
Implementing Multiprocessor SchedulingDisciplinesEric W. Parsons and Kenneth C. SevcikComputer Systems Research InstituteUniversity of Torontofeparsons,kcsg@cs.toronto.eduAbstract. An important issue in multiprogrammed multiprocessor sys-tems is the scheduling of parallel jobs. Consequently, there has been aconsiderable amount of analytic research in this area recently. A frequentcriticism, however, is that proposed disciplines that are studied analyt-ically are rarely ever implemented and even more rarely incorporatedinto commercial scheduling software. In this paper, we seek to bridgethis gap by describing how at least one commercial scheduling system,namely Platform Computing's Load Sharing Facility, can be extended tosupport a wide variety of new scheduling disciplines.We then describe the design and implementation of a number of mul-tiprocessor scheduling disciplines, each di�ering considerably in termsof the type of preemption that is assumed to be available and in termsof the exibility allowed in allocating processors. In evaluating the per-formance of these disciplines, we �nd that preemption can signi�cantlyreduce overall response times, but that the performance of disciplinesthat must commit to allocations when a job is �rst activated can besigni�cantly a�ected by transient loads.1 IntroductionAs large-scale multiprocessor systems become available to a growing user popu-lation, mechanisms to share such systems among users are becoming increasinglynecessary. Users of these systems run applications that range from computation-ally-intensive scienti�c modeling to I/O-intensive databases, for the purpose ofobtaining computational results, measuring application performance, or simplydebugging new parallel codes. While in the past, systems may have been acquiredexclusively for use by a small number of individuals, they are now being installedfor the bene�t of large user communities, making the e�cient scheduling of thesesystems an important problem.Although much analytic research has been done in this area, one of the fre-quent criticisms made is that proposed disciplines are rarely implemented andeven more rarely ever become part of commercial scheduling systems. The com-mercial scheduling systems presently available, for the most part, only supportrun-to-completion (RTC) disciplines and have very little exibility in adjusting



processor allocations. These constraints can lead to both high response times andlow system utilizations. On the other hand, most research results support theneed for both preemption and mechanisms for adjusting processor allocations ofjobs.Given that a number of high-performance computing centers have begunto develop their own scheduling software [Hen95,Lif95,SCZL96,WMKS96], it isclear that existing commercial scheduling software is often inadequate. To sup-port these centers, however, mechanisms to extend existing systems with external(customer-provided) policies are starting to become available in commercial soft-ware [SCZL96]. This allows new scheduling policies to be easily implemented,without having to re-implement much of the base functionality typically foundin this type of software.The primary objective of this paper is to help bridge the gap between someof the analytic research and practical implementations of scheduling disciplines.As such, we describe the implementation of a number of scheduling disciplines,involving various types of job preemption and processor allocation exibility.Furthermore, we describe how di�erent types of knowledge (e.g., amount of com-putational work or speedup characteristics) can be included in the design of thesedisciplines. A secondary objective of our work is to briey examine the bene�tspreemption and knowledge may have on the performance of parallel schedulingdisciplines.The remainder of the paper is organized as follows. In the next section, wepresent motivation for the types of scheduling disciplines that we chose to im-plement. In Sect. 3, we describe Load Sharing Facility (LSF), the commercialsoftware scheduling software on which we based our implementation. In Sects. 4and 5, we describe an extension library we have developed to facilitate the devel-opment of multiprocessor scheduling disciplines, followed by the set of disciplineswe have implemented. Finally, we present our experimental results in Sect. 6 andour conclusions in Sect. 7.2 BackgroundThere have been many analytic studies done on parallel-job scheduling since itwas �rst examined in the late eighties. Much of this work has led to three basicobservations.First, the performance of a system can be signi�cantly degraded if a job isnot given exclusive use of the processors on which it is running. Otherwise, thethreads of a job may have to wait for signi�cant amounts of time at synchroniza-tion points. This can either result in large context-switch overheads or wastedprocessor cycles. In general, a single thread is associated with each processor, anapproach which is known as coordinated or gang scheduling [Ous82,FR92]. Some-times, however, it is possible to multiplex threads of the same job on a reducednumber of processors and still achieve good performance [MZ94]. (In the lattercase, it is still assumed that only threads from a single job are simultaneouslyactive on any given processor.)



Second, jobs generally make more e�cient use of the processing resourcesgiven smaller processors allocations. As a result, providing the scheduler withsome exibility in allocating processors can signi�cantly improve overall perfor-mance [GST91,Sev94,NSS93,RSD+94]. In most systems, users specify preciselythe number of processors which should be allocated to each job, a practice thatis known as rigid scheduling. In adaptive scheduling disciplines, the user spec-i�es a minimum processor allocation, usually resulting from constraints due tomemory, and a maximum, corresponding to the point after which no furtherprocessors are likely to be bene�cial. In some cases, it may also be necessary tospecify additional constraints on the allocation, such as being a power of two.If available, speci�c knowledge about jobs, such as amount of work or speedupcharacteristics, can further aid the scheduler in allocating processors in excessof minimum allocations.In adaptive disciplines, jobs can be allocated a large number of processorsat light loads, giving them good response times. As the load increases, however,allocation sizes can be decreased so as to improve the e�ciency with which theprocessors are utilized, and hence allowing a higher load to be sustained (i.e.,a higher sustainable throughput). Also, adaptive disciplines can better utilizeprocessors than rigid ones because, with the latter, processors are often left idledue to packing ine�ciencies, while adaptive disciplines can adjust allocations tomake use of all available processors.The third observation is that workloads found in practice tend to have avery high degree of variability in the amount of computational work (also knownas service demand) [CMV94,FN95,Gib96]. In other words, most jobs have verysmall service demands but a few jobs can run for a very long time. Run-to-completion (RTC) disciplines exhibit very high response times because once along-running job is dispatched, short jobs must wait a considerable amount oftime before processors become available. Preemption can signi�cantly reducethe mean response times of these workloads relative to run-to-completion disci-plines [PS95].Unlike the sequential case, preemption of parallel jobs can be quite expensiveand complex to support. Fortunately, results indicate that preemption does notneed to be invoked frequently to be useful, since only long-running jobs ever needto be preempted. In this paper, we consider three distinct types of preemption,in increasing order of implementation complexity.Simple In simple preemption, a job may be preempted but its threads maynot be migrated to another processor. This type of preemption is the easiestto support (as threads need only be stopped), and may be the only typeavailable on message-passing systems.Migratable In migratable preemption, a job may be preempted and its threadsmigrated. Normally, this type of preemption can be easily supported inshared-memory systems, but ensuring that data accessed by each threadis also migrated appropriately can be di�cult. In message-passing systems,operating-system support for migration is not usually provided, but check-



pointing can often be employed instead.1 For example, the Condor systemprovides a transparent checkpointing facility for parallel applications that useeither MPI or PVM [PL96]. When a checkpoint is requested, the run-timelibrary ushes any network communications and I/O and saves the images ofeach process involved in the computation to disk; when the job is restarted,the run-time library re-establishes the necessary network connections andresumes the computation from the point at which the last checkpoint wastaken. As such, using checkpointing to preempt a job is similar in cost toswapping, except that all kernel resources are relinquished.Malleable In malleable preemption, the size of a job's processor allocation maybe changed after it has begun execution, a feature that normally requires ex-plicit support within the application.2 In the process control approach, theapplication must be designed to to adapt dynamically to changes in pro-cessor allocation while it is running [TG89,GTS91,NVZ96]. As this type ofsupport is uncommon, a simpler strategy may be to rely on application-levelcheckpointing, often used by long-running jobs to tolerate system failures.For these cases, it might be possible to modify the application so as tostore checkpoints in a format that is independent of allocated processors,thus allowing the job to be subsequently restarted on a di�erent number ofprocessors.A representative sample of coordinated scheduling disciplines that have beenpreviously studied is presented in Fig. 1, classi�ed according to the type of pre-emption available and the exibility in processor allocation (i.e., rigid versusadaptive). Adaptive disciplines are further categorized by the type of informa-tion they assume to be available, which can include service demand, speedupcharacteristics, and memory requirements.3 All types of preemption (simple, mi-gratable, malleable) can be applied to all adaptive disciplines, but only simpleand migratable preemption are meaningful for rigid disciplines. The disciplinesproposed in this paper are highlighted in italics. (A more complete version ofthis table can be found elsewhere [Par97].)LoadLeveler is a commercial scheduling system designed primarily for theIBM SP-2 system. A recent extension to LoadLeveler that has become popularis EASY [Lif95,SCZL96]. This is a rigid RTC scheduler that uses execution-time information provided by the user to o�er both greater predictability andbetter system utilization. When a user submits a job, the scheduler indicatesimmediately a time by which that job will be run; jobs that are subsequentlysubmitted may be run before this job only if they do not delay the start of any1 Although the costs of this approach may appear to be large, we have found thatsigni�cant reductions in mean response times can be achieved with minimal impacton throughput, even with large checkpointing overheads.2 Malleable preemption is often termed dynamic partitioning in the literature, but we�nd it more convenient to treat it as a type of preemption.3 Some rigid schedulers do use service-demand information if available, but this dis-tinction is not shown in this table.



Table 1. Representative set of disciplines that have been proposed and evaluated inthe literature. Disciplines presented in this paper are italicized and have the pre�x\LSF-"; for the adaptive ones, a regular and a \SUBSET" version are provided.Rigid AdaptiveWork Speedup Mem.RTC RTC [ZM90] A+,A+&mM [Sev89] yes min/max noPPJ [RSD+94] ASP [ST93] no pws noNQS PWS [GST91] no no noLSF Equal,IP [RSD+94] no no noLoadLeveler SDF [CMV94] yes no noEASY [Lif95] AVG,Adapt-AVG [CMV94] no avg noLSF-RTC LSF-RTC-AD(SUBSET) either either eitherPreemptionsimple Cosched(matrix) [Ous82]LSF-PREEMPT LSF-PREEMPT-AD(SUBSET) either either eithermigratable Cosched(other) [Ous82] Round-Robin [ZM90] no no noRRJob [MVZ93] FB-ASP,FB-PWS no pws noLSF-MIG LSF-MIG-AD(SUBSET) either either eithermalleable Equi/DynamicPartition [TG89,MVZ93] no no noFOLD,EQUI [MZ94] no no no(not applicable) W&E [BG96] yes yes noBUDDY,EPOCH [MZ95] no no yesMPA [PS96b,PS96a] no yes yesLSF-MALL-AD(SUBSET) either either either



previously-scheduled job's execution (i.e., a gap exists in the schedule containingenough processors for su�cient time).The disciplines that we present in this paper have been implemented as ex-tensions to another commercial scheduling system, called Load Sharing Facility(LSF). By building on top of LSF, we found that we could make direct use ofLSF for many aspects of job management, including the user interfaces for sub-mitting and monitoring jobs, as well as the low-level mechanisms for starting,stopping, and resuming jobs. LSF runs on a large number of platforms, includingthe SP-2, SGI Challenge, SGI Origin, and HP Exemplar, making it an attractivevehicle for this type of scheduling research. Our work is based on LSF version2.2a.3 Load Sharing FacilityAlthough originally designed for load balancing in workstation clusters, LSF isnow becoming popular for parallel job scheduling on multiprocessor systems. Ofgreatest relevance to this work is the batch subsystem.Queues provide the basis for much of the control over the scheduling of jobs.Each queue is associated with a set of processors, a priority, and many otherparameters not described here. By default, jobs are selected in FCFS order fromthe highest-priority non-empty queue and run until completion, but it is possibleto con�gure queues so that higher-priority jobs preempt lower priority ones (afeature that is currently available only for the sequential-job case). The priorityof a job is de�ned by the queue to which the job has been submitted.To illustrate the use of queues, consider a policy where shorter jobs havehigher priority than longer jobs (see Fig. 1). An administrator could de�ne sev-eral queues, each in turn corresponding to increasing service demand and havingdecreasing priority. If jobs are submitted to the correct queue, short jobs will beexecuted before long ones. Moreover, LSF can be con�gured to preempt lowerpriority jobs if higher priority ones arrive, giving short jobs still better respon-siveness. To permit enforcement of the policy, LSF can be con�gured to terminateany job that exceeds the execution-time threshold de�ned for the queue.The current version of LSF provides only limited support for parallel jobs.As part of submitting a job, a user can specify the number of processors re-quired. When LSF �nds a su�cient number of processors satisfying the resourceconstraints for the job, it spawns an application \master" process on one of theprocessors, passing to this process a list of processors. The master process canthen use this list of processors to spawn a number of \slave" processes to performthe parallel computation. The slave processes are completely under the controlof the master process, and as such, are not known to the LSF batch schedulingsystem. LSF does provide, however, a library that simpli�es several distributedprogramming activities, such as spawning remote processes, propagating Unixsignals, and managing terminal output.
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Fig. 1. Example of a possible sequential-job queue con�guration in LSF to favour short-running jobs. Jobs submitted to the short-job queue have the highest priority, followedby medium- and long-job queues. The queues are con�gured to be preemptable (allow-ing jobs in the queue to be preempted by higher-priority jobs) and preemptive (allowingjobs in the queue to preempt lower-priority jobs). Execution-time limits associated witheach queue enforce the intended policy.4 Scheduling Extension LibraryThe ideal approach to developing new scheduling disciplines is one that does notrequire any LSF source code modi�cations, as this allows any existing users ofLSF to experiment with the new disciplines. For this purpose, LSF provides anextensive application-programmer interface (API), allowing many aspects of jobscheduling to be controlled. Our scheduling disciplines are implemented withina process distinct from LSF, and are thus called scheduling extensions.The LSF API, however, is designed to implement LSF-related commandsrather than scheduling extensions. As a result, the interfaces are very low leveland can be quite complex to use. For example, to determine the accumulated runtime for a job|information commonly required by a scheduler|the programmermust use a set of LSF routines to open the LSF event-logging �le, process eachlog item in turn, and compute the time between each pair of suspend/resumeevents for the job. Since the event-logging �le is typically several megabytes insize, requiring several seconds to process in its entirety, it is necessary to cacheinformation whenever possible. Clearly, it is di�cult for a scheduling extensionto take care of such details and to obtain the information e�ciently.One of our goals was thus to design a scheduling extension library that wouldprovide simple and e�cient access to information about jobs (e.g., processorscurrently used by a job), as well as to manipulate the state of jobs in the system



(e.g., suspend or migrate a job). This functionality is logically divided into twocomponents:Job and System Information Cache (JSIC) This component serves as acache of system and job information obtained from LSF. It also allows a dis-cipline to associate auxiliary, discipline-speci�c information with processors,queues, and jobs for its own book-keeping purposes.4LSF Interaction Layer (LIL) This component provides a generic interfaceto all LSF-related activities. In particular, it updates the JSIC data struc-tures by querying the LSF batch system and translates high-level parallel-jobscheduling operations (e.g., suspend job) into the appropriate LSF-speci�cones.The basic designs of all our scheduling disciplines are quite similar. Eachdiscipline is associated with a distinct set of LSF queues, which the disciplineuses to manage its own set of jobs. All LSF jobs in this set of queues are assumedto be scheduled by the corresponding scheduling discipline. Normally, one LSFqueue is designated as the submit queue, and other queues are used by thescheduling discipline as a function of a job's state. For example, pending jobsmay be placed in one LSF queue, stopped jobs in another, and running jobsin a third. A scheduling discipline never explicitly dispatches or manipulatesthe processes of a job directly; rather, it implicitly requests LSF to performsuch actions by switching jobs from one LSF queue to another. Continuing thesame example, a pending queue would be con�gured so that it accepts jobs butnever dispatches them, and a running queue would be con�gured so that LSFimmediately dispatches any job in this queue on the processors speci�ed for thejob. In this way, a user submits a job to be scheduled by a particular disciplinesimply by specifying the appropriate LSF queue, and can track the progress ofthe job using all the standard LSF utilities.Although it is possible for a scheduling discipline to contain internal jobqueues and data structures, we have found that this is rarely necessary becauseany state information that needs to be persistent can be encoded by the queuein which each job resides. This approach greatly simpli�es the re-initializationof the scheduling extension in the event that the extension fails at some point,an important property of any production scheduling system.Given our design, it is possible for several scheduling disciplines to coexistwithin the same extension process, a feature that is most useful in reducingoverheads if di�erent disciplines are being used in di�erent partitions of thesystem. (For example, one partition could be used for production workloadswhile another could be used to experiment with a new scheduling discipline.)Retrieving system and job information from LSF can place signi�cant load onthe master processor,5 imposing a limit on the number of extension processesthat can be run concurrently. Since each scheduling discipline is associated with a4 In future versions of LSF, it will be possible for information associated with jobs tobe saved in log �les so that it will not be lost in the event that the scheduler fails.5 LSF runs its batch scheduler on a single, centralized processor.



di�erent set of LSF queues, the set of processors associated with each disciplinecan be de�ned by assigning processors to the corresponding queues using theLSF queue administration tools. (Normally, each discipline uses a single queuefor processor information.)The extension library described here has also been used by Gibbons instudying a number of rigid scheduling disciplines, including two variants ofEASY [Lif95,SCZL96,Gib96,Gib97]. One of the goals of Gibbons' work was todetermine whether historical information about a job could be exploited in sched-uling. He found that, for many workloads, historical information could provideup to 75% of the bene�ts of having perfect information. For the purpose ofhis work, Gibbons added an additional component to the extension library togather, store, and analyze historical information about jobs. He then adaptedthe original EASY discipline to take into account this knowledge and showedhow performance could be improved. The historical database and details of thescheduling disciplines studied by Gibbons are described elsewhere [Gib96,Gib97].The high-level organization of the scheduling extension library (not includingthe historical database) is shown in Fig. 2. The extension process contains theextension library and each of the disciplines con�gured for the system. The ex-tension process mainline essentially sleeps until a scheduling event or a timeout(corresponding to the scheduling quantum) occurs. The mainline then promptsthe LIL to update the JSIC and calls a designated method for each of the con-�gured disciplines. Next, we describe each component of the extension library indetail.
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Fig. 2. High-level design of scheduling extension extension library. As shown, the ex-tension library supports multiple scheduling disciplines running concurrently withinthe same process.



4.1 Job and System Information CacheThe Job and System Information Cache (JSIC) contains all the informationabout jobs, queues, and processors that are relevant to the scheduling disciplinesthat are part of the extension. Our data structures were designed taking intoconsideration the types of operations that we found to be most critical to thedesign of our scheduling disciplines:{ A scheduler must be able to scan sequentially through the jobs associatedwith a particular LSF queue. For each job, it must then be able to access ina simple manner any job-related information obtained from LSF (e.g., runtimes, processors on which a job is running, LSF job state).{ It must be able to scan the processors associated with any LSF queue anddetermine the state of each one of these (e.g., available or unavailable).{ Finally, a scheduler must be able to associate book-keeping information witheither jobs or processors (e.g., the set of jobs running on a given processor).In our library, information about each active job is stored in a JobInfo object.Pointers to instances of these objects are stored in a job hash table keyed byLSF job identi�ers (jobId), allowing e�cient lookup of individual jobs. Also, alist of job identi�ers is maintained for each queue, permitting e�cient scanningof jobs in any given queue (in the order submitted to LSF).The information associated with a job is global, in that a single JobInfoobject instance exists for each job. For processors, on the other hand, we foundit convenient (for experimental reasons) to have distinct processor informationobjects associated with each queue. Using a global approach similar to that forjobs would also be suitable if it is guaranteed that a processor is never associatedwith more than one discipline within an extension, but this was not necessarilythe case on our system. Similar to jobs, processors associated with a queue canbe scanned sequentially, or can be accessed through a hash table keyed on theprocessor name. For each, the state of the processor and a list of jobs runningon the processor can be obtained.4.2 LSF Interaction Layer (LIL)The most signi�cant function of the LSF interaction layer is to update the JSICdata structures to reect the current state of the system when prompted. SinceLSF only supports a polling interface, however, the LIL must, for each updaterequest, fetch all data from LSF and compare it to that which is currently storedin the JSIC. As part of this update, the JSIC must also process an event logging�le, since certain types of information (e.g., total times pending, suspended,and running) are not provided directly by LSF. As such, the JSIC update coderepresents a large fraction of the total extension library code. (The extensionlibrary is approximately 1.5 KLOC.)To update the JSIC, the LIL performs the following three actions:



{ It obtains the list of all active jobs in the system from LSF. Each job recordreturned by LSF contains some static information, such as the submit time,start time, resource requirements, as well as some dynamic information, suchas the job status (e.g., running, stopped), processor set, and queue. All thisinformation about each job is recorded in the JSIC.{ It opens the event-logging �le, reads any new events that have occurred sincethe last update, and re-computes the pending time, aggregate processor runtime, and wall-clock run time for each job. As well, aggregate processor andwall-clock run times since the job was last resumed (termed residual runtimes) are computed.{ It obtains the list of processors associated with each queue and queries LSFfor the status of each of these processors.LSF provides a mechanism by which the resources, such as physical memory,licenses, or swap space, required by the job can be speci�ed upon submission. Inour extensions, we do not use the default set of resources to avoid having LSFmake any scheduling decisions, but rather add a new set of pseudo-resources thatare used to pass parameters or information about a job, such as minimum andmaximum processor allocations or service demand, directly to the schedulingextension. As part of the �rst action performed by the LIL update routine, thisinformation is extracted from the pseudo-resource speci�cations and stored inthe JobInfo structure.The remaining LIL functions, illustrated in Table 2, basically translate high-level scheduling operations into low-level LSF calls.Table 2. High-level scheduling functions provided by LSF Interaction Layer.Operation Descriptionswitch This operation moves a job from one queue to another.setProcessors This operation de�nes the list of processors to be allocated to ajob. LSF dispatches the job by creating a master process on the�rst processor in the list; as described before, the master processuses the list to spawn its slave processes.suspend This operation suspends a job. The processes of the job hold ontovirtual resources they possess, but normally release any physicalresources (e.g., physical memory).resume This operation resumes a job that has previously been suspended.migrate This operation initiates the migration procedure for a job. It doesnot actually migrate the job, but rather places the job in a pend-ing state, allowing it to be subsequently restarted on a di�erentset of processors.Preemption Considerations The LSF interaction layer makes certain as-sumptions about the way in which jobs can be preempted. For simple preemp-tion, a job can be suspended by sending it a SIGTSTP signal, which is delivered



to the master process; this process must then propagate the signal to its slaves(which is automated in the distributed programming library provided by LSF)to ensure that all processes belonging to the job are stopped. Similarly, a jobcan be resumed by sending it a SIGCONT signal.In contrast, we assume that migratable and malleable preemption are im-plemented via a checkpointing facility, as described in Sect. 2. As a result, pre-empted jobs do not occupy any kernel resources, allowing any number of jobs tobe in this state (assuming disk space for checkpointing is abundant).To identify migratable jobs, we set an LSF ag in the submission requestindicating that the job is re-runnable. To migrate such a job, we �rst send it acheckpoint signal (in our case, the SIGUSR2 signal), and then send LSF a migraterequest for the job. This would normally cause LSF to terminate the job (witha SIGTERM signal) and restart it on the set of processors speci�ed (using thesetProcessors interface). In most cases, however, we switch such a job to aqueue that has been con�gured to not dispatch jobs prior to submitting themigration request, causing the job to be simply terminated and requeued as apending job.The interface for changing the processor allocation of a malleable job is iden-tical to that for migrating a job, the only di�erence being the way it is used.In the migratable case, the scheduling discipline always restarts a job using thesame number of processors as in the initial allocation, while in the malleablecase, any number of processors can be speci�ed.4.3 A Simple ExampleTo illustrate how the extension library can be used to implement a discipline,consider a sequential-job, multi-level feedback discipline that degrades the prior-ity of jobs as they acquire processing time. If the workload has a high degree ofvariability in service demands, as is typically the case even for batch sequentialworkloads, this approach will greatly improve response times without requiringusers to specify the service demands of jobs in advance. For this discipline, we canuse the same queue con�guration as shown in Fig. 1; we eliminate the run-timelimits, however, as the scheduling discipline will automatically move jobs fromhigher-priority queues to lower-priority ones as they acquire processing time.Users initially submit their jobs to the high-priority queue (labeled short jobsin Fig. 1); when the job has acquired a certain amount of processing time, thescheduling extension switches the job to the medium-priority queue, and aftersome more processing time, to the low-priority queue. In this way, the extensionrelies on the LSF batch system to dispatch, suspend, and resume jobs as afunction of the jobs in each queue. Users can track the progress of jobs simplyby examining the jobs in each of the three queues.5 Parallel-Job Scheduling DisciplinesWe now turn our attention to the parallel-job scheduling disciplines that we haveimplemented as LSF extensions. Important to the design of these disciplines are



the costs associated with using LSF on our platform. It can take up to thirtyseconds to dispatch a job once it is ready to run. Migratable or malleable preemp-tion typically requires more than a minute to release the processors associatedwith a job; these processors are considered to be unavailable during this time.Finally, scheduling decisions are made at most once every �ve seconds to keepthe load on the master (scheduling) processor to an acceptable level.The disciplines described in this section all share a common job queue con�g-uration. A pending queue is de�ned and con�gured to allow jobs to be submitted(i.e., open) but preventing any of these jobs from being dispatched automati-cally by LSF (i.e., inactive). A second queue, called the run queue, is used bythe scheduler to start jobs. This queue is open, active, and possesses absolutelyno load constraints. A scheduling extension uses this queue by �rst specifyingthe processors associated with a job (i.e., setProcessors) and then moving thejob to this queue; given the queue con�guration, LSF immediately dispatchesjobs in this queue. Finally, a third queue, called the stopped queue, is de�ned toassist in migrating jobs. It too is con�gured to be open but inactive. When LSFis prompted to migrate a job in this queue, it terminates and requeues the job,preserving its job identi�er. In all our disciplines, preempted jobs are left in thisqueue to distinguish them from jobs that have not had a chance to run yet (inthe pending queue).Each job in our system is associated with a minimum, desired, and maximumprocessor allocation, the desired value lying between the minimum and maxi-mum. Rigid disciplines use the desired value while adaptive disciplines are freeto choose any allocation between the minimum and the maximum values.If provided to the scheduler, service demand information is speci�ed in termsof the amount of computation required on a single processor and speedup charac-teristics are speci�ed in terms of the fraction of work that is sequential. Basically,service-demand information is used to run jobs having the least remaining pro-cessing time (to minimize mean response times) and speedup information is usedto favour e�cient jobs in allocating processors. Since jobs can vary considerablyin terms of their speedup characteristics, computing the remaining processingtime will only be accurate if speedup information is available.5.1 Run-to-Completion DisciplinesNext, we describe the run-to-completion disciplines. All three variants listed inTable 1 (i.e., LSF-RTC, LSF-RTC-AD, and LSF-RTC-ADSUBSET) are quitesimilar and, as such, are implemented in a single module of the scheduling ex-tension. The LSF-RTC discipline is de�ned as follows:LSF-RTC Whenever a job arrives or departs, the scheduler repeatedly scansthe pending queue until it �nds the �rst job for which enough processors areavailable. It assigns processors to the job and switches the job to the runqueue.The LSF system, and hence the JSIC, maintains jobs in order of arrival, sothe default RTC discipline is FCFS (skipping any jobs at the head of the queue



for which not enough processors are available). If service-demand information isprovided to the scheduler, then jobs are scanned in order of increasing servicedemand, resulting in a shortest processing time (SPT) discipline (again withskipping).The LSF-RTC-AD discipline is very similar to the ASP discipline proposedby Setia et al. [ST93], except that jobs are selected for execution di�erentlybecause the LSF-based disciplines take into account memory requirements ofjobs (and hence cannot be called ASP).LSF-RTC-AD Whenever a job arrives or departs, the scheduler scans thepending queue, selecting the �rst job for which enough processors remainto satisfy the job's minimum processor requirements. When no more jobs�t, leftover processors are used to equalize processor allocations among se-lected jobs (i.e., giving processors to jobs having the smallest allocation). Thescheduler then assigns processors to the selected jobs and switches these jobsto the run queue.If speedup information is available, the scheduler allocates each leftover pro-cessor, in turn, to the job whose e�ciency will be highest after the alloca-tion. This approach minimizes both the processor and memory occupancy ina distributed-memory environment, leading to the highest possible sustainablethroughput [PS96a].The SUBSET variant seeks to improve the e�ciency with which processorsare utilized by applying an algorithm known as a subset-sum algorithm [MT90].The basic principle is to try to minimize the number of processors allocated tojobs in excess to each of the job's minimum processor allocation (termed surplusprocessors). Since we assume that a job utilizes processors more e�ciently asits allocation size decreases (down to the minimum allocation size), then thisprinciple allows the system to run at a higher overall e�ciency.LSF-RTC-ADSUBSET Let L be the number of jobs in the system and N� bethe number of jobs selected by the �rst-�t algorithm used in LSF-RTC-AD.The scheduler only commits to running the �rst N 0 of these jobs, whereN 0 = �N� �max(1� L�N� ; 0)�(� is a tunable parameter that determines how aggressively the schedulerseeks to minimize surplus processors as the load increases; for our exper-iments, we chose � = 5.) Using any leftover processors and leftover jobs,the scheduler applies the subset-sum algorithm to select the set of jobs thatminimizes the number of surplus processors. The jobs chosen by the subset-sum algorithm are added to the list of jobs selected to run, and any surplusprocessors are allocated as in LSF-RTC-AD.Simple Preemptive Disciplines In simple preemptive disciplines, jobs may besuspended but their processes may not be migrated. Since the resources used by



jobs are not released when they are in a preempted state, however, one must becareful to not over-commit system resources. In our disciplines, this is achieved byensuring that no more than a certain number of processes ever exist on any givenprocessor. In a more sophisticated implementation, we might instead ensure thatthe swap space associated with each processor would never be overcommitted.The two variants of the preemptive disciplines are quite di�erent. In the rigiddiscipline, we allow a job to preempt another only if it possesses the same desiredprocessor allocation. This is to minimize the possibility of packing losses thatmight occur if jobs were not aligned in this way.6 In the adaptive discipline,we found this approach to be problematic. Consider a long-running job, eitherarriving during an idle period or having a large minimum processor requirement,that is dispatched by the scheduler. Any subsequent jobs preempting this �rstone would be con�gured for a large allocation size, causing them, and hencethe entire system, to run ine�ciently. As a result, we do not attempt to reducepacking losses with the adaptive, simple preemptive discipline.LSF-PREEMPT Whenever a job arrives or departs or when a quantum ex-pires, the scheduler re-evaluates the selection of jobs currently running.Available processors are �rst allocated in the same way as in LSF-RTC.Then, the scheduler determines if any running job should be preempted bya pending or stopped job, according to the following criteria:1. A stopped job can only preempt a job running on the same set of pro-cessors as those for which it is con�gured. A pending job can preemptany running job that has a same desired processor allocation value.2. If no service-demand information is available, the aggregate cumulativeprocessor time of the pending or stopped job must be some fractionless than that of the running job (in our case, we use the value of 50%);otherwise, the service demand of the preempting job must be a (di�erent)fraction less than that of the running job (in our case, we use the valueof 10%).3. The running job must have been running for at least a certain speci�edamount of time (one minute in our case, since suspension and resumptiononly consist of sending a Unix signal to all processes of the job).4. The number of processes present on any processor cannot exceed a pre-speci�ed number (in our case, �ve processes).If several jobs can preempt a given running job, the one which has theleast acquired aggregate processing time is chosen �rst if no service-demandknowledge is available, or the one with the shortest remaining service demandif service-demand knowledge is available.Our adaptive, simple preemptive discipline uses a matrix approach to sched-uling jobs, where each row of the matrix represents a di�erent set of jobs to run6 Packing losses occur when processors are left idle, either because there are an insuf-�cient number to meet the minimum processor requirements of pending jobs or ifonly some of the processors required by stopped jobs are available.



and the columns the processors in the system. In Ousterhout's co-scheduling dis-cipline, an incoming job is placed in the �rst row of the matrix that has enoughfree processors for the job; if no such row exists, then a new one is created. Inour approach, we use a more dynamic approach.LSF-PREEMPT-AD Whenever the scheduler is awakened (due either to anarrival or departure or to a quantum expiry), the set of jobs currently run-ning or stopped (i.e., preempted) is organized into the matrix just described,using the �rst row for those jobs that are running. Each row is then exam-ined in turn. For each, the scheduler populates the uncommitted processorswith the best pending, stopped, or running jobs. (If service-demand infor-mation is available, currently-stopped or running jobs may be preferable toa pending job; these jobs can switch rows if all processors being used by thejob are uncommitted in the row currently being examined.) The scheduleralso ensures that jobs that are currently running, but which have run forless than the minimum time since last being started or resumed, continue torun. If such jobs cannot be accommodated in the row being examined, thenthe scheduler skips to the next row.Once the set of jobs that might be run in each row has been determined, thescheduler chooses the row that has the job having the least acquired process-ing time or, if service-demand information is available, the job having theshortest remaining service demand. Processors in the selected row availablefor pending jobs are distributed as before (i.e., equi-allocation if no speedupknowledge is available, or favouring e�cient jobs if it is).Migratable and Malleable Preemptive Disciplines In contrast to the sim-ple preemptive disciplines, the migratable and malleable ones assume that a jobcan be checkpointed and restarted at a later point in time. The primary dif-ference between the two types is that, in the migratable case, jobs are alwaysresumed with the same number of processors allocated when the job �rst started,whereas in the malleable case, a job can be restarted with a di�erent number ofprocessors.LSF-MIG Whenever a job arrives or departs or when a quantum expires,the scheduler re-evaluates the selection of jobs currently running. First,currently-running jobs which have not run for at least a certain con�gurableamount of time (in our case, ten minutes, since migration and processorrecon�guration are relatively expensive) are allowed to continue running.Processors not used by these jobs are considered to be available for re-assignment. The scheduler then uses a �rst-�t algorithm to select the jobsfrom those remaining to run next, using a job's desired processor allocation.As before, if service-demand information is available, jobs are selected inorder of least remaining service demand.LSF-MIG-AD and LSF-MALL-AD Apart from their adaptiveness, thesetwo disciplines are very similar to the LSF-MIG discipline. In the malleable



version, the scheduler uses the same �rst-�t algorithm as in LSF-MIG toselect jobs, except that it always uses a job's minimum processor allocationto determine if a job �ts. Any leftover processors are then allocated as before,using an equi-allocation approach if no speedup information is available, andfavouring e�cient jobs otherwise. In the migratable version, the scheduleruses the size of a job's current processor allocation instead of its minimum ifthe job has already run (i.e., has been preempted) in the �rst-�t algorithm,and does not change the size of such a job's processor allocation if selectedto run.Similar to the run-to-completion case, SUBSET-variants of the adaptive dis-ciplines have also been implemented.6 Performance ResultsThe evaluation of the disciplines described in the previous section is primarilyqualitative in nature. There are two reasons for this. First, experiments must beperformed in real time rather than in simulated time, requiring a considerableamount of time to execute a relatively small number of jobs. Moreover, failuresthat can (and do) occur during the experiments can signi�cantly inuence theresults, although such failures can be tolerated by the disciplines. Second, weintend our implementations to demonstrate the practicality of a discipline andto observe its performance in a real context, rather than to analyze its perfor-mance under a wide variety of conditions (for which a simulation would be moresuitable).The experimental platform for the implementation is a network of worksta-tions (NOW), consisting of sixteen IBM 43P (133MHz, PowerPC 604) systems,connected by three independent networks (155 Mbps ATM, 100 Mbps Ethernet,10 Mbps Ethernet).To exercise the scheduling software, we use a parameterizable synthetic ap-plication designed to represent real applications. The basic reason for using asynthetic application is that it could be designed to not use any processing re-sources, yet behave in other respects (e.g., execution time, preemption) as areal parallel application. This is important in the context of our network ofworkstations, because the system is being actively used by a number of otherresearchers. Using real (compute-intensive) applications would have preventedthe system from being used by others during the tests, or would have caused thetests to be inconclusive if jobs were run at low priority.Each of our scheduling disciplines ensures that only a single one of its jobs isever running on a given processor and that all processes associated with the jobare running simultaneously. As such, the behaviour of our disciplines, when usedin conjunction with our synthetic application, is identical to that of a dedicatedsystem running compute-intensive applications. In fact, by associating a di�erentset of queues with each discipline, each one con�gured to use all processors, itwas possible to conduct several experiments concurrently. (The jobs submittedto each submit queue for the di�erent disciplines were generated independently.)



The synthetic application possesses three important features. First, it can beeasily parameterized with respect to speedup and service demand, allowing it tomodel a wide range of real applications. Second, it supports adaptive processorallocations using the standard mechanism provided by LSF. Finally, it can becheckpointed and restarted, to model both migratable and malleable jobs.An experiment consists of submitting a sequence of jobs to the scheduleraccording to a Poisson arrival process, using an arrival rate that reects amoderately-heavy load. A small initial number of these jobs (e.g., 200) are taggedfor mean response time and makespan measurements. (The makespan is the max-imum completion time of any job in the set of jobs under consideration, assumingthat the �rst job arrives at time zero.) Each experiment terminates only whenall jobs in this initial set have left the system. To make the experiment morerepresentative of large systems, we assume that each processor corresponds toeight processors in reality. Thus, all processor allocations are multiples of eight,and the minimum allocation is eight processors. Scaling the number of proces-sors in this way a�ects the synthetic application in determining the amount oftime it should execute and the scheduling disciplines in determining the expectedremaining service demand for a job.6.1 Workload ModelService demands for jobs are drawn from a hyper-exponential distribution, withmean of 8000 seconds (2.2 hours) and coe�cient of variation (CV) of 4, a dis-tribution whose median is 2985 seconds.7 The parameters are consistent withmeasurements made over the past year at the Cornell Theory Center (scaledto 128 processors) [Hot96b,Hot96a]. The most signi�cant di�erence is that themean is about a quarter of that actually observed, which should not unduly a�ectresults as it only magni�es scheduling overheads. (Recall that in the migratableand malleable preemption cases, we only preempt a job if it has run at least 10minutes, since preemption requires at least one minute.) All disciplines receivedexactly the same sequence of jobs in any particular experiment, and in general,individual experiments required anywhere from 24 to 48 hours to complete.Minimum processor allocation sizes are uniformly chosen from one to sixteenprocessors, and maximum sizes are set at sixteen.8 This distribution is similar tothose used in previous studies in this area [PS96a,MZ95,Set95]. The processorallocation size used for rigid disciplines is chosen from a uniform distributionbetween the minimum and the maximum processor allocations for the job.It has been shown previously that performance bene�ts of knowing speedupinformation can only be obtained if a large fraction of the total work in theworkload has good speedup, and moreover, if larger-sized jobs tend to have betterspeedup than smaller-sized ones [PS96a]. As such, we let 75% of the jobs have7 The 25%, 50%, and 75% quantiles are 1230, 2985, and 6100 seconds, respectively.8 Note that maximum processor allocation information is only useful at lighter loads,since at heavy loads, jobs seldom receive many more processors than their minimumallocation.



good speedup, where 99.9% of the work is perfectly parallelizable (correspondingto a speedup of 114 on 128 processors). Poor speedup jobs have a speedup of 6.4on 8 processors and a speedup of 9.3 on 128 processors.96.2 Results and Lessons LearnedThe performance results of all disciplines under the four knowledge cases (noknowledge, service-demand knowledge, speedup knowledge, or both) are givenin Table 3 and summarized in Figs. 3 and 4. As can be seen, the response timesfor the run-to-completion disciplines are much higher (by up to an order ofmagnitude) than the migratable or malleable preemptive disciplines. The simplepreemptive, rigid discipline does not o�er any advantages over the correspondingrun-to-completion version. The reason is that there is insu�cient exibility inallowing a job to only preempt another that has the same desired processorrequirement. The adaptive preemptive discipline is considerably better in thisregard.Adaptability appears to have the most positive e�ect for run-to-completionand malleable disciplines (see Fig. 4). In the former case, makespans decreasedby nearly 50% from the rigid to the adaptive variant using the subset-sum algo-rithm. To achieve this improvement, however, the mean response times generallyincreased because processor allocations tended to be smaller (leading to longeraverage run times). In the malleable case, adaptability resulted in smaller butnoticeable decreases in makespans (5{10%). It should be noted that the opportu-nity for improvement is much lower than in the RTC case because the minimummakespan is 65412 seconds for this experiment (compared to actual observedmakespans of approximately 78000 seconds).Service-demand and speedup knowledge appeared to be most e�ective wheneither the mean response time (for the former) or the makespan (for the latter)were large, but may not be as signi�cant as one might expect. Service-demandknowledge had limited bene�t in the run-to-completion disciplines because thehigh response times result from long-running jobs being activated, which thescheduler must do at some point. In the migratable and malleable preemptivedisciplines, the multilevel feedback approach achieved the majority of the bene-�ts of having service demand information. Highlighting this di�erence, we oftenfound queue lengths for run-to-completion disciplines to grow as high as 60 jobs,while for migratable or malleable disciplines, they were rarely larger than �ve.Given our workload, we found speedup knowledge to be of limited bene�tbecause poor-speedup jobs can rarely run e�ciently. (To utilize processors e�-ciently, such a job must have a low minimum processor requirement, and mustbe started at the same time as a high-e�ciency job; even in the best case, themaximum e�ciency of a poor-speedup job will only be 58% given a minimumprocessor allocation of eight after scaling.) From the results, one can observe that9 Such a two-speedup-class workload appears to be supported by data from the CornellTheory Center if we examine the amount of CPU time consumed by each job relativeto its elapsed time [Par97].



Table 3. Performance of LSF-based scheduling disciplines. In some trials, the discipline did not terminate within a reasonable amountof time; in these cases, a minimum bound on the mean response times is reported (indicated by a >) and the number of un�nished jobsis given in parenthesis.Discipline No Knowledge Service-Demand Speedup BothMRT Makespan MRT Makespan MRT Makespan MRT MakespanLSF-RTC 5853 147951 4040 140342 5279 130361 5627 143507LSF-RTC-AD 10611 129093 8713 126531 8034 91003 8946 126917LSF-RTC-ADSUBSET 8264 76637 8410 81767 8039 73324 8074 75340LSF-PREEMPT 5793 145440 5039 143686 5280 130314 5028 143631LSF-PREEMPT-AD > 2293 > 219105(2) 1078 127204 2207 172768 821 111489LSF-MIG 678 83985 662 81836 690 82214 660 82708LSF-MIG-AD 769 88488 858 103876 784 86080 > 1342 > 192031(1)LSF-MIG-ADSUBSET 770 90789 854 106065 769 85828 > 1347 > 193772(1)LSF-MALL-AD 667 77534 632 78760 666 78215 650 78840LSF-MALL-ADSUBSET 681 78537 680 79191 680 76481 644 78065
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Fig. 5. E�ects of highly variable service demands on the ability for a run-to-completionscheduler to activate jobs having large minimum processor requirements. Because of thelong-running jobs, the system rarely reaches a state where all processors are available,which is necessary to schedule a job having a large minimum processor requirement.service-demand knowledge can sometimes negate the bene�ts of having speedupknowledge as jobs having the least remaining service demand (rather than leastacquired processing time) are given higher priority.While performing the our experiments, we monitored the behaviour of eachof our schedulers, in order to further understand the performance results. Ourobservations can be summarized as follows:{ Jobs having large minimum processor requirements can often experiencesigni�cant delays in run-to-completion disciplines. Since service demandshave a high degree of variability, there is often at least one job runninghaving a large service demand, making it di�cult to ever schedule a jobhaving large minimum processor requirement.This behaviour is illustrated in Fig. 5. Even at light loads, it is quite likely forsome processors to be occupied, preventing the dispatching of a job having alarge processor requirement. Even the use of the SUBSET variant of the RTCdisciplines cannot counteract this e�ect because it still requires all processorsto be available at the time it makes its scheduling decision.{ Adaptive run-to-completion disciplines can lead to more variable makespans.In a 200-job workload, the makespan is dictated essentially by the long-running jobs in the system (e.g., in one of our experiments, one job hada sequential service demand of 265000 seconds, or almost 74 hours). Themakespan of a rigid discipline will be relatively predictable because the ex-ecution time of these long jobs is set in advance. In the adaptive case, ascheduler may allocate such jobs a small number of processors, which isgood from an e�ciency standpoint, but can lead to much longer makespans.Also, if long jobs are allocated few processors, which tends to occur in mostadaptive disciplines as the load increases, these long jobs will occupy pro-cessors for longer periods of time (relative to the rigid case). This can makeit even more di�cult for jobs with large minimum processor requirements toever �nd enough available processors.



The conclusion is that run-to-completion disciplines are even more prob-lematic than originally indicated. It has previously been shown how highvariability in service demands can lead to poor response times if memoryis abundant; these observations show that highly variable service demandscan also lead to starvation for jobs having large minimum processor require-ments.{ Migratable disciplines can signi�cantly reduce response times relative toRTC ones. However, adaptive versions of migratable disciplines can exhibitunpredictable completion times for long-running jobs, as a scheduler mustcommit to an allocation when a job is �rst activated. In some cases, thescheduler allocates a small number of processors to long-running jobs, onlyto have other processors subsequently become available. In a production en-vironment, this may encourage users submitting high service-demand jobsto specify a large minimum processor allocation simply to ensure that theirjobs complete within a more desirable amount of time, but having a negativee�ect on the sustainable throughput.In other cases, long-running jobs were allocated a large number of processors,leading to potential starvation problems. (This was the cause of the largemakespans in the full-knowledge LSF-MIGRATE-AD and LSF-MIGRATE-ADSUBSET experiments.) In order to resume such a job once stopped, thescheduler must be capable of preempting a su�cient number of running jobsto satisfy the stopped job's processor requirement. This can be di�cult athigh loads where jobs with small processor allocations are continuously beingstarted, suspended, and resumed, since we only preempt jobs that have runat least ten minutes. In a real workload, we believe this problem will becomeless important as the ratio of the migration overhead to the mean servicedemand becomes smaller.{ From a user's perspective, malleable disciplines are most attractive. Duringperiods of heavy load, the system allocates jobs a small number of processors,and as the load becomes lighter, long-running jobs receive more processors.Unused processors arising from imperfect packing are never a problem, al-lowing a high level of utilization to be achieved. Also, jobs rarely experiencestarvation because the scheduler does not commit itself to a processor alloca-tion upon activating a job for the �rst time. As a result, adaptive malleabledisciplines consistently performed best and have the highest potential forlow response times and high throughputs (even given a 10% re-allocationoverhead).7 ConclusionsIn this paper, we present the design of parallel-job scheduling implementations,based on Platform Computing's Load Sharing Facility (LSF). We consider awide range of disciplines, from run-to-completion to malleable preemptive ones,each with varying degrees of knowledge of job characteristics. Although thesedisciplines were implemented on a network of workstations, they can be used onany distributed-memory multiprocessor system supporting LSF.



The primary objective of this work was to demonstrate the practicality of im-plementing parallel-job scheduling disciplines. By building on top of an existingcommercial software package, we found that implementing new disciplines wasrelatively straightforward. Given the lack of maturity of parallel-job scheduling,the approach taken in extending commercial scheduling software is a good one.Future work in this area, however, would be aided by the inclusion of the Joband System Information Cache (JSIC) and the corresponding update routinesdirectly into the base scheduling software.The secondary objective of this work was to study the behaviour of thesedisciplines in a more realistic environment and to illustrate the bene�ts of dif-ferent types of preemption and knowledge. We found that preemption is crucialto obtaining good response times. We believe that the most attractive disciplinefor today is a hybrid migratable/malleable discipline. Many long-running jobs inproduction environments already perform checkpointing to tolerate failures, andas mentioned before, technology exists to perform automatic checkpointing ofmany parallel jobs. Given that only long-running jobs ever need to be migratedor \malleated", disciplines that expect either of these two types of preemptionare practical today. Although the majority of applications used today may sup-port only migratable preemption, it is relatively simple to modify our adaptivemigratable/malleable scheduling module to support both kinds of jobs. Usingsuch a hybrid scheduling discipline would greatly bene�t jobs that already sup-port malleable preemption, and would further encourage application writers tosupport this kind of preemption in new applications.Our observations suggest that further work could be done to better chooseprocessor allocations given approximate speedup and service-demand knowledgeabout jobs in order to reduce the variability in completion times for any givenjob. In particular, better decisions may be made by taking into considerationaverage load over some period of time rather than instantaneous load. Suchimprovements would be most relevant for simple and migratable preemption,since in this case, the scheduler must commit to a processor allocation for a jobwhen the job is �rst started.AcknowledgementsThe network of workstations used for this study is part of a cooperative projectbetween the University of Toronto and the Centre for Advanced Studies at theIBM Toronto Development Lab. The research in this paper was supported bythe Information Technology Research Centre of Ontario, the Natural Sciencesand Engineering Council of Canada, and Northern Telecom.References[BG96] Timothy B. Brecht and Kaushik Guha. Using parallel program character-istics in dynamic processor allocation policies. Performance Evaluation,27&28:519{539, 1996.
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