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Abstract. The evaluation of parallel job schedulers hinges on two things:
the use of appropriate metrics, and the use of appropriate workloads on
which the scheduler can operate. We argue that the focus should be on
on-line open systems, and propose that a standard workload should be
used as a benchmark for schedulers. This benchmark will specify dis-
tributions of parallelism and runtime, as found by analyzing accounting
traces, and also internal structures that create different speedup and syn-
chronization characteristics. As for metrics, we present some problems
with slowdown and bounded slowdown that have been proposed recently.

1 Introduction

Since the performance of a computer system depends on the workload which
it is processing [3,18], we argue that a workload benchmark suite is needed in
order to evaluate and compare the many features of job schedulers for parallel
supercomputers. But unlike standard benchmarks suites that consist of a set
of “representative jobs” executed in isolation, a workload benchmark specifies
the submission of jobs into the system and characterizes the types of jobs. Part
of this characterization may include a description of the internal structure of
the jobs themselves. This additional specification allows one to exercise various
scheduler features.

A workload benchmark is likely to be useful in quantitative comparisons of
two different job schedulers, perhaps even if they are executing on two different
machine types. The only requirement is that the same type of generic workload
will be relevant to both machines. Moreover, it is useful in evaluating the impact
of various scheduler features. For example, 1t will be possible to evaluate the
benefit of a scheduler sensitive to the mass-storage needs of its workload over one
that ignores them. It is by far preferable to demonstrate the usefulness of some
scheduler feature on a workload that is representative of what may occur on real



systems, rather than generating one’s own workload tailored to demonstrating
the superiority of one’s new feature.

There are other approaches to scheduler evaluation. One common method
1s to use traces of real workloads directly. The problem with this approach is
that such traces are not necessarily representative, and that they only provide
a single data point. In order to be able to assess the importance of different
characteristics of the workload, it 1s better to use a synthetic benchmark suite.
Analytical methods are another common approach. Although this works fine in
certain limited domains, most realistic scenarios are too complex. These methods
make assumptions about the workload of the scheduler. It is the claim of this
paper, that the workload assumptions should be standardized. It does not matter
if the synthetic workload is input to analysis, simulation, emulation, or real
execution.

We start by explaining the different types of system dynamics that may be
assumed, and justifying our focus on on-line, open systems (Section 2). As it
seems premature to fully specify a benchmark, we discuss the specifications that
are needed and identify topics that require additional research (Section 3). A
discussion of metrics then follows since it is the goal of a scheduler to optimize one
or more metrics (Section 4). Then we discuss implementation concerns (Section
5) and finally present our conclusions (Section 6).

2 Types of Queueing Systems

A computer system is essentially a queueing system: jobs arrive, may wait for
some time, receive the required service, and depart. Such systems can be clas-
sified as on-line vs. off-line, with the on-line branch being further classified as
open or closed (Fig. 1). All of these classes have been used in the analysis of
computer systems.
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Fig. 1. The three generic types of queueing systems.

Off-line analysis assumes all the jobs — and maybe also their resource re-
quirements — are available from the outset. There are no additional arrivals
later. The scheduler can then pack the jobs together in order to minimize the
total processing time. Such a model is often suitable for space slicing, batch job
schedulers and their performance can often be predicted using analytical meth-
ods [7]. Tt is also convenient for measuring the execution of real applications as
scheduled by real schedulers.

Alternatively, one can assume an on-line model where jobs arrive over a
period of time. In this case the scheduler must handle new jobs “in real time,”



without the benefit of prior knowledge about future arrivals. A closed on-line
system assumes that there is a fixed set of jobs to be handled. Thus arrivals
are in effect linked with departures of previous jobs, and there is a bound on
the maximum number of jobs in the system at any one time. Although more
difficult, such a workload model is still amenable to analytic analysis.

The approach followed in this paper can be characterized as an open, on-
line system in which there is an endless stream of jobs arriving for service. This
most closely models the challenges of real job schedulers, where arrivals are
independent of departures and indeed of the current load conditions. However,
this type of model is more complex, because the arrival process has to be modeled
as well.

Using an open, on-line model implies that the scheduler must be able to
handle extreme situations, since in an open system, the tail of a distribution can
and will occur. In fact, part of the analysis is to see when the scheduler breaks
down because it can no longer handle the incoming load (this always happens
when the load approaches the system capacity). Such an analysis is not possible
with off-line or closed models.

system efficiency:
response time as
function of load

user reaction:

generated load as
function of response

response time

generated load

Fig. 2. User reaction to system performance may be described by supply and demand
curves. Only the “system efficiency” curve need be characterized in order to evaluate
the system.

At first blush, it appears that the modeling process i1s complicated by the
fact that users may react to certain “features” (or bugs :-) of the job scheduler.
Sophisticated users will learn to exploit imbalances, and cause a bias in the
workload. Static workloads, such as those assumed by off-line or closed on-line
analysis, cannot capture such user’s reactions. Dynamic workloads — as in on-



line open systems — allow for a better characterization of the system, but more
importantly, they leave the modeling of the user as a separate issue (Fig. 2).

Finally, we note that the use of dynamic workloads captures some second-
order effects, whereby feedback due to system characteristics may modify the
workload. Examples include jobs that receive preferential treatment, and there-
fore stay in the system less time, whereas jobs that receive degraded service stay
in the system longer than may be expected. As a result the observed mix has
more “bad” jobs than the original mix. While it is not clear whether such effects
are really significant, it is prudent to be conservative and use a model that does
not preclude them.

3 Workload Specifications

A workload description for an on-line, open system can be viewed as consisting
of two major components: job arrival and job structure. Each job arrives at a
specific time and requires a specific amount of processing time, which we refer
to as work. Thus, there is a model for the distribution of the arrival process and
a separate model for the distribution of each particular job’s work requirement.
Fortunately, trace data accumulated at various supercomputer computation cen-
ters enables realistic models.

The first component describes how jobs are submitted to the system over
a period of time. This can be somewhat involved, as a distinction has to be
made between short interactive jobs and long batch jobs. In addition, there are
daily and weekly cycles in the arrival process, due to the working patterns of the
human users of the system.

The second component is that of modeling the work requirements of each
job. This can be done in a monolithic manner, or else the internal structure
of each job can be specified. As additional internal job structure is modeled,
more sophisticated scheduler features can be evaluated, presumably resulting
in a more efficient system. Unfortunately, there is not much hard data that
has been measured about typical internal structural distributions, but there are
common scenarios. The most common and clearly identifiable structures are the
computational structure (parallelism and barrier synchronizations), interprocess
communication, memory requirements, and I/O needs. The discussion will be
limited to only the computational structure because of two reasons: it is the one
about which we have some knowledge about typical patterns and it illustrates
the specification choices.

The rest of this section addresses possible choices for arrival and computa-
tional structure distributions.

3.1 Modeling Job Arrivals

Two broad classes of arrival scenarios can be identified. In one, the arrival process
1s a memory-less, continuous process. In the other, it is cyclic. The latter case
more closely represents observed arrival patterns, where the number of jobs
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Fig. 3. Left: cyclic job arrival pattern in the NASA Ames iPSC/860 (from [10]). Right:
model of Calzarossa and Serazzi for workload at the University of Pavia [2].

submitted strongly correlates with the time of day and the day of the week (Fig.
3). However, the simpler continuous model is the one that system performance
evaluation almost always uses in practice. This has the unfortunate effect of
excluding the evaluation of scheduler optimizations that increase the priority of
interactive jobs during the day, at the expense of computational (batch) jobs
that are delayed to when more resources are available at night.

It should be noted that a good model of the arrival process is also necessary in
order to create various load conditions for the evaluation. If the cyclic structure
of the arrival process is acknowledged, it is no longer possible to increase the
load by uniformly reducing the interarrival times, because such a practice will
also shrink the cycle length. Regrettably, very little work has been done on the
derivation of realistic models.

The only detailed model we know of was proposed by Calzarossa and Serazzi
[2]. This model uses a polynomial of degree 8 to model the changing arrival rate
of interactive work (Fig. 3). The proposed polynomial for “normal” days is

A(t) = 3.1-8.5t4+24.7t°+130.8¢34-107.7¢*—~804.2t>—2038.5¢°4-1856.8¢ "+-4618.6¢°

where A(2) is the arrival rate at time ¢, and ¢ is in the range [—0.5..0.5], and should
be scaled to the range from 8:30 AM to 6:00 PM. This expression represents the
centroid for a set of polynomials that were obtained by fitting measured results
for different days. Slightly different polynomials were discovered for abnormal
days, in which the administrative office closed early, or were the first day after
a weekend or a holiday. While the authors warn against using this data without
additional verifications, we propose it as an initial model until more suitable
ones are derived.

Much additional work 1s required in order to better characterize the arrival
process of parallel jobs. Specific research questions include



— The possible differentiation between arrival models for batch and interactive
jobs. Do both types of jobs arrive according to the same patterns?

— The possible correlation of arrival time with work requirement. Are jobs that
arrive at different times of the day and night statistically equivalent, or do
they tend to have different structures? For example, do users submit smaller
jobs during the morning and larger ones in the afternoon, in anticipation of
the resources that will be freed up at night?

3.2 Modeling Rigid Jobs

At the least specific level, no internal computational structure is specified and a
job consists of just an amount of work. This work can be processed sequentially
or in parallel, with no loss of efficiency. However, such a model is usually too
simple minded to be useful.

The simplest useful model is rigid jobs, in which both the work and the
degree of parallelism are specified. This is an “external” model, with no details of
the internal structure of jobs. It is useful because many parallel supercomputers
provide schedulers for this type of jobs, and because this type of workload model
can be derived from accounting logs. Indeed, a number of such models have
already been derived and used in the evaluation of schedulers for parallel systems

[8,15,18].
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Interestingly, the accounting logs from many diverse systems show several
common characteristics, most of which were not anticipated in advance. One such
characteristic concerns the distribution of job sizes, i.e. the number of processors
that are used. It turns out that even in very large machines, small jobs using
only a handful of processors dominate the workload (in terms of number of
jobs, though not in terms of runtime). In fact, in machines having more than
about 100 processors, there are usually only very few jobs that use the whole
system. In addition, there is a strong tendency to use a power-of-two number
of processors, even if this is not warranted by the architecture. A representative
distribution of job sizes, taken from the 400-node Paragon machine at San-Diego
Supercomputer Center, is shown in Fig. 4.

Modeling the distribution of degrees of parallelism is relevant for schedulers
that handle rigid jobs. We propose the following approach: first, model the over-
all distribution as linear in the logarithm of the parallelism, as suggested by
Downey [5]. This means that the probability of using fewer than n processors is
roughly proportional to log n. Then, modify the distribution by creating steps at
powers of two. The size of the steps is determined by a parameter describing the
workload, which specifies what percentage of the jobs use power-of-two nodes.
The value for the SDSC Paragon cited above is about 81% (including 21% that
were serial). More work is required to derive better models, including answers
to the following questions:

— What is a good representative value for the fraction of jobs that use power-
of-two processors?

— Is the use of powers of two a real feature of workloads, or only an artifact
resulting from old habits and common interfaces to batch queueing systems?

— Are all powers of two equally likely?

Another potentially important characteristic concerns the correlation be-
tween the degree of parallelism and the runtime. In the past, it has been specu-
lated that highly parallel jobs should be shorter, because parallelism is used to
achieve speedup. In fact, workload traces indicate that highly parallel jobs run
longer (Fig. 5). This has two possible interpretations: either the smaller jobs are
development while the larger ones are production runs, or parallelism is used to
solve larger problems rather than to achieve speedup on given problems.

A possible model for such a correlation has been proposed by Feitelson [8].
The basis for the model is the observation that job runtimes have a very large
variability, manifested by a coefficient of variation that is larger than 1. A plausi-
ble model for runtimes is therefore a hyperexponential distribution. For example,
a two-stage hyperexponential can be used; intuitively, this means that we first
choose at random from two exponential distributions according to a probability
p, and then sample the chosen distribution. The correlation with parallelism is
achieved by making the probability, p, a function of the parallelism, n. Specifi-
cally, Feitelson used

p(n) =0.95—0.2(n/N)
where N is the system size; thus for small n we get that p is near 0.95, and for
large n it goes down to 0.75. Given p, sample an exponential distribution with
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Fig.5. Correlation of runtime with parallelism is evident when the distribution of
runtimes is plotted for 4 sets of jobs independently, where each set contains jobs with
a different degree of parallelism. The weight of the distribution for the set with the
smallest jobs is at low values, while jobs with high parallelism tended to have higher
runtimes as well. (Data from LLNL Cray T3D.)

mean 1 with probability p, or a distribution with mean 7 with probability 1 — p.
We are now working on a better model, that will be based on better statistical
analysis of workload traces.

Simpler models for job runtime have also been proposed. For interactive jobs
(e.g. in a Unix environment), it has been suggested that job runtimes have a
cumulative distribution of F(t) = t*, with k ~ —1, provided the jobs are longer
than a second or so [13]. This means that

p(runtime = ¢ | age = 1sec) = 1/t*

For batch jobs, it has been proposed that the logarithms of the runtimes are
uniformly distributed, so their cumulative distribution is linear, F'(¢) = alnt+5,
with a &~ 0.1 [6]. This leads to

p(runtime = ¢) = 1/10¢

3.3 Modeling Internal Job Structure

Jobs come in many different shapes, sizes, and styles, and it is important to
model much of this internal job structure since models of rigid jobs do not allow
for the evaluation of many innovative schedulers. For example, schedulers may
wish to change dynamically the degree of parallelism provided to a job, in order
to account for various load conditions. The resulting performance depends on
the speedup curves of the application [21,19]. Thus, for each job, it must be
possible to compute runtime as a function of partition size. Another example



is that a scheduler may want to modify the “gangedness” of an application,
that is the degree to which all the processes execute simultaneously on distinct
processors. Again, the resulting performance depends on the characteristics of
the application [17], and the workload model must specify runtime as a function
of skew.

There are two general methods for modelling the “internal” job structure.
One is based on equations describing job behavior. This approach has been used
for analyzing specific situations, such as how runtime changes with degree of
parallelism for adaptive partitioning [20,4]. However these equations are typ-
ically expressed as speedup functions, and imply some assumption about the
scheduling, e.g. that all the threads execute simultaneously without interference
[19]. A more general approach is to specify the internal structure so that simu-
lation or detailed analytic methods can be used to calculate the runtime from
the structure.

A hierarchical model that includes the internal structure of the workload
has been proposed by Calzarossa et al [1]. Their model includes the levels of
applications, algorithms, and routines, and thus is suitable for the modeling
of real applications. We prefer a synthetic workload that only includes certain
abstract structures.
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partition
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Fig. 6. The proposed hierarchical workload benchmark suite, in which lower levels add
more detail to the internal structure of jobs.

Our proposal is to capture the “popular” alternative programming styles and
scheduler features and is outlined in Fig. 6. The space is deliberately sparse; to



keep the set of alternatives manageable, it is necessary to exclude many combi-
nations. At the top level are external models as described above. Lower levels
inherit the distributions of total work in the different jobs, and add internal
structure. Two basic internal structures are proposed: one in which the com-
putation is organized as communicating threads that synchronize with barriers,
and the other in which the computation is organized as an unordered workpile.
The barrier structure has a variant in which the number of threads changes from
barrier to barrier — this is essentially the fork/join model that represents a se-
quence of parallel loops. All models are parameterized by their granularity: for
barriers, this is the amount of computation each thread does between barriers;
for workpile, this is the typical task size. Finally, in all models we may add im-
balance by specifying a distribution of task sizes. Workload parameters used to
define these workloads are described in Section 5.

One anticipated use of the workload models is that one can choose the model
that is most suitable to exercise the scheduler being evaluated. Another impor-
tant use is to check how the scheduler handles jobs with other characteristics,
that are not specifically dealt with in the design of the scheduler. For example,
how does a gang scheduler handle a job with evolving parallelism? And how does
a two-level scheduler with dynamic partitioning handle a strictly SPMD code
with barriers?

While standardization of the job structures that are used to benchmark par-
allel job schedulers is important, it does not cover the whole workload modeling
question. The missing part is creating a job mix from these structures. One must
always be careful when evaluating a scheduler with a set of jobs that all have
the same structure, because then the likelihood of correlations between the jobs
grows. Regrettably, there is no information about typical and realistic job mixes.
The definition of good mixes 1s left as a question for future research.

4 Performance Metrics

As noted in Section 2, computer systems can be modeled in several ways. For
each type of system, a different metric is commonly used (Fig. 7). In this section
we investigate metrics related to the response time, which is the most suitable
for open on-line systems, and explain why we do not use other metrics such as
utilization and throughput.

4.1 Metrics and System Types

One problem with selecting a performance metric is that in a real system different
metrics may be relevant for different jobs. For example, response time may be
the most important metric for interactive jobs, while system utilization is more
important for batch jobs. But in an open, on-line system, utilization is largely
determined by the arrival process and the requirements of the jobs, not by the
scheduler. This leaves response time as the main metric.



response time throughput

Fig. 7. Classification of system types and common metric used for each.

The way to use response time as a metric is to find its functional dependence
on system load, as in Fig. 2. This means that many different load conditions
should be checked. With rigid jobs, load and utilization are completely deter-
mined by the arrival rate, so it is easy and justifiable to present the results as a
function of utilization [11]. But with adaptive or dynamic partitioning schemes,
changing the partition size may change the efficiency of job execution and thus
change the utilization. The correct load variable is therefore the arrival rate, not
the resulting utilization. This has the unfortunate consequence that it becomes
harder to compare different schemes, because one needs to understand the work-
load details to correlate the arrival rates. A standard workload benchmark will
solve this problem.

Throughput 18 a good metric for closed systems, because there the arrival
process depends on system performance: each job is re-submitted immediately
each time it terminates. The question is then how fast the jobs repeat, i.e. how
many times they are executed per unit time. Utilization is also a good metric in
this case, because faster job turnaround increases utilization. The power metric is
an intriguing variant [16]. It is defined as the throughput divided by the response
time, so 1t goes up when either the throughput goes up or the response time goes
down. However, if the throughput is determined by the arrival process, power
provides the same information as response time.

Makespan is the metric of choice for off-line scheduling. It can be thought of
as an off-line version of response time: it is the time that the whole workload
terminates, rather than the (average of the) time that each job terminates. In the
off-line scenario, it is directly linked with utilization and throughput, and each
can be derived from the others (given information about average requirements
of jobs). The same is not true of response time, which depends on the scheduling
order.



4.2 Response Time, Slowdown, and Bounded Slowdown

The average response time is a widely accepted metric for open, on-line systems.
However, it seems that this metric places greater emphasis on long jobs, as
opposed to short jobs, which are much more common. For example, the average
response time of 100 1-hour jobs and one 3-week job is 6 hours. A possible
solution to this problem is to normalize the reported values by using slowdown
rather than raw response time (slowdown is defined as runtime on a loaded
system divided by runtime on a dedicated system). Thus all jobs are reduced to
the same scale, with 1 indicating good performance, and higher values measuring
the degree of degradation. The problem with slowdown 1s that extremely short
jobs with reasonable delays lead to excessive slowdown values. For example, a
1 second job that is delayed for 20 minutes suffers a slowdown of 1200. The
proposed solution to this problem is to apply a lower bound on job runtimes,
e.g. 10 seconds [12]. Shorter jobs are treated as if their duration is this lower
bound; in the above example, the bounded slowdown value is then 120 rather
than 1200.

The above “handwaving” arguments indicate that using bounded slowdown
should lead to measurements with less variance (and thus quick convergence)
that take fair account of all jobs. Regrettably, actual measurements seem to
indicate that this is in fact not always the case. The following results are from
a simulation of variable partitioning with backfilling, using a realistic model of
rigid jobs (similar to the proposal in Section 3.2), and assuming a system of 128
nodes. This is one of the simulations reported in [9], which has been instrumented
to collect more data.

Fig. 8 shows the behavior of the three metrics (response time, slowdown, and
bounded slowdown) for the first 5000 jobs in the simulation run. The individual
value for each job is plotted, as well as a running average. It shows that while
response times vary much more than slowdowns, both types of slowdown suffer
from bursts of very high values. As a result, the running average of the slowdown
converges more slowly than that of the response time. Bounded slowdown is
somewhat better.

The same effect can be seen in Fig. 9, in which the average values are plotted
for a very long simulation. remarkably, the plot for the bounded slowdown is
nearly identical to that of the response time, whereas the one for slowdown is
much more erratic. Nevertheless, even the “better behaved” response time and
bounded slowdown continue to vary even after more than 200000 jobs have been
simulated. This 1s extremely long, considering that typical large supercomputers
execute less than 100000 jobs in a whole year.

Some insights can be obtained from Fig. 10, which shows a scatter plots
of slowdown and bounded slowdown vs. response time. Two clusters stand out
in these plots. In one cluster, jobs have a high response time coupled with a
low slowdown. This means that these are long jobs, and the high response time
actually reflects their computational demands. In the other cluster the slowdown
is proportional to the response time, with much weight concentrated where both
slowdown and response time are high. This cluster includes jobs that are actually
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quite short, and their high response time reflects time stuck in the queue waiting
for some long job to terminate. Using bounded slowdown trims the most extreme
values in this case (bottom plot), where the jobs that are delayed are very short.
In this cases the denominator in taken as a constant, rather than being the job’s
runtime, leading to values that are linearly related to the response time — hence
the similarity of bounded slowdown and response time.

Nevertheless, this manipulation can’t make the problem go away. Due to
the high variability of runtimes, at rare intervals a long job comes along and
jerks the response time; it also causes multiple short jobs to wait, and thus jerks
the slowdown and bounded slowdown. However, this is actually an artifact of
the scheduler used in these simulations, which is based on variable partitioning
and causes short jobs to be delayed. The behavior of slowdown and bounded
slowdown with mechanisms that do not delay jobs, such as gang scheduling or
dynamic partitioning, is expected to be different.

In summary, the question of what makes a good metric is still open. More
work is required in order to refine our understanding of the relations between



response time, slowdown, and bounded slowdown, and maybe additional metrics
should also be investigated.

4.3 Workload-Dependent Metrics

Our proposed benchmark suite (Section 3) contains families of programs whose
behavior depends on a parameter that specifies their granularity. The results
will naturally depend on the value chosen for this parameter. One approach is to
report performance results for a range of granularity values. Another is to make
such detailed measurements, but report only the following:

1. The best performance that is obtained, at either very high or very low gran-
ularity, and
2. The granularity at which half this performance is obtained.

This approach is inspired by the ro,, n1/2 metrics proposed for vector processors

[14].

5 Implementation Issues

This section addresses some practical issues for the implementation of a workload
benchmark generator. There is a small set of parameters that need to be specified
in order to generate the workloads discussed in Section 3. Some parameters deal
with the external job structure, while the rest deal with the internal job structure.
The basic idea is to have one common set of parameters through which the
relevant internal job structure features can be specified. Then, a single synthetic
job skeleton is required for either a simulated or real execution environment.

Of all the parameters, there is sufficient trace data to realistically model the
arrival time of a job and its parallelism. There is little or no data concerning
the internal job structure. It is therefore hard to assess representative distribu-
tions of the parameter values. Unfortunately, when executing jobs in a parallel
environment, the actual time of the execution of individual pieces of code is of
crucial importance. In particular, if the time between barriers is too short, the
implementation of the barrier may dominate the performance.

5.1 Workload Parameter Space

We define small set of parameters that can be used to capture all the workloads
defined in Section 3. This is based on the observation that they are all expressible
by various combinations of barrier synchronizations and workpile semantics. By
workpile semantics we mean that processors do not stay idle if there 1s an atomic
unit of work to execute; thus if the number of work units is no more than the
number of processors, they get mapped one each to the processors. If there are
more work units than processors, they are executed in an undefined order by the
processors as they become available.



w Total number of work units in the job |
P, P, |lower and upper bounds on the number of processors|

Bi, B, |lower and upper bounds on the number of barriers

Wi, Wstqd|mean number of work units per barrier,
standard deviation of the work units per berrier

;, Ustq [Mean compute time of a work unit,
standard deviation of work unit time

Fig.11. A proposed set of parameters to specify the internal structure of a workload.

The table in Fig. 11 lists the parameters. The idea is that the work done
by the job is the sum of many atomic work units, W, which are each computed
by a single processor. Precedence constraints between these work units, if any,
are expressed by the number B of barrier synchronizations. The number of work
units between barriers w; therefore represents the degree of parallelism in that
phase. The mean compute time of a work unit u is used to calibrate the workload
across different machines. The variability of u, expressed as its standard variation
Useq, can be used to add variability among work units.

The next paragraphs explain how to set these parameters to specify the
different workloads.

Rigid Jobs Rigid jobs are usually represented by two parameters: the num-
ber of processors P and the execution time 7. It 1s assumed that the job is
gang scheduled, since if it is not, then there i1s not enough internal structure to
understand the runtime.

P processors P processors
_——————— = _— =
P work units
2 ™ of duration T g
s W=w,=P s
B=0
Ustg= 0 Usg> O

Fig. 12. Expressing a rigid job structure with the parameters.

This formulation is expressed using our parameters by creating P work units
that execute on P processors for T' time, with no additional structure (Fig. 12).
The definitions of P and W are then P, = P, = P and W = P. Since there is
no internal structure, the rest of the parameters are easily set too: B; = B, = 0,



wg = P, wsgq = 0. The mean compute time u links with the parameter T'
normally used to express the duration of rigid jobs: u = T, uzq = 0. In fact, we
can say that the total work in work units is actually W = PT/u, but because
there is only one work unit on each processor, 1" and u cancel out. The variability
of usiq can be used to express imbalance among the processors.

Workpile A workpile job has no real internal structure, rather there is a pile
of work to be processed. The more processors there are, the faster the work can
be processed. However, there is often a minimal number of processors required
to meet resource constraints (e.g. to have enough memory). There is also a
maximum number of processors that can be assigned to a job. This is trivially
bounded by the total number of processors in the system. Therefore the two
relevant parameters typically used to describe a workpile are W and P, . It 1s
usually assumed that there is a linear speedup for processing the job.

P<P<P, P<P<P,

©0 O © 00
OO OOJ\W=WOW0rkunits O O O
O O O O B=0 O O O

O 0O
Og 0g” o OO0

Usq=0 Usig> 0

Fig. 13. Expressing a workpile job structure with the parameters. With W > P there
is no internal structure.

These parameters are easily converted to our job parameters as follows. W
is simply the number of work units in the pile. P, = P,;;, based on resource
requirements, and P, = Pj,4.. There are no barriers, so B = B, = 0, wg = W,
and wgsiq = 0. Assuming W > Py, 4., there are more work units then processors,
and they can therefore be computed on any processor in any order. u can be set
as desired for calibration, and wug:4 1s used to add variability in work unit sizes.

Barriers The main internal job structure feature in this type of job is the num-
ber of barriers. The crucial parameter in terms of scheduling and performance
is the granularity of each barrier. A secondary issue is how the barrier is imple-
mented: with busy wait, with yielding, with operating system help, or with some
combination of these; this affects overhead.

Let us start with a simple case in which each processor performs one unit of
work at each barrier (Fig. 14). This is expressed by w; = P,0 < ¢ < B, where B
is the number of barriers in the job. It then follows that B = W/P (assuming
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Fig. 14. Expressing a simple barrier job structure with the parameters.

that the number of processors is fixed: P, = P, = P). Alternatively, it is possible
to select B from the range B; < B < B,, and then set W = BP. This is useful
to create a workload of non-identical jobs, representing runs that took a different
number of iterations to converge. The granularity of the barriers i1s expressed by
U;.

Alternatively, the granularity may be expressed using a “workpiles between
barriers” structure. This structure represents a sequence of parallel loops, where
the iterations are independent of each other and can be done in any order. In
this case w; > P for all 7, so all the processors share all the work units between
barriers in a workpile manner. The granularity can then be expressed in work
units, rather than in time, as w;/P: this is the average number of work units
per processor per barrier. The number of barriers is implicitly defined by the
formula B = W/w;.

Fork-Join There is a large class of jobs in which the amount of parallelism
varies during the course of the execution. For example, there may be a sequence
of parallel loops with different degrees of parallelism, or separated by sequential
phases. It is possible to express such structures by using different values for w;,
the number of work units associated with barrier ¢ (Fig. 15).

If w; < P for all ¢, then some processors will be idle in some phases, because
there are less work units than processors. If w; > P in some phases, the work
units are computed as a workpile in this phase; if it is in all phases, this is the
situation discussed above. The number of processors P can be fixed, or else it can
vary according to resource requirements and availability, leading to a continuum
of possibilities between these two end points.

Creating a Job Mix We note that although it is possible to allow all the
parameters to vary, it is doubtful that much meaningful information can be
gathered from such cases.

There are two choices for specifying the mean values and their standard
deviations: they can be identical for all the jobs (but each job has its own unique
seed to the random number generator), or they can be generated from some
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Fig. 15. Expressing a variable-parallelism job structure with the parameters.

other distribution during job creation. Without any hard evidence from actual
workloads, 1t 1s impossible to say which is preferable. The mechanisms outlined
above easily permit either approach.

5.2 Granularity Issues

Although we leave the actual distribution of the parameters as a subject for fu-
ture research, there are some interesting points to be noted about the granularity
of barriers, or in other words, the length of time of a work unit. It seems to be
very important to get this value correct: if it is too big, there is little benefit for
gang scheduling and if too small, jobs may never complete.

When there 1s a large value for a work unit, nearly as long as a time quantum,
there is almost no difference between workpile or barrier. Moreover, there is little
difference whether or not the system is gang scheduled or not. Similarly, when
the work unit is very small the job terminates within the first time quantum,
assuming that the processors all begin at the same time.

The number of barriers is also a sensitive issue. If there are too many barriers,
the work-unit 1s short, and the system is not gang-scheduled, many jobs may
never terminate. On the other hand, if the are only a few barriers, and the work-
unit is short, then jobs may terminate within the first time quantum. Further
experimentation is necessary to resolve these issues.

As an example, we experimented with a job with 10,000 barriers executed
on an SMP IBM RS/6000 workstation with four PowerPC 604 Processors. The
upper table in Fig. 16 shows the execution times on an idle system, as a function
of the duration of the work units between barriers and the number of processors.
Barriers were implemented by the MPI function. Notice that it is not until the
work unit is 10° instructions long, that a linear speedup occurs. In the bottom
table, the same set of experiments were performed while another 4 node job was
executing. Here the four node jobs execute relatively worse than the others until
the granularity is even larger.

Another example shows a case of shared memory jobs executed on the same
idle system while varying the number of processors from 1 to 4. The barrier



Empty Machine

granularity of work between barriers
10°] 10" 10°] 10°] 10° 10 10°
0.013| 0.026] 0.160| 3.494(16.836|150.293|1486.261
4.022| 4.028| 6.720| 6.977|12.071| 80.657| 748.408
5.279| 7.315| 7.736 54.859| 500.494
5.302| 5.122| 5.110| 7.360| 9.211| 42.705| 382.139

s W = Td

With One Other Job

granularity of work between barriers
10°] 10'| 10°] 10°] 10° 10° 10°
0.013| 0.026| 0.160| 1.697|22.233|228.080|2300.667
8.673| 6.662| 8.967(10.390|21.454(144.723|1418.324
10.080|10.015{12.114{11.206|12.696{112.375|1136.834
11.462|13.975|11.112{12.166|19.621{104.883|1004.811

NNV S v

Fig. 16. Run-time of an MPI program, with 10,000 barriers, and various values for the
granularity between the barriers.

Empty Machine (Shared Memory Program)

granularity of work between barriers
P[| 10°] 10"] 10°] 10°] 10'] 10° 10°
1{/0.007]0.012]0.057|0.510(5.034|50.279|502.761
21{]0.022|0.024|0.047]0.227|2.822|27.188(251.614
3
4

0.028]0.033|0.047]|0.196(1.712|18.815|168.068
2.056|0.092]0.064|0.178|1.315|14.703(128.787

Fig.17. Run-time of a shared-memory program, with 10,000 barriers, and various
values for the granularity between the barriers. The barriers were implemented using
busy-waiting on a global variable protected by a system mutex lock.

synchronization was executed as a busy-wait by increasing a counter protected
by a lock, and there were 10,000 barrier synchronizations. The performance
results are shown in Fig. 17. The granularity has a large effect on how the
program performs: with a shared memory implementation of barriers, linear
speedup occurs for a granularity as small as 103.

5.3 Execution Issues

Portability One goal of the benchmarks is that they be executable on a large
number of platforms — both hardware and software. But, to be useful, the port
to a new system should be as smooth as possible. The problem is that different
systems support different features. For example, not many systems provide sup-



port for dynamically allocating and deallocating processors to jobs. It has been
claimed that this ability dramatically improves overall performance.

The easiest option is for the system to simply ignore the extra specification
of the job. If the amount of parallelism per barrier is variable, a system that
does not support this feature can simply choose the maximum parallelism.

Length of Execution How long should the benchmark be executed? Given
the probabilistic nature, given enough time, anything is likely to happen. That
18, the system may get into a saturated state from which it never exits. We also
do not have unbounded time in which to execute benchmarks. Experience will
have to be teacher.

But we can say that the scheduler will behave differently during warm up and
cool down. For this reason, we suggest that measurements only be taken during
the steady-state behavior of the system. It is crucially important to ensure that
the system does not “dry out” towards the end. For example, if we want to
measure performance characteristics of 10000 jobs, we need to keep the arrival
process going until all 10000 terminate. When the system is close to saturation,
this means that we may have to generate much much more than 10000 jobs.

6 Conclusions

There 1s still much to be done before a comprehensive workload benchmark can
be built. There are many aspects of a job’s internal structure for which there
is no experimental evidence concerning their actual distributions. It is our hope
that this be rectified.

Thus, this paper has only begun the quest for a workload benchmark and for
widely accepted and suitable metrics. Although a large design space has been
outlined, it is likely that only a small portion of the space is needed to make
progress. This portion should be identified and subjected to a focused research
effort.
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