
Overhead Analysis of Preemptive GangSchedulingAtsushi Hori1, Hiroshi Tezuka1, Yutaka Ishikawa1Tsukuba Research CenterReal World Computing PartnershipTsukuba Mitsui Building 16F, 1-6-1 TakezonoTsukuba-shi, Ibaraki 305-0032, JAPANTEL:+81-298-53-1661, FAX:+81-298-53-1652fhori,tezuka,ishikawag@rwcp.or.jpAbstract. A preemptive gang scheduler is developed and evaluated.The gang scheduler, called SCore-D, is implemented on top of a UNIXoperating system and runs on workstation and PC clusters connected byMyrinet, a giga-bit class, high-performance network.To have high-performance communication at the user-level and a multi-user environment simultaneously, we propose network preemption to saveand restore network context as well as process contexts when switchingdistributed processes. We also developed a high-performance, user-levelcommunication library, PM. PM and SCore-D collaborate for the net-work preemption. When user processes are gang-scheduled, communica-tion messages are �rst 
ushed, then the messages and pending messagesin the receive and send bu�ers are saved and restored. Unlike CM-5'sAll-Fall-Down mechanism, our gang-scheduling scheme is all software;no special hardware support is assumed. Also there is no limitation onnetwork topology and partitioning.The overhead of the gang scheduler is measured on our new PC clus-ter, which consists of 64 PentiumPros connected by Myrinet. NAS par-allel benchmark programs are used for the evaluation. We found thatthe message 
ushing time and network preemption time depends on thecommunication patterns of the application programs. We also found thatthe time of saving and restoring network context occupies more than twothird of gang scheduling time. Evaluation shows that the slowdown ofuser program execution due to the gang scheduling is less than 9%whenthe time slice is 100msec.1 IntroductionGang scheduling is e�cient for the scheduling of frequently communicatingprocesses[Ous82,GTU91,FR92]. Gang scheduling also enables time sharing schedul-ing, which provides shorter response times and interactive parallel programming.However, despite the bene�ts of gang scheduling, there have been few implemen-tations (Table 1).



Table 1. Gang schedulers on distributed memory parallel machinesComm. Pre- HardwareScheduler Platform Level emptive Support(anonymous)[FR92] Makbilian OS Yes YesCMOST[Thi92] TMC CM-5 User Yes YesMedusa[OSS80,Ous82] Cm* OS Yes YesMeiko CS-2 Meiko CS-2 OS Yes N/AMPCI GangScheduler[GW95] BBN TC2000 N/A No YesOSF-1 AD[ZRB+93] Intel Paragon OS Yes NoPScheD[LG97] Cray T3E User Yes N/ASCore-D[HTI+96,HTI97b] Workstation Cluster User Yes NoSHARE[FPR96] IBM SP-2 User No NoIn this paper, parallel process is de�ned as a set of UNIX processes thatare execution entities of a parallel program. A parallel process is a unit ofgang scheduling. The frequency of communication in a parallel process canbe much higher than that of distributed processes. At the same time, com-munication interface hardware is getting faster every year causing problemswith system call overheads. To tackle this problem, there are several user-levelcommunication proposals which allow users to access communication interfacesdirectly[PLC95,vEBV95,THIS97,CMC97].User-level communication provides high-performance communication, how-ever, it introduces a new problem when implementing gang scheduling. First,the network interface status must be saved and restored when switching pro-cesses. Second, some messages that should be received by a process before beingswitched may be received by another process after being switched. There shouldbe some mechanism to avoid this situation.We proposed network preemption to tackle the problem when implementinga gang scheduler, SCore-D[HTI+96,HTI97b], with a user-level communicationlibrary, PM[THIS97]. Network preemption can utilize gang scheduling withoutsacri�cing user-level communication performance. PM is designed not only forproviding high-performance communication, but also provides the required func-tions for network preemption. Our gang-scheduling scheme is all software; nospecial hardware support is assumed. SCore-D is designed for workstation andPC clusters, and is implemented as a set of daemon processes running on topof the UNIX operating system. SCore-D explicitly controls (schedules) user pro-cesses via UNIX signals. Thus, no kernel modi�cation is required at all. With thenetwork preemption, network status is saved and restored when switching paral-lel processes. However, the implemented gang scheduling overhead was evaluatedwith some simple programs, and was not analyzed[HTI+96,HTI97b].In this paper, we evaluate the SCore-D gang scheduling overhead with morerealistic applications, NAS parallel benchmark programs[BBLS93]. NAS parallelbenchmark is a set of numerical programs, each of them is a component ofCFD calculation. Thus they are expected to exhibit some aspects of real world



problems. The gang scheduling overhead is analyzed, and we found that the timeof saving and restoring network context occupies more than two third of gangscheduling time on the applications with 64 processors.2 Related WorkCM-5 has a hardware support for network preemption called All-Fall-Down[Thi92].In the All-Fall-Down mode, all messages in the network fall down to the nearestnode regardless of destination. To restore the network context, the fallen mes-sages are reinjected into the network. Since the CM-5 network was not designedto preserve message order, the disturbance of message order by All-Fall-Downdoes not cause a problem. When the All-Fall-Down takes place, message orderis not preserved, and message sending by the user program may fail since themessage sending operation is not an atomic operation. The user program musthandle these situations and extra communication overhead is introduced.SHARE is a gang scheduler on IBM SP-2 [FPR96]. SHARE saves and restoresnetwork hardware context, however, it has no message 
ushing mechanism. Eachmessage has a tag to identify the process receiving the message. If a message isdelivered to the wrong process, then message sending fails. Since failure recoverymust be handled by software, it introduces additional communication overhead.We propose network preemption to tackle the problem when implementinga gang scheduler with user-level communication. Network preemption can pro-vide high-performance communication to its user and can utilize gang schedul-ing without sacri�cing communication performance. The proposed network pre-emption for user-level communication not only enables gang scheduling, butalso provides a method to tackle some distributed process problems, such as;distributed termination detection, consistent checkpointing, and global garbagecollection[HTI97b].3 Cluster Software SystemWe have been developing a cluster software system for workstation and PC clus-ters. Figure 1 shows the software structure of our cluster software system. SCore-D is a gang scheduler on top of the UNIX operating system. PM is a low-level,high-performance communication library. In our cluster system, PM plays animportant role for both providing high-performance communication to its userand implementing gang scheduling. One unique feature of SCore-D is that it iswritten in MPC++[Ish96], a multi-threaded C++. The distributed control struc-ture objects are linked with MPC++ global pointers. The MPI communicationlibrary is also implemented[OHT+97].3.1 SCore-DFigure 2 shows the process structure of SCore-D and user processes. Here, parallelprocess is de�ned as a set of processes invoked from a single parallel program.
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RuntimeFig. 1. SCore-D Software StructureEach process of an SCore-D parallel process is running as a daemon process onevery processor in a workstation cluster. Users can invoke their parallel programfrom their workstations. This invoked process on user's workstation is calledthe Front End Process (FEP). The FEP is a client for the SCore-D parallelcomputation server. Each process of a user parallel process is forked and execedby SCore-D processes. SCore-D can control user processes via UNIX signals.Figure 3 shows an example of the SCore-D control structure to manage auser parallel process. Each user parallel process has a control structure tree.This control structure is distributed over a cluster to avoid a bottleneck. Theroot of the tree is a parallel process object, and the leaves are element processobjects. Each element process object represents a UNIX process in a user parallelprocess. When a gang scheduler decides to stop a parallel process, then the stopcommand goes down the control tree, and �nally every element process objectsends a SIGSTOP signal to its corresponding process. The stopped state of eachuser process is caught by an element process object with a wait() system call,and the stopped event is forwarded to its super node. Each control node objectsynchronizes the events from its subnodes, and then forwards the event to itssuper node. When a parallel process object receives the events, it is guaranteedthat all user processes are stopped. Along with the distributed control structure,commands are broadcasted and events are synchronized. Thus processes of auser parallel process change their states in a gang. The tree structure in Figure3 is a binary tree. Actually, a hexadecimal-tree is used in SCore-D, becausehexadecimal-tree is the fastest structure.
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One can implement any kind of scheduling policies and mechanisms withSCore-D. Actually, we have implemented a time sharing and space sharing sched-uler, called DQT[HIK+95,HIN+95]. With DQT scheduling, sequential workloadis treated as an exceptional case in that parallel process requires only one pro-cessor. However, all evaluations in this paper were done with simple time sharingscheduling for simplicity.3.2 PMPM is a low-level communication library for Myrinet[BCF+95]. PM[THIS97]consists of a software library, a software device driver, and �rmware. It is designedto exploit the full potential of the Myrinet interface. PM is also designed so that agang scheduler can be implemented on top of it. In this section, we will introducetwo PM features that are designed for gang scheduling.The �rst feature is multiple channels. A channel essentially consists of a pairof send and receive FIFO bu�ers. Those bu�ers are memory mapped to the ad-dress space of a process that opens the channel. This memorymapping techniquereduces the number of memory copies and protects those bu�ers from access byother processes. While PM provides a connection-less communication model,the set of processors that can communicate with each other can be restrictedwhen the channel is open. Inter-channel communication is not allowed. A chan-nel is associated with a channel descriptor, and the descriptor can be passed toother processes like �le descriptors in UNIX. SCore-D opens two channels; onefor SCore-D itself and the other for user processes. The opened user channeldescriptor is passed to the user process. PM also supports a blocking receiveusing receive interrupts. SCore-D waits for incoming message with blocking re-ceive, and user processes wait for an incoming messages by polling. Thus theexecutions of SCore-D threads and a user process are interleaved at the SCore-Dthread level.The second feature of PM is its 
ow-control protocol. Myrinet supports hard-ware 
ow-control. However, relying on hardware 
ow-control can cause a dead-lock because message sending region is locked until the end of the transmission,but the transmission is blocked by a hardware 
ow-control. PM's 
ow controlprotocol is called Modi�ed Ack/Nack[THIS97]. PM provides an asynchronousmessage sending model. At the receiver processor, PM �rst determines if thereis a enough room to hold the message in the receive bu�er. If so, PM returns anAck message. Otherwise PM returns a Nack message. On the sender side, whenPM acknowledges with an Ack response, it frees the corresponding send bu�er re-gion. However, if a Nack message is received, PM resends the message and leavesthe bu�er region as is. Actually some Ack and Nack messages are merged intoone to reduce message tra�c. Refer to [THIS97] for more details. PM's channeland 
ow-control protocol introduces some important characteristics that mustbe considered when implementing gang scheduling.Channel independence: When a receiver process falls into an in�nite loopbecause of a program bug, it becomes so busy that it cannot handle the



messages in the receive bu�er; therefore the sender process on the otherprocessor eventually will be unable to send any message. On PM, however,communications through the other channels will take place normally. This isbecause PM's modi�ed Ack/Nack protocol never stops the 
ow of messages.In this case, the Nack messages and resent messages are actually exchanged.This channel independence is very important when implementing a gangscheduler. To schedule processes in a gang, each scheduler process must besynchronized in some way. Having two network interfaces may provide twoindependent communication channels, but this requires extra investment inhardware. PM's multiple channel support and its channel independence avoidthis.Steady state of a channel: On a PM channel, if all Ack or Nack messagescorresponding to all sent messages from a processor are received by thesender processor, then this means that there is no message being sent fromthe processor in the network. When a channel of a processor satis�es thiscondition, then the channel is referred to as being \in a steady state". Whenall processes associated with a parallel computation satisfy this condition,then there is no message associated with the computation in the network.Waiting for a steady state is di�erent from waiting for transmission comple-tion. The returning of a Nack message means that the message transmissionhas failed. When a receiver process is stopped, messages in the receive bu�erare never consumed. Thus waiting for transmission completion may continueuntil the receiver process is resumed. When the transmission completion isapplied to gang scheduling, a receiver process may be stopped by a signal,and the message 
ushing can last forever.4 Gang SchedulingFigure 4 shows the procedure for switching parallel processes in SCore-D. Parallelprocess switching consists of four phases.Freeze Phase: Stopping user processes by sending SIGSTOP. SCore-D processeswait for stopped state of each user process with a wait() system call, andthen wait until the user channels are in a steady state. Synchronizing thesteady states of all the user channels guarantees that there are no messagesfrom any user process in the network.Save Phase: SCore-D saves the channel status of the user processes.Restore Phase: SCore-D restores the channel status of the new user processes.Run Phase: After being restored, SCore-D then sends SIGCONT signals to thenew user processes. Eventually the user parallel job begins to run.The entire set of channel contexts are called a network context, and theprocedure described above is called network preemption, because SCore-D savesand restores network contexts. PM is designed to be preemptive, so that SCore-D can send signals to control user processes at any time. Thus user parallelprocesses can be preempted or killed by SCore-D at any time.
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Fig. 4. Network PreemptionAll broadcast and synchronization in the above four phases are propagatedalong with the distributed control structure in SCore-D. Thus, it takes orderlog(N ) time, where N is the number of processors, for each phase.The network context is a snapshot of the network status that can be observedby software. Network preemption solves not only the problem of gang schedulingwith user-level communication, but also helps for solving the following commu-nicating distributed process problems.Distributed termination detection: The detection of no running process ina set of distributed processes is well known as as the distributed termina-tion problem and a number of algorithms have been proposed to tackle this(among these, [Mis83,CL85] are the most famous). The biggest di�culty ofthis problem comes from checking for the existence of messages in the net-work. With network preemption, this can be done by simply counting thenumber of messages in the saved network context. Distributed terminationdetection using network preemption has already been implemented in SCore-D-D[HTI97a]. SCore-D has also been successful in detecting deadlocked userprocesses.Consistent checkpointing: When processes are gang-scheduled, the processcontexts and channel contexts can be saved in permanent storage systemssuch as disks. Execution can be resumed by restoring those contexts. Noadditional mechanism is required to have a consistent state in the distributedprocesses.Global garbage collection: Global garbage collection is di�cult because ofthe references included in transmitted messages[KMY94]. As in the case of



consistent checkpointing, network preemption gives a clear consistent statetiming and a chance to investigate the messages in transmission. Here, chan-nel contexts are added to the root set of a global garbage collection. Thusnetwork preemption makes the \marking of live objects" in a global garbagecollection easy.5 EvaluationThe overhead of the implemented gang scheduler was evaluated on our PC clusterII (Table 2). The PC cluster II consists of 64 PentiumPros (200MHz) connectedby Myrinet (160MB/s bandwidth).Table 2. RWC PC Cluster IINumber of Processors 64Processor PentiumProClock [MHz] 200Cache [KB] 512Memory [MB] 256I/O Bus PCINetwork MyrinetOperating System NetBSD 1.2Min. Latency (PM) [�s] 7.5Max. Bandwidth (PM) [MB/s] 117.6Min. MPI Latency [�s] 12.0Max. MPI Bandwidth [MB/s] 36.8Table 3 shows the times to save and restore a PM channel context. In thistable, \receive bu�er full" means that the receive bu�er holds 511 messages(65,408 bytes in total), and \send bu�er full" means that the send bu�er holds255 messages (61,200 bytes in total). The saving time is larger than the restoringtime, because read operations from PCI memory region takes longer than writeoperations.The network context switching time depends on the number and the amountof messages in the network and in the receive and send bu�ers when gang schedul-ing takes place. Having larger receive and send bu�ers contributes to commu-nication performance, however, it also increases the required network contextswitching time. The relation of bu�er sizes to network context switching time issimilar to the case of process context switching. The larger the register �le size,the slower the process context switching.NAS parallel benchmark programs (version 2.3, MPI)[BBLS93] are used forthe evaluation of SCore-D gang scheduling. We selected EP, FT and CG from thebenchmark (class A). EP is an embarrassingly parallel program; there is almostno communication. FT is a 3-D FFT program and is a communication bound



Table 3. Channel Context Save/Restore TimeRecv. Bu�er Send Bu�er Save Restore[msec] [msec]Empty Empty 0.62 0.18Empty Full 1.96 1.56Full Empty 2.16 1.59Full Full 3.70 3.19program. CG is a conjugate gradient method program; there are large amountof communication, but not so much as in the FT program. In short, these threeprograms exhibit di�erent communication patterns.In the current SCore-D implementation, SCore-D does not check if the nextprocess to be scheduled is the same as the currently running process, and SCore-D naively switches one parallel process. Thus submitting one program is enoughto measure gang scheduling overhead. Through the evaluation, there is no run-ning process, but SCore-D and the process submitted via SCore-D.Figure 5 shows the times of freeze, save and restore phases on the applications,measurement is for processors 8, 16, 32 and 64, with a time slice of 100msec.The freeze phase time depends on the channel context sizes. And the times of allthree phases depend on the number of processors, because each phase contains abroadcast and a barrier synchronization. In the EP program, there is almost nocommunication. Thus most of the processing time of each phase can be thoughtof as a base overhead of a broadcast and a barrier synchronization along withthe distributed tree control structure.With FT and CG programs, save and restore phase times are larger thanthat of EP programs. This comes from the size of channel contexts and is dueto the larger amounts of communications. Since FT program is a communica-tion bound program, the total gang scheduling times (sum of save, restore andfreeze times) are the highest in all cases. Thus gang scheduling time depends oncommunication pattern of an application program running under SCore-D.As described in Section 4, SCore-D gang scheduling consists of process con-text and network context switches. In the SCore-D implementation, these twocontext switching are mutually dependent and are not divisible. The time neces-sary for switching process contexts is reasonable (approximately 40�sec) whencompared with the time needed for switching network contexts. The time ofsaving and restoring network context occupies more than one third of gangscheduling time on applications in most cases.The gang scheduling overhead observed by an application O is de�ned asO = (TGang � TNoGang)=TNoGangHere, TGang is the execution time under the SCore-D gang-scheduler, and TNoGangis the execution time with an in�nite time slice. However, the calculated over-head is subject to measurement error if the di�erences in execution times are
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Fig. 5. Breakdown of Network Preemptionsmall. So we evaluated the gang scheduling overhead with smaller time slices(from 50 to 200msec) to obtain larger elapsed time di�erences.Figure 6 shows the gang scheduling overhead observed at each application.Here, the time slice of gang scheduling is set to 50, 100 and 200msec, and thenumber of processors are 8, 16, 32 and 64. When the time slice is doubled, theslowdown is approximately halved.The slowdown of program execution due to gang scheduling comes from a va-riety of reasons: SCore-D scheduling overhead, the cache e�ect, UNIX operatingsystem overhead, co-scheduling skew[ADV+94], etc. Also scheduling overheaddepends on the communication pattern of a user program.Slowdown observed at the application level and the overhead measured atthe SCore-D level can be di�erent. One reason for this is that SCore-D can onlydetect the status changes of a user process with a wait() system call. There canbe delay between signal sending and the detection of status change of processby the signal. Also co-scheduling skew can not be observed by SCore-D.Comparing Figure 5 and Figure 6, we �nd that the overhead (slowdown) ofthe CG program is the highest, while the gang scheduling time of FT programsis the longest. We are now investigating these points.6 Concluding RemarksU-Net[vEBV95] and AM-II[CMC97] support endpoints similar to PM's channelto provide multiplexed, virtualized networks. If there were a su�cient numberof channels (endpoints), there would be no need of network preemption when
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Fig. 6. Slowdown due to gang schedulinggang-scheduling. However, one must guarantee that there is no message in allthose channels involved in the parallel process in the network before the channelis reused. This means that the number of channels should be larger than thenumber of generated processes in the lifetime of the scheduling system. Thereforea message 
ushing mechanism is still needed.Having a large number of channels degrades communication performance.User-level communication libraries have to check channels ready to send. Thelarger the number of channels, the larger the sending overhead. In AM-II, thisproblem is avoided by introducing endpoint scheduling[CMC97]. In contrast, PMlimits the number of channels to four and provides channel context switchingfacilities. Simple round-robin scheduling for polling send bu�ers is used in PM.As described in Section 3.2, network preemption using channel context switchingcan be applied to a variety of problems in parallel processing.Through the evaluation of our implementation on a PC cluster II, we con-�rmed that slowdown is less than 9%with a 100msectime slice. With a computebound application, such as EP, the overhead is less than 7%. We also con�rmedthat the overhead can be further reduced by increasing the time slice.We found that much of the gang scheduling overhead comes from saving andrestoring network context. Basically, saving and restoring network context is justcopying memory between message bu�ers and the network context save area. Itis expected, therefore, that gang scheduling overhead can be reduced by using acomputer having a higher memory-copy performance.It is normally assumed that gang scheduling overhead is quite high, andconsequently time slice is longer than that of UNIX (Table 1). Although theoverhead incurred by SCore-D gang scheduling is not small, we believe that itis acceptable. We have already con�rmed that users can run interactive parallelprograms on SCore-D[HTI97b].
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