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Abstract. This paper presents a new approach to solve the problem of job
scheduling for parallel processing in heterogeneous systems. The optimization
goals are: (i) minimum total execution time including communication costs
and (ii ) shortest response time for all j obs. We introduce a classification for
the given scheduling problem by the heterogeneity of the systems, from the
view of the schedulers’ eyes. Then, according to this analysis, a new
scheduling strategy for so-called “Strictly-Heterogeneous” systems is
proposed.  The key idea of the new approach is the use of the Hungarian
method, which provides a quick and objective-oriented search for the best
schedule by the given optimization criteria.  In addition, by modifying this
method into so-called Objective-Oriented Algorithm (OOA), the time
complexity for scheduling is decreased to O(n(E+nlogn)). The simulation
results show us that OOA provides better solution quality while scheduling
time is  less than the existing methods.

1   Introduction

For the last few years, a number of job scheduling algorithms for uniform systems
have been published. However, in heterogeneous systems, where not only jobs (tasks)
belong to different classes but also, resources (computing nodes) can be
heterogeneous, scheduling problems are more complex than the ones in uniform
systems. Besides, a lot of algorithms for uniform systems are specialized on a
particular uniform type of the system architecture [4],[15],[2]. Therefore, applications
of these algorithms for heterogeneous systems are limited.

In the uniform systems, because of the homogeneity of the jobs and the resources,
the optimization for job scheduling is carried out at high level where the jobs (and the
resources) are considered not alone but in some groups (batches or gangs).
Meanwhile, in the heterogeneous systems, the optimization for job scheduling must be
carried out at both high and low levels. At the low level, where every single job is
assigned to a single resource, because of the heterogeneity of the jobs and the
resources, there is a problem of choosing the best job-resource assignment among the
different and possible ones. The solution of this problem has big influence on the



utili zation of the hardware: not only on the fraction of the used resources to the
available ones, but also on the efficiency with which these resources are used.

Therefore, while keeping on solving other common problems as in uniform
systems, job scheduling strategies in heterogeneous systems must  focus on the
problem which is mentioned above and which derives from the heterogeneity of the
computing systems.

In this paper we study the job scheduling problem for parallel processing in
heterogeneous systems by this way. We provide a heuristic algorithm (named
Objective-Oriented Algorithm) based on a strategy that has not yet been used before in
job scheduling.

The paper is organized as follows: In section 2 we provide a classification for the
given job scheduling problem by the heterogeneity of the computing systems; Then, in
order to make the scheduling algorithm comparable with the others and available for
its application in the real systems, we give section 3 for a detailed description of the
computing model and the problem statement; In section 4, a quick review of related
work and the key ideas of the new strategy are provided; The algorithm itself is
described in section 5; Simulation results are analyzed in section 6; And finally, the
conclusions are stated in section 7.

2   Influence of  Systems’ Heterogeneity on Job Scheduling

Before  moving on to describing the computing model, we would like to make a
preliminary classification of the types of the systems’ heterogeneity in parallel
processing  (from the view of schedulers’ eyes).

Suppose that at a moment in time, in a parallel heterogeneous system, there are M
jobs ready to be executed and there are N resources available. The requirement of the
job scheduling problem is to assign these M jobs to N resources so that the received
schedule is satisfied by the following: First, the processing requirements of the system
(e.g. the resource must have enough memory and communication capacity, which are
required by the job that is assigned to this resource etc.); Second, the optimization
requirements (e.g. minimum parallel executing time, high resource utilization etc.).

We assume that the scheduling process can be divided into two smaller ones:
• Checking processing  requirements: from Ri all possible and different variants of

schedules, we have to pick out the set of Rp variants which are satisfied by the
processing requirements, but not yet the optimization requirements (OR);

• Optimizing by satisfying OR: from Rp variants we have to choose Ro optimum
schedules (in most cases Ro=1) which are satisfied by the optimization
requirements.

Obviously, the numbers Ri and Rp determine the scale and the complexity of the
Checking and the Optimizing steps.

In the case, when there are two OR: (i) shortest response time for all jobs and (ii )
minimum total executing time, one of the ways to achieve these two goals at the same
time is to distribute the jobs to the maximal number of resources (suppose that there
are Rmm such variants) and then choose from Rmm variants the best one with



minimum total execution time. Now, we see how the heterogeneity of a system (how
different the jobs and the resources are) can have influence on Ri and Rp, which show
us the scale and the complexity of job scheduling problem.

• In so-called “Half-Heterogeneous” systems, where there is no processing
requirement (i.e. any assignment of a job to a resource is possible), the resources
are the same (uniform) but the jobs are different [3] or vice versa. In this case,
we have Ri = Rp, which means that the job scheduling problem leads
straightforward to the second step:  the optimization step without dealing with
processing requirements. The scale of the problem is  Rp = M
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• In so-called “Completely-Heterogeneous” systems, there is no processing
requirement but either the resources and the jobs are different [8,16]. In this
case, the complexity of the job scheduling problem is the same as the previous

one, but the scale is different with Ri = Rp = M
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• In so-called “ Strictly-Heterogeneous ” systems, the resources and also the jobs
can be different. Moreover, in this case there are processing requirements (i.e.
not all assignments of jobs to resources are possible) [15]. Therefore, job
scheduling problem is more complicated. It now contains two steps: checking
processing requirements and optimizing the schedule. The scale is almost the

same as in the previous case with Ri = M
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Rmm is the number of the variants of maximum matching for the bipartite graph
of M and N nodes. Theoretically, Rmm∈[0,Ri] but usually in practice Rmm<< Ri.
Besides, it is possible that Rmm=0, which means that there is no schedule with N
size (i.e. for N resources). This also means that some resources are strongly
unrelated to such a kind of M given jobs.

Note that the scheduling strategies, which are for commonly-called uniform systems,
belong to the first class: “Half-Heterogeneous” systems, where the resources are the
same (uniform) but the jobs are different (even just by the amount of execution time
for each job). The scheduling strategies, which are for commonly-called
heterogeneous systems, actually belong to the second class: “Completely-
Heterogeneous” systems. The third class: “ Strictly-Heterogeneous ” systems, has
received the least attention because of the following reason: The parallel computing
systems in this class are characterized with having not only jobs and resources of
different classes but also some strict processing requirements. This kind of parallel
systems (e.g. PVM) became available for common use in the real world only several
years ago. One more fact is that any algorithm that works for the systems of the third
class will also work for the systems of the second one, although with a littl e less
efficiency than in its own class.

In this paper we will focus on the third class of scheduling, for “ Strictly-
Heterogeneous ” systems.



3   Heterogeneous Computing Model

3. 1   Description of  System’s  Model

The computing model for a “Strictly-Heterogeneous” systems, in which our
scheduling algorithm works, has derived from a large parallel and distributed system
(Fig. 1.) and has been studied before in [13].

In the real world, this system consists of : First, different resources, they are
heterogeneous nodes-users Ui (e.g. different computers or processors) and the
common  resources CRj (e.g. the severs) ; Second, tasks of different kinds Ti, which
come from users-nodes or from outside (e.g. from other systems). As in any parallel
systems, these so-called mother-tasks have to be maximally  parallelized. They are
divided into son-tasks (small computing modules) which we will call jobs. These jobs
are different as well because they come from different tasks.

                         - Tasks in the system.
                         - Available resources in the system.   (         Broken down resource)
                         - Communication Channels between Resources.
                                                                                       (                 Failed channels )
                             - Channels for Management.

Fig. 1. Tasks and Resources in a Parallel Heterogeneous System.

Therefore, the given system can be represented by:
• a data set about Q tasks ST={ T1, ...,TQ} with their heterogeneous processing

requirements.

 Task



• a data set about N resources SR={ R1, ...,RN} with their heterogeneous processing
capacities;

• a data matrix about the communication channels between the resources
MCR[1..N,1..N], where MCR[i,j] is the rate of the cost for communicating
between Ri and Rj , and

 
MCR[i,j] ∈ ℜ+ 

. We say there is “no connection”
between Ri and Rj when MCR[i,j] > Ω0 (some given number).

3. 2   General Scheduling Scheme

In order to make explicit how much and what kind of work the job scheduling
problem does and where it takes place in the general scheduling process, we provide
here a quick review of the general scheduling scheme. Usually, it contains the
following steps:

(1) Input Tasks:  First, accept tasks  T1, ...,TQ from the users or from the outside of the
system; Second, analyze tasks and prepare beforehand data for the next step.

(2) Parallelize Tasks into Jobs: Each task Ti is maximally  parallelized (without the
resource constraint) into jobs  Ji

k , k=1,..,Ki . After parallelizing, each task can be
represented by a  DAG of job-nodes (Fig.2.a). Thus, we have Q graphs: VT1, ...,VTQ,

where VT1={ J1
1, .., J

1
K1} , ..., VTQ={ JQ

1 , .., J
Q

KQ} . Then, all jobs of different tasks
(i.e. of different classes) are grouped (and renamed) into S common clusters B1, B2, ..,
BS (Fig.2.b) considering their precedence, where B1={ J1,1, ..,J1,M1} , .. ,
BS={JS,1,..,JS,MS}.

 (3) Prepare and send Ready Jobs to Buffer-in:  A Filter, whose work is based on the
rule of job precedence, chooses ready jobs from the nearest cluster B1 and sends it into
the Buffer-in (Fig.2.b). The rule of job relationship is that a job Ji,t ∈ Bi is ready only
when all it s predecessor in cluster Bi-1 have been executed. Besides, the jobs in all
clusters B1,B2, .., BS are also moved into the next cluster all the time by this rule.

(4)  Schedule Jobs to Resources:  At a given moment in time, there are M ready and
independent jobs in the Buffer-in and N available resources in the system. The
scheduler has to assign these jobs onto the resources so that the received schedule is
optimum by one or some given optimization criteria.

(5)  Reschedule Failed Jobs:  In the case, when a resource fails during executing the
job that has been assigned on it, the ID of this job has to  appear in the Buffer-in
again, as a ready job for the next scheduling cycle (this step may be executed by the
system monitor but not by the scheduler).

(6) Output Executed Tasks:  This is  the reverse process of step (2). After the
execution, each job is put to Buffer-out (Fig. 2.b). Then, they are collected back to
their mother-tasks. A task is completely executed and removed from the scheduling
system when all its son-jobs have been executed.



Fig. 2. a  Parallelizing Tasks into Jobs.

Fig. 2.b  Jobs  in clusters during the scheduling process.

3. 3    Statement  for  Job Scheduling Problem

As is discussed above, the scheduling process is a complex of procedure-steps. In this
paper we will focus on the most important step (4) - step of scheduling jobs to
resources. In more detail, it can be stated as follows:



At a moment in time, after the step 3 in the scheme above, there are:

��N heterogeneous resources of the system, which are represented by a graph
G

R
=(V

R
,E

R
,W

VR
,W

ER
), where:

• V
R ={R

1
, R

2
, ..., R

N
}is the set of N resources-nodes (the ID), R

i
 ∈ Ν|,

i=1..N.

• E
R
={E

1
, E

2
, ..., E

d
}is the set of edges, which represents the physical

communication link between resources E
i
 = {R

i
,R

j
}, where R

i
, R

j
 ∈ V

R
 and

0≤d≤N
2
 .

• W
VR

={ WVR
1
, WVR

2
, ..., WVR

N
 }is the set of nodes’ weights, where

WVR
i
 ={RE

i
, RT

i
}. For ∀ i=1..N :

(i)  RE
i
 ∈ ℜ+

 is the ratio that characterizes the capacity (e.g. the
speedup, local memory) of the given resource R

i
 ;

(ii )   RT
i
 ∈ {0,1} is the state of the given resource (free or occupied).

• W
ER

={ WER
1
, WER

2
, ..., WER

p
 } is the set of edges’ weights and it can be

represented by a matrix RC=RC[i,j] ∈ ℜ+
 , where i=1..N, j=1..N, and 0 ≤

p ≤ N*N.

�
��M different and independent jobs, which can be executed in parallel. They are
represented by a set V

J ={J
1
, J

2
, ..., J

M
}. The heterogeneity of each job is

characterized by the data set J
i
 ={JN

i
, JE

i
, JL

i
}, i=1..M, where:

• JN
i
  ∈ Ν| is the ID of the job (e.g. the number).

• JE
i
 ∈ ℜ+

 is the work amount for executing the given job.

• JL
i
 ={(R

1
, ϕ

1
), ..., (R

q
, ϕ

q
)} represents the logical communication link of the

given job J
i
 to the resources {R

1
, ..., Rq

}, where:
 (i)  Rt ∈ V

R
  (t=1..q , q ∈ Ν|) is the resource which the given job need

to communicate with. In the given scheduling system, this is the resource
on which the predecessor-job of the given job has been executed before;

 (ii ) ϕt ∈ ℜ+
 is the data amount that is needed to transfer in

communicating with Rt.

 For example, if the job J1,2 has been executed on the resource R1 = R1 and
J1,6 on R2 = R3 then the job J1,6 (Figure 2.a and 2.b) will have logical
communication link  JL= {(R1, ϕ

1
), (R2, ϕ2)}.

• JP
i
 ∈ ℜ+

 is the priority of the job J
i
 if the priority system for jobs exists.

�
��The requirement of the given problem is to find out a schedule for assigning M
jobs onto N resources so that  we can achieve two following optimization goals:

• minimum total actual execution time (and)

• shortest response time for all jobs.



 4.    Solution Basis

4. 1    Related work

It has been shown in [10] that the given problem (with the name “Assignment
Problem”) comes from the “Traveling Salesman Problem”, which is NP-complete [9].
Moreover, the given problem, indeed, is listed in the form of the problem N43 in
section A2.5. of the List of NP-complete problems in [9]. Therefore, most algorithms
for solving it use heuristic or genetic approaches [7],[16],[5],[3],[19].
     In solving any scheduling problem, there are two important issues that we should
consider. They are: solution quality (how the received schedule is near to the optimum
one) and solving time (for how long it takes to find the schedule).

In dealing with solution quali ty: Solution quality depends on the optimization
criteria  and the scale of the optimization area. Usually, there are three main kinds of
optimization criteria :
• Focus on the executing time of jobs and not consider communication costs (as in

most of  balancing algorithms) [8].
• Focus on the minimization of communication costs [7] (e.g. using “critical path”

in clustering algorithms[20]).
• Focus on other parameters (e.g. response time or other time constraints in the

Real-time systems[15]).
After choosing criteria, the optimization can be carried out in two ways:
• Through local minimization [15],[6]. This is simpler than the next way and it

requires less information (in local scale). However, because it is local, it has to be
carried out several times during a scheduling cycle.

• Through global minimization [7],[8]. This is more complex than the first way and
it requires more information about jobs, resources, system performance (in global
scale). Therefore, in practice, the algorithms usually are simpli fied in order to
decrease the scheduling time.

To achieve the desired results with more than one optimization criterion, the
scheduling is sometimes carried out by a combination of the above discussed ways.

In dealing with solving time:   The requirement of the solving time depends on the
scheduling type. Static scheduling algorithms can have a long solving time while the
Dynamic ones always have a short solving time.

As is said above, because of the complexity of the problem, most of the scheduling
algorithms are heuristic or genetic. In the algorithms that have been published
recently, a genetic method called Simulated Annealing (SA) is used very popularly
[7],[16],[11],[18]. This method is good because of its flexibilit y. By resetting the
values of the parameters for the simulation (the initial and freezing temperatures, the
ratio for decreasing temperatures) we can have many kinds of schedulers, which are
different by the correlation between solution time and solution quality as follows:
• From the fastest scheduler, which gives a schedule with a random quality for the

minimum solution time;



• To the slowest one, which checks all possible variants of schedules and  gives us
the exact solution (real optimum schedule).

Usually, the simulation parameters are set so that the result is in the middle between
these two extremists. However, the solution time for achieving an acceptable-optimum
schedule is too long, especially when the problem size (M,N) is large, and also at the
same time, the solution quality is unpredictable.

4. 2    New Approach with Hungarian Method

As it has been reviewed above, in order to achieve two conflicting goals: short
scheduling time and good quality of the schedule, we always have a trade-off between
solving time and solution quality. The point is how to achieve the “golden mean”.

Scheduling strategy for dealing with solving time:  For the system that is described
above, our aim is to develop a balanced algorithm, which gives us a schedule of good
quality for an acceptable solving time.

In order to see explicitly the difference of our approach from the existing ones, let
us analyze again (but now from the view of the strategists’ eyes) the above approach
of scheduling by using simulated annealing (SA). Suppose that all possible variants
(Ri) of the schedules can be set as the “balls” in a “box” . The variants-balls are located
in  chaos. Among them, there is a real optimum one that has to be found. Now, see
how it is found by SA and by our algorithm using Hungarian method, which is
described in [10],[12],[1].

In SA, all the variants are put in the Markovian chain as if all the balls are
connected each to another with a visual “ thread” (this is not shown in Fig.3.a). The
search is started with a random variant-ball Vs (which is put in the “pocket” ) and is
guided by this thread. Continuing the search, the next ball i s compared with the one in
the pocket. If the next one is better than the one in the pocket then it will occupy the
pocket, and so on. After a given number of steps with the last-checked ball Vf, the
variant-ball i n the pocket is regarded as the optimum one of all the balls in the box.
Usually, the Markovian chain is built so that the “ thread” is spread over all the box in
order to avoid local minimum. However, still , if  the real optimum variant-ball was not
in the searched area (the red line in Fig. 3.a) then the received variant, obviously, is
not optimum.

   Fig. 3.a   Scheduling strategy in SA                 Fig. 3.b  New scheduling strategy.



The key idea of the new approach is to detach from all possible variants (the box) a
zone, which contains exactly the real optimum variant Vop (for the given optimization
criteria) and is much smaller than the box  (Fig.3.b). Then, the search is carried out
only in this area until it reaches the real optimal variant Vop. Therefore, we will
receive the exact solution while the solving time is much less than it is in SA for
finding a solution of the same quality.

Moreover, using the Hungarian method (which will be described in detail l ater) for
such an approach allows us to carry out not a random search (as it is in SA) but a so-
called “objective-oriented search”  in the chosen area, where the objective is the real
optimum variant Vop. That is why we name the algorithm “Objective-Oriented”
(OOA). The selection of the Hungarian method is not by chance but is based on a
careful investigation which is studied in [14].

Scheduling Strategy for dealing with solution quali ty: Now we have to determine
the optimization criterion and the scale of optimization area.
��Heterogeneous systems usually are distributed. Therefore, we think that it is

necessary to consider communication costs in scheduling for such systems. To
escape the conflicting goals: (i) minimizing execution time (by choosing
separately the most fitting job-resource pairs); (ii ) minimizing response time of
jobs (by maximally parallelizing them on the maximum number of resources);
(iii ) minimizing communication costs (by decreasing the number of the used
resources), we use the following  balanced optimization scheme. The optimization
is carried out by two steps:
(1)  maximize the number of resources for executing the given jobs as far as

possible (for achieving minimum response time);
(2)  choose the best schedule with the minimum total weight that is determined by

an estimating function (which characterizes the execution time of jobs
including communication costs).

��Because the Hungarian method works very eff iciently when the problem size is
20-100, we propose two variants of optimization:

• First variant; when M>100 , the jobs are randomly gathered into a group
of N jobs. Then the local optimization is carried out for N jobs and N
resources. The size of the optimization zone n = N.

• Second variant; when M<100, all the jobs are in a global optimization
with K groups of N resources, where K ∈ Ν|  and K>[M/N]. The size of
the optimization area n = M.

4. 3    Algorithm Basis

With the chosen strategies for scheduling, which are mentioned above, there are three
important steps which now will be studied in detail:

• Forming the “box”.
• Determining the searching zone.
• Building a rule-guide for the objective-oriented search.



A.  Box Forming

This means the way to represent the data for scheduling. For the initial data (which is
described in 3.3.), we have: a set of M independent jobs with their heterogeneous
processing requirements; a graph of N resource-nodes with their heterogeneous
processing capacities.

Now, in order to form the box, we have to reform these two separate data sets into
a form that represents directly the relationship between jobs and resources: a matrix of
size M*N and which we will call Job-Resource matrix  (JR). Each element JR[i,j] of
this matrix is the weight of the assignment of the job i onto the resource j. These
weights are determined by an optimization function ∆(i,j). The formation of this
function is based on the optimization criteria that is determined in 3.3.

Suppose that the jobs and the resources are identified respectively by two sets
V

J
={J

1
, J

2
, ..., J

M
}, V

R
={R

1
, R

2
, ..., R

N
}. In general, the optimization function can

be determined as the following:
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i
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j
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i,j
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y

G
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Where,

• Pk
i j

k

K
,

=
∏

1

is called absolute priority of assignment (J
i
,R

j
). It is calculated by

multiplication all  K relative priorities Pk
i j, ∈ ℜ+

 which are derived from different

factors (e.g. the permitted waiting time of the given job, the desirable usage
frequency of the given resource).

• Cx
i j

x

H
,

=
∏

1

is the final result of analyzing all  H processing requirements (e.g. the

requirements about memory, speedup...), where&[L M�
 is the degree of satisfying

the processing requirement x (x = 1..H) for the assignment (Ji,Rj),

{ }Cx
i j, ,∈ 01 : Cx

i j,
 =1 if the resource Rj is satisfied by a requirement x of the

job Ji , otherwise,Cx
i j,

=0.

• L Oy y
i j

y

G
,

=
∑

1

 is the final result of analyzing all  G optimization requirements,

where 2\L M� ∈ℜ+
 is the degree of satisfying the optimization requirement y for

the assignment (Ji,Rj); L
y
 ∈ ℜ+

 is the weights assigned to the optimization
criterion y.

For the given computing system with the given optimization criteria and according to
the scheduling strategy for dealing with solution quality in section 4.2., the estimating
function (which calculates the weight of the assignment of a job Ji onto a resource Rj,
Rj ∈ V

R
 and Ji ∈ V

J ) should be determined as follows:



��To reduce the complexity of the problem, we suppose that Pk
i j

k

K
,

=
∏

1

= ρi (2),

where ρi=JPi is the priority of the job Ji (e.g. it can be formed by
 
the time Twi ,

for which the job Ji has been waited in the system).

��For simplicity, we suppose that there is only one processing requirement (H=1):
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x
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=
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1

= Ci,,j which is determined by comparing the physical communication

links of the resource Rj: ER
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1
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2,..,Ed
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communication links of the job Ji: JLi={(R
1
,ϕ1
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q
,ϕq

)}. Recall that Rt ∈ V
R

(t=1..q) is the resource which the given job needs to communicate with.
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��The third part of (1) is determined as the follows:
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 , where

• Te
i,j
 is the executing time for the job Ji on the resource Rj. If the amount of work

for executing the given job JEi = εi ; the realization ratio of the resource REj =

kj, then it can be determined by the following: Te
i,j
 = ε i jk∗ ;

• Tc
i,j
 is the communication costs for the assignment (Ji,Rj). If the list of the

resources which the job requires to communicate with is JL
i
 ={(R
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, ϕ1

), ..., (R
q
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From (1),(2),(3), and (4) we have:
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Obviously, δ
i,j
 ≥≥ 0 ∀ i=1..N , j=1..M . Therefore:

               inf (∆(Ji,Rj)) = 0 .
We will assume that there is no physical communication link between resources Rj

and R
l
 when Tc

i,,j = ( ),φ βl j l
l p

q

∗
=
∑  > λ

0 , where λ
0
 is some given number. This is the

threshold for determining if the communication between two resources is possible or



not. According to this value, we have some value δexist which determines if the
discussed assignment is possible or not.

The executing time Te
i,j
 must have some lower limit To, then the highest limit for

∆(J
i
,R

j
)=δ

i,j
 can be determined as the following:

              sup (∆(J
i
, R

j
)) = ( ) [ / / ]µ ρ λ0 0

0
01 1j j T× × + = δ

max
.

For applying the Hungarian method in the next step, we have to rebuild a new
optimization function:
              Ψ(J

i
, R

j
) = δ

max
.- ∆(J

i
, R

j
) = ψi,j          (6)

Therefore, finally, for all elements of the matrix JR[i,j]=ψi,j, i=1..M, j=1..N, we
have : 0≤ψi,j ≤ δ

max
 and the value ψexist = δ

max - δexist as the threshold for determining if
the assignment(Ji,Rj) is possible or not. The size of the box n is determined as in
section 2 (based on the value of M and N) and according to the optimization area,
which is determined in section 4.2.

For the example that is given in Fig. 2.b., the “box” or the Job-Resource matrix  JR
will have the size M=5 and N=3 as in Figure 4. The values of matrix elements are
supposed to be the results of the calculation  by the formulas (5) and (6) with some
data which are given in section 3.3 for the jobs J1,6 , J1,8 , J2,7 , J2,8 , J3,2 and for the
resources R1,R3,R5 .

Fig. 4. BOX with Matrix JR ( δ
max

.=80; ψexist =20;)

However, for a good explanation in the next sections, we suggest to study the
searching technique with such a “box” (the Job-Resource matrix  JR) as in Fig.5.a,
where M=N=n=6.

B.  Determining searching zone

After determining the job-resource matrix JR as the “box” (suppose that it is in     Fig.
5.a), the next and important step is to determine the zone for searching the real
optimum variant of  possible schedules. For further study, we provide some definitions
about the assignments and the schedules as follows:

Definition 1: There are two given sets: V
J
={J

1
, J

2
, ..., Jn} and V

R
={R

1
, R

2
, ..., Rn}.

The pair a=(Ji,Rj) is called Assignment of  the job Ji ∈ V
J
 onto the resource Rj ∈

V
R
. Each assignment has its weight, which is determined as Ψ(a)=Ψ(Ji,Rj), where Ψ

is the function determined by (6).
Definition 2: For two given sets: V

J
={J

1
, J

2
, ..., Jn} and V

R
={R

1
, R

2
, ..., Rn}, a set

A={a
1
,a

2
, ..., a

n*}= {(J1
, R

1
), (J

2
, R

2
), ..., (J

n*, R
n*)} is called Maximum matching

for such jobs and resources if:

RESOURCES
J J1,6 J1,8 J2,7 J2,6 J3,2

O R
1

18 45 7 47 6
B R3 6 3 39 61 4
S R5 75 9  3 6 58



• ∀ i=1.. n*, Ψ(a
i
)=Ψ(Ji ,Ri )< ψψexist .

• ∀ i=1..n*,  R
i
 ∉ AR\ R

i
 , J

i
 ∈ AJ \ J

i
 , where AR={R

1
, R

2
, ..., R

n*},
AJ={J

1
, J

2
, ..., J

n*}.

• n* is maximized as far as it can be.
Definition 3: A maximum matching A* with the size n* for two given sets: V

J
={J

1
,

J
2
,.., Jn} and V

R
={R

1
, R

2
, ..., Rn}is  a possible Schedule for such jobs and resources

if  n* = n. The weight of the schedule then is determined by: D A a i
i

n

( * ) ( * )=
=

∑ Ψ
1

.

Definition 4: Suppose that Χp={A
1

 
, A

2
 , ..., Ap }, p ∈ Ν|  is the set of all possible

schedules. A schedule A* is the real optimum variant of possible schedules if :

D A a D A D A D A D Ai
i

n

p
j

p

j( * ) ( * ) { ( ) , ( ) , . . . , ( ) } { ( ) }m i n m i n= = =
= =

∑ Ψ
1

1 2
1

According to the Hungarian method, the searching zone SZ is limited by  so-called
minimum assignments a*=(J*,R*) which have the minimum weights Ψ(J*,R*)  in
comparison with other assignments in the same rows or in the same columns of the
matrix JR with size n. These minimum assignments create the first bound for SZ (we
call it B0), which can be found in the following way:
For i=1.. n, j=1..n,  if :

•  (Ψ(a*)=Ψ(J*,R* )<ψψexist ) and
•  (Ψ Ψ( *) ( , )mina J R

i

n

i j=
=1

 or Ψ Ψ( *) ( , )mina J R
j

n

i j=
=1

 )

                                 then  a*= (J*,R*) ∈ B0.
Therefore, the bound B0 of the searching zone SZ is determined by a set of minimum
assignments Ab = {a1*,a2* ,..ab0* }, b0 ∈ Ν| .

In the Hungarian method, the bound is marked by making the minimum
assignments Ab0, which are on it, become the so-called zero assignments. It is obvious
that if we subtract the same number S from all elements of a row (or of a column) in
the matrix JR then the minimum assignments still remain as the minimum ones. In
other words, if we subtract the weight of the minimum assignment from all elements,
for each row and each column, we will still have the same bound B0 with the same
minimum assignments  Ab = { a1*,a2* ,..ab0* } . The only difference is that these
assignments will have zero weights.

In summery, the first bound B0 of the searching zone is a set of the zero
assignments Ab={a1*,a2*,..ab0*} as in Fig.5.b. (for the “box” in Fig.5.a).

            Fig.5.a BOX with Matrix JR                       Fig.5.b  B0 of “0”s in Matrix JR
                                                                                       (n=6; δ

max
.=100; ψexist =30;)

      RESOURCES
1 2 3 4 5 6

1 3 0 2 0 2
J 2 5 2 8 0 4
O 3 2 0 3 4 3
B 4 8 0 7 3 1
S 5 0 1 0 0 0

6 1 3 0 6

     RESOURCES
1 2 3 4 5 6

1 8 5 71 7 6 9
J 2 6 3 9 1 47 7
O 3 5 59 3 6 8 8
B 4 9 1 8 95 5 4
S 5 1 2 1 80 2 3

6 69 70 3 5 3 10



C.  Objective-Oriented Search

After determining the bound of the searching zone, we have to carry out the last and
the most important step - to search the optimum variant of the schedules in the
determined searching zone. The search starts from the found bound B0, which is
marked by zero assignments, and goes to the so-called current “Searching Line“ (SL)
by the following steps:

(1) First, check if the optimum variant Vop is on SL or not (for the first time, SL is the
bound B0). That means to check if  there is a schedule among the minimum
assignments  Ab0={a1*,a2*,..ab0*}on B0. If so, go to (2). If not, go to (3).

According to definition 3, we have a schedule on SL if there are such n minimum
assignments A*={ a1*,a2* ,..an* } ⊆ Ab0 that A* is the maximum matching for the given
jobs V

J
={J

1
, J

2
, ..., Jn} and the given resources V

R = {R
1
, R

2
, ..., Rn}.

Suppose that (for these two sets), we have A*={{J
1
, R

1
), (J

2
, R

2
), ..., (J

n
, R

n
)}

and AR={R
1
, R

2
, ..., R

n
}, AJ={J

1
, J

2
, ..., J

n
}. By definition 2, A* is the maximum

matching if:
• ∀ i=1.. n, Ψ(a

i
*)=Ψ(Ji ,Ri )< ψexist .

• ∀ i=1..n,  R
i
 ∉ AR\ R

i
 , J

i
 ∉ AJ \ J

i
 .

In the given example in Fig.5.b, the maximum matching for the minimum assignments
(the zeros) on B0  is { (5,1),(1,2),(3,3),(2,4),(6,5)} in Fig.6.a. It has the size 5 which is
less than the matrix size n=6. Therefore, in this case there is not any schedule in the
bound B0. We go to (3).

(2)  If any schedule is found, it is the real optimum variant Vop. The search has to be
stopped.

(3) If we can not find any schedule from the first-minimum assignments
Ab0={ a1*,a2*,..,ab0*} , this means there is no real optimum variant Vop on SL.
Therefore, the search must be continued in the searching zone. The new SL inside the
search zone SZ is found from the current SL by the procedure of Making New Zeros
in the Hungarian method [10] as the set of second-minimum assignments (Fig.7.a).
Then, go to (1) and repeat the same procedures for the new SL as for the current ones.

         Fig. 6.a  Maximum matching                     Fig.6.b Marked Columns and
         and Zero Lines for B0 of “0”s                                        Rows in JR

     RESOURCES
1 2 3 4 5 6

1 0 0
J 2 0 J2
O 3 0 J3
B 4 0
S 5 0 0 0 0 J5

6 0
              R2                 R5

RESOURCES
1 2 3 4 5 6

1 3 0 2 6 2
J 2 5 2 8 0 4 #
O 3 2 0 3 8 3 #
B 4 8 0 7 5 1
S 5 0 1 0 0 0 #

6 1 3 0 6
         #            #     #             #



The procedure of Making New Zeros contains the following steps:
1.  Find the Zero Lines. This is the minimum set of lines that cover all the current

zeros. For the given example, the Zeros Lines are J2,J3,J5, R2, and R5 (Fig. 6.a).
2.  Find the minimum value of the elements which are not on the Zeros Lines. For the

given example, these elements are the clear cells in Fig. 6.b:  (1,1), (1,3), (1,4),
(1,6), (4,1), (4,3), (4,4), (4,6), (6,1), (6,3), (6,4), (6,6), and the minimum value of
them is 1.

3.  Subtract this minimum value from all the elements of the columns that are not the
Zeros Lines (R1,R3,R4,R6). Then add this minimum value to all the elements of
the rows that are the Zeros Lines (J2,J3,J5). In the given example, these columns
and rows are marked with # (Fig.6.b).

After doing so we receive the new set of zero elements (Fig.7.a), which indeed is the
set of second-minimum assignments. In this way, the new SL for further searching  is
found. In the given example, the new SL are the set of the new  zero elements in
Fig.7.b.  According to the procedure of searching, which is described above, we go to
(1). In checking SL, we find the maximum matching A*={ (1,2), (2,4), (3,3), (4,6),
(5,1), (6,5)} with size 6 (equal to the size of the matrix JR) for the new zero
assignments in Fig.7.b. Therefore, we go to (2) and finish the search.

Fig.7.a  New SL of “0”s in Matrix JR     Fig.7.b  Vop on  SL is found in Matrix JR

In this way, by applying the Hungarian method, we receive the schedule A*. This is
the optimum schedule for the given jobs V

J
={1,2,3,4,5,6} and given resources V

R =
{1,2,3,4,5,6} , whose relationship has been estimated by the formulas (5) and (6), and
is given in the matrix form in Fig.5.a.

The found schedule A* is optimum because: (i) the response time is 0 for each job
(only one job is assigned to one resource and therefore no job has to wait); (ii ) the
total processing time (including execution time and communication time) for all jobs
is minimum: D(A*) = Ψ(1,2)+ Ψ(2,4)+ Ψ(3,3)+ Ψ(4,6)+ Ψ(5,1)+ Ψ(6,5) =
5+1+3+4+1+3 =17 (from Fig.5.a)

Note that there are two conditions for finding Vop: First, there is a set of the
minimum assignments; Second, there is a schedule (a maximum matching) in this set.
In the steps described above, the search is continued not randomly inside the whole
area of SZ but only with the assignments on the line SL which characterizes the first

RESOURCES
1 2 3 4 5 6

1 2 0 1 0 1
J 2 5 3 8 0 4
O 3 2 0 3 5 3
B 4 7 0 6 3 0
S 5 0 2 0 1 0

6 0 2 0 6

RESOURCES
1 2 3 4 5 6

1 0 0
J 2 0
O 3 0
B 4 0 0
S 5 0 0 0

6 0 0



condition for having Vop. Therefore, the search is oriented to Vop all the time, unlike
the random search in the simulated annealing method. And that is why we call the
algorithm objective-oriented (OOA).

5   Objective-Oriented Algorithm

5. 1   Description of Data Input and Data Output

The input data for OOA is the needed data for forming matrix JR. The input data
comes from:
��Buffer-in: For characterizing the states of M jobs, which are in the buffer-in at

the given moment in time, there are 3 data sets. According to sections 3.3. and
4.3., they are:

• BIN.E[i]= ε
i
 (execution time),

• BIN.LR[i]={Rp, .. , Rq}, BIN.LC[i]={φ
p
 , .. , φ

q
} (communication

requirements about the communicating resources and data transfer
amounts),

• BIN.P[i]=ρi (priority).
      For all: i=1..M.
��Monitor: For characterizing the states of  R resources in the system, there are 2

data sets (according to sections 3.3. and 4.3.) :
• SIR.TR[i]=0(if resource is free) or 1(if otherwise),
• SIR.J[i]=Ji (the ID number of the job that is executing on i resource),

 ( Suppose that there are N free resources at the given moment in time ).
For all: i=1..R.

��System archive: For characterizing the capacity of the resources and the physical
links between them, according to sections 3.3. and 4.3., there are 2 data sets:

• RC[j,h]=β
j,h , where j=1..R, h=1..R (ratios of resource connection),  

• RE[j]=kj , where j=1..R (ratio of resource performance for job execution).
 

The output data from OOA is a schedule for M jobs and N resources, which has the
following form: SCH.J[i]=Ji and SCH.R[j]=Rj where i=1..M, j=1..N.

The input data above is considered for the general case, when the schedulers try to use
all possible knowledge about the system. They are the knowledge about the jobs (work
amount), the resources (capacities and  resources’ network), and also the historical
profile (with which resources the latest jobs have been executed).

5. 2    Algorithm Description

The steps of OOA are executed in the following order (Fig.8): The needed data for
OOA is inputted from the buffer-in (Fig.2.b), the monitor and the system archive as is
described above. The first step of  OOA is to determine the number N of the free
resources and the number M of the ready jobs. Then, the optimization scale n is



determined by the rule in 3.3. The second step is to form the matrix JR of size n by the
formulas (5) and (6) in 4.3.A. The third step is to determine the bound B0 of the
searching zone SZ as is described in 4.3.B, the bound B0 is marked as the current
searching line SL. Then, in the fourth step,  the search for the real optimal variant of
schedules Vop is carried out on this SL. If Vop is found, the search is stopped and we
output the found optimal schedule Vop. Otherwise, do the fifth step, which determines
a new searching line SL (as is described in 4.3.C) and then go back to the fourth step
and so on, until Vop is reached. Finally, when the optimal schedule Vop is found the
search is finished.

 Fig.8. Objective-Oriented Algorithm.

The time complexity for the Hungarian method is O(n3), plus the time complexity for
forming matrix JR, which is  n2. Therefore the time complexity for OOA is O(n3+n2).
However, if we use algorithm AMA which is described in [14] for searching Vop on
SL the time complexity for OOA will be O(n(E+nlogn)+n2), where E is the maximum
number of zero assignments on SL in the matrix JR, therefore n≤E≤n2.  Since the time
complexity for forming the initial data usually is not taken into account, and the matrix
JR is only the initial data for the job scheduling problem. Therefore, actually the  time
complexity of OOA is O(n(E+nlogn)).

In addition to this theoretical estimation that is considered for the worst case. We
note that the scheduling algorithm OOA is dealing with the data in the matrix form all
the time. Therefore this algorithm can be parallelized as well . The time complexity of
the parallelized OOA then might be around O(E+nlogn).



6   Analysis of Simulation Results

Besides the theoretical analysis, the practical analysis that is based on the simulation
results is another way to show the advantage of a new algorithm and to examine its
performance in comparison with the existing ones.

6. 1   Simulation Issues

An algorithm with the random scheduling and an algorithm using SA technique [16]
are executed together with OOA to compare their performance. The criteria of the
comparison are: (i) the solving times (the time for finding the schedule) and (ii )
solution quality of the received schedules (the processing time for executing M jobs
with N resources by the found schedule in the given system, which is called the length
of the schedule ).

The simulated computing model is as in  3.3.. The input data is formed of the so-
called basic data sets (BDS) of M jobs and N resources according to 5.1. There are
two factors that have influence on the solving time and the solution quality:
• The size n of the system which is characterized by M and  N.
• The heterogeneity Het of the system which is characterized by how different the

elements in the matrix JR can be. Het is the ratio (in %):
                                                             Het = Nd / Na

where, Nd is the number of the different elements in JR; Na is the number of all
elements in JR (n2).

To ill ustrate the eff iciency of OOA, we use 50 random BDS, where the number of
jobs M∈[20,120] ; the number of resources N∈[3,30]. The algorithm using SA
technique is characterized by the following parameters: Initial temperature Ti=1000;
Freezing temperature Tfr=0.01; and the rate of the temperature decreasing λ=0.999.

6. 2   Experiments and Results

First,  the problem size n is changed from 3 to 30 while the heterogeneity is fixed. For
each given value n, we investigate the solving times and the solution quality of
Random, SA, and OOA. The simulation results are shown in Fig. 9.a and Fig. 9.b.
They show us that the quality of the received schedule by OOA is much better than the
ones by SA and, of course, by Random scheduling (Fig. 9.b.). Although the solving
time of OOA is more than the one of Random scheduling, it is much less than the
solving time of SA (Fig. 9.a.). We will have similar graphics if the problem size is
increasing to more than 30. We do not provide the graphics of comparing with larger
size than 30 because of the long solving time of SA. Indeed, the larger the problem
size (n) is, the better OOA is,  in both scheduling issues: solution quality and solving
time.

Second, while the problem size is fixed, in our case n = 30, but the heterogeneity is
changed and Het∈[10%,90%], we study the solving times and the solution quality of
Random, SA, and OOA. The simulation results show us that the solving time of all
algorithms (Random,SA, and OOA) do not depend on system heterogeneity.



Therefore we do not provide this graphic in the paper.  However, the heterogeneity of
the systems has influence on the solution quality. The graphics in Fig. 10. shows us
that the more heterogeneous the systems are, the more eff iciently OOA works,
compared with SA and Random.

Fig.9.a  Investigation of Solving Time    Fig.9.b  Investigation of Solution Quality

Fig.10.  Investigating the Dependency of  Solution Quality
 on the Heterogeneity of the  System.

6. 3   Analysis

The simulation results have proved our theoretical analysis which is discussed in the
sections 4 and 5. In comparing with the existing methods, the scheduling quality of
OOA is much better, and the scheduling time of OOA is decreased extensively. That is
because the search area in OOA is reduced substantially. This eff iciency of OOA is
shown while both  factors: the problem size  and the heterogeneous of the systems are
changing.

In Fig.9.b, the results show us that SA does not do much better than the random
one in terms of schedule quality. That is because of the chosen parameters for the
simulated annealing. With the given parameters above, we have a SA scheduler that

      



gives us the “best” schedule after 11507≈104 times of changing the temperature (Tct).
In the meantime, the real best schedule can be found, theoretically, only after
120!*30!/(120-30)! Tct, which is more than 10120 Tct (!). That is why the result of SA
does not look very good.

The quality of SA scheduler can easily be improved by changing the parameters
for the simulated annealing  so that the number of Tct is increased, for example SA
with 1010.  However, the scheduling time of SA then is increased too. And when the
scheduling time of SA is too long it makes the scheduling times of Random and OOA
(which are much less than the SA’s one as in Fig.9.a.) become closer each to other and
also closer to 0. Since such a picture of relationship between scheduling times of
Random and OOA are not real, we think  that it is better to show the results of SA
with 11507 Tct than the results of SA with more Tct .

7.   Conclusions

We have presented a new approach to solve the problem of job scheduling for parallel
processing in heterogeneous systems. The new approach, using the Hungarian
method, provides a quick and objective-oriented search for the best schedule by two
optimization goals: (i) minimum total execution time including communication costs
and (ii ) shortest response time for all jobs. In addition, using the modified algorithm
(which has been provided in [14]) for this method,  the solving time is decreased to
O(n(E+nlogn)).

Note that this time complexity is for finding the real optimum schedule by the
given optimization criteria and can be reduced by parallelizing OOA. Besides, as is
shown in the simulation results, the actual scheduling time in practice is almost linear.
The explanation of this fact is that the modified algorithm [14] which is applied for
searching Vop on current SL (in 4.3.) is a very good fit for this kind of searching.

The advantages of the proposed algorithm OOA are: (i) achieving a good balance
of several conflicting optimization goals: minimum execution time, minimum
communication costs, shortest response time; (ii ) scheduling for a relatively short
time; (iii ) flexibilit y in application because scheduling  is carried out in a general
computing model, where there is no requirement for the system architecture; and
finally, (iv) especially eff icient for so-called Strictly-Heterogeneous systems, where
either the jobs and the resources can be very different, even unrelated.

In future work, there are two ways by which we can decrease the solving time or
increase the solution quality of the proposed algorithm OOA: (i) combine OOA with
SA technique for creating a new algorithm that has less solving time while keeping the
control of the solution quality so that it is acceptable; (ii ) simpli fy the local
optimization in OOA and add a simple optimization function for global optimization
(e.g. by considering workload balance at the high level).
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