTC machines, but reached over 60% on the SDSC. See Figure3. Looking at the pro�les of the workloads in Table 5, we found distinct di�er-ences in two areas, motivating the last set of experiments.5.5 E�ects of Speci�c Workload CharacteristicsE�ects of Proportion of Power-of-Two Jobsizes. One of the most obvi-ous di�erences among workloads was the proportion of power-of-two jobsizes.Downey's model smoothed out the power-of-two step function while Feitelson'semphasized these sizes. Among the production traces, the proportion of power-of-two jobsizes was very high, ranging from 84.2% for SDSC to 100% for theiPSC/860, a hypercube machine.We looked into the e�ect power-of-two jobsizes have on performance eval-uation by creating three synthetic traces: one in which jobsize is taken froman exponential distribution, one forced to have a minimum of 50% power-of-two jobsizes, and one forced to have 100% power-of-two jobsizes. The traces for50% and 100% sets were created so that the step function matched the initialexponential distribution when smoothed. As seen in Table 4, as power-of-twodominance increases, so do utilization levels for all resource management algo-rithms. As a result, the sustainable load also increases with increasing dominanceof power-of-two jobsizes.Another interesting phenomenon is the fact that with a 100% power-of-twojob mix, it is the scheduling strategy (not allocation strategy) that determines6 We are still running experiments with KFA T3E.
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performance. ScanUp outperforms First Come First Serve, regardless of alloca-tion strategy. This result is consistent with that of [16] in their experiments withscheduling and allocation algorithms for the hypercube.Table 4. E�ects of Power-of-two Jobsizes on System Utilization and Sus-tainable Load. Minimum and maximum utilization levels are across all algorithms.Sustainable loads are shown for the worst performing algorithm FS/FCFS and the bestperforming algorithm Paging/ScanUp.Percent Min Max Sust.Load Sust.LoadPower-of-2 Util. Util. FS/FCFS Paging/ScanUp3.4% 41% 78% .36 .7451.7% 45% 84% .39 .82100% 63% 90% .48 .93E�ects of Degree of Correlation Between Jobsize and Runtime. Degreeof correlation between jobsize and runtime is of interest in the scheduling com-munity because it reects certain assumptions about the work model and thetype of scheduling algorithms needed. The �xed work model and the notion ofadaptive scheduling for moldable jobs carry an implicit assumption that jobsizeand runtime are negatively correlated since they assume that the more proces-sors given to a job, the more quickly it will �nish execution. The independentwork model presumes that jobsize is unrelated to job runtime (zero correlation).We note that a common assumption for many large production workloads isthat jobsize and runtime are positively correlated. Table 5 shows the range ofcorrelation coe�cients relating jobsize to job runtime for some of the real work-loads and synthetic models reported in this paper. We used Pearson's r, whichpresumes a linear relationship between the variables, to compute the correla-tions. In reality, this relationship does not necessarily hold. Feitelson [7] noted astrong positive correlation for the NAS iPSC/860 trace but found much weakerrelationships for other traces.To test the e�ect of correlation on performance evaluation, we used the SDSCworkload as a base and manipulated the data to achieve correlations of -1, 0, and+1 (see Figure 4). Our experiments show that for highly positively correlatedworkloads, Krueger's ScanUp algorithm, the best performing strategy in all otherstudies, performed worse than FCFS for all three allocation strategies!!The explanation lies in the correlation. Recall that ScanUp uses multi-levelqueues, with each queue associated with a speci�c jobsize, from small to large.Thus, with a strongly positive correlation, large, long-running jobs arrive in thelarge-jobs queue while small, short-running jobs arrive in the small-jobs queue.While ScanUp is serving the large-jobs queue, smaller sized jobs arrive at theother queues. However, because all the large jobs are also long-running, thesesmaller queues �ll up and the response time for these smaller jobs increases
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Table 5. Trace CharacteristicsRuntime and Jobsize PercentTrace Correlation Power-of-2Coe�cient JobsNAS iPSC/860 strongly pos. 100.0%SDSC Paragon 0.20 - 0.35 84.2%CTC SP-2 � 0 88.5%NAS SP-2 � 0 51.2%Feitelson 0.19 84.9%Downey 0 16.9%Naive1 0 6.3%Naive 2 0 20.2%rapidly, resulting in poor performance. In addition, when ScanUp serves severallarge jobs in a row, fragmentation of the processor space is high, also diminishingutilization. Thus, for positively correlated workloads, ScanUp su�ers.Looking back at Krueger's performance evaluation experiments for ScanUp,we see that he simulated ScanUp under non-correlated and negatively correlatedworkload models, the latter based on the �xed work model. Thus, our resultsare complementary to Krueger's and together show that the performance ofalgorithms is critically dependent on the correlation.The e�ect of correlation between jobsize and runtime on performance resultsis also illustrated by examining Krueger's statement that \scheduling is more im-portant than allocation." Our results con�rm what Krueger concluded, however,only for negatively correlated workloads. In that case, ScanUp did best underall three allocation strategies. However, for non-negatively correlated workloads,scheduling did not dominate.The key observation is that correlation between jobsize and runtime hasstrong e�ects on performance results. Thus, researchers need to take this factorinto consideration when choosing or designing workloads and when evaluatingalgorithm performance.6 Conclusions and Future WorkIn this paper we investigated the use of real workload traces and synthetic work-load models for performance evaluation of several parallel job scheduling algo-rithms. Our long term goal is the development of guidelines for the e�ective useof traces and models in scheduling research.Our experiments showed that the choice of workload alone { real trace versussynthetic model { did not signi�cantly a�ect the relative performance of theselected resource management algorithms (FCFS and ScanUp scheduling; FirstFit, Frame Sliding, and Paging allocation). Almost all workloads ranked thealgorithms in the same order from best to worst with respect to response time,slowdown, and system utilization.



It also appears that the choice of synthetic model alone does not a�ect theoverall ranking of these scheduling and allocation strategies, despite the fact thatthey may use very di�erent probability distributions in their models. The choiceof synthetic model does a�ect more subtle aspects of algorithm performance.We saw that workload traces from the same site but di�erent time periodsare consistent in their evaluation of scheduling algorithms because the workloadpro�le at a given site tends to be fairly stable over time (assuming a matureproduction site).However, our experiments revealed clear di�erences in performance using realworkload traces from di�erent machines at di�erent sites. Our investigation ofthe causes of this inconsistent behavior led us to two factors which signi�cantlya�ect performance evaluation results:{ As the proportion of power-of-two jobs in the workload increases, sodoes system utilization. As a result, the sustainable load also increases withincreasing dominance of power-of-two jobsizes.{ We also found that correlation between jobsize and runtime has stronge�ects on performance results. Scheduling algorithms that did well on aworkload with strong positive correlation did worse on a negatively correlatedworkload, and vice versa.Taken together, these results show that great care must be taken in the use ofboth realistic workload traces and synthetic workload models. Naive syntheticworkload models are useful in qualitative performance analysis, giving a highlevel evaluation of algorithm performance. Realistic synthetic workload modelsprovide more detailed performance analysis. Both provide a convenient exper-imental medium in which parameters are more easily controlled. It is critical,however, that the researcher be aware of the pro�le of the workload producedby manipulation of the parameters in the context of his experimental goals.Real workload traces provide a much more realistic simulation testbed butagain precautions are necessary. The idiosyncrasies of a trace from one site maymake it unsuitable for algorithm testing at another site. In addition, real tracesmust be carefully prepared for use in simulation testing of algorithms to removebiases that a�ect performance results.The experiments reported here open up more questions than they answer.Some speci�c areas that we plan to investigate further include:{ Extension of these experiments to a broader range of scheduling algorithms.Will these same results hold up when applied to adaptive scheduling? togang scheduling?{ Extension of these experiments to see if they hold up when evaluating algo-rithms whose performance is more similar than those we selected for thisstudy? Will the various workloads di�er in their ability to discriminateamong very similar algorithms?{ Investigation of other workload characteristics that a�ect performance, suchas e�ect of including interactive jobs and periodic job submissions patterns(such as day/night submissions and repeated submissions).
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