
Expanding Symmetric Multiprocessor CapabilityThrough Gang SchedulingMorris A. JetteLawrence Livermore National Laboratory, Livermore, CA 94550, USAjette@llnl.govhttp://www--lc.llnl.gov/global access/dctg/gangAbstract. Symmetric Multiprocessor (SMP) systems normally provideboth space-sharing and time-sharing to insure high system utilization andgood responsiveness. However the prevailing lack of concurrent schedul-ing for parallel programs precludes SMP use in addressing many large-scale problems. Tightly synchronized communications are impracticaland normal time-sharing reduces the bene�t of cache memory. Evidencegathered at Lawrence Livermore National Laboratory (LLNL) indicatesthat gang scheduling can increase the capability of SMP systems andparallel program performance without adverse impact upon system uti-lization or responsiveness.1 IntroductionParallel computer systems have been in use at LLNL since the introduction of a126 processor BBN TC2000 computer in 1989. Subsequent deployments of MeikoCS-2, Cray C90, Cray T3D, IBM SP, and Digital Alpha systems have encouragedparallel application program development. The majority of LLNL's workloadconsists of numerical analysis programs designed for 16 to 256 way parallelismwith memory requirements in excess of one gigabyte, disk space requirements inthe 10 to 10000 gigabyte range, and execution times in the 1 to 40 hour range.While Massively Parallel Processing (MPP) systems are well suited for execu-tion of existing programs, the scheduling mechanisms available on some systemsmake program development somewhat di�cult. Once a parallel program on theMeiko CS-2 or IBM SP begins execution, processors are dedicated to the pro-gram until its termination. Multiple parallel programs may execute concurrentlyon distinct processors, but will not time-share any processor. In order to providegood responsiveness for program development at LLNL, small numbers of pro-cessors are placed in a partition available only to programs with short executiontimes and small processor counts. Larger programs may experience delays ofmany hours in order to execute outside of program development partitions.SMP systems normally have multiple processors sharing a common workloadand memory. Distinct programs may execute on each processor and a program'sthreads of execution maymigrate between processors to provide good responsive-ness and high system utilization. Many of our customers �nd the programming



environment on Digital Alpha computers to be particularly appealing with alarge memory space shared by eight to 12 processors. The Digital Alpha pro-cessor performance is also excellent and attracts interest for execution of smallto moderate size applications. Some applications require faster throughput thancan be provided by a single processor and utilize multitasking to achieve this.Multitasking a program can provide some performance enhancement, but per-formance can vary widely with system load.There are some UNIX scheduler implementation di�erences, but most sys-tems maintain one or more queues of runnable threads [1, 2]. Whenever a pro-cessor becomes available, the highest priority thread is selected to execute. Thethread's priority may be based upon a history of recent processor utilization,reason for last relinquishing a processor (eg. waiting for I/O completion), pro-cess nice value, and priority class (real-time or time-sharing). The thread con-tinues execution for some time quanta which is dependent upon the process'priority and priority class. This algorithm tends to maximize system utilizationand responsiveness. In most cases, no e�ort is made to concurrently schedulethe threads which comprise a single parallel program. On a computer withoutconcurrent scheduling and more runnable threads than processors, the compo-nents of a parallel program may experience synchronization delays due to pooroverlap in scheduling. Many tightly synchronized programs continuously pollsemaphores at synchronization points (spin-wait) rather than relinquishing theprocessor. Unless the program's threads of execution can be provided with pro-cessors in a synchronized fashion, this spin-wait time can consume substantialresources without advancing the application's progress.Figure 1 shows the behavior which might be experienced by a six threadparallel program executing on an eight processor multiprogrammed computerwithout gang scheduling. Processor use for only a portion of the parallel pro-gram's execution time is shown. Other running programs consume the remainderof processor resources and this is not shown. Most SMP systems fail to providesynchronized compute resources for parallel programs and even slight levels ofcompetition for processors can severely impact the program's performance. Theproblem is most severe for programs with large thread counts on heavily utilizedsystems.Gang scheduling groups a program's parallel threads of execution into a gang,then concurrently schedules an independent processor to each thread in the gang[5]. A thread here is broadly de�ned as being a path of program execution whichcan proceed concurrently with others. Included in this de�nition are processesgenerated by fork system calls, MPI (Message Passing Interface) and PVM (Par-allel Virtual Machine) programs, as well as Pthreads. MPI and PVM threadsmay span multiple computers. Multiple programs may execute independently ondistinct processors at the same time, referred to as space-sharing. Time-sharingis supported by providing the gang scheduled program access to processors aswell as removing that access concurrently. Time-sharing is used to prevent star-vation of any program or achieve other resource distribution criterion. The gangscheduled program is provided with the perspective of dedicated resources dur-



Fig. 1. Parallel program performance without gang schedulinging its periods of execution, with the exception of memory and I/O bandwidth.Figure 2 shows the dramatic reduction in spin-wait overhead which the sampleprogram might experience with gang scheduling on the Digital Alpha. Whileperfect synchronization can not be provided with the Digital UNIX system'sinfrastructure, it can provide quite good synchronization as explored later inthe paper. The program's throughput can be signi�cantly improved by reducingspin-wait time without signi�cant impact upon either overall system throughputor responsiveness. Gang scheduling is one of those rare circumstances when it ispossible to get something for (almost) nothing.Several studies of scheduling algorithms indicate that gang scheduling is arelatively good policy [5,9, 14]. Gang schedulers have been implemented on avariety of computer platforms including Cray T3D [6], Cray T3E [12], CM-5, and Silicon Graphics multiprocessor workstations [3]. This paper describes agang scheduler implementation for Digital computer systems and its performancecharacteristics both on a single computer and across a cluster.2 Digital UNIXLLNL has two clusters of Digital Alpha 8400 computers. The cluster for un-classi�ed work includes eight computers with a total of 80 440 MHz processors,56 gigabytes of memory, and 800 gigabytes of local disk. These computers areinterconnected with a Digital memory channel with performance that permits



Fig. 2. Parallel program performance with gang schedulinghigh-performance problems to e�ectively span a cluster. The memory channelhas a latency of 3 microseconds and bandwidth in excess of 100 megabytes persecond. This compares with 0.5 microsecond latency and bandwidth in excess of500 megabytes per second for the computer's bus. A comparably sized clusterexists exclusively for classi�ed work.The Digital UNIX 4.0D operating system includes a very �ne grained fair-share scheduler called a class scheduler. Each process and its threads may beassociated with a speci�c class and each class has a target resource allocation.If class scheduling is con�gured, each process is by default associated with theclass default. For example, consider an eight processor system with two classesde�ned: default and gang.job.1. One might associate a four thread program withgang.job.1 and target the class at 50 percent of resources to provide it with fourprocessors. The remaining 50 percent of resources, or four processors, would beavailable to processes in the default class and managed through normal UNIXscheduling.Modi�cations to the class scheduler database are performed via an Applica-tion Program Interface (API) to a class scheduler daemon. The class schedulerdaemon's database is propagated to the operating system kernel immediatelywhen a process is added or removed from a class. Changes in a class' targetresource allocations are propagated to the kernel at con�gurable intervals of onesecond or longer. The kernel then maintains precise resource utilization statis-tics for each class. These statistics are used in conjunction with normal UNIXprocess scheduling priority to assign a runnable thread to a processor available



for scheduling. Threads belonging to classes exceeding their target resource al-location will either be scheduled only to prevent a processor from becoming idleor will be completely prevented from executing, depending upon a con�gurableparameter. Executing threads are not preempted prior to completion of theirnormal time quanta nor are classes assured of achieving their target resourceallocation on a short-term basis, so a gang scheduler's ability to concurrentlyschedule threads is imperfect.While the class scheduler infrastructure may be less than ideal for imple-menting a gang scheduler, it does o�er some interesting capabilities. If a parallelprogram is unable to fully utilize its target resource allocation, those resources(processors) can be automatically reallocated to other programs in order to sus-tain high overall system utilization. This minimizes the negative impact of unbal-anced parallel applications and those with signi�cant I/O components. Processesrun by user root are exempt from class scheduling constraints, which insures thatsystem functionality will be maintained at a cost of reduced control for the gangscheduler. Since changes in a class' target resource allocation require on the orderof one second to propagate into the kernel, gang scheduling with this mechanismnecessitates time-slice durations at least this large to be e�ective.Class scheduling makes no attempt to bind speci�c processors to speci�cthreads. Digital UNIX does calculate the highest priority thread for each avail-able processor and the last processor used by each thread is a factor in thiscalculation. This algorithm limits movement of threads between processors andreduces the overhead of refreshing a processor's cache. The overall rate of con-text switches for a parallel program on a heavily utilized computer is reducedby about 50 percent with this gang scheduler compared with normal DigitalUNIX scheduling. Thread migration between processors is reduced by a similaramount. The binding of threads to processors may very well reduce cache refreshoverhead, but at a cost of reduced processor scheduling exibility. Investigationof this issue has been deferred.Table 1 illustrates the speedup actually achieved by a gang scheduled com-pute bound benchmark on a multiprogrammed computer. E�ciency here is de-�ned as the speedup divided by the benchmark's thread count. This twelve pro-cessor system provided excellent speedup despite interference from about twentyother runnable threads throughout the testing period (the computer was in nor-mal production use at this time with a heavy interactive load). Near perfecte�ciency was achieved at low levels of parallelism. High levels of parallelismexperienced less e�ciency and greater variation in results, apparently due todi�culties faced by the class scheduler in managing far more runnable threadsthan processors.3 Gang Scheduler DesignThe gang scheduler developed by LLNL for Digital clusters is an evolution of ear-lier ones developed for the BBN TC2000 [7, 8] and Cray T3D [6, 10, 11] systems.Both implementations were very successful at adding a time-sharing capability



Table 1. Speedup achieved with gang scheduling on a busy computerThread Count Speedup Percent E�ciency1 1.000 100.02 1.983 99.13 2.998 99.94 3.989 99.75 4.992 99.86 5.968 99.57 6.928 99.08 7.876 98.49 8.791 97.710 9.665 96.611 10.511 95.6to these MPP systems, which otherwise provided both space-sharing and con-current scheduling of resources. The Cray T3D was able to sustain weekly CPUutilization over 96 percent while the aggregate interactive workload slowdownwas only 18 percent (amount by which elapsed time exceeded run time). Oneimportant feature of this design is the classi�cation of each program in terms ofscheduling requirements. The following prioritized job classes are supported inthe Digital implementation:Express jobs are deemed by management to be mission critical and are givenrapid response and optimal throughput. Programs may be placed into the ex-press class only by system administrators.Interactive jobs require rapid response time and very good throughput dur-ing working hours. The response time and throughput may be reduced at othertimes for the sake of improved system utilization or throughput of batch jobs.Batch jobs do not require rapid response, but should receive very good through-put outside of working hours.Standby jobs have low priority and are suitable for absorbing otherwise idlecompute resources. Programs are normally placed into the standby class after theuser or his group have consumed more resources than desired by management.Users may submit programs to the interactive, batch, and standby classes.The class of a program may be altered to a lower priority class by the user atany time. The system administrator may set any program to any job class.The implementations for BBN and Cray systems were able to take advantageof vendor supplied parallel job initiation software to perform gang schedulingwithout application modi�cation. The Digital environment lacks a single paralleljob initiation mechanism, making the application interface more complex. Atleast four distinct parallel job initiation mechanisms exist: MPI, PVM, Pthreads,and fork calls. These mechanisms are utilized through compilers, libraries, and/orexplicit user request. It is also common to combine multiple mechanisms in asingle program, such as a PVM program spanning multiple computers but usingPthreads within each computer for improved performance.



For the Digital gang scheduler implementation, minor application or librarychanges were deemed necessary to register each program and process to be gangscheduled. These functions are provided through an API which issues RemoteProcedure Calls (RPC) to one or more the gang scheduler daemons. The programregistration function includes the job class and for each computer to be used:desired processor count, minimum processor count, desired real memory space,and desired disk space. This RPC contacts the gang scheduler daemon on eachcomputer to be used and returns a single global job ID. For process registration,each process ID to be associated with a global job ID is speci�ed. These callswere embedded into LLNL's version of the MPICH library and automate gangscheduling for users of that library with the setting of an environment variable.Other programsmust have the necessary modi�cationsmade directly to the code,typically 20 to 50 lines of code. While this entails some programming e�ort, itcan function with any combination of programmingmodels and communicationsmechanisms within a computer or across multiple computers. A simple exampleof program and process registration is shown in the appendix. Additional APIcalls can be used to dissociate a process from a program, changes a program'sclass, modify resource requirements, gather resource utilization information, andquery a computer's load. API functions are provided for both C and FORTRANprograms, which each account for roughly half of our workload.The API writes the program's request into a �le of a global �le system andcommunicates with the gang scheduler daemons using sockets and a well knownport. The RPC contains user identi�cation and the �le's location. Daemonsreceive the RPC, con�rm the �le's ownership for authentication, perform therequested action, and reply over the socket. This mechanism provides good se-curity, exibility, and performance.Program and computer status information is written to a globally readable�le at the start of each gang scheduler time-slice. An x-window program, xgang,reads this �le and reports computer and program status as shown in �g. 3.Limited program modi�cation capabilities are also provided by xgang. A usermay modify a program's class, suspend, resume, or kill it across all computerswith the push of a button. xgang has also proven quite useful for monitoringoverall system performance.The class scheduler provides a reasonable infrastructure for gang scheduling,but some performance enhancing tactics are used. A class is created by the gangscheduler for each registered parallel program on every computer the programwill use. When processes are registered as a component of the program, theirprocess IDs are added to the class. A class is allocated zero resources to stopthe program, but this may not be completely e�ective if idle processors exist onthe computer. In order to more e�ectively stop a program, the SIGUSR1 andSIGUSR2 signals are optionally used to pause and continue programs. The APIpermits an application to explicitly disable gang scheduler use of these signalsif they are required by the program for other purposes, but doing so will reduceconcurrency and may reduce its performance. These signals also permit a moretightly synchronized stopping of a program at the end of a time-slice than can



Fig. 3. Gangster display of Digital program and machine status



be achieved by the class scheduler alone. Rather than waiting up to one secondto propagate new scheduling information to the kernel, these signals can stop aprogram immediately.Rather than allocating resources to a class in proportion tothe number of processors desired, a higher target is speci�ed and better overlapis achieved. This tactic e�ectively schedules auxiliary threads, which consumefew compute cycles but are common on many applications. For example, a fourthread program on an eight processor computer might be targeted to receive60 percent of the resources rather than 50 percent. The actual percentage usedvaries system load and has been tuned to maximize parallel program overlapwithout causing signi�cant reduction in responsiveness. The maximum resourceallocation to all gang scheduled programs is limited to a con�gurable level. Thismay be used to insure that one or more processors are available to maintainoverall system responsiveness.Any gang scheduled program failing to utilize any CPU cycles for a con�g-urable period of time, currently 10 minutes, will cease being gang scheduled andwill revert to normal UNIX scheduling. Should the program resume consump-tion of CPU cycles, it will resume gang scheduling. This mechanism e�ectivelyaddresses programs waiting for input, network tra�c, or otherwise stopped. Anyprogram faining to use any CPU cycles for an extended period, currently con-�gured at 2 hours, is completely removed from the gang scheduler database.One gang scheduler daemon executes on each computer. Programs spanningmultiple computers contact the appropriate gang scheduler daemons to be pre-allocated speci�c time-slices on each computer. An Ousterhout [13] matrix isused to record these preallocated resources as shown in table 2. Each processoris represented by one column of the matrix and each row represents one time-slice. At prearranged times, the gang scheduler daemons allocate resources asspeci�ed in the Ousterhout matrix. The last row in the matrix, time slice 4, isfollowed by repeating the cycle from the top, time slice 1. In this gang schedulerimplementation, the Ousterhout matrix describes a one hour schedule with the�rst time-slice occurring on the hour and subsequent time-slices at intervals con-�gured when gang scheduler is built. All computers clocks must be synchronizedto within a fraction of one second for concurrent scheduling to occur. LLNLuses a Network Time Protocol (NTP) for clock synchronization, although theDistributed Time Service (DTS) and other systems would equally satisfactory.The gang scheduler daemon uses an alarm to awake at the appropriate time andruns as user root to avoid being subject to class scheduling constraints.The gang scheduler is designed to provide each program with access to asimilar quantity of processor cycles whether registered for gang scheduling ornot. The number of time-slices, or entries in the Ousterhout matrix, allocated toa program spanning multiple computers is based upon the load on each computerat program initiation time. The program is allocated a percentage of Ousterhoutmatrix entries equal to its proportion of threads on the most heavily loadedcomputer. For example, a program registering with the gang scheduler for four-way parallel on an eight processor computer with 12 other runnable threadsshould be allocated 25 percent of Ousterhout matrix entries on that computer, or



Table 2. Sample Ousterhout matrixTime Computer East Computer WestSlice CPU 1 CPU 2 CPU 1 CPU 21 Job A Job A Job B Job B2 Job C Job C Job C Job C3 Job A Job A Job B Job B4 Job D Job D Job D Job Dfour processors every other time-slice. A gang scheduler sub-system periodicallymay increase or decrease the number of time-slices pre-allocated to a programspanning multiple computers as system loads vary.For programs which execute exclusively on one computer, scheduling deci-sions are made at the beginning of each time-slice. These programs lack entriesin the Ousterhout matrix, but make use of available entries based upon currentconditions. This permits the gang scheduler to rapidly respond to changes in theworkload.Time-slices are con�gured to be rather long, 30 seconds. While such a longtime-slice reduce program responsiveness, it was necessitated by two factors.Class scheduler resource allocation targets require on the order of one second tobe propagated to the kernel, resulting in unsatisfactory parallel program over-lap for time-slice durations less than about 5 seconds. Second, many programsexceed one gigabyte in size and while context switching the processor may beperformed in milliseconds, the time to refresh the cache may be on the order ofhundreds of milliseconds and the time to context switch memory (paging oneprogram from memory to disk and paging another program in the reverse di-rection) may be several seconds. In order to provide faster responsiveness, theexecution of a newly initiated program may commence prior to the beginning ofa new time-slice, if appropriate for the given workload. Also note that programsnot registered for gang scheduling are not subject to these time-slices, but arescheduled using normal UNIX scheduling algorithms and compute resources notallocated to gang scheduled jobs.4 Application Bene�tsThe most obvious bene�t of gang scheduling to the application is the concurrentscheduling of required resources. Tightly synchronized threads of execution typi-cally perform spin-wait at synchronization points rather than relinquishing theirprocessors. Concurrent processor scheduling largely eliminates spin-wait time.A second bene�t of this gang scheduler implementation is that resources areallocated for much longer time periods than normally provided by Digital UNIX,permitting more e�cient use of memory systems. Cache memory typically mustbe refreshed between context switches. By decreasing the frequency of contextswitches about 50 percent, the overhead of cache refreshing will be reduced. The



applications typical of the LLNL workload utilize substantial memory resources.When several such applications are running concurrently, paging adversely im-pacts the performance of each.While computer systems in which the number of executable threads neverexceeds the number of processors can achieve similar performance for individualprograms without the use of gang scheduling, this is di�cult to achieve in prac-tice. Computers designed as batch systems will have a regulated workload, butwithout some level of processor oversubscription, I/O bound programs will wastecompute resources and even large compute-bound programs typically have I/Obound pre- and post-processing periods. A processor oversubscription rate of 50percent (threads of queued work initiated on a computer equal to 150 percentof the processor count) largely eliminates idle processors for our workload. Thiswill result in some competition for processors and even slight competition forprocessor resources can result in dramatic reduction in parallel program perfor-mance.5 Application ConsequencesWhile gang scheduling can provide the synchronization required by many ap-plications, it can adversely impact performance of others. Reduced performancehas been observed for both I/O bound programs and programs with severe mem-ory contention. Most uniprocessor and SMP schedulers assign a high schedulingpriority to processes waiting for I/O completion. This scheme maximizes thethroughput of I/O bound programs without substantial impact upon processoravailability. Since gang scheduling blocks the program's access to processors forsome time-slices, the rate at which I/O requests can be issued and the overallprogram throughput is reduced. If the program is primarily compute bound, theDigital UNIX class scheduler will merely reallocate processors during periods ofsynchronous I/O and maintain high system utilization without substantial im-pact upon the individual program. Contention for the system's memory bankscan also reduce a program's performance, particularly if its threads of execu-tion are repeatedly writing to the same memory bank. This problem has beenobserved in only one parallel program performing repeated write instructions toa single memory location. The program was modi�ed to eliminate the memorycontention bottleneck and an overall improvement in throughput resulted. Sincegang scheduling is provided only to programs explicitly registering for the ser-vice, gang scheduling may be easily avoided when appropriate. When in doubt,it is a simple matter of performing timing tests and comparing results to assessthe bene�t of gang scheduling.6 ResultsPerformance characteristics of several benchmarks developed by Brooks andWarren [4] were utilized to assess the impact of gang scheduling. All benchmarksare tightly synchronized and compute bound, as is typical of the LLNL workload



as a whole. The benchmarks were executed on a 12 processor Digital Alpha 8400with 440 MHz clock and eight-way memory interleave. Twelve single-threadedapplication programs were running concurrently with these timing tests to sim-ulate interference which might expected in a normal production environment.Table 3 and �g. 4 show the performance of a 70 CPU second Gaussian elimina-tion benchmark. Twenty executions were made at each thread count, alternatingbetween gang and UNIX scheduling. Both mean and standard deviation valuesare report for MFLOP measurements based upon CPU time used. This bench-mark experiences superlinear speedup due to the scaling of the cache size withprocessor count and high cache hit rates. Gang scheduling provided consistentprogram performance and scaling with increasing thread counts. Without gangscheduling, performance is good with small thread counts, but signi�cant vari-ation in performance occurred in each execution. Higher thread counts in somecases result in reduced program performance and the standard deviation in per-formance exceeds 10 percent in many cases. Gang scheduling bene�ts this bench-mark partly through the synchronized processor allocation, but also throughreduced the cache refresh overhead. The time period between synchronizationpoints is inversely proportional to the thread count, at six threads the time is1.10 seconds. Table 3. Gaussian elimination benchmark performanceThread Gang Scheduled UNIX ScheduledCount MFLOPS Speedup MFLOPS Speedup1 28.2 � 0.4 1.00 29.9 � 0.4 1.002 148.2 � 2.1 5.25 127.4 � 10.4 4.263 253.3 � 3.4 8.98 163.6 � 35.3 5.474 319.6 � 2.3 11.33 287.4 � 20.8 9.615 389.5 � 7.5 13.81 280.1 � 36.3 9.376 454.2 � 8.2 16.11 268.7 � 23.3 8.997 538.9 � 13.7 19.11 226.0 � 48.1 7.568 604.1 � 9.8 21.42 104.5 � 6.0 3.499 691.1 � 10.4 24.51 136.6 � 16.4 4.5710 772.5 � 9.0 27.39 145.3 � 18.0 4.8611 832.2 � 10.5 29.51 191.9 � 30.1 6.42The second benchmark investigated is a 15 CPU second matrix multiplybenchmark. The memory requirements are su�ciently large to eliminate sig-ni�cant bene�t of improved cache management. Bene�t is provided primarilythrough synchronized processor assignment and reduced spin-wait time. Thetime period between synchronization points is inversely proportional to thethread count and is 2.67 seconds at six threads. Table 4 provides a summaryof the results, but the results of individual timing tests are quite interesting.As expected, gang scheduling provided consistently good performance results.For most benchmark executions, normal UNIX scheduling provided similar per-



Fig. 4. Gaussian elimination benchmark performance



formance to gang scheduling, but on occasion provided dramatically worse per-formance. This benchmark was executed twenty times at each thread count,alternating using UNIX and gang scheduling. An excerpt from the �ve threadbenchmark log follows:UNIX 615.16 MFLOPSGang 620.91 MFLOPSUNIX 110.55 MFLOPSGang 623.83 MFLOPSUNIX 110.64 MFLOPSGang 612.33 MFLOPSUNIX 612.33 MFLOPSClearly the processes being managed by UNIX scheduling can result in sub-stantial variation in spin-wait overhead. The timing tests at many thread countsdemonstrated one or more abnormally low performance results.Table 4. Matrix multiply benchmark performanceThread Gang Scheduled UNIX ScheduledCount MFLOPS MFLOPS1 114.0 � 0.4 111.8 � 0.42 226.2 � 0.9 227.5 � 0.83 350.4 � 0.2 347.8 � 0.24 475.2 � 2.7 469.7 � 2.75 604.0 � 4.8 403.1 � 75.76 740.3 � 5.7 737.5 � 6.47 873.3 � 8.7 728.6 � 87.58 1002.4 � 10.3 965.3 � 23.79 1175.2 � 12.8 1147.0 � 23.510 1329.9 � 16.8 1100.1 � 124.911 1441.1 � 14.8 1357.3 � 72.5Most of our numerical analysis programs do bene�t signi�cantly from thecache and their performance characteristics seem to be best reected by theGaussian elimination benchmark. Typical parallel application programs execut-ing in LLNL's normal production computing environment experience throughputimprovements of �ve to 100 percent through gang scheduling. The CPU time re-quired to execute some applications has decreased by up to 50 percent and thecustomer response has been very positive. This gang scheduler has been in pro-duction use on some of LLNL's compute servers since July of 1997. No reductionin system utilization has been observed. During working hours, idle time is typ-ically zero, system time only a few percent, and user time is in excess of 95percent. System responsiveness is not noticeably reduced, although this has notbeen quanti�ed.



In order to o�oad some work from MPP systems, a very popular ArbitraryLagrange-Eulerian (ALE) hydrodynamics application was ported to the Digi-tal cluster. Performance requirements dictated that this application be executedover sizable numbers of processors. Performance results for this application areshown in table 5 and �g. 5 for both single computer and multiple computer exe-cutions. The Digital memory channel interconnect provides performance acrossthe cluster similar to that on a single computer. The application displays nearlinear speedup with gang scheduling even for large thread counts spanning 8computers. Table 5. ALE hydrodynamics application performanceThread Run Time (seconds)Count 1 Computer 2 Computers 4 Computers 8 Computers1 2313 { { {2 1235 1257 { {4 632 656 668 {8 308 323 346 34316 { 157 164 17232 { { 78.5 85.47 ConclusionGang scheduling can provide substantially improved performance for tightlysynchronized parallel programs in multiprogrammed environments, particularlythose with large thread counts and substantial cache use. This can be accom-plished without reduction in system utilization or noticeable reduction in re-sponsiveness. Gang scheduling also provides the means of harnessing the powerof an SMP cluster to address large-scale problems without sacri�cing a multi-programming capability. These results were achieved without binding threads tospeci�c processors, although the bene�t of this warrants further investigation.8 AcknowledgmentsTony Verhulst of Digital Equipment Corporation developed the class schedulerinfrastructure. Programs developed by Eugene Brooks, Mike Collette, Scott Fu-tral, Karen Warren, and the ALE3D code group were utilized to generate theperformance results.9 AppendixThe sample program shown below illustrates the programmodi�cations requiredfor gang scheduling. Equivalent FORTRAN subroutines are also available.



Fig. 5. ALE hydrodynamics application performance#include <string.h>#include <strings.h>#include <unistd.h>#include "GangUserAPI.h"#define CPU_COUNT 2main(int argc, char *argv[]){ int i;char host[MAXHOSTNAMELEN];gsRetVal rc;struct GangJobId my_job_id;struct GangResources gang_resources[1];struct GangResources *gang_resource_list[2];/* Clear job_id on first call, otherwise the calls will *//* apply to an existing program. Resource requirements *//* of a program may be modified during its execution. */bzero(&my_job_id, sizeof(my_job_id));



/* Define resource requirements for each computer used *//* machine = Computer's name *//* cpu_count = CPU count desired *//* cpu_min = Minimum CPU count acceptable *//* mega_mem = Megabytes of memory (optional) *//* giga_disk = Gigabytes of disk (optional) */gethostname(host, sizeof(host));strcpy(gang_resources[0].machine, host);gang_resources[0].cpu_count = CPU_COUNT;gang_resources[0].cpu_min = CPU_COUNT;gang_resources[0].mega_mem = 5;gang_resources[0].giga_disk = 1;/* NULL terminated list of computers and resources */gang_resource_list[0] = &gang_resources[0];gang_resource_list[1] = NULL;/* Register the program and get job id */rc = GangJobRegister(&my_job_id, CLASS_INTERACTIVE,gang_resource_list);if (rc != gsSuccess) {printf("GangJobRegister Error: %s\n", GangErrMsg(rc));exit(1);} /* if */printf("GangJobRegister completed successfully\n");/* Fork processes as needed */for (i=1; i < CPU_COUNT; i++) {switch (fork()) {case -1: /* Error */printf("Error forking process\n");exit(1);case 0: /* Child */cpu_count = 0;break;default: /* Parent */;} /* switch */} /* for *//* Register each process */rc = GangProcAdd(&my_job_id, PROC_ID, getpid());if (rc != gsSuccess) {printf("Error from GangProcAdd: %s\n", GangErrMsg(rc));exit(1);



} /* if *//* Run each process */printf("Running process %d \n", getpid());Parallel_Code();exit(0);} /* main */References1. AT and T: UNIX System V Release 4 Internals, Vol. 1. AT and T, (1990) 2.4.1{2.4.212. Bach, M. J.: The Design of the UNIX Operating System. Prentice-Hall Inc. (1986)247{268.3. Barton, J. M. and Bitar N.: A Scalable Multi-discipline, Multiple-processor Schedul-ing Framework for IRIX. Job Scheduling Strategies for Parallel Processing, Editedby: Feitelson, D. G.; Rudolph, L., Springer Verlag (1995) Lecture Notes in ComputerScience, Vol 949, 45{69.4. Brooks, E. D. III and Warren K. H.: A Study of Performance on SMP and Dis-tributed Memory Architectures Using A Shared Memory Programming Model. Pro-ceedings of SuperComputing (Nov 1997).5. Feitelson, D. G.: A Survey of Scheduling in Multiprogrammed Parallel Systems.Research Report RC 19790 (87657), IBM T. J. Watson Research Center (1994).6. Feitelson, D. G. and Jette, M. A.: Improved Utilization and Responsiveness withGang Scheduling. IPPS '97 Workshop on Job Scheduling Strategies for ParallelProcessing, (Apr 1997) 238{261.7. Gorda, B. and Wolski, R.: Timesharing massively parallel machines. InternationalConference on Parallel Processing, volume II, (Aug 1995) 214{217.8. Gorda, B. C. and Brooks E. D. III: Gang Scheduling a Parallel Machine. TechnicalReport UCRL-JC-107020, Lawrence Livermore National Laboratory (Dec 1991).9. Gupta, A., Tucker, A. and Urushibara, S. : The Impact of Operating SystemScheduling Policies and Synchronization Methods on the Performance of ParallelApplications . Proceedings of ACM SIGMETRICS (May 1991) 120{132.10. Jette, M., Storch, D. and Yim, E.: The Gang Scheduler - Timesharing the CrayT3D. Cray User Group (Mar 1996) 247{252.11. Jette, M.: Performance Characteristics of Gang Scheduling in MultiprogrammedEnvironments. Proceedings of SuperComputing (Nov 1997).12. Lagerstrom, R. N. and Gipp, S. K.: PScheD Political Scheduling on the CRAYT3E.Proceedings of Workshop on Job Scheduling Strategies for Parallel Processing JobScheduling Strategies for Parallel Processing, Edited by: Feitelson, D. G.; Rudolph,L. , Springer Verlag. Lecture Notes in Computer Science, Vol 1291, (1997) 117{138.13. Ousterhout, J.: Scheduling techniques for concurrent systems. Proceedings of theThird International Conference on Distributed Computer Systems, (Oct 1982) 22{30.14. Seager, M. K. and Stichnoth, J. M.: Simulating the Scheduling of Parallel Su-percomputer Applications. Technical Report UCRL-102058, Lawrence LivermoreNational Laboratory, (Sep 1989).


