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Abstract. This paper presents a new approach to solve the problem of job
scheduling for parall el processng in heterogeneous systems. The optimizaion
goas are: (i) minimum total exeation time including communication costs
and (ii) shortest resporse time for al jobs. We introduce a tassdficaion for
the given scheduling problem by the heterogeneity of the systems, from the
view of the schedulers eyes. Then, acwording to this anaysis, a new
scheduling strategy for so-cdled “Strictly-Heterogeneous’ systems is
propcsed. The key idea of the new approach is the use of the Hungarian
method, which provides a quick and oljedive-oriented seach for the best
schedule by the given optimization criteria. In addition, by modifying this
method into so-cdled Objedive-Oriented Algorithm (OOA), the time
complexity for scheduling is deaeased to O(n(E+nlogn)). The simulation
results $how us that OOA provides better solution quality while scheduling
time is less than the existing methods.

1 Introduction

For the last few yeas, a number of job scheduling algorithms for uniform systems
have been published. However, in heterogeneous g/stems, where not only jobs (tasks)
belong to dfferent clases but aso, resources (computing rodes) can be
heterogeneous, scheduling problems are more cmplex than the ones in uriform
systems. Besides, a lot of agorithms for uniform systems are spedalized on a
particular uniform type of the system architedure [4],[15],[2]. Therefore, applications
of these algorithms for heterogeneous systems are limited.

In the uniform systems, because of the homogeneity of the jobs and the resources,
the optimization for job scheduling is carried out at high level where the jobs (and the
resources) are nsidered not alone but in some groups (batches or gangs).
Meawhil g, in the heterogeneous g/stems, the optimization for job scheduling must be
caried out at both high and low levels. At the low level, where every singe job is
asdgned to a singe resource becaise of the heterogeneity of the jobs and the
resources, there is a problem of choasing the best job-resource assgnment among the
different and possble ones. The solution of this problem has big influence on the



utili zation of the hardware: not only on the fradion of the used resources to the
available ones, but also on the efficiency with which these resources are used.

Therefore, while keeguing on solving other common problems as in uriform
systems, job scheduling strategies in heterogeneous g/stems must focus on the
problem which is mentioned above and which derives from the heterogeneity of the
computing systems.

In this paper we study the job scheduling problem for parallel processng in
heterogeneous g/stems by this way. We provide a heuristic dgorithm (named
Objedive-Oriented Algorithm) based on a strategy that has not yet been used beforein
job scheduling.

The paper is organized as follows: In sedion 2 we provide a ¢assfication for the
given job scheduling problem by the heterogeneity of the computing systems; Then, in
order to make the scheduling algorithm comparable with the others and avail able for
its application in the red systems, we give sedion 3 for a detailed description of the
computing model and the problem statement; In sedion 4, a quick review of related
work and the key ideas of the new strategy are provided; The dgorithm itself is
described in sedion 5; Simulation results are analyzed in sedion 6; And finaly, the
conclusions are stated in section 7.

2 Influence of Systems’ Heterogeneity on Job Scheduling

Before moving on to describing the computing model, we would like to make a
preliminary classficaion of the types of the systems heterogeneity in paralel
processing (from the view of schedulers’ eyes).

Suppose that at a moment in time, in a paralel heterogeneous g/stem, there ae M
jobs ready to be exeauted and there ae N resources avail able. The requirement of the
job scheduling problem is to assgn these M jobs to N resources @ that the receved
scheduleis satisfied by the following: First, the processng requirements of the system
(e.g. the resource must have enough memory and communicdion cgpadty, which are
required by the job that is assgned to this resource dc.); Seoond, the optimization
requirementge.g. minimum parallel executing time, high resource utilization etc.).

We assume that the scheduling process can be divided into two smaller ones:
e Checkng processng reguirements: from Ri all possble and dfferent variants of

schedules, we have to pick out the set of Rp variants which are satisfied by the
processing requirements, but not yet the optimization requirements (OR);

e Optimizing by satisfying OR: from Rp variants we have to choose Ro optimum
schedules (in most cases Ro=1) which are satisfied by the optimizaion
requirements.

Obviously, the numbers Ri and Rp determine the scde and the complexity of the

Checking and the Optimizing steps

In the cae, when there ae two OR: (i) shortest response time for all jobs and (ii)
minimum total exeauting time, one of the ways to achieve these two goals at the same
timeis to distribute the jobs to the maximal number of resources (suppose that there
are Rmm such variants) and then choase from Rmm variants the best one with



minimum total exeaution time. Now, we see how the heterogeneity of a system (how
different the jobs and the resources are) can have influence on Ri and Rp, which show
us thescaleand thecomplexityof job scheduling problem.

. In so-cdled “Half-Heterogeneous’ systems, where there is no processng
requirement (i.e. any assgnment of ajobto aresourceis passble), the resources
are the same (uniform) but the jobs are different [3] or vice versa. In this case,
we have Ri = Rp, which means that the job scheduling problem leals
straightforward to the second step: the optimization step without deding with
processing requirements. The scale of the probleRpis__ M! |

(M = N)!

. In so-cdled “Completely-Heterogeneous’ systems, there is no processng
requirement but either the resources and the jobs are different [8,16]. In this
case, the aomplexity of the job scheduling problem is the same & the previous
one, but the scale is different wigi = Rp = _mt

(M —=N)!

. In so-cdled “ Strictly-Heterogeneous ” systems, the resources and also the jobs
can be different. Moreover, in this case there ae processng requirements (i.e.
not all assgnments of jobs to resources are possble) [15]. Therefore, job
scheduling problem is more complicated. It now contains two steps: chedking
processng requirements and optimizing the schedule. The scde is amost the
same & in the previous case with Ri =ﬁx Nt and Rp =Rmm where
Rmmis the number of the variants of maximum meatching for the bipartite graph
of M and N nodes. Theoreticdly, RmniJ[0,Ri] but usualy in pradice Rmnk< Ri.
Besides, it is posshble that Rmm=0, which means that there is no schedule with N
size (i.e. for N resources). This also means that some resources are strongly
unrelated to such a kind of M given jobs.

Note that the scheduling strategies, which are for commonly-cdled uniform systems,
belong to the first class “Half-Heterogeneous’ systems, where the resources are the
same (uniform) but the jobs are different (even just by the amount of exeaution time
for ead job). The scheduling strategies, which are for commonly-cdled
heterogeneous g/stems, adualy belong to the sewmnd class “Completely-
Heterogeneous’ systems. The third class “ Strictly-Heterogeneous ” systems, has
recaved the least attention because of the following reason: The paralel computing
systems in this class are charaderized with having rot only jobs and resources of
different classes but also some strict processng requirements. This kind of parallel
systems (e.g. PVM) becane available for common use in the red world only several
yeas ago. One more fad is that any algorithm that works for the systems of the third
class will also work for the systems of the second one, although with a little less
efficiency than in its own class.

In this paper we will focus on the third class of scheduling, for “
Heterogeneoussystems.

Strictly-



3 Heterogeneous Computing Model
3.1 Description of System’s Model

The @mputing model for a “Srictly-Heterogeneous’ systems, in which our
scheduling algorithm works, has derived from a large parallel and distributed system
(Fig. 1.) and has been studied before in [13].

In the red world, this g/stem consists of : First, different resources, they are
heterogeneous nodes-users U; (e.g. different computers or processors) and the
common resources CRj (e.g. the severs) ; Seaond, tasks of different kinds T;, which
come from users-nodes or from outside (e.g. from other systems). As in any parallel
systems, these so-cdled mother-tasks have to be maximally parallelized. They are
divided into son-tasks (small computing modules) which we will cdl jobs. These jobs
are differentas well because they come from different tasks.

HOST

Task 2 .

L L] R - T N P Uy {(failed)

- -
Task 1 uq E Upg
- Tasks in the system
O - Available resources in the systen{ @) Broken down resource)
—> - Communication Channels between Resources
- =(= Failed channels

- Channels for Management
Fig. 1. Tasks and Resources in a Parallel Heterogeneous System
Therefore, the given system can be represented by:

* adata set about Q tasks ST={T,, ...,To} with their heterogeneous processng
requirements



e adataset about N resources SR={R;, ...R\} with their heterogeneous processng
capacities

e a data matrix about the communication chanrels between the resources
MCR[1..N,1..N], where MCR][i,j] is the rate of the st for communicaing
between R and R;, and MCRJi,j] O 0. We say there is “no connedion”
betweenR; andR; whenMCRi,j] > Qo (some given number)

3.2 General Scheduling Scheme

In order to make eplicit how much and what kind of work the job scheduling
problem does and where it takes placein the general scheduling process we provide
here a quick review of the general scheduling scheme. Usually, it contains the
following steps:

(1) Input Tasks: First, accept tasks Ty, ...,Tq from the users or from the outside of the
system; Second, analyze tasks and prepare beforehand data for the next step.

(2) Parallelize Tasks into Jobs: Eadh task T; is maximally parallelized (without the
resource onstraint) into jobs J , k=1,..Ki . After paralelizing, eat task can be
represented by a DAG of job-nodes (Fig.2.a). Thus, we have Q graphs: VT4, ...VTq,
where VT={J, .., 3}, -, VTo={ %, .., Puo}. Then, dl jobs of different tasks
(i.e. of different classes) are grouped (and renamed) into S common clusters B,, B, ..,
Bs (Fig.2.b) considering their precalence where B,={J**, .J“43, .. |
Bs={J%%..,. M3,

(3) Prepare and send Ready Jobs to Buffer-in: A Filter, whose work is based on the
rule of job precalence, choases ready jobs from the nearest cluster B; and sendsit into
the Buffer-in (Fig.2.b). The rule of job relationship is that ajob J'* O B; is ready only
when all its predecesr in cluster Bi; have been exeauted. Besides, the jobs in all
clusters B,B,, .., Bs are also moved into the next cluster all the time by this rule.

(4) Schedule Jobsto Resources. At a given moment in time, there ae M ready and
independent jobs in the Buffer-in and N available resources in the system. The
scheduler has to assgn these jobs onto the resources © that the receved schedule is
optimum by one or some given optimization criteria.

(5) Reschedule Failed Jobs: Inthe case, when a resource fail s during exeauting the
job that has been assgned on it, the ID of this job has to appea in the Buffer-in
again, as a ready job for the next scheduling cycle (this dep may be exeauted by the
system monitor but not by the scheduler).

(6) Output Exeauted Tasks: This is the reverse process of step (2). After the
exeaution, ead job is put to Buffer-out (Fig. 2.b). Then, they are mlleded bad to
their mother-tasks. A task is completely exeauted and removed from the scheduling
system when all its son-jobs have been executed.



Fig. 2.b Jobs in clusters during the scheduling process.

3.3 Statement for Job Scheduling Problem

Asis discussed above, the scheduling processis a complex of procedure-steps. In this
paper we will focus on the most important step (4) - step of scheduling jobs to
resources. In more detail, it can be stated as follows:



At a moment in time, after the step 3 in the scheme above, there are:

B N heterogeneous resources of the system, which are represented by a graph
G =V E . W,..W_), where

* V.=R,, R, ..., RJis the set of N resources-nodes (the ID), R, O N,

i=1..N.

e E=E, E, .., EJis the set of edges, which represents the physical
comnunication link between resources E, = {R,R}, where R, R 0 V,, and
0<dsN”.

* W, ={ WVR,, WVR,, ..., WVR_ lis the set of nodes weights, where
WVR, =[RE, RT}. ForJ i=1..N :
() RE, O O is the ratio that charaderizes the capacity (e.g. the
speedup, local memory) of the given resource
(i) RT, O {0,1} is thestateof the given resource (free or occupied)
* W,={WER, WER,, ..., WER| }isthe set of edges weights and it can be
represented by amatrix RC=RC[i,j] 0 0", where i=1..N, j=1..N, and O <
p < N*N.

B M different and independent jobs, which can be exeauted in parallel. They are
represented by a set V, ={J,, J,, ..., J,}. The heterogeneity of ead job is
characterized by thedata setJ, ={JN, JE,, JL}, i=1..M, where:
e JN, O Njis the ID of the job (e.g. the number).
e JE, 00" is thework amounfor executing the given job
e JL =R 0), ..., (R}, ¢ )} represents the logical comnunication link of the
given jobd, to the resource®’, ..., R, where:

(i) R'OV, (t=1.g, q O NJ) is the resource which the given job need
to communicate with. In the given scheduling system, thisis the resource

on which the predecessor-job of the given job has been executed befo

(i) ¢ O O" is the data amount that is needed to transfer in
communicating witfR".

For example, if the job J; , has been exeauted on the resource R! = R; and
Ji6 ON R? = R; then the job Jis (Figure 2.a and 2b) will have logicd
communication linkJL={(R", ¢,), (R% ¢2)}.

* JP, 00" is thepriority of the jobd, if the priority system for jobs exists.

M The requirement of the given problem is to find out a schedule for assgning M
jobs onto N resources so that we can achieve two following optimization goals:

* minimum total actual execution time (and)
* shortest response time for all jobs.



4. Solution Basis
4.1 Related work

It has been shown in [1Q] that the given problem (with the name “Assgnment
Problem”) comes from the “ Traveling Salesman Problem”, which is NP-complete [9].
Moreover, the given problem, indeed, is listed in the form of the problem N43 in
sedion A2.5. of the List of NP-complete problems in [9]. Therefore, most algorithms
for solving it use heuristic or genetic approaches [7],[16],[5],[3],[19].

In solving any scheduling problem, there ae two important issues that we should
consider. They are: solution qudity (how the receved schedule is nea to the optimum
one) andsolving timg(for how long it takes to find the schedule).

In dealing with solution quality: Solution quality depends on the optimization
criteria and the scde of the optimization area Usualy, there ae threemain kinds of
optimization criteria :

¢ Focus on the exeauting time of jobs and not consider communication costs (as in
most of balancing algorithms) [8].

¢ Focus on the minimization of communication costs [7] (e.g. using “criticd path”
in clustering algorithms[20]).

* Focus on other parameters (e.g. response time or other time mnstraints in the
Real-time systems[15]).

After choosing criteria, the optimization can be carried out in two ways:

e Through locd minimizaion [15],[6]. This is smpler than the next way and it
requires lessinformation (in locd scae). However, becauseit islocd, it hasto be
carried out several times during a scheduling cycle.

e Through dobal minimization [7],[8]. Thisis more complex than the first way and
it requires more information about jobs, resources, system performance (in gobal
scade). Therefore, in pradice the dgorithms usually are simplified in order to
decrease the scheduling time.

To adieve the desired results with more than one optimizaion criterion, the

scheduling is sometimes carried out by a combination of the above discussed ways

In dealing with solving time:  The requirement of the solving time depends on the
scheduling type. Static scheduling algorithms can have along solving time while the
Dynamic ones always have a short solving time.

Asis said above, becaise of the cmmplexity of the problem, most of the scheduling
agorithms are heuristic or genetic. In the dgorithms that have been published
recantly, a genetic method cdled Simulated Anneding (SA) is used very popularly
[7],[16],[11],[18]. This method is good kecause of its flexibility. By resetting the
values of the parameters for the simulation (the initial and freeang temperatures, the
ratio for deaeasing temperatures) we can have many kinds of schedulers, which are
different by the correlation between solution time and solution quality as follows:
e From the fastest scheduler, which gves a schedule with a random quality for the

minimum solution time;



e Tothe slowest one, which cheds all possble variants of schedulesand gives us
the exact solution (real optimum schedule).

Usually, the simulation parameters are set so that the result is in the midde between

these two extremists. However, the solution time for achieving an accetable-optimum

schedule is too long, espedally when the problem size (M,N) is large, and also at the

same time, the solution quality is unpredictable.

4.2 New Approach with Hungarian Method

As it has been reviewed above, in order to achieve two conflicting goals: short
scheduling time and good quality of the schedule, we dways have atrade-off between
solving time and solution quality. The point is how to achieve the “golden mean”.

Scheduling strategy for dealing with solving time: For the system that is described
above, our aimisto develop a balanced algorithm, which gves us a schedule of good
quality for an acceptable solving time.

In order to see eplicitly the difference of our approach from the existing ones, let
us analyze ajain (but now from the view of the strategists' eyes) the éove gproach
of scheduling by using simulated anneding (SA). Suppacse that all possble variants
(Ri) of the schedules can be set asthe “balls’ ina“box”. The variants-ball s are located
in chaos. Among them, there is a red optimum one that has to be found. Now, see
how it is found by SA and by our agorithm using Hungarian method, which is
described in [10],[12],[1].

In SA, al the variants are put in the Markovian chain as if al the balls are
conneded ead to another with a visual “thread” (this is not shown in Fig.3.a). The
seach is darted with a random variant-ball Vs (which is put in the “pocket”) and is
guided by thisthread. Continuing the search, the next ball i s compared with the one in
the pocket. If the next one is better than the one in the pocket then it will occupy the
pocket, and so on. After a given number of steps with the last-checked bell Vf, the
variant-ball in the pocket is regarded as the optimum one of all the balls in the box.
Usually, the Markovian chain is built so that the “thread” is gread over al the box in
order to avoid locd minimum. However, till, if the red optimum variant-ball was not
in the searched area(the red line in Fig. 3.a) then the recaéved variant, obvioudly, is
not optimum.

Fig. 3.a Scheduling strategy in SA Fig. 3.b New scheduling strategy.



The key ideaof the new approac is to detach from al possble variants (the box) a
zone, which contains exadly the red optimum variant Vop (for the given optimization
criteria) and is much smaller than the box (Fig.3.b). Then, the seach is caried out
only in this area urtil it reades the red optimal variant Vop. Therefore, we will
recave the exad solution while the solving time is much less than it is in SA for
finding a solution of the same quality.

Moreover, using the Hungarian method (which will be described in detail | ater) for
such an approach allows us to cary out not arandom seach (asit isin SA) but a so-
cdled “objedive-oriented search” in the chosen areg where the objedive is the red
optimum variant Vop. That is why we name the dgorithm “Objedive-Oriented”
(OOA). The seledion of the Hungarian method is not by chance but is based on a
careful investigation which is studied in [14].

Scheduling Strategy for dealing with solution quality: Now we have to determine

the optimization criterion and the scale of optimization area.

B Heterogeneous gstems usualy are distributed. Therefore, we think that it is
necessary to consider communication costs in scheduling for such systems. To
escgpe the nflicting goals: (i) minimizing exeaution time (by choosing
separately the most fitting job-resource pairs); (ii) minimizing response time of
jobs (by maximally parall€elizing them on the maximum number of resources);
(iii) minimizing communicaion costs (by deaeasing the number of the used
resources), we use the following balanced optimization scheme. The optimization
is carried out by two steps:

(1) maximize the number of resources for exeaiting the given jobs as far as
possible (for achieving minimum response time);

(2) choose the best schedule with the minimum total weight that is determined by
an estimating function (which charaderizes the exeadution time of jobs
including communication costs).

B Because the Hungarian method works very efficiently when the problem sizeis
20-100, we propose two variants of optimization:

e First variant; when M>100, the jobs are randomly gathered into a group
of N jobs. Then the loca optimization is caried out for N jobs and N
resources. The size of the optimization zone n = N.

e Seoond variant; when M<100, all the jobs are in a global optimization
with K groups of N resources, where K O N| and K>[M/N]. The size of
the optimization area n = M.

4.3 Algorithm Basis

With the chosen strategies for scheduling, which are mentioned above, there ae three
important steps which now will be studied in detail:

¢ Forming the “box”.
e Determining the searching zone.
¢ Building a rule-guide for the objective-oriented search.



A. Box Forming

This means the way to represent the data for scheduling. For the initial data (which is
described in 3.3.), we have: a set of M independent jobs with their heterogeneous
processng requirements, a graph of N resource-nodes with their heterogeneous
processing capacities.

Now, in order to form the box, we have to reform these two separate data sets into
aform that represents diredly the relationship between jobs and resources: a matrix of
size M*N and which we will cal Job-Resource matrix (JR). Each element JR]i,j] of
this matrix is the weight of the assgnment of the job i onto the resource j. These
weights are determined by an optimizaion function A(i,j). The formation of this
function is based on the optimization criteria that is determined in 3.3.

Suppose that the jobs and the resources are identified respedively by two sets
V=J,, Jd,, .... I}, Vi=[R,, R,, ..., R}. In general, the optimizaion function can
be determined as the following:

K H G
@R [[RIx[]C/x 3 Lo
=1 x=1 y=1

Where
K

. ﬂ P, is cdled absolute priority of assgnment (J.R). It is caculated by
=1

multiplication all K relative priorities P,*) 0 0" which are derived from different

fadors (e.g. the permitted waiting time of the given job, the desirable usage

frequency of the given resoujce
H

. |_| C!) isthe final result of analyzing all H processng requirements (e.g. the
x=1
requirements about memory, speelup...), whereC;gJ is the degree of satisfying
the processng requirement x (x = 1.H) for the &sgnment (J,R),
C! D{O,l} :Cl') =1 if the resource R, is stisfied by a reguirement x of the

job J; , otherwise )'(J =0.

G
. Z L,O}! is the final result of analyzing all G optimization requirements,
y=1

where O%,’J 00" is the degree of satisfying the optimization requirement y for

the asdgnment (J;,R); L, U 0" is the weights assgned to the optimization
criterion y.

For the given computing system with the given optimizaion criteria and acording to
the scheduling strategy for deding with solution quality in sedion 4.2., the estimating
function (which cdculates the weight of the essgnment of ajobJ; onto aresource R;,
R, 0V, anddJ; 0 V,) should be determined as follows:



K
B To reduce the mmplexity of the problem, we suppcse that H P =p (2,

where p;=JP; is the priority of the job J; (e.g. it can be formed by the time Tw; ,
for which the jobJ; has been waited in the system).
B For simplicity, we suppcse that there is only one processng requirement (H=1):
H
rl C!) = C" which is determined by comparing the physicad communication
X=
links of the resource R;: E =(E ,E, ..,E }lin the resource graph with the logicd
communication links of the job J: JLi={(R1,¢1),..,(Rq,q)q]}. Recdl that R' O V,
(t=1..q) is the resource which the given job needs to communicate with.

q
The rule for determining them is:C'’ = rj cc’ (3)
t=

where, 0t=1..q: CG''=1,if (R .R) OE,;
CC'=0,if (R.R)OE,;
B The third part of (1)s determined as the follows:
ZG L, o1 =1/Te,+1/ Te,, where
y=1
» Te, isthe exeating time for the job Ji on the resource Rj. If the amourt of work
for exeauting the given job JE; = ¢; ; the reali zation ratio of the resource RE; =
ki, then it can be determined by the followifieg, = €, U k | ;

* Tc, is the communicaion costs for the adgnment (J;,R;). If the list of the
resources which the job requires to communicae with isJL, ={(R', ¢), ..., (R
¢, and the communication ratio between the resources R and R, (I=1..N) is

RC[j.1]=p; , : then we havdc,, = Z‘* (¢,08,,)
=1 .
Therefore, ZG L0 =1+ (& xk;)+1+ Z (9,0B)) )
y=1 =t

From (1),(2),(3), and (4) we have

A(Ji’Rj):d,j =R xC" x[1+(g xkj)+1+;(¢|[¥3j,l )] (5)

Obviously,5,2 0 0 i=1..N, j=1..M . Therefore
inf (AWi,R)) = 0 .
We will assume that there is no physicd communicéion link between resources R

q
and R when Tc, ;= Z (90B,,) > A, where A, is me given nunber. Thisis the
=p

threshold for determining if the cmmunicaion between two resources is posshle or



not. According to this value, we have some value d.4¢ Which determines if the
discussed assignment is possible or not.

The exeadting time Te,; must have some lower limit T°, then the highest limit for
A(J,R)=9, can be determined as the following:

sup (AU, R)) = (ty; % pp;) X[1/ T° +1/ A] = 0,
For applying the Hungarian method in the next step, we have to rebuild a new
optimization function:

Y0, R) = 9,.~ A0, R) = 4 (6)

Therefore, finaly, for al elements of the matrix JRIi,jl=¢;, i=1..M, j=1..N, we
have : Osy; < 9, and the value Yejis = 9, - Jexs 8s the threshold for determining if
the asgnment(Ji,Rj) is posshble or not. The size of the box n is determined as in
sedion 2 (based on the value of M and N) and acwrding to the optimization areg
which is determined in section 4.2.

For the examplethat isgiven in Fig. 2.b., the “box” or the Job-Resource matrix JR
will have the size M=5 and N=3 as in Figure 4. The values of matrix elements are
suppaosed to be the results of the cdculation by the formulas (5) and (6) with some
data which are given in sedion 3.3 for the jobs J15, Jis, 7, ks, k2 and for the
resources RR3,Rs5 .

RESOURCES
J 16 18 Jo7 o6 Js0
O R, 18 45 7 47 6
B Rs 6 3 39 61 4
S R 75 9 3 6 58

Fig. 4.BOX with Matrix JR @

max®

:80; wexistZZO;)

However, for a good explanation in the next sedions, we suggest to study the
seaching technique with such a “box” (the Job-Resource matrix JR) as in Fig.5.a,
where M=N=n=6.

B. Determining searching zone

After determining the job-resource matrix JR asthe “box” (supposethat it isin  Fig.
5.a), the next and important step is to determine the zone for seaching the red
optimum variant of passble schedules. For further study, we provide some definiti ons
about the assignments and the schedules as follows:

Definition 1: There aetwo givensets: V ={J,, J,, ..., Jp and V =R, R,, ..., Ry}.
The pair a=(J;,R) is called Assignment of thejobJi O V, onto the resourceRj O
V... Each assgnment has its weight, which is determined as W(a)=W(Ji,Rj), where W
is the function determined by (6).

Definition 2: For two given sets: V ={J,, J,, ..., Jt and V.=(R,, R,, ..., Ry}, aset
A={a,.a,, ..., a={J", R), J° R, ..., J", R")} is cdled Maximum natching
for such jobs and resources if:



o Oi=l.. n* W(@)=¥J' R )< Wexist -
« Oi=l.n*, ROAR\ R, J 0AJ \ J, where AR=R', R?, ..., R"},
AJ={J', J%, ..., I
* n*is maximized as far as it can be.
Definition 3: A maximum metching A* with the size n* for two given sets: V,={J,
J,,..., o and V=R, R,, ..., Rjlis apossble Schedule for such jobs and resources

if n*=n. The weight of the schedule then is determinedpy:a« = zn W(a*)-
=1

Definition 4: Suppeee that Xp={A,, A, , ..., Ap }, p O N| isthe set of al possble

schedules. A schedule A* is the real optlmum variant of possble schedules if :

D(A*)‘le(a*)—mln{D(A)D(A) ----- D(A)}—m|n{D(A)}

Acoording to the Hungarian method, the searching zone SZ is Ilmlted by so-cdled
minimum assgnments a*=(J*,R*) which have the minimum weights W(J*,R*) in
comparison with other assgnments in the same rows or in the same wlumns of the
matrix JR with size n. These minimum assgnments crede the first bound for SZ (we
call it BO), wh|ch can be found in the following way:

Fori=1.. n, j
(‘P(a*) W, R*)<Peyist ) and

" (wa)=mnwta R) O W) =minw( R) )
then a*= (J*,R*) 0 BO. '™
Therefore, the bound BO of the searching zone SZ is determined by a set of minimum
assignments A= {a;*,a,* ,..a,0* }, b0 O NJ| .

In the Hungarian method, the bound is marked by making the minimum
assgnments Ay, Which are on it, become the so-cdled zero assgnments. It is obvious
that if we subtrad the same number S from all elements of arow (or of a wlumn) in
the matrix JR then the minimum assgnments gill remain as the minimum ones. In
other words, if we subtrad the weight of the minimum assgnment from all elements,
for ead row and ead column, we will still have the same bound BO with the same
minimum assgnments A, = {a*,&* ,..a&0" }. The only difference is that these
assignments will have zero weights.

In summery, the first bound BO of the seaching zone is a set of the zeo
assignmentd,={a;*,a,*,..ans*} as in Fig.5.b. (for the “box” in Fig.5.a).

RESOURCES RESOURCES
1 2 3 4 5 6 112]|13|4|5|6
118 5 71 |7 6 9 11310 2102
J 2|6 3 9 1 |47 |7 J|2]5[2]8]|0 4
O 3|5 59 (3 6 8 8 0|3]2 0343
B 4|9 1 8 95 | 5 4 B|4]|8 (0|7 3|1
S 5|1 2 1 80 | 2 3 S{5]J0]1]0 0|0
669 [70 |3 5 3 10 6 113[0]6
Fig.5.8BOX with Matrix JR Fig.5.b BO of “0"s in Matrix JR

©=67100; Yeyist=30;)



C. Objective-Oriented Search

After determining the bound of the seaching zone, we have to cary out the last and
the most important step - to search the optimum variant of the schedules in the
determined seaching zone. The seach starts from the found baund BO, which is
marked by zero assgnments, and goes to the so-cdled current “Seaching Line* (SL)
by the following steps:

(1) First, chedk if the optimum variant Vopison SL or not (for the first time, SL isthe
bound BO). That means to chedk if there is a schedule among the minimum
assignments Q={a;*,a,*,..a,0*}on BO. If so, go to (2). If not, go to (3).

According to definition 3, we have aschedule on SL if there ae such n minimum
asdgnments A*={g*,a* ,..a,* } 0 Apo that A* is the maximum metching for the given
jobsV ={J,, J,, ..., Jp} and the given resourcd%,= {R,, R,, ..., Ry}

Suppase that (for these two sets), we have A*={{J", R'), (J*, R?), ..., (J", RY}
and AR=(R', R?, ..., R}, AJ={J", J%, ..., J". By definition 2, A* is the maximum
matching if:

o Oi=l..n,¥@*)=WJ' R )< Yeyis -

« 0Oi=l.n, ROAR\R ,J OAJ\J".
In the given example in Fig.5.b, the maximum matching for the minimum assgnments
(the zeos) on BO is{(5,1),(1,2),(3,3),(2,4),(6,5)} in Fig.6.a. It hasthe size5 which is
lessthan the matrix size n=6. Therefore, in this case there is not any schedule in the
bound BO. We go to (3).

(2) If any schedule isfound, it isthe red optimum variant Vop. The seach hasto be
stopped.

(3 If we can not find any schedule from the first-minimum asggnments
Ap={a*,&*,... a0}, this means there is no red optimum variant Vop o SL.
Therefore, the search must be @ntinued in the seaching zone. The new SL inside the
seach zone SZ is found from the airrent SL by the procedure of Making New Zeros
in the Hungarian method [10] as the set of second-minimum assgnments (Fig.7.a).
Then, go to (1) and repeat the same procedures for the new SL as for the current ¢

RESOURCES RESOURCES
1{2]|3]|4|5]6
11310 216 (2
J J|2]5]2]8]|0 4 | #
o 0|3]2 0[3 |8 |3 ]#
B B|4]18 |0 |7 5|1
S S[5]0]1]O0 0|0]#
6 1]13[(0]6
R2 R5 # # # #
Fig. 6.aMaximum matching Fig.6.b Marked Columns and

and Zero Lines for BO of “0"s Rows in JR



The procedure of Making New Zeros contains the following steps:
1. Find the Zero Lines. This is the minimum set of lines that cover all the arrent

zeros. For the given example, the Zeros Lines are J2,J3,J5, R2, and R5 (Fig. €

2. Find the minimum value of the dements which are not on the Zeros Lines. For the
given example, these dements are the dea cdlsin Fig. 6.b: (1,1), (1,3), (1,4),
(1,6), (4,1), (4,3), (4,9), (4,6), (6,1), (6,3), (6,4), (6,6), and the minimum value of
them is 1.

3. Subtrad this minimum value from all the dements of the mlumns that are not the
Zeros Lines (R1,R3,R4,R6). Then add this minimum value to all the dements of
the rows that are the Zeros Lines (J2,J3,J5). In the given example, these wlumns
and rows are marked with # (Fig.6.b).

After doing so we receve the new set of zero elements (Fig.7.a), which inded is the
set of second-minimum assgnments. In this way, the new SL for further seaching is
found. In the given example, the new SL are the set of the new zero elements in
Fig.7.b. Accordingto the procedure of seaching, which is described above, we go to
(1). In chedking SL, we find the maximum matching A*={(1,2), (2,4), (3,3), (4,6),
(5,1), (6,5}with size 6 (equa to the size of the matrix JR) for the new zero
assignments in Fig.7.b. Therefore, we go to (2) and finish the search.

RESOURCES RESOURCES
1[2]3]4]5]6 1[2]3]4]5]6

1[2]o0 1]o]1 1 0

Jl2]s5]3]8]0 4 J|2

o[3]2 0/3][5]3 o3

Bl4|7]0]s6 3]0 B[4 0

s|5]o]2]o 1]o sE@ 0 o]
6 ol2]o]s6 6 0

Fig.7.a New SL of “0”s in Matrix JR Fig.7.b Vop on SL is found in Matrix JR

In this way, by applying the Hungarian method, we receve the schedule A*. Thisis
the optimum schedule for the given jobs V,={1,2,3,4,5,6} and given resources V, =
{1,2,3,4,5,6}, whose relationship has been estimated by the formulas (5) and (6), and
is given in the matrix form in Fig.5.a.

The found schedule A* is optimum because: (i) the response time is O for eadh job
(only one job is assgned to one resource and therefore no job has to wait); (ii) the
total processng time (including exeaution time and communicaion time) for al jobs
is minimum: D(A*) = Y(1,2+ W24+ Y33+ Y46+ YE1+ W65 =
5+1+3+4+1+3 =17 (from Fig.5.a)

Note that there ae two conditions for finding Vop: First, there is a set of the
minimum assgnments; Secnd, there is a schedule (a maximum matching) in this st.
In the steps described above, the seach is continued not randomly inside the whole
areaof SZ but only with the assgnments on the line SL which charaderizes the first



condition for having Vop. Therefore, the search is oriented to Vop all the time, unlike
the random seach in the simulated anneding method. And that is why we cdl the
algorithm objective-oriented (OOA).

5 Objective-Oriented Algorithm
5.1 Description of Data Input and Data Output

The input data for OOA is the needed data for forming matrix JR. The input data

comes from:

B Buffer-in: For charaderizing the states of M jobs, which are in the buffer-in at
the given moment in time, there ae 3 data sets. According to sedions 3.3. and
4.3., they are:

* BIN.E[i]= ¢, (execution time),

* BIN.LR[]={Rp, .. , Rq}, BIN.LC[i]={g, , .. , @} (communicdion
requirements about the cmmunicading resources and data transfer
amounts)

e BIN.P[i]=p; (priority).

For all: i=1..M.

M Monitor: For charaderizing the states of R resources in the system, there ae 2
data sets (according to sections 3.3. and 4.3.) :
» SIR.TRJi]=0(if resource is free) or 1(if otherwise),
» SIR.J[i]=J (the ID number of the job that is executing on i resource),
( Suppose that there are N free resources at the given moment in time ).
For all: i=1..R.
B System archive: For charaaerizing the capacity of the resources and the physical
links between them, according to sections 3.3. and 4.3., there are 2 data sets:
¢ RC]j,h=B,x , where j=1..R, h=1..R (ratios of resource connection),
* RE[jlI=k; , where j4..R (ratio of resource performance for job execution).

The output data from OOA is a schedule for M jobs and N resources, which has the
following form: SCH.J[i]=Jand SCH.R[j]]=Rwhere i=1..M, j=1..N.

The input data @ove is considered for the general case, when the schedulers try to use
al posshble knowledge about the system. They are the knowledge aout the jobs (work
amount), the resources (cgpadties and resources’ network), and also the historicd
profile (with which resources the latest jobs have been executed).

5.2 Algorithm Description

The steps of OOA are exeauted in the following order (Fig.8): The nealed data for
OOA isinputted from the buffer-in (Fig.2.b), the monitor and the system archive & is
described above. The first step of OOA is to determine the number N of the free
resources and the number M of the ready jobs. Then, the optimizaion scde n is



determined by the rulein 3.3. The second step is to form the matrix JR of sizen by the
formulas (5) and (6) in 4.3.A. The third step is to determine the bound BO of the
seaching zone SZ as is described in 4.3.B, the bound BO is marked as the aurrent
seaching line SL. Then, in the fourth step, the seach for the red optimal variant of
schedules Vopis caried out on this SL. If Vopisfound, the seach is gopped and we
output the found optimal schedule Vop. Otherwise, do the fifth step, which determines
anew seaching line SL (asis described in 4.3.C) and then go badk to the fourth step
and so on, urtil Vop is readed. Finally, when the optimal schedule Vop is found the
search is finished.

Determining M free resources.
Determining opirmizat on area for 3 jobs
(zize n of the BO3D

Forming Matriz TE.

L

Finding bounder BO for Searching zone,
Iarslang BOQ as the Jearching Tane 3T

E \

| Searching Vop on Current 31, |

Deterrmining Few Zearching Line
and Marslang it as the current 21

Fig.8. Objective-Oriented Algorithm.

The time cmplexity for the Hungarian method is O(n®), plus the time cmplexity for
forming matrix JR, which is n? Therefore the time mmplexity for OOA is O(n*+n?).
However, if we use dgorithm AMA which is described in [14] for seaching Vop a
SL the time amplexity for OOA will be O(n(E+nlogn)+n?), where E is the maximum
number of zero assgnments on SL in the matrix JR, therefore n<E<n®. Sincethe time
complexity for forming the initial data usualy is not taken into acourt, and the matrix
JRisonly theinitial data for the job scheduling problem. Therefore, acualy the time
complexity of OOA is O(n(E+Hogn)).

In addition to this theoreticd estimation that is considered for the worst case. We
note that the scheduling algorithm OOA is deding with the data in the matrix form all
the time. Therefore this algorithm can be parall elized as well. The time complexity of
the parallelized OOA then might be around O(lBgn).



6 Analysis of Simulation Results

Besides the theoreticd analysis, the pradicd analysis that is based on the simulation
results is another way to show the alvantage of a new algorithm and to examine its
performance in comparison with the existing ones.

6.1 Simulation Issues

An agorithm with the random scheduling and an agorithm using SA technique [16]
are exeauted together with OOA to compare their performance The aiteria of the
comparison are: (i) the solving times (the time for finding the schedule) and (ii)
solution quality of the receved schedules (the processng time for exeauting M jobs
with N resources by the found schedule in the given system, which is cdled the length
of the schedule ).

The simulated computing model isasin 3.3.. The input data is formed o the so-
cdled basic data sets (BDS) of M jobs and N resources acording to 5.1. There ae
two factors that have influence on the solving time and the solution quality:
¢ The sizen of the system which is characterized by M and N.

e The heterogeneity He of the system which is charaderized by how different the
elements in the matrix JR can b&; is the ratio (in %):
ot HNd /Na
where, Nd is the number of the different elements in JR; Na is the number of all
elements in JR @i

To illustrate the dficiency of OOA, we use 50 random BDS, where the number of
jobs MO[20,12Q ; the number of resources N[3,30]. The dgorithm using SA
technique is charaderized by the following parameters. Initial temperature Ti=100Q
Freezing temperature Tfr=0.01; and the rate of the temperature decre=idg9.

6.2 Experiments and Results

First, the problem sizen is changed from 3 to 30whil e the heterogeneity is fixed. For
ead gven vaue n, we investigate the solving times and the solution quality of
Random, SA, and OOA. The simulation results are shown in Fig. 9.a and Fig. 9.b.
They show usthat the quality of the recaved schedule by OOA is much better than the
ones by SA and, of course, by Random scheduling (Fig. 9.b.). Although the solving
time of OOA is more than the one of Random scheduling, it is much lessthan the
solving time of SA (Fig. 9.a). We will have similar graphics if the problem size is
increasing to more than 30. We do not provide the graphics of comparing with larger
size than 30 because of the long solving time of SA. Indeed, the larger the problem
size(n) is, the better OOA is, in both scheduling issues. solution quality and solving
time.

Seoond, whil e the problem sizeisfixed, in our case n = 30, but the heterogeneity is
changed and Hg[1][10%,90%)], we study the solving times and the solution quality of
Random, SA, and OOA. The simulation results ow us that the solving time of all
agorithms (Random,SA, and OOA) do not depend on system heterogeneity.



Therefore we do not provide this graphic in the paper. However, the heterogeneity of
the systems has influence on the solution quality. The graphics in Fig. 10. shows us
that the more heterogeneous the systems are, the more dficiently OOA works,
compared with SA and Random.

{Echeduling Timne) {Length of 3chedule}
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Fig.9.a Investigation of Solving TimeFig.9.b Investigation of Solution Quality

CLemath of SchedualseXr
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Fig.10. Investigating the Dependency of Solution Quality
on the Heterogeneity of the System.
6. 3 Analysis

The simulation results have proved our theoreticd analysis which is discussed in the
sedions 4 and 5. In comparing with the existing methods, the scheduling quality of
OOA ismuch better, and the scheduling time of OOA isdeaeased extensively. That is
becaise the seach areain OOA is reduced substantially. This efficiency of OOA is
shown while both fadors. the problem size and the heterogeneous of the systems are
changing.

In Fig.9.b, the results gow us that SA does not do much better than the random
one in terms of schedule quality. That is becaise of the thosen parameters for the
simulated anneding. With the given parameters above, we have aSA scheduler that



gives us the “best” schedule &ter 1150710" times of changing the temperature (Tct).
In the meantime, the red best schedule can be found, theoreticdly, only after
1201*30!/(120-30)! Tct, which is more than 10**° Tct (!). That is why the result of SA
does not look very good.

The quality of SA scheduler can easily be improved by changing the parameters
for the simulated anneding so that the number of Tct is increased, for example SA
with 10'°. However, the scheduling time of SA then is increased too. And when the
scheduling time of SA istoo long it makes the scheduling times of Random and OOA
(which are much lessthan the SA’s one & in Fig.9.a.) become doser ead to ather and
also closer to 0. Since such a picture of relationship between scheduling times of
Random and OOA are not red, we think that it is better to show the results of SA
with 11507Tct than the results of SA with moret .

7. Conclusions

We have presented a new approach to solve the problem of job scheduling for parall el
processng in heterogeneous systems. The new approadh, using the Hungarian
method, provides a quick and oljedive-oriented seach for the best schedule by two
optimization goals: (i) minimum total exeaution time including communication costs
and (i) shortest response time for all jobs. In addition, using the modified agorithm
(which has been provided in [14]) for this method, the solving time is deaeased to
O(n(E+nlogn)).

Note that this time complexity is for finding the real optimum schedule by the
given optimization criteria and can be reduced by paralelizing OOA. Besides, as is
shown in the simulation results, the adual schedulingtime in pradiceis amost linea.
The explanation of this fad is that the modified algorithm [14] which is applied for
searching Vop on current SL (in 4.3.) is a very good fit for this kind of searching.

The alvantages of the propased agorithm OOA are: (i) achieving a good kalance
of several conflicting optimizaion goals. minimum exeaution time, minimum
communicaion costs, shortest response time; (i) scheduling for a relatively short
time; (iii) flexibility in applicaion because scheduling is caried out in a genera
computing model, where there is no requirement for the system architedure; and
finaly, (iv) espedally efficient for so-cdled Strictly-Heterogeneous s/stems, where
either the jobs and the resources can be very different, even unrelated.

In future work, there ae two ways by which we can deaease the solving time or
increase the solution quality of the proposed algorithm OOA: (i) combine OOA with
SA tedhnique for creding a new agorithm that has less ®lving time whil e keeping the
control of the solution quality so that it is acceptable; (i) simplify the locd
optimization in OOA and add a simple optimizaion function for global optimization
(e.g. by considering workload balance at the high level).
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