
Dynamic Coscheduling on Workstation ClustersPatrick G. Sobalvarro1, Scott Pakin2, William E. Weihl1, andAndrew A. Chien21 Digital Systems Research Center130 Lytton Avenue, Palo Alto, CA 94301 U.S.A.fpgs, weihlg@pa.dec.comhttp://www.research.digital.com/SRC/staff/fpgs, weihlg/bio.html2 Digital Computer LaboratoryUniversity of Illinois at Urbana-Champaign1304 W. Spring�eld AvenueUrbana, IL 61801 U.S.A.fpakin, achieng@cs.uiuc.eduhttp://www-csag.cs.uiuc.edu/individual/fpakin, achiengAbstract. Coscheduling has been shown to be a critical factor in achiev-ing e�cient parallel execution in timeshared environments [12, 19, 4].However, the most common approach, gang scheduling, has limitationsin scaling, can compromise good interactive response, and requires thatcommunicating processes be identi�ed in advance.We explore a technique called dynamic coscheduling (DCS) which pro-duces emergent coscheduling of the processes constituting a parallel job.Experiments are performed in a workstation environment with high per-formance networks and autonomous timesharing schedulers for each CPU.The results demonstrate that DCS can achieve e�ective, robust coschedul-ing for a range of workloads and background loads. Empirical compar-isons to implicit scheduling and uncoordinated scheduling are presented.Under spin-block synchronization, DCS reduces job response times byup to 20% over implicit scheduling while maintaining fairness; and un-der spinning synchronization, DCS reduces job response times by up totwo decimal orders of magnitude over uncoordinated scheduling. The re-sults suggest that DCS is a promising avenue for achieving coordinatedparallel scheduling in an environment that coexists with autonomousnode schedulers.1 IntroductionCoordinated scheduling of parallel jobs across the nodes of a multiprocessor iswell-known to produce bene�ts in both system and individual job e�ciency [12,18,4, 5, 17, 3]. Without coordinated scheduling, the processes constituting a par-allel job su�er high communication latencies because of processor thrashing [12].While multiprocessor systems typically address these problems with a mix ofbatch, gang, and timesharing scheduling (based on kernel scheduler changes),



the problem is more di�cult for shared workstation clusters in which stock op-erating systems kernels must be run.With clusters connected by high performance networks that achieve laten-cies in the range of tens of microseconds [13,20, 21, 9, 7], scheduling and contextswitching latency can increase communication latency by several orders of mag-nitude. For example, under Solaris, CPU quanta vary from 20 ms to 200 ms [10];consequently uncoordinated scheduling can increase best-case latencies (� 10 mi-croseconds) by three to four orders of magnitude, nullifyingmany bene�ts of fastcommunication subsystems. Uncoordinated scheduling can also decrease the ef-�ciency of resource utilization. Coordinated scheduling reduces communicationlatencies and increases system e�ciency by reducing spin-waiting periods andcontext switches.Coscheduling for clusters is a challenging problem because it must recon-cile the demands of parallel and local computations, balancing parallel e�ciencyagainst local interactive response. Ideally a coscheduling system would providethe e�ciency of a batch-scheduled system for parallel jobs and a private timeshar-ing system for interactive users. In reality, the situation is much more complex,as we expect some parallel jobs to be interactive. Furthermore, in a cluster envi-ronment, there are advantages to be had in using existing commercial operatingsystems, so we restrict ourselves here to approaches that involve augmentationof existing operating system infrastructure.The approach to coordinated scheduling that we use is a form of demand-based coscheduling called dynamic coscheduling (DCS) [17, 16], which achievescoordination by observing the communication between threads. This is a bottom-up, emergent scheduling approach that exploits the key observation that onlythose threads which are communicating need be coscheduled. This approachcan achieve coscheduling without changes to the operating system scheduler orapplications programs.Our implementation of dynamic coscheduling is based on the Illinois FastMessages communication layer which delivers low latency and high bandwidthuser-space to user-space communication [13, 14]. We augmented this systemwith blocking communication primitives, and implemented dynamic coschedul-ing with changes to a device driver, network interface card �rmware, and thecommunication library. The device driver in
uences the operating system sched-uler's decisions through kernel interfaces, based on the communication tra�c itobserves on the network interface card.Experiments using a variety of workloads (with di�erent synchronizationcharacteristics) and competing background loads are used to compare dynamiccoscheduling against the unmodi�ed Solaris 2.4 scheduler with spinning andspin-block synchronization. These results indicate that dynamic coscheduling,spin-block, and the combination of dynamic coscheduling with spin-block syn-chronization can e�ectively achieve coscheduling. The e�ectiveness of spin-blockhas been previously documented in [3] (where it was called implicit scheduling),and our measurements con�rm their results. In addition, our work demonstratesthat DCS achieves coscheduling with both spinning and spin-block synchro-



nization, where implicit scheduling requires processes to block awaiting messagearrivals for coscheduling to happen. Interestingly, coscheduling based on spin-block alone does not obtain a fair share of the CPU for parallel jobs, requiringa process to have blocked before communication can be treated as a demandfor coscheduling. DCS can potentially treat all message arrivals as a demand forcoscheduling, and obtains a fair share of CPU time.The successful coscheduling approaches accrue bene�ts of higher systemthroughput and lower response time for jobs. However, one must be chary ofdrawing broad conclusions based on a modest set of experiments. The dynamicsof schedulers and workloads are complex, and we have only begun to understandthe bene�ts and limitations of demand-based coscheduling approaches. Impor-tant limitations of our study include use of only a single parallel job1 and amodest sized cluster2. Both of these limitations are being remedied in futurestudies.However, parallel jobs are only one possible application of DCS | we be-lieve that DCS-like approaches can be used to implement coordinated resourcemanagement in a much broader range of cases, including:{ real-time and proportional-share processor scheduling{ multimedia and other quality-of-service-sensitive applications{ coordinated access to input/output devices{ coordinated memory management{ e�cient parallel computing with demand-paged virtual memoryMost of these areas are still to be explored, and a discussion of speci�capproaches to them is beyond the scope of this paper. For the remainder of thispaper we con�ne ourselves to a focus on achieving low latency, fairness, ande�ciency for tightly-coupled parallel jobs. We found that DCS performs quitewell in these cases. Our results show that under spin-block synchronization,DCS reduces job response times by up to 20% over implicit scheduling whilemaintaining fairness. Under spinning synchronization, DCS reduces job responsetimes by up to two decimal orders of magnitude over uncoordinated schedulingwith only a slight reduction in fairness.The remainder of the paper is organized as follows. Section 2 summarizes therelevant related work. Section 3 describes the idea behind dynamic coschedul-ing brie
y and our prototype implementation. Section 4 outlines our experi-ments and empirical results which provide evidence for the viability of dynamiccoscheduling. A discussion of the results and their implications as well as limita-tions of our experiments are discussed in Section 5, along with some promisingdirections for future work. Finally, Section 6 brie
y summarizes our results.2 Related WorkThere has been a wide variety of work on coscheduling, beginning with Ouster-hout's seminal paper [12] which identi�ed the need. The larger challenge can1 A limitation of our FM infrastructure.2 A limitation of our computing infrastructure.



be logically divided into three subproblems: detecting threads needing to becoscheduled, providing mechanisms for achieving coscheduling, and assessing theperformance impact.2.1 Performance Impact of CoschedulingA variety of e�orts on shared-memory machines have demonstrated and charac-terized the bene�ts of coscheduling for threads in a parallel job. Ousterhout pro-vided a basic framework and presents a number of ways to achieve coschedulingwhile optimizing for system utilization [12]. Later work on the DASH multipro-cessor [8,2] demonstrated that coscheduling could be used to achieve e�cienciescomparable to batch scheduling, while providing more 
exible resource shar-ing. Speci�cally, coscheduling and process control (dynamic space-partitioning)performed similarly in the experiments described in [2].2.2 Detecting Threads Requiring CoschedulingCoscheduling implies coordinated scheduling of clusters of threads; identi�cationof such clusters has been pursued through both explicit and implicit approaches.The shared memoryworkloads described in [8, 2] are parallel jobs which consist ofthread collections, explicitly indicating which threads should be coscheduled. Avariety of implicit schemes which do not require explicit programmer annotationhave been explored. On distributed memory systems, the need for coschedul-ing has typically been associated with communication [17, 6, 3, 16]. Feitelson'sRuntime Activity Working Set Identi�cation (RAWSI) monitors the communi-cation between processes or threads3 to determine their rate of communication.Working sets of processes (which require coscheduling) are identi�ed based ontheir rate of communication. RAWSI collects the information and uses a coordi-nated global mechanism to decide on a schedule. Both our dynamic coschedulingapproach [17] and implicit scheduling [3] detect threads requiring coschedulingthrough their communication. However, neither system explicitly identi�es thesets of processes to be coscheduled.2.3 Mechanisms for Achieving CoschedulingOnce thread clusters have been identi�ed, a mechanism for coscheduling mustbe used. In many systems, particularly those with shared memory, a gang sched-uler which has the capability to achieve coordinated context switches acrossprocessors has been assumed [8, 12, 4, 6]. Such systems replace the basic processscheduler in the operating system, and schedule the related threads across theprocessing nodes. These schedulers can achieve high system e�ciency on regularparallel applications, but have di�culty in selecting alternate jobs to run whenprocesses block, require simultaneous multi-context switches across the nodesof the processor (which causes di�culty in scaling), and for good performance3 Feitelson's system actually addresses both distributed and shared memory systems.



require long scheduling quanta which can interfere with interactive response,making them a less attractive choice for use in a cluster of commodity worksta-tions. It is largely these limitations which motivate the integrated approaches.2.4 Integrated Scheduling TechniquesThe requirement of centralized control and the poor timesharing response ofother scheduling approaches have motivated new, integrated coscheduling ap-proaches. Such approaches extend local timesharing schedulers, preserving theirinteractive response and autonomy. Further, such systems have typically notexplicitly identi�ed sets of processes to be coscheduled, but rather integratethe detection of a coscheduling requirement with actions to produce e�ectivecoscheduling. An earlier paper on dynamic coscheduling [17] detailed analysisand simulation of an integrated coscheduling technique. Subsequently, Dusseau'simplicit scheduling was evaluated via simulation in [3], using synthetic single-program, multiple data applications. Because dynamic coscheduling is discussedextensively in the remainder of the paper, we only describe implicit schedulinghere.Implicit scheduling uses spin-block synchronization primitives and the prior-ity boost given by the SVR4 scheduler to threads which block on input/outputto produce coscheduling. Because threads awakened when the communicationcompletes obtain a high priority, they are likely to run when their communica-tion peer has just sent a message (and is therefore running). To further improveperformance, implicit scheduling can also modify the spin times in spin-blocksynchronization, adapting to developed skew between threads in a coschedule.Implicit scheduling has been demonstrated in simulations to achieve good per-formance on a variety of \bulk-synchronous" applications (those which performregular barriers, possibly with other communication taking place in betweenbarriers), speci�cally a synthetic workload of SPMD programs. It remains anopen question whether good performance can be achieved for more varied com-munication, computation, and synchronization structures, as well as in actualoperating environments (with attendant daemons, scheduling idiosyncrasies, andother system activity). However, it is our understanding that e�orts to explorethese issues are currently underway.In contrast, our dynamic coscheduling achieves coscheduling by explicitlytreating all message arrivals (not just those directed to blocked processes) as ademand for coscheduling, and explicitly schedules the destination processes whenit would be fair to do so through the explicit control of scheduler priorities.While this appears quite similar to implicit scheduling for the particular caseof bulk synchronous jobs using spin-block synchronization, we believe dynamiccoscheduling can be used to achieve coordinated scheduling in a broader rangeof cases.



3 Dynamic Coscheduling3.1 OverviewDemand-based coscheduling [17,16] exploits communication between processesto deduce which processes should be coscheduled and to e�ect coscheduling. Itis e�ective because of the key observation: the communicating (or synchronizing)processes are the ones that need be coscheduled. Thus, demand-based coschedul-ing produces emergent coscheduling without requiring explicit identi�cation byprogrammer of the computations that need be coscheduled.Dynamic coscheduling [17] is a type of demand-based coscheduling in whichscheduling decisions are driven directly by message arrivals. If an arriving mes-sage is directed to a process that isn't running, a scheduling decision is made.This decision can be based on a wide variety of factors (e.g., system load,last time run, etc.), and is generally designed to maximize coscheduling perfor-mance while ensuring fairness of CPU allocation. Previously published modelingand simulation results [17] indicate that dynamic coscheduling produces robustcoscheduling. Thus, the key elements of dynamic coscheduling are:1. Monitoring communication/thread activity2. Causing scheduling decisions3. Making a decision whether to preemptThe latter two points are intimately tied to how the operating system oper-ates. Causing scheduling decisions depends on the preemption capabilities andtimes context switches can occur. The decision procedure in particular can de-pend on fairness, and coscheduling stability concerns. The elements of DCS canbe implemented in a host of di�erent ways, and our experimental approach isdescribed below. The details of any such implementation embody only a speci�cinstance of a dynamic coscheduling.3.2 Implementation ContextFast Messages and Myrinet Our dynamic coscheduling prototype is imple-mented under Illinois Fast Messages (FM), a user-level messaging layer devel-oped at the University of Illinois at Urbana-Champaign [15]. Fast Messages isa high-performance messaging layer that bypasses the operating system to pro-vide direct access to an underlying Myricom Myrinet [1] and thereby achievehigh performance. Details of FM can be found in [13,15]. We also employ animplementation of the Message Passing Interface (MPI) built atop FM, calledMPI-FM [11], for some of the benchmarks.Implementing Spin-block in Fast Messages Fast Messages was enhancedwith a spin-block mechanism to support our experimentation. Adding a spin-block communication primitive required changes to the FM �rmware, the net-work device driver, and the FM libraries. The �rmware was modi�ed to add



an interrupt generation to wake a sleeping process upon message arrival. Thedevice driver was modi�ed to add a call that puts the caller to sleep, waiting fora message. Finally, the FM libraries were modi�ed to integrate these changes.We chose our maximum spin time of 1600 �sec based on the empirical ev-idence of experiments described in [16], in which the maximum delay we sawfor response in the case where a context switch was required was approximately1500 �sec. 1600 �sec is also slightly greater than twice the mean context-switchtime plus the message round-trip time. It is noted in [12] that a two-context-switch maximumspin time is competitive, and in [3] it is argued that two context-switch times might be required for a processor to respond to a message if themessage arrives at the beginning of a context switch to a process that is not theone to which the message is directed.Experimental Platform Our experimental platform consists of seven SPARC-station-2's connected by a Myrinet. The SPARCstation-2's have 40 MHz pro-cessors, 16 MB of main memory, and run the Solaris 2.4 operating system. TheMyrinet provides high-bandwidth communication (up to 80 MB/sec) and is cou-pled to Lanai Version 2.3 interface boards (20 MHz Lanai's which matched theSBUS clock speed).Despite the obsolete workstations, Illinois Fast Messages Version 2.0 achievesuser-space to user-space latencies of 40 �sec with 128-byte messages, and band-widths of 13 MB/sec.4 FMmaps the Myrinet interface board memoryand controlregisters into both kernel and user space, allowing direct user access to the net-work for high performance. The mapping into kernel space enables convenientinitialization and control of the device in response to system calls by the kernel.Sunsoft Solaris Version 2.4 The dynamic coscheduling prototype runs underthe Solaris 2.4 operating system. Two aspects of the implementation are speci�cto Solaris 2.4 (or this family of operating system): the mechanism for implement-ing scheduling decisions, and the fairness mechanism. Both of these are a�ectedby the priority-decay algorithm of the scheduler.Solaris 2.4's dispatcher for timeshared and interactive jobs is a table-drivenUnix priority-decay scheduler. The scheduler uses 60 queues for user processes;these are numbered 0 through 59. The priority of a given queue is its number; thehigher the number, the higher the priority. The scheduler schedules the job at thehead of the highest-priority queue that is occupied. Timeslice expiration leadsto demotion to a lower-priority queue; preemption without timeslice expirationcauses the job to be placed at the end of the queue. Once per second, a routinecalled ts update increases the priorities of processes that are on run queues,but not running. The routine also sets a 
ag (dispwait) on processes that areon sleep queues; if the 
ag is set when the process returns to a run queue, it4 Note that recent performance numbers for Illinois Fast Messages Version 2.01 withmore modern Myricom hardware and more modern Sun workstations are � 11 �secand 56.3 megabytes/second.



experiences a substantial priority boost, to the value called ts slpret, as shownin Table 1. Some of the e�ects of this priority boost will be described in Section 5.QuantumPrio. (ms) ts slpretlowest priority 0{ 9 200 5010{19 160 5120{29 120 5230{34 80 5335{39 80 5440{44 40 5545{49 40 5650{54 40 5755{58 40 58highest priority 59 20 59Table 1. Default Solaris 2.4 dispatch table3.3 DCS PrototypeWe describe our prototype by relating each of the high level elements of dynamiccoscheduling to its implementation. This not only provides a clear perspectiveon the rather myriad low-level details required for work of this type, but it alsoclearly illuminates the approximations and compromises in the prototype. A sim-ple illustration of the DCS implemenation is shown in Figure 1. Our descriptionof the implementation is necessarily brief; further detail can be found in [16].Monitoring Communication/ThreadActivity Communication and threadmonitoring is performed on the network interface card. Myricom's network in-terface card provides a programmable processor, running the Fast Messages�rmware. We modi�ed the FM �rmware to monitor the ongoing communica-tion and thread activity. Monitoring communication is simple; the �rmware isessentially a dispatch loop for each communication. The FM �rmware monitorsthread activity by periodically reading the host's kernel memory the addressof the currently running lightweight process (LWP). Because this operation isachieved with DMA, and must cross an I/O bus bridge, is costs tens of mi-croseconds. Thus, the �rmware reads the value only once per millisecond, andhence the �rmware has only an approximation of the currently running thread.However, because the scheduling quanta are 20 milliseconds or larger, this ap-proximation is su�cient. The mechanisms used for dealing with cases where theinformation is inaccurate are described in [16].
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Fig. 1. Simpli�ed DCS implementation schematic (spin-block implementation notshown).Causing Scheduling Decisions Scheduling decisions are e�ected by a devicedriver for the Myrinet network interface card (NIC). This driver is invoked byinterrupts from the NIC, if the message received is not for the LWP currentlyrunning. FM messages are sent to LWP's, not to individual threads within anLWP. So, in the device driver, all of the threads within the receiving process havetheir priority boosted as shown in Figure 2. Note that all of our benchmarks haveonly a single thread within the process, so this approximation is not a concernin our tests.if (running_LWP != FM_LWP) {if (fair to preempt) {for each kernel thread belonging to FM_LWP {raise priority to maximum for user mode;}preempt currently running thread;}}Fig. 2. DCS scheduling decisions are a�ected in the device driver interrupt handler.If the interrupt routine in the device driver �nds that it would be fair topreempt the currently running process, each thread belonging to the LWP forthe parallel process has its priority raised to the maximum allowable priority foruser-mode timesharing processes5 and is placed at the front of the dispatcher5 With the default Solaris 2.4 dispatcher table, this is 59.



queue. Flags are set to ensure that the Solaris 2.4 scheduler runs on exit from theinterrupt routine, causing a scheduling decision based on the new priorities. Thiswill cause the process receiving the message to be scheduled unless the processthat was running had a higher priority than the maximum allowable priority foruser mode.Making a Decision Whether to Preempt In dynamic coscheduling, anincoming message's process is scheduled only if doing so would not cause unfairCPU allocation. The equalization mechanism described in [17] used detailedCPU time numbers. At the time we designed our implementation, we chose toimplement fairness by limiting the frequency of priority boosts.6 Our fairnesscriterion is the following inequality:2E(Tc � Tp) +C � TqR (1)where E; Tc; Tp; C; Tq ; and R are de�ned as:E = ExponentTc = Current timeTp = Time of previous priority boost and preemption attemptC = Constant, in millisecondsTq = Length of minimum time quantum (20 msec)R = Number of jobs in the run queueOur approach limits the frequency of the preemptions for each cycle thescheduler makes through the run queue, assuming that all jobs on the run queueare running at the highest priority.E and C are chosen empirically for individualexperiments. R� Tq is the \length of the run queue in time" if the jobs on therun queue each run for an entire minimum-length timeslice (Tq). Tc � Tp is thetime since the last preemption. For example, a value of �1 for E would enablea preemption (priority boost) only if the time since the last preemption were atleast twice the length of the run queue in time.4 Empirical StudiesIn this section, we present the results of experiments with our FM-DCS system.These experiments include a range of parallel kernels and competitive workloads.First, we describe the performance metrics, workload, and scheduling variantsused. Subsequently, we describe the experimental results and give analysis.6 Only later did we learn that a direct implementation based on CPU usage informationwas possible. This a subject of future work.



4.1 Experimental Parameters and MetricsPerformance Metrics We chose three performance metrics which capture thescheduler's e�ectiveness in providing both good response times and high systeme�ciency.{ Job Response Time is the wall-clock time from job initation to completion.{ CPU Time is the sum of system and user CPU time for the job. In allexperiments, the system time was less than 5%, so this basically capturesuser CPU time.{ Fairness is the degree to which threads are allocated equal shares of pro-cessor time. We normalize CPU share to the ideal equal share and de�ne afairness fraction F . An ideal fairness fraction is unity.F = N TCTE (2)Where TC is the CPU time consumed by a process over its lifetime, TE is itsjob response time, and N is the number of processes running on the machine.In all graphs, the mean of several runs is shown along with 90% con�denceintervals computed using Student's T-distribution. In many cases, the con�denceintervals are too small to be seen on the graph.Workload We used three distinct workloads in our experiments. These work-loads consist of parallel kernels, run in competition with sequential jobs thatcompete for the CPU. The choice of a single parallel job is dictated by FM'scurrent limitation to a single parallel job. The sequential competitors for the�rst two workloads are processes that execute a simple spin loop and run forthe duration of the test; for the third workload they are real applications, asdescribed below. The parallel kernels are designed to exercise di�erent aspectsof performance:{ Latency is a simple token-passing benchmark in which two nodes repeatedlyexchange a 128-byte packet. Each node records the elapsed wall-clock timefor each round trip, including the sending and receiving of the packet. Systemcalls for timing add approximately three microseconds to each round trip.{ Barrier performs a sequence of barriers, interspersing local computationbetween the barriers. It provides a pattern of communication and synchro-nization di�erent from the latency benchmark's. The root node initiallybroadcasts a \passed barrier" message to all nodes, then all nodes entera spin loop (local computation). After the local computation is complete,each node sends an \at barrier" message to the root node. When the rootnode has received \at barrier" messages from all nodes, the loop begins anew.{ Mixed Workload consists of three programs in competition on the cluster.The parallel job is a SOR kernel, a two-dimensional Laplace's equation solveron a 128 � 128 element matrix (written in FORTRAN on an FM-based



Program Command lineSOR sorGNU tar (+ GNU zip) gtar -czhvf /dev/null/usr/local/Gnu/lib/gnuemacs/etcGhostscript gs -q -dNODISPLAY -dNOPAUSEinputfiles/pakin-ms.ps inputfiles/quit.psTable 2. Applications and arguments used for the Mixed Workloadimplementation of MPI [11]). The sequential jobs are GNU tar, archivingand compressing a collection of 97 �les, totalling 2.1MB, and Ghostscript,a PostScript interpreter on a 1.7MB, 103-page PostScript �le. All �les wereread from a remote NFS �lesystem.Scheduling Variants The scheduling types used vary both the synchroniza-tion method (blocking or spinning) and whether demand-based coscheduling isincluded.{ hNo DCS, spin onlyi The base Solaris 2.4 scheduler and FM using spin-based polling for incoming messages.{ hNo DCS, spin-blocki The base Solaris 2.4 scheduler and FM using spin-block synchronization, blocking after 1600 microseconds of spinning.{ hDCS, spin onlyi The Solaris 2.4 scheduler augmented with demand-basedcoscheduling, using spinning synchronization (without blocking). The rele-vant parameters are E, the exponent for the run queue length factor, andC, the o�set constant.{ hDCS, spin-blocki The Solaris 2.4 scheduler augmented with demand-based coscheduling, using spin-block synchronization, blocking after 1600microseconds of spinning. The relevant parameters are E, the exponent forthe run queue length factor, and C, the o�set constant.4.2 Experimental ResultsTo begin, we present results from our Latency and Barrier benchmarks. Thesekernels illuminate the behavior of DCS and the underlying Solaris 2.4 schedulerusing di�erent synchronization approaches | spinning and spin-block. Subse-quently, we consider performance on the the Mixed Workload benchmark.Latency and Barrier benchmarksJob Response Time. The response times for the Latency and Barrierbenchmarks for a range of coscheduling approaches are shown in Figures 3, 4, 5,and 6. Note that the vertical scale in the job response time graphs is logarithmic,



to accomodate the extremely long times for uncoordinated scheduling. To see thedi�erences on a linear scale for just hDCS, spin-blocki and hNo DCS, spin-blocki,see Figures 7 and 8.For each graph, the number of sequential competitor jobs per node variesalong the X-axis and the wall-clock time to complete the benchmark varies alongthe Y-axis. For each number of competitors, wall-clock times for four di�erentscheduling approaches are presented. As mentioned above, the sequential com-petitors run for the duration of the test; the test ends when when the paralleljob terminates.
Latency test, 1,000,000 message round trips
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Barrier test, 100,000 barriers, 1,000 delay iterations
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Latency test, 1,000,000 message round trips
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Barrier test, 100,000 barriers, 1,000 delay iterations
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E=2, C=100Fig. 10. Fairness metric for the Barrier benchmark.synchronization strategies previously only viable on batch scheduled or dedicatedmachines. However, our experiments also show that spinning synchronizationunder DCS is less e�cient than spin-block synchronization (further data arereported in [16]). We believe that this problem is exacerbated in Solaris 2.4 bythe varying scheduling quanta used by the dispatcher (shown in Table 1), whichcan cause even processes that start their timeslices in synchrony to su�er longspinning phases when one ends its timeslice before others.5.2 Coscheduling and Synchronization MechanismsFor all three benchmarks, DCS with spin-block or spinning message receiptachieved coscheduling. The unmodi�ed Solaris 2.4 schedule with spin-block syn-chronization (hNo DCS, spin-blocki) also achieved coscheduling, though withless success as the system load increases. Because spin-block is a weak com-petitor for CPU (each block yields), the parallel jobs use progressively less oftheir fair share of the processor with increasing load. This suggests that anexplicit priority boosting mechanism for coscheduling may be appropriate formultitasking parallel system.The hDCS, spin-blocki and hNo DCS, spin-blocki schedulers were demon-strated to be most e�ective in achieving coscheduling e�ciently (the hDCS, spin-blocki



Mixed workload test

0 50 100 150 200 250 300 350

Batch

DCS, spin-block, E=2,
C=100

No DCS, spin-block

DCS, spin only, E=-1,
C=0

No DCS, spin only

wall-clock time to completion, seconds

gtar
gs
SORFig. 11. Job response time in the mixed workload test. In the batch case, jobs wereexecuted in sequence. (N.b.: axes and colors have di�erent signi�cance in these graphsthan in the Latency and Barrier results.)scheduler was slightly better). We explore the surprising reasons for this in thefollowing discussion.Spin-block synchronization in combination with the Solaris 2.4 scheduler wasreported to achieve coscheduling [3] (for a synthetic bulk-synchronous work-load). The posited mechanism for this implicit scheduling is the following: aprocess spins awaiting the arrival of a message and blocks if the message doesnot arrive in a short period; when the message arrives, because of the priorityboost described in Section 3.2, the process will often be scheduled immediately,resulting in coscheduling. This priority boost is a characteristic of SVR4 derivedschedulers and designed to enable input/output intensive jobs to get higher pri-ority.8Our experiments con�rm that this priority boost is the mechanism produc-ing coscheduling for implicit scheduling. We ran the Barrier benchmark (see8 Not all Unix priority-decay schedulers implement this boost in this way; for example,the OSF/1-derived Digital Unix gives a priority boost only to processes sleepinguninterruptibly in the kernel, which would exclude some ways of implementing spin-block message receipt. However, based on the results reported in [3] and our ownwork, it seems clear that the SVR4 approach is a very useful one for coscheduling.
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Fig. 12. CPU time in the mixed workload test.Section 4.2) with an altered timesharing dispatcher table that cancels the prior-ity boost by giving reawakened processes the same priority they had when theyblocked. Speci�cally, in Table 1, we set the value of ts slpret for each queuen to n. The results (see Figure 14) show that without the priority boost, nocoscheduling is achieved. Job response times for spin-block are similar to thoseunder spinning synchronization. This explains why the hDCS, spin-blocki andhNo DCS, spin-blocki yielded such similar performance: the priority boostingperformed by the Solaris 2.4 scheduler causes the processes receiving messagesto be run immediately on message arrival | which is exactly how DCS works.While the combination of the Solaris 2.4 scheduler and spin-block synchro-nization mimics DCS in this case, there are a wide variety of opportunitiesfor DCS to coschedule programs with other characteristics. For example, DCScan schedule on message arrival programs that are not on sleep queues (due topolling, infrequent communication, asynchronous communication, or one-sideddata movement). DCS can also be used to coschedule sets of threads, whereas theSVR4 and spin-block combination is only applicable for single thread coschedul-ing.



Mixed workload test

0 0.2 0.4 0.6 0.8 1 1.2 1.4

DCS, spin-block, E=2,
C=100

No DCS, spin-block

DCS, spin only, E=-1,
C=0

No DCS, spin only

ratio of CPU share to ideal fair share

gtar
gs
SORFig. 13. Fairness in the mixed workload test. Note that fairness is shown here forcompetitor jobs as well.5.3 Directions for Future WorkExperiments that vary the granularity of communication [16] indicate that spin-block message receipt paired with DCS or the unmodi�ed Solaris 2.4 scheduler(with priority boosts on process wakeup) is less successful at coscheduling as thefrequency of communication decreases. With relatively coarse-grained communi-cation, DCS is more successful at coscheduling than the unmodi�ed Solaris 2.4scheduler, but no longer causes parallel processes to receive their full share ofthe CPU. Characterizing this sensitivity with a broader workload and explor-ing mechanisms to improve robustness of coscheduling (perhaps by arti�ciallyincreasing communication frequency) are interesting topics for further research.DCS with spinning synchronization is not as e�cient as spin-block synchro-nization because processes which are not coscheduled simply spin until the endof their timeslice. Improving the e�ciency of DCS with spinning synchroniza-tion is desirable, but must be achieved while maintaining fairness. We plan toexplore a variety of approaches, including spin-yield synchronization, time slicesize matching, or some form of shared priority for parallel jobs.Our current prototype does not automatically achieve fairness | it isn'tself calibrating. We originally thought a single setting of the fairness parame-ters would work for almost all cases, but in fact di�erent parameter settings



Balanced barrier test, 100,000 iterations
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