Overhead Analysis of Preemptive Gang
Scheduling

Atsushi Hori', Hiroshi Tezuka', Yutaka Ishikawal

Tsukuba Research Center
Real World Computing Partnership
Tsukuba Mitsui Building 16F, 1-6-1 Takezono
Tsukuba-shi, Ibaraki 305-0032, JAPAN
TEL:+81-298-53-1661, FAX:4+81-298-53-1652
{hori,tezuka,ishikawa}@rwcp.or. jp

Abstract. A preemptive gang scheduler is developed and evaluated.
The gang scheduler, called SCore-D, is implemented on top of a UNIX
operating system and runs on workstation and PC clusters connected by
Myrinet, a giga-bit class, high-performance network.

To have high-performance communication at the user-level and a multi-
user environment simultaneously, we propose network preemption to save
and restore network context as well as process contexts when switching
distributed processes. We also developed a high-performance, user-level
communication library, PM. PM and SCore-D collaborate for the net-
work preemption. When user processes are gang-scheduled, communica-
tion messages are first flushed, then the messages and pending messages
in the receive and send buffers are saved and restored. Unlike CM-5’s
All-Fall-Down mechanism, our gang-scheduling scheme is all software;
no special hardware support is assumed. Also there is no limitation on
network topology and partitioning.

The overhead of the gang scheduler is measured on our new PC clus-
ter, which consists of 64 PentiumPros connected by Myrinet. NAS par-
allel benchmark programs are used for the evaluation. We found that
the message flushing time and network preemption time depends on the
communication patterns of the application programs. We also found that
the time of saving and restoring network context occupies more than two
third of gang scheduling time. Evaluation shows that the slowdown of
user program execution due to the gang scheduling is less than 9 %when
the time slice 1s 100 msec.

1 Introduction

Gang scheduling is efficient for the scheduling of frequently communicating
processes[Ous82 ,GTUI1,FRI2]. Gang scheduling also enables time sharing schedul-
ing, which provides shorter response times and interactive parallel programming.
However, despite the benefits of gang scheduling, there have been few implemen-
tations (Table 1).

Table 1. Gang schedulers on distributed memory parallel machines

Comm.| Pre- |Hardware

Scheduler Platform Level [emptive| Support
(anonymous)[FR92] Makbilian 0s Yes Yes
CMOST[Thi92] TMC CM-5 User | Yes Yes
Medusa[OSS80,0us82] Cm* 0s Yes Yes
Meiko CS-2 Meiko CS-2 0S Yes N/A
MPCI GangScheduler[GW95]| BBN TC2000 N/A No Yes
OSF-1 AD[ZRB*93] Intel Paragon 0s Yes No
PScheD[LG97] Cray T3E User | Yes N/A
SCore-D[HTI*96, HT197b] |Workstation Cluster| User | Yes No
SHARE[FPR96] IBM SP-2 User No No

In this paper, parallel process is defined as a set of UNIX processes that
are execution entities of a parallel program. A parallel process is a unit of
gang scheduling. The frequency of communication in a parallel process can
be much higher than that of distributed processes. At the same time, com-
munication interface hardware is getting faster every year causing problems
with system call overheads. To tackle this problem, there are several user-level
communication proposals which allow users to access communication interfaces
directly[PLC95,vEBV95 THIS97,CMC97].

User-level communication provides high-performance communication, how-
ever, it introduces a new problem when implementing gang scheduling. First,
the network interface status must be saved and restored when switching pro-
cesses. Second, some messages that should be received by a process before being
switched may be received by another process after being switched. There should
be some mechanism to avoid this situation.

We proposed network preemption to tackle the problem when implementing
a gang scheduler, SCore-D[HTTT96,HTI97b], with a user-level communication
library, PM[THIS97]. Network preemption can utilize gang scheduling without
sacrificing user-level communication performance. PM is designed not only for
providing high-performance communication, but also provides the required func-
tions for network preemption. Our gang-scheduling scheme is all software; no
special hardware support i1s assumed. SCore-D is designed for workstation and
PC clusters, and is implemented as a set of daemon processes running on top
of the UNIX operating system. SCore-D explicitly controls (schedules) user pro-
cesses via UNIX signals. Thus, no kernel modification is required at all. With the
network preemption, network status is saved and restored when switching paral-
lel processes. However, the implemented gang scheduling overhead was evaluated
with some simple programs, and was not analyzed[HTIT96 HTI97b].

In this paper, we evaluate the SCore-D gang scheduling overhead with more
realistic applications, NAS parallel benchmark programs[BBLS93]. NAS parallel
benchmark is a set of numerical programs, each of them is a component of
CFD calculation. Thus they are expected to exhibit some aspects of real world

problems. The gang scheduling overhead is analyzed, and we found that the time
of saving and restoring network context occupies more than two third of gang
scheduling time on the applications with 64 processors.

2 Related Work

CM-5 has a hardware support for network preemption called All-Fall-Down[Thi92].
In the All-Fall-Down mode, all messages in the network fall down to the nearest
node regardless of destination. To restore the network context, the fallen mes-
sages are reinjected into the network. Since the CM-5 network was not designed
to preserve message order, the disturbance of message order by All-Fall-Down
does not cause a problem. When the All-Fall-Down takes place, message order
is not preserved, and message sending by the user program may fail since the
message sending operation is not an atomic operation. The user program must
handle these situations and extra communication overhead is introduced.
SHARE is a gang scheduler on IBM SP-2 [FPR96]. SHARE saves and restores
network hardware context, however, it has no message flushing mechanism. Each
message has a tag to identify the process receiving the message. If a message is
delivered to the wrong process, then message sending fails. Since failure recovery
must be handled by software, it introduces additional communication overhead.
We propose network preemption to tackle the problem when implementing
a gang scheduler with user-level communication. Network preemption can pro-
vide high-performance communication to its user and can utilize gang schedul-
ing without sacrificing communication performance. The proposed network pre-
emption for user-level communication not only enables gang scheduling, but
also provides a method to tackle some distributed process problems, such as;
distributed termination detection, consistent checkpointing, and global garbage

collection[HTI97h].

3 Cluster Software System

We have been developing a cluster software system for workstation and PC clus-
ters. Figure 1 shows the software structure of our cluster software system. SCore-
D is a gang scheduler on top of the UNIX operating system. PM is a low-level,
high-performance communication library. In our cluster system, PM plays an
important role for both providing high-performance communication to its user
and implementing gang scheduling. One unique feature of SCore-D is that it is
written in MPGH-[Ish96], a multi-threaded C++. The distributed control struc-
ture objects are linked with MPGH- global pointers. The MPI communication
library is also implemented[OHT97].

3.1 SCore-D

Figure 2 shows the process structure of SCore-D and user processes. Here, parallel
process 1s defined as a set of processes invoked from a single parallel program.

Application Program

Language Runtime or
Communication Library

SCore-D
MPC++ o
Runtime g
=
o
UNIX n
PM
Myrinet
. y=is
Workstation T
Is

Fig. 1. SCore-D Software Structure

Each process of an SCore-D parallel process is running as a daemon process on
every processor in a workstation cluster. Users can invoke their parallel program
from their workstations. This invoked process on user’s workstation is called
the Front End Process (FEP). The FEP is a client for the SCore-D parallel
computation server. Each process of a user parallel process is forked and execed
by SCore-D processes. SCore-D can control user processes via UNIX signals.

Figure 3 shows an example of the SCore-D control structure to manage a
user parallel process. Each user parallel process has a control structure tree.
This control structure is distributed over a cluster to avoid a bottleneck. The
root of the tree is a parallel process object, and the leaves are element process
objects. Each element process object represents a UNIX process in a user parallel
process. When a gang scheduler decides to stop a parallel process, then the stop
command goes down the control tree, and finally every element process object
sends a SIGSTOP signal to its corresponding process. The stopped state of each
user process is caught by an element process object with a wait() system call,
and the stopped event is forwarded to its super node. Each control node object
synchronizes the events from its subnodes, and then forwards the event to its
super node. When a parallel process object receives the events, it is guaranteed
that all user processes are stopped. Along with the distributed control structure,
commands are broadcasted and events are synchronized. Thus processes of a
user parallel process change their states in a gang. The tree structure in Figure
3 is a binary tree. Actually, a hexadecimal-tree is used in SCore-D, because
hexadecimal-tree is the fastest structure.

Workstation Cluster

Processorg Processory L J
SCore-D SCore-D
Process Process
fork()&exec() fork()&exec()
Kill() kill()
\
User User

[

Processg

J||(

Processg

)

SCore-D
Process

Processory.q

User Parallel Proces

sl

Score-D
Parallel Process

User Workstationg

User User
Processq Processq User Parallel Process 2
° °
° ° I
User User
Processpm Processmy, User Parallel Process m
I User Workstationq
Fig. 2. SCore-D Process Structure
e N
Parallel
Process
2]
[%]
Q
o
<4
[N
S
s
<
o
Q
o
S
O
(]
Element Element Element Element
Process Process Process Process
g f H % % J
s ? .34
User User User User B% Q
Process Process Process Process 3 5 8
_ J T ana
kProcessoro kProcessor l) kProcessor 2) LProcessor 3)

Fig. 3. Distributed Control Structure

One can implement any kind of scheduling policies and mechanisms with
SCore-D. Actually, we have implemented a time sharing and space sharing sched-
uler, called DQT[HIK*95 HINT95]. With DQT scheduling, sequential workload
is treated as an exceptional case in that parallel process requires only one pro-
cessor. However, all evaluations in this paper were done with simple time sharing
scheduling for simplicity.

3.2 PM

PM is a low-level communication library for Myrinet[BCFT95]. PM[THIS97]
consists of a software library, a software device driver, and firmware. It is designed
to exploit the full potential of the Myrinet interface. PM is also designed so that a
gang scheduler can be implemented on top of it. In this section, we will introduce
two PM features that are designed for gang scheduling.

The first feature 1s multiple channels. A channel essentially consists of a pair
of send and receive FIFO buffers. Those buffers are memory mapped to the ad-
dress space of a process that opens the channel. This memory mapping technique
reduces the number of memory copies and protects those buffers from access by
other processes. While PM provides a connection-less communication model,
the set of processors that can communicate with each other can be restricted
when the channel is open. Inter-channel communication is not allowed. A chan-
nel 1s associated with a channel descriptor, and the descriptor can be passed to
other processes like file descriptors in UNIX. SCore-D opens two channels; one
for SCore-D itself and the other for user processes. The opened user channel
descriptor i1s passed to the user process. PM also supports a blocking receive
using receive interrupts. SCore-D waits for incoming message with blocking re-
ceive, and user processes wait for an incoming messages by polling. Thus the
executions of SCore-D threads and a user process are interleaved at the SCore-D
thread level.

The second feature of PM 1is its flow-control protocol. Myrinet supports hard-
ware flow-control. However, relying on hardware flow-control can cause a dead-
lock because message sending region is locked until the end of the transmission,
but the transmission is blocked by a hardware flow-control. PM’s flow control
protocol is called Modified Ack/Nack[THIS97]. PM provides an asynchronous
message sending model. At the receiver processor, PM first determines if there
is a enough room to hold the message in the receive buffer. If so, PM returns an
Ack message. Otherwise PM returns a Nack message. On the sender side, when
PM acknowledges with an Ack response, it frees the corresponding send buffer re-
gion. However, if a Nack message is received, PM resends the message and leaves
the buffer region as is. Actually some Ack and Nack messages are merged into
one to reduce message traffic. Refer to [THIS97] for more details. PM’s channel
and flow-control protocol introduces some important characteristics that must
be considered when implementing gang scheduling.

Channel independence: When a receiver process falls into an infinite loop
because of a program bug, it becomes so busy that it cannot handle the

messages in the receive buffer; therefore the sender process on the other
processor eventually will be unable to send any message. On PM, however,
communications through the other channels will take place normally. This is
because PM’s modified Ack/Nack protocol never stops the flow of messages.
In this case, the Nack messages and resent messages are actually exchanged.
This channel independence is very important when implementing a gang
scheduler. To schedule processes in a gang, each scheduler process must be
synchronized in some way. Having two network interfaces may provide two
independent communication channels, but this requires extra investment in
hardware. PM’s multiple channel support and its channel independence avoid
this.

Steady state of a channel: On a PM channel, if all Ack or Nack messages
corresponding to all sent messages from a processor are received by the
sender processor, then this means that there is no message being sent from
the processor in the network. When a channel of a processor satisfies this
condition, then the channel is referred to as being “in a steady state”. When
all processes associated with a parallel computation satisfy this condition,
then there is no message associated with the computation in the network.
Waiting for a steady state is different from waiting for transmission comple-
tion. The returning of a Nack message means that the message transmission
has failed. When a receiver process is stopped, messages in the receive buffer
are never consumed. Thus waiting for transmission completion may continue
until the receiver process is resumed. When the transmission completion is
applied to gang scheduling, a receiver process may be stopped by a signal,
and the message flushing can last forever.

4 Gang Scheduling

Figure 4 shows the procedure for switching parallel processes in SCore-D. Parallel
process switching consists of four phases.

Freeze Phase: Stopping user processes by sending SIGSTOP. SCore-D processes
wait for stopped state of each user process with a wait() system call, and
then wait until the user channels are in a steady state. Synchronizing the
steady states of all the user channels guarantees that there are no messages
from any user process in the network.

Save Phase: SCore-D saves the channel status of the user processes.

Restore Phase: SCore-D restores the channel status of the new user processes.

Run Phase: After being restored, SCore-D then sends SIGCONT signals to the
new user processes. Eventually the user parallel job begins to run.

The entire set of channel contexts are called a network context, and the
procedure described above is called network preemption, because SCore-D saves
and restores network contexts. PM is designed to be preemptive, so that SCore-
D can send signals to control user processes at any time. Thus user parallel
processes can be preempted or killed by SCore-D at any time.

Score-D Parallel Process

Freeze Phase Save Phase Restore Run
Phase Phase grz:)rcagg
- —
FREEZE SAVE RESTORE RUN
FROZEN SAVED RESTORED
// // // Element
i Processes
= = —
\

17

\
SIGST\Oi;l %IGCHLD SIGCONTi‘
\

=

User Parallel Process (old) User Parallel Process (new)

Time L

Fig. 4. Network Preemption

All broadcast and synchronization in the above four phases are propagated
along with the distributed control structure in SCore-D. Thus, it takes order
log(N) time, where N is the number of processors, for each phase.

The network context i1s a snapshot of the network status that can be observed
by software. Network preemption solves not only the problem of gang scheduling
with user-level communication, but also helps for solving the following commu-
nicating distributed process problems.

Distributed termination detection: The detection of no running process in
a set of distributed processes is well known as as the distributed termina-
tion problem and a number of algorithms have been proposed to tackle this
(among these, [Mis83,CL85] are the most famous). The biggest difficulty of
this problem comes from checking for the existence of messages in the net-
work. With network preemption, this can be done by simply counting the
number of messages in the saved network context. Distributed termination
detection using network preemption has already been implemented in SCore-
D-D[HTI97a]. SCore-D has also been successful in detecting deadlocked user
processes.

Consistent checkpointing: When processes are gang-scheduled, the process
contexts and channel contexts can be saved in permanent storage systems
such as disks. Execution can be resumed by restoring those contexts. No
additional mechanism is required to have a consistent state in the distributed
processes.

Global garbage collection: Global garbage collection is difficult because of
the references included in transmitted messagesfKMY94]. As in the case of

consistent checkpointing, network preemption gives a clear consistent state
timing and a chance to investigate the messages in transmission. Here, chan-
nel contexts are added to the root set of a global garbage collection. Thus
network preemption makes the “marking of live objects” in a global garbage
collection easy.

5 Evaluation

The overhead of the implemented gang scheduler was evaluated on our PC cluster
IT (Table 2). The PC cluster II consists of 64 PentiumPros (200MHz) connected
by Myrinet (160MB/s bandwidth).

Table 2. RWC PC Cluster 11

Number of Processors 64
Processor PentiumPro
Clock [MHz] 200
Cache [KB] 512
Memory [MB] 256
I/O Bus PCI
Network Myrinet
Operating System NetBSD 1.2
Min. Latency (PM) [us] 7.5
Max. Bandwidth (PM) [MB/s] 117.6
Min. MPT Latency [us] 12.0
Max. MPI Bandwidth [MB/s] 36.8

Table 3 shows the times to save and restore a PM channel context. In this
table, “receive buffer full” means that the receive buffer holds 511 messages
(65,408 bytes in total), and “send buffer full” means that the send buffer holds
255 messages (61,200 bytes in total). The saving time is larger than the restoring
time, because read operations from PCI memory region takes longer than write
operations.

The network context switching time depends on the number and the amount
of messages in the network and in the receive and send buffers when gang schedul-
ing takes place. Having larger receive and send buffers contributes to commu-
nication performance, however, 1t also increases the required network context
switching time. The relation of buffer sizes to network context switching time is
similar to the case of process context switching. The larger the register file size,
the slower the process context switching.

NAS parallel benchmark programs (version 2.3, MPI)[BBLS93] are used for
the evaluation of SCore-D gang scheduling. We selected EP, FT and CG from the
benchmark (class A). EP is an embarrassingly parallel program; there is almost
no communication. FT is a 3-D FFT program and is a communication bound

Table 3. Channel Context Save/Restore Time

Recv. Buffer Send Buffer| Save Restore

[msec] [msec]

Empty Empty 0.62 0.18
Empty Full 1.96 1.56
Full Empty 2.16 1.59
Full Full 3.70 3.19

program. CG is a conjugate gradient method program; there are large amount
of communication, but not so much as in the FT program. In short, these three
programs exhibit different communication patterns.

In the current SCore-D implementation, SCore-D does not check if the next
process to be scheduled is the same as the currently running process, and SCore-
D naively switches one parallel process. Thus submitting one program is enough
to measure gang scheduling overhead. Through the evaluation, there is no run-
ning process, but SCore-D and the process submitted via SCore-D.

Figure 5 shows the times of freeze, save and restore phases on the applications,
measurement is for processors 8, 16, 32 and 64, with a time slice of 100 msec.
The freeze phase time depends on the channel context sizes. And the times of all
three phases depend on the number of processors, because each phase contains a
broadcast and a barrier synchronization. In the EP program, there is almost no
communication. Thus most of the processing time of each phase can be thought
of as a base overhead of a broadcast and a barrier synchronization along with
the distributed tree control structure.

With FT and CG programs, save and restore phase times are larger than
that of EP programs. This comes from the size of channel contexts and is due
to the larger amounts of communications. Since FT program is a communica-
tion bound program, the total gang scheduling times (sum of save, restore and
freeze times) are the highest in all cases. Thus gang scheduling time depends on
communication pattern of an application program running under SCore-D.

As described in Section 4, SCore-D gang scheduling consists of process con-
text and network context switches. In the SCore-D implementation, these two
context switching are mutually dependent and are not divisible. The time neces-
sary for switching process contexts is reasonable (approximately 40 usec) when
compared with the time needed for switching network contexts. The time of
saving and restoring network context occupies more than one third of gang
scheduling time on applications in most cases.

The gang scheduling overhead observed by an application O is defined as

0= (TGang - TNoGang)/TNoGang

Here, Tang 1s the execution time under the SCore-D gang-scheduler, and T ,Gang
is the execution time with an infinite time slice. However, the calculated over-
head is subject to measurement error if the differences in execution times are

Tirne [msec)
N

EP-8PE
EP-16PE
EP-32PEA
EP-64PE 4

FT-8PE
FT-16PE -
FT-32PE
FT-64PE
CG-8PE
CG-16PE
CG-32PE
CG-64PE -

Fig. 5. Breakdown of Network Preemption

small. So we evaluated the gang scheduling overhead with smaller time slices
(from 50 to 200 msec) to obtain larger elapsed time differences.

Figure 6 shows the gang scheduling overhead observed at each application.
Here, the time slice of gang scheduling is set to 50, 100 and 200 msec, and the
number of processors are 8, 16, 32 and 64. When the time slice is doubled, the
slowdown is approximately halved.

The slowdown of program execution due to gang scheduling comes from a va-
riety of reasons: SCore-D scheduling overhead, the cache effect, UNIX operating
system overhead, co-scheduling skew[ADVT94], etc. Also scheduling overhead
depends on the communication pattern of a user program.

Slowdown observed at the application level and the overhead measured at
the SCore-D level can be different. One reason for this is that SCore-D can only
detect the status changes of a user process with a wait () system call. There can
be delay between signal sending and the detection of status change of process
by the signal. Also co-scheduling skew can not be observed by SCore-D.

Comparing Figure 5 and Figure 6, we find that the overhead (slowdown) of
the CG program is the highest, while the gang scheduling time of FT programs
is the longest. We are now investigating these points.

6 Concluding Remarks

U-Net[vEBV95] and AM-TI[CMC97] support endpoints similar to PM’s channel
to provide multiplexed, virtualized networks. If there were a sufficient number
of channels (endpoints), there would be no need of network preemption when

—o— 50 [msec] —o— 100[msec] —a— 200 [mesc]
18 18 18

16 | 16
14 14

12 12 4
10

Overhead [%]

T T T T T T T T T T
0 16 32 48 64 0 16 32 48 64 0 16 32 48 64

Number of Processors Number of Processors Number of Processors
(EP) (FT) (CG)

Fig. 6. Slowdown due to gang scheduling

gang-scheduling. However, one must guarantee that there is no message in all
those channels involved in the parallel process in the network before the channel
is reused. This means that the number of channels should be larger than the
number of generated processes in the lifetime of the scheduling system. Therefore
a message flushing mechanism is still needed.

Having a large number of channels degrades communication performance.
User-level communication libraries have to check channels ready to send. The
larger the number of channels, the larger the sending overhead. In AM-II, this
problem is avoided by introducing endpoint scheduling[CMC97]. In contrast, PM
limits the number of channels to four and provides channel context switching
facilities. Simple round-robin scheduling for polling send buffers is used in PM.
As described in Section 3.2, network preemption using channel context switching
can be applied to a variety of problems in parallel processing.

Through the evaluation of our implementation on a PC cluster II, we con-
firmed that slowdown is less than 9 %with a 100 msectime slice. With a compute
bound application, such as EP, the overhead is less than 7 %. We also confirmed
that the overhead can be further reduced by increasing the time slice.

We found that much of the gang scheduling overhead comes from saving and
restoring network context. Basically, saving and restoring network context is just
copying memory between message buffers and the network context save area. It
is expected, therefore, that gang scheduling overhead can be reduced by using a
computer having a higher memory-copy performance.

It is normally assumed that gang scheduling overhead is quite high, and
consequently time slice is longer than that of UNIX (Table 1). Although the
overhead incurred by SCore-D gang scheduling is not small, we believe that it
is acceptable. We have already confirmed that users can run interactive parallel
programs on SCore-D[HTI97h].

Currently SCore-D is running on SunOS, NetBSD and LINUX. Qur cluster
software system including SCore-D;, MPGH-, PM, and MPI with PM is available
at http://www.rwcp.or.jp/lab/pdslab/dist/.

References

[ADV194] Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat, Lok T. Liu,

[BBLS93]

[BCF195]

[CL85]

[CMC97]

[FPR96]

[FR92]

[GTU91]

[GW95]

[HIK95]

[HIN195)

[HTI196)

Thomas E. Anderson, and David A. Patterson. The Interaction of Par-
allel and Sequential Workloads on a Network of Workstations. UC Berkeley
Technical Report CS-94-838, Computer Science Division, University of Cal-
ifornia, Berkeley, 1994.

D. H. Bailey, J. T. Barton, T. A. Lasinski, and H. D. Simon. The NAS
Parallel Benchmarks. NASA Technical Memorandum 103863, NASA Ames
Research Center, 1993.

Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jakov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-
per-Second Local Area Network. IEEE Micro, 15(1):29-36, February 1995.
Mani Chandy and Leslie Lamport. Distributed snapshot: Determining
global states of distributed systems. ACM Transactions on Computer Sys-
tems, 3(1):63-75, February 1985.

Brent N. Chun, Alan M. Mainwaring, and David E. Culler. Virtual Network
Transport Protocols for Myrinet. In Hot Interconnect’97, August 1997.
Hubertus Franke, Pratap Pattnaik, and Larry Rudolph. Gang Scheduling
for Highly Efficient Distributed Multiprocessor Systems. In Frontier’96,
pages 1-9, October 1996.

Dror G. Feitelson and Larry Rudolph. Gang Scheduling Performance Ben-
efits for Fine-Grain Synchronization. Journal of Parallel and Distributed
Computing, 16(4):306-318, 1992.

A. Gupta, A. Tucker, and Shigeru Urushibara. The Impact of Operating Sys-
tem Scheduling Policies and Synchronization Methods on the Performance
of Parallel Applications. In ACM SIGMETRICS, pages 120-132, 1991.
Brent Gorda and Rich Wolski. Time Sharing Massively Parallel Machines.
In 1995 International Conference on Parallel Processing, volume 11, pages
214-217, August 1995.

Atsushi Hori, Yutaka Ishikawa, Hiroki Konaka, Munenori Maeda, and
Takashi Tomokiyo. A Scalable Time-Sharing Scheduling for Partitionable,
Distributed Memory Parallel Machines. In Proceedings of the Twenty- Eighth
Annual Hawaii International Conference on System Sciences, Vol. 11, pages
173-182. IEEE Computer Society Press, January 1995.

Atsushi Hori, Yutaka Ishikawa, Jorg Nolte, Hiroki Konaka, Munenori
Maeda, and Takashi Tomokiyo. Time Space Sharing Scheduling: A Simula-
tion Analysis. In S. Haridi, K. Ali, and P. Magnusson, editors, Furo-Par’95
Parallel Processing, volume 966 of Lecture Notes in Computer Science, pages
623-634. Springer-Verlag, August 1995.

Atsushi Hori, Hiroshi Tezuka, Yutaka Ishikawa, Noriyuki Soda, Hiroki Kon-
aka, and Munenori Maeda. Implementation of Gang-Scheduling on Worksta-
tion Cluster. In D. G. Feitelson and L. Rudolph, editors, IPPS5’96 Workshop
on Job Scheduling Strategies for Parallel Processing, volume 1162 of Lecture
Notes in Computer Science, pages 76-83. Springer-Verlag, April 1996.

[HTI97a]

[HTI97b]

[Tsho6]

[KMY94]

[LG97]

[Mis83]

Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa. Global State Detec-
tion using Network Preemption. In D. G. Feitelson and L. Rudolph, editors,
IPPS’°97 Workshop on Job Scheduling Strategies for Parallel Processing, vol-
ume 1291 of Lecture Notes in Computer Science, pages 262—276. Springer-
Verlag, April 1997.

Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa. User-level Parallel Op-
erating System for Clustered Commodity Computers. In Proceedings of
Cluster Computing Conference 97, March 1997.

Yutaka Ishikawa. Multi Thread Template Library — MPC++ Version 2.0
Level 0 Document —. Technical Report TR-96012, RWC, September 1996.
Tomio Kamada, Satoshi Matsuoka, and Akinori Yonezawa. Efficient Parallel
Global Garbage Collection on Massively Parallel Computers. In Supercom-
puting Conference, pages 79-88, 1994.

Richard N. Lagerstrom and Stephan K. Gipp. PScheD Political Schedul-
ing on the CRAY T3E. In D. G. Feitelson and L. Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, volume 1291 of Lecture Notes
in Computer Science, pages 117-138. Springer-Verlag, April 1997.

J. Misra. Detecting termination of distributed computations using mark-
ers. In Second ACM Symposium on Principles Distributed Computing, pages
290-294, August 1983.

[OHT*97] Francis O’Carroll, Atsushi Hori, Hiroshi Tezuka, Yutaka Ishikawa, and

[0SS80]

[Ous82]

[PLC95]

[Thi9o2]

[THIS97]

[VEBV95]

[ZRB*93]

Mitsuhisa Sato. Performance of MPI on Workstation/PC Clusters using
Myrinet. In Proceedings of Cluster Computing Conference ’97, March 1997.
John K. Ousterhout, Donald A. Scelza, and Pradeep S. Sindhu. Medusa: An
Experiment in Distributed Operating System Structure. Communications
of the ACM, 23(2):92-105, February 1980.

John K. Ousterhout. Scheduling Techniques for Concurrent Systems. In
Proceedings of Third International Conference on Distributed Computing
Systems, pages 22-30, 1982.

Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging
on Workstations: Illinoi Fast Messages (FM) for Myrinet. In Supercomput-
ing’95, December 1995.

Thinking Machines Corporation. NI Systems Programming, October 1992.
Version 7.1.

Hiroshi Tezuka, Atsushi Hori, Yutaka Ishikawa, and Mitsuhisa Sato. PM: An
Operating System Coordinated High Performance Communication Library.
In Peter Sloot Bob Hertzberger, editor, High-Performance Computing and
Networking, volume 1225 of Lecture Notes in Computer Science, pages 708—
717. Springer-Verlag, April 1997.

Thorston von Ficken, Anindya Basu, and Werner Vogels. U-Net: A User
Level Network Interface for Parallel and Distributed Computing. In Fif-
teenth ACM Sumposium on Operating Systems Principles, pages 40-53,
1995.

Roman Zajcew, Paul Roy, David Black, Chris Peak, Paulo Guedes, Bradford
Kemp, John Lo Verso, Michael Leibensperger, Michael Branett, Faramarz
Rabii, and Durriya Netterwala. An OSF /1 UNIX for Massively Parallel Mul-
ticomputers. In San Diego Conference Proceedings of 1993 Winter USENIX,
pages 449-468, January 1993.

