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Abstract. An important issue in multiprogrammed multiprocessor sys-
tems is the scheduling of parallel jobs. Consequently, there has been a
considerable amount of analytic research in this area recently. A frequent
criticism, however, is that proposed disciplines that are studied analyt-
ically are rarely ever implemented and even more rarely incorporated
into commercial scheduling software. In this paper, we seek to bridge
this gap by describing how at least one commercial scheduling system,
namely Platform Computing’s Load Sharing Facility, can be extended to
support a wide variety of new scheduling disciplines.

We then describe the design and implementation of a number of mul-
tiprocessor scheduling disciplines, each differing considerably in terms
of the type of preemption that is assumed to be available and in terms
of the flexibility allowed in allocating processors. In evaluating the per-
formance of these disciplines, we find that preemption can significantly
reduce overall response times, but that the performance of disciplines
that must commit to allocations when a job is first activated can be
significantly affected by transient loads.

1 Introduction

As large-scale multiprocessor systems become available to a growing user popu-
lation, mechanisms to share such systems among users are becoming increasingly
necessary. Users of these systems run applications that range from computation-
ally-intensive scientific modeling to I/O-intensive databases, for the purpose of
obtaining computational results, measuring application performance, or simply
debugging new parallel codes. While in the past, systems may have been acquired
exclusively for use by a small number of individuals, they are now being installed
for the benefit of large user communities, making the efficient scheduling of these
systems an important problem.

Although much analytic research has been done in this area, one of the fre-
quent, criticisms made is that proposed disciplines are rarely implemented and
even more rarely ever become part of commercial scheduling systems. The com-
mercial scheduling systems presently available, for the most part, only support
run-to-completion (RTC) disciplines and have very little flexibility in adjusting



processor allocations. These constraints can lead to both high response times and
low system utilizations. On the other hand, most research results support the
need for both preemption and mechanisms for adjusting processor allocations of
jobs.

Given that a number of high-performance computing centers have begun
to develop their own scheduling software [Hen95,Lif95,SCZL96, WMKS96], it is
clear that existing commercial scheduling software is often inadequate. To sup-
port these centers, however, mechanisms to extend existing systems with external
(customer-provided) policies are starting to become available in commercial soft-
ware [SCZL96]. This allows new scheduling policies to be easily implemented,
without having to re-implement much of the base functionality typically found
in this type of software.

The primary objective of this paper is to help bridge the gap between some
of the analytic research and practical implementations of scheduling disciplines.
As such, we describe the implementation of a number of scheduling disciplines,
involving various types of job preemption and processor allocation flexibility.
Furthermore, we describe how different types of knowledge (e.g., amount of com-
putational work or speedup characteristics) can be included in the design of these
disciplines. A secondary objective of our work is to briefly examine the benefits
preemption and knowledge may have on the performance of parallel scheduling
disciplines.

The remainder of the paper is organized as follows. In the next section, we
present motivation for the types of scheduling disciplines that we chose to im-
plement. In Sect. 3, we describe Load Sharing Facility (LSF), the commercial
software scheduling software on which we based our implementation. In Sects. 4
and 5, we describe an extension library we have developed to facilitate the devel-
opment of multiprocessor scheduling disciplines, followed by the set of disciplines
we have implemented. Finally, we present our experimental results in Sect. 6 and
our conclusions in Sect. 7.

2 Background

There have been many analytic studies done on parallel-job scheduling since it
was first examined in the late eighties. Much of this work has led to three basic
observations.

First, the performance of a system can be significantly degraded if a job is
not given exclusive use of the processors on which it is running. Otherwise, the
threads of a job may have to wait for significant amounts of time at synchroniza-
tion points. This can either result in large context-switch overheads or wasted
processor cycles. In general, a single thread is associated with each processor, an
approach which is known as coordinated or gang scheduling [Ous82,FR92]. Some-
times, however, it is possible to multiplex threads of the same job on a reduced
number of processors and still achieve good performance [MZ94]. (In the latter
case, it is still assumed that only threads from a single job are simultaneously
active on any given processor.)



Second, jobs generally make more efficient use of the processing resources
given smaller processors allocations. As a result, providing the scheduler with
some flexibility in allocating processors can significantly improve overall perfor-
mance [GST91,5ev94,NSS93 RSDT94]. In most systems, users specify precisely
the number of processors which should be allocated to each job, a practice that
is known as rigid scheduling. In adaptive scheduling disciplines, the user spec-
ifies a minimum processor allocation, usually resulting from constraints due to
memory, and a maximum, corresponding to the point after which no further
processors are likely to be beneficial. In some cases, it may also be necessary to
specify additional constraints on the allocation, such as being a power of two.
If available, specific knowledge about jobs, such as amount of work or speedup
characteristics, can further aid the scheduler in allocating processors in excess
of minimum allocations.

In adaptive disciplines, jobs can be allocated a large number of processors
at light loads, giving them good response times. As the load increases, however,
allocation sizes can be decreased so as to improve the efficiency with which the
processors are utilized, and hence allowing a higher load to be sustained (i.e.,
a higher sustainable throughput). Also, adaptive disciplines can better utilize
processors than rigid ones because, with the latter, processors are often left idle
due to packing inefficiencies, while adaptive disciplines can adjust allocations to
make use of all available processors.

The third observation is that workloads found in practice tend to have a
very high degree of variability in the amount of computational work (also known
as service demand) [CMV94,FN95,Gib96]. In other words, most jobs have very
small service demands but a few jobs can run for a very long time. Run-to-
completion (RTC) disciplines exhibit very high response times because once a
long-running job is dispatched, short jobs must wait a considerable amount of
time before processors become available. Preemption can significantly reduce
the mean response times of these workloads relative to run-to-completion disci-
plines [PS95].

Unlike the sequential case, preemption of parallel jobs can be quite expensive
and complex to support. Fortunately, results indicate that preemption does not
need to be invoked frequently to be useful, since only long-running jobs ever need
to be preempted. In this paper, we consider three distinct types of preemption,
in increasing order of implementation complexity.

Simple In simple preemption, a job may be preempted but its threads may
not be migrated to another processor. This type of preemption is the easiest
to support (as threads need only be stopped), and may be the only type
available on message-passing systems.

Migratable In migratable preemption, a job may be preempted and its threads
migrated. Normally, this type of preemption can be easily supported in
shared-memory systems, but ensuring that data accessed by each thread
is also migrated appropriately can be difficult. In message-passing systems,
operating-system support for migration is not usually provided, but check-



pointing can often be employed instead.! For example, the Condor system
provides a transparent checkpointing facility for parallel applications that use
either MPI or PVM [PL96]. When a checkpoint is requested, the run-time
library flushes any network communications and I/O and saves the images of
each process involved in the computation to disk; when the job is restarted,
the run-time library re-establishes the necessary network connections and
resumes the computation from the point at which the last checkpoint was
taken. As such, using checkpointing to preempt a job is similar in cost to
swapping, except that all kernel resources are relinquished.

Malleable In malleable preemption, the size of a job’s processor allocation may
be changed after it has begun execution, a feature that normally requires ex-
plicit support within the application.? In the process control approach, the
application must be designed to to adapt dynamically to changes in pro-
cessor allocation while it is running [TG89,GTS91,NVZ96]. As this type of
support is uncommon, a simpler strategy may be to rely on application-level
checkpointing, often used by long-running jobs to tolerate system failures.
For these cases, it might be possible to modify the application so as to
store checkpoints in a format that is independent of allocated processors,
thus allowing the job to be subsequently restarted on a different number of
processors.

A representative sample of coordinated scheduling disciplines that have been
previously studied is presented in Fig. 1, classified according to the type of pre-
emption available and the flexibility in processor allocation (i.e., rigid versus
adaptive). Adaptive disciplines are further categorized by the type of informa-
tion they assume to be available, which can include service demand, speedup
characteristics, and memory requirements.? All types of preemption (simple, mi-
gratable, malleable) can be applied to all adaptive disciplines, but only simple
and migratable preemption are meaningful for rigid disciplines. The disciplines
proposed in this paper are highlighted in italics. (A more complete version of
this table can be found elsewhere [Par97].)

LoadLeveler is a commercial scheduling system designed primarily for the
IBM SP-2 system. A recent extension to LoadLeveler that has become popular
is EASY [Lif95,SCZL96]. This is a rigid RTC scheduler that uses execution-
time information provided by the user to offer both greater predictability and
better system utilization. When a user submits a job, the scheduler indicates
immediately a time by which that job will be run; jobs that are subsequently
submitted may be run before this job only if they do not delay the start of any

1 Although the costs of this approach may appear to be large, we have found that
significant reductions in mean response times can be achieved with minimal impact
on throughput, even with large checkpointing overheads.

2 Malleable preemption is often termed dynamic partitioning in the literature, but we
find it more convenient to treat it as a type of preemption.

% Some rigid schedulers do use service-demand information if available, but this dis-
tinction is not shown in this table.



Table 1. Representative set of disciplines that have been proposed and evaluated in
the literature. Disciplines presented in this paper are italicized and have the prefix
“LSF-”; for the adaptive ones, a regular and a “SUBSET” version are provided.

R1GID ADAPTIVE
Work Speedup Mem.
RTC RTC [ZM90] A+ A+&mM [Sev89] yes min/max no
PPJ [RSD'94] ASP [ST93] no pws no
NQS PWS [GST91] no no no
LSF Equal,IP [RSD"94] no no no
LoadLeveler SDF [CMV94] yes no no
EASY [Lif95] AVG,Adapt- no avg no
AVG [CMV94]
LSF-RTC LSF-RTC-AD(SUBSET) either either either
Preemption
simple Cosched
(matrix) [Ous82]
LSF-PREEMPT LSF-PREEMPT- either either either
AD(SUBSET)
migratable Cosched Round-Robin [ZM90] no no no
(other) [Ous82]
RRJob [MVZ93] FB-ASP,FB-PWS no pws no
LSF-MIG LSF-MIG-AD(SUBSET) either either either
malleable Equi/Dynamic no no no
Partition [TG89,MVZ93|
FOLD,EQUI [MZ94] no  no  no
(not applicable) W&E [BGI6] yes yes no
BUDDY,EPOCH [MZ95] no no yes
MPA [PS96b,PS96a) no yes yes
LSF-MALL- either either either
AD(SUBSET)




previously-scheduled job’s execution (i.e., a gap exists in the schedule containing
enough processors for sufficient time).

The disciplines that we present in this paper have been implemented as ex-
tensions to another commercial scheduling system, called Load Sharing Facility
(LSF). By building on top of LSF, we found that we could make direct use of
LSF for many aspects of job management, including the user interfaces for sub-
mitting and monitoring jobs, as well as the low-level mechanisms for starting,
stopping, and resuming jobs. LSF runs on a large number of platforms, including
the SP-2, SGI Challenge, SGI Origin, and HP Exemplar, making it an attractive
vehicle for this type of scheduling research. Our work is based on LSF version
2.2a.

3 Load Sharing Facility

Although originally designed for load balancing in workstation clusters, LSF is
now becoming popular for parallel job scheduling on multiprocessor systems. Of
greatest relevance to this work is the batch subsystem.

Queues provide the basis for much of the control over the scheduling of jobs.
Each queue is associated with a set of processors, a priority, and many other
parameters not described here. By default, jobs are selected in FCFS order from
the highest-priority non-empty queue and run until completion, but it is possible
to configure queues so that higher-priority jobs preempt lower priority ones (a
feature that is currently available only for the sequential-job case). The priority
of a job is defined by the queue to which the job has been submitted.

To illustrate the use of queues, consider a policy where shorter jobs have
higher priority than longer jobs (see Fig. 1). An administrator could define sev-
eral queues, each in turn corresponding to increasing service demand and having
decreasing priority. If jobs are submitted to the correct queue, short jobs will be
executed before long ones. Moreover, LSF can be configured to preempt lower
priority jobs if higher priority ones arrive, giving short jobs still better respon-
siveness. To permit enforcement of the policy, LSF can be configured to terminate
any job that exceeds the execution-time threshold defined for the queue.

The current version of LSF provides only limited support for parallel jobs.
As part of submitting a job, a user can specify the number of processors re-
quired. When LSF finds a sufficient number of processors satisfying the resource
constraints for the job, it spawns an application “master” process on one of the
processors, passing to this process a list of processors. The master process can
then use this list of processors to spawn a number of “slave” processes to perform
the parallel computation. The slave processes are completely under the control
of the master process, and as such, are not known to the LSF batch scheduling
system. LSF does provide, however, a library that simplifies several distributed
programming activities, such as spawning remote processes, propagating Unix
signals, and managing terminal output.



Processors

Short Jobs — ‘ ‘ ‘ ‘
Priority=10
Preemptive
Run Limit=5 mins

Medium Jobs — ‘ ‘ ‘ ‘
Priority=5
Preemptive/Preemptable
Run Limit=60 mins

LongJobs —= ‘ ‘ ‘ ‘
Priority=0
Preemptable.
No Run Limit

O0O0000

Fig. 1. Example of a possible sequential-job queue configuration in LSF to favour short-
running jobs. Jobs submitted to the short-job queue have the highest priority, followed
by medium- and long-job queues. The queues are configured to be preemptable (allow-
ing jobs in the queue to be preempted by higher-priority jobs) and preemptive (allowing
jobs in the queue to preempt lower-priority jobs). Execution-time limits associated with
each queue enforce the intended policy.

4 Scheduling Extension Library

The ideal approach to developing new scheduling disciplines is one that does not
require any LSF source code modifications, as this allows any existing users of
LSF to experiment with the new disciplines. For this purpose, LSF provides an
extensive application-programmer interface (API), allowing many aspects of job
scheduling to be controlled. Our scheduling disciplines are implemented within
a process distinct from LSF, and are thus called scheduling extensions.

The LSF API, however, is designed to implement LSF-related commands
rather than scheduling extensions. As a result, the interfaces are very low level
and can be quite complex to use. For example, to determine the accumulated run
time for a job—information commonly required by a scheduler—the programmer
must use a set of LSF routines to open the LSF event-logging file, process each
log item in turn, and compute the time between each pair of suspend/resume
events for the job. Since the event-logging file is typically several megabytes in
size, requiring several seconds to process in its entirety, it is necessary to cache
information whenever possible. Clearly, it is difficult for a scheduling extension
to take care of such details and to obtain the information efficiently.

One of our goals was thus to design a scheduling extension library that would
provide simple and efficient access to information about jobs (e.g., processors
currently used by a job), as well as to manipulate the state of jobs in the system



(e.g., suspend or migrate a job). This functionality is logically divided into two
components:

Job and System Information Cache (JSIC) This component serves as a
cache of system and job information obtained from LSF. It also allows a dis-
cipline to associate auxiliary, discipline-specific information with processors,
queues, and jobs for its own book-keeping purposes.*

LSF Interaction Layer (LIL) This component provides a generic interface
to all LSF-related activities. In particular, it updates the JSIC data struc-
tures by querying the LSF batch system and translates high-level parallel-job
scheduling operations (e.g., suspend job) into the appropriate LSF-specific
ones.

The basic designs of all our scheduling disciplines are quite similar. Each
discipline is associated with a distinct set of LSF queues, which the discipline
uses to manage its own set of jobs. All LSF jobs in this set of queues are assumed
to be scheduled by the corresponding scheduling discipline. Normally, one LSF
queue is designated as the submit queue, and other queues are used by the
scheduling discipline as a function of a job’s state. For example, pending jobs
may be placed in one LSF queue, stopped jobs in another, and running jobs
in a third. A scheduling discipline never explicitly dispatches or manipulates
the processes of a job directly; rather, it implicitly requests LSF to perform
such actions by switching jobs from one LSF queue to another. Continuing the
same example, a pending queue would be configured so that it accepts jobs but
never dispatches them, and a running queue would be configured so that LSF
immediately dispatches any job in this queue on the processors specified for the
job. In this way, a user submits a job to be scheduled by a particular discipline
simply by specifying the appropriate LSF queue, and can track the progress of
the job using all the standard LSF utilities.

Although it is possible for a scheduling discipline to contain internal job
queues and data structures, we have found that this is rarely necessary because
any state information that needs to be persistent can be encoded by the queue
in which each job resides. This approach greatly simplifies the re-initialization
of the scheduling extension in the event that the extension fails at some point,
an important property of any production scheduling system.

Given our design, it is possible for several scheduling disciplines to coexist
within the same extension process, a feature that is most useful in reducing
overheads if different disciplines are being used in different partitions of the
system. (For example, one partition could be used for production workloads
while another could be used to experiment with a new scheduling discipline.)
Retrieving system and job information from LSF can place significant load on
the master processor,® imposing a limit on the number of extension processes
that can be run concurrently. Since each scheduling discipline is associated with a

* In future versions of LSF, it will be possible for information associated with jobs to
be saved in log files so that it will not be lost in the event that the scheduler fails.
® LSF runs its batch scheduler on a single, centralized processor.



different set of LSF queues, the set of processors associated with each discipline
can be defined by assigning processors to the corresponding queues using the
LSF queue administration tools. (Normally, each discipline uses a single queue
for processor information.)

The extension library described here has also been used by Gibbons in
studying a number of rigid scheduling disciplines, including two variants of
EASY [Lif95,SCZ196,Gib96,Gib97]. One of the goals of Gibbons’ work was to
determine whether historical information about a job could be exploited in sched-
uling. He found that, for many workloads, historical information could provide
up to 75% of the benefits of having perfect information. For the purpose of
his work, Gibbons added an additional component to the extension library to
gather, store, and analyze historical information about jobs. He then adapted
the original EASY discipline to take into account this knowledge and showed
how performance could be improved. The historical database and details of the
scheduling disciplines studied by Gibbons are described elsewhere [Gib96,Gib97].

The high-level organization of the scheduling extension library (not including
the historical database) is shown in Fig. 2. The extension process contains the
extension library and each of the disciplines configured for the system. The ex-
tension process mainline essentially sleeps until a scheduling event or a timeout
(corresponding to the scheduling quantum) occurs. The mainline then prompts
the LIL to update the JSIC and calls a designated method for each of the con-
figured disciplines. Next, we describe each component of the extension library in
detail.

sched || [l sched | 1| sched

New Scheduling Disel Disc2 _
Disciplines IS Disc3
Y
JSIC 1
Scheduling Data LIL
Extension Library Objects
|

L]

Poll

LSF
Batch Subsystem

Fig. 2. High-level design of scheduling extension extension library. As shown, the ex-
tension library supports multiple scheduling disciplines running concurrently within
the same process.



4.1 Job and System Information Cache

The Job and System Information Cache (JSIC) contains all the information
about jobs, queues, and processors that are relevant to the scheduling disciplines
that are part of the extension. Our data structures were designed taking into
consideration the types of operations that we found to be most critical to the
design of our scheduling disciplines:

— A scheduler must be able to scan sequentially through the jobs associated
with a particular LSF queue. For each job, it must then be able to access in
a simple manner any job-related information obtained from LSF (e.g., run
times, processors on which a job is running, LSF job state).

— It must be able to scan the processors associated with any LSF queue and
determine the state of each one of these (e.g., available or unavailable).

— Finally, a scheduler must be able to associate book-keeping information with
either jobs or processors (e.g., the set of jobs running on a given processor).

In our library, information about each active job is stored in a JobInfo object.
Pointers to instances of these objects are stored in a job hash table keyed by
LSF job identifiers (jobId), allowing efficient lookup of individual jobs. Also, a
list of job identifiers is maintained for each queue, permitting efficient scanning
of jobs in any given queue (in the order submitted to LSF).

The information associated with a job is global, in that a single JobInfo
object instance exists for each job. For processors, on the other hand, we found
it convenient (for experimental reasons) to have distinct processor information
objects associated with each queue. Using a global approach similar to that for
jobs would also be suitable if it is guaranteed that a processor is never associated
with more than one discipline within an extension, but this was not necessarily
the case on our system. Similar to jobs, processors associated with a queue can
be scanned sequentially, or can be accessed through a hash table keyed on the
processor name. For each, the state of the processor and a list of jobs running
on the processor can be obtained.

4.2 LSF Interaction Layer (LIL)

The most significant function of the LSF interaction layer is to update the JSIC
data structures to reflect the current state of the system when prompted. Since
LSF only supports a polling interface, however, the LIL must, for each update
request, fetch all data from LSF and compare it to that which is currently stored
in the JSIC. As part of this update, the JSIC must also process an event logging
file, since certain types of information (e.g., total times pending, suspended,
and running) are not provided directly by LSF. As such, the JSIC update code
represents a large fraction of the total extension library code. (The extension
library is approximately 1.5 KLOC.)
To update the JSIC, the LIL performs the following three actions:



— It obtains the list of all active jobs in the system from LSF. Each job record
returned by LSF contains some static information, such as the submit time,
start time, resource requirements, as well as some dynamic information, such
as the job status (e.g., running, stopped), processor set, and queue. All this
information about each job is recorded in the JSIC.

— It opens the event-logging file, reads any new events that have occurred since
the last update, and re-computes the pending time, aggregate processor run
time, and wall-clock run time for each job. As well, aggregate processor and
wall-clock run times since the job was last resumed (termed residual run
times) are computed.

— It obtains the list of processors associated with each queue and queries LSF
for the status of each of these processors.

LSF provides a mechanism by which the resources, such as physical memory,
licenses, or swap space, required by the job can be specified upon submission. In
our extensions, we do not use the default set of resources to avoid having LSF
make any scheduling decisions, but rather add a new set of pseudo-resources that
are used to pass parameters or information about a job, such as minimum and
maximum processor allocations or service demand, directly to the scheduling
extension. As part of the first action performed by the LIL update routine, this
information is extracted from the pseudo-resource specifications and stored in
the JobInfo structure.

The remaining LIL functions, illustrated in Table 2, basically translate high-
level scheduling operations into low-level LSF calls.

Table 2. High-level scheduling functions provided by LSF Interaction Layer.

| OPERATION | DESCRIPTION |

switch This operation moves a job from one queue to another.
setProcessors|This operation defines the list of processors to be allocated to a
job. LSF dispatches the job by creating a master process on the
first processor in the list; as described before, the master process
uses the list to spawn its slave processes.
suspend This operation suspends a job. The processes of the job hold onto
virtual resources they possess, but normally release any physical
resources (e.g., physical memory).
resume This operation resumes a job that has previously been suspended.
migrate This operation initiates the migration procedure for a job. It does
not actually migrate the job, but rather places the job in a pend-
ing state, allowing it to be subsequently restarted on a different
set of processors.

Preemption Considerations The LSF interaction layer makes certain as-
sumptions about the way in which jobs can be preempted. For simple preemp-
tion, a job can be suspended by sending it a SIGTSTP signal, which is delivered



to the master process; this process must then propagate the signal to its slaves
(which is automated in the distributed programming library provided by LSF)
to ensure that all processes belonging to the job are stopped. Similarly, a job
can be resumed by sending it a SIGCONT signal.

In contrast, we assume that migratable and malleable preemption are im-
plemented via a checkpointing facility, as described in Sect. 2. As a result, pre-
empted jobs do not occupy any kernel resources, allowing any number of jobs to
be in this state (assuming disk space for checkpointing is abundant).

To identify migratable jobs, we set an LSF flag in the submission request
indicating that the job is re-runnable. To migrate such a job, we first send it a
checkpoint signal (in our case, the SIGUSR2 signal), and then send LSF a migrate
request for the job. This would normally cause LSF to terminate the job (with
a SIGTERM signal) and restart it on the set of processors specified (using the
setProcessors interface). In most cases, however, we switch such a job to a
queue that has been configured to not dispatch jobs prior to submitting the
migration request, causing the job to be simply terminated and requeued as a
pending job.

The interface for changing the processor allocation of a malleable job is iden-
tical to that for migrating a job, the only difference being the way it is used.
In the migratable case, the scheduling discipline always restarts a job using the
same number of processors as in the initial allocation, while in the malleable
case, any number of processors can be specified.

4.3 A Simple Example

To illustrate how the extension library can be used to implement a discipline,
consider a sequential-job, multi-level feedback discipline that degrades the prior-
ity of jobs as they acquire processing time. If the workload has a high degree of
variability in service demands, as is typically the case even for batch sequential
workloads, this approach will greatly improve response times without requiring
users to specify the service demands of jobs in advance. For this discipline, we can
use the same queue configuration as shown in Fig. 1; we eliminate the run-time
limits, however, as the scheduling discipline will automatically move jobs from
higher-priority queues to lower-priority ones as they acquire processing time.

Users initially submit their jobs to the high-priority queue (labeled short jobs
in Fig. 1); when the job has acquired a certain amount of processing time, the
scheduling extension switches the job to the medium-priority queue, and after
some more processing time, to the low-priority queue. In this way, the extension
relies on the LSF batch system to dispatch, suspend, and resume jobs as a
function of the jobs in each queue. Users can track the progress of jobs simply
by examining the jobs in each of the three queues.

5 Parallel-Job Scheduling Disciplines

We now turn our attention to the parallel-job scheduling disciplines that we have
implemented as LSF extensions. Important to the design of these disciplines are



the costs associated with using LSF on our platform. It can take up to thirty
seconds to dispatch a job once it is ready to run. Migratable or malleable preemp-
tion typically requires more than a minute to release the processors associated
with a job; these processors are considered to be unavailable during this time.
Finally, scheduling decisions are made at most once every five seconds to keep
the load on the master (scheduling) processor to an acceptable level.

The disciplines described in this section all share a common job queue config-
uration. A pending queue is defined and configured to allow jobs to be submitted
(i.e., open) but preventing any of these jobs from being dispatched automati-
cally by LSF (i.e., inactive). A second queue, called the run queue, is used by
the scheduler to start jobs. This queue is open, active, and possesses absolutely
no load constraints. A scheduling extension uses this queue by first specifying
the processors associated with a job (i.e., setProcessors) and then moving the
job to this queue; given the queue configuration, LSF immediately dispatches
jobs in this queue. Finally, a third queue, called the stopped queue, is defined to
assist in migrating jobs. It too is configured to be open but inactive. When LSF
is prompted to migrate a job in this queue, it terminates and requeues the job,
preserving its job identifier. In all our disciplines, preempted jobs are left in this
queue to distinguish them from jobs that have not had a chance to run yet (in
the pending queue).

Each job in our system is associated with a minimum, desired, and maximum
processor allocation, the desired value lying between the minimum and maxi-
mum. Rigid disciplines use the desired value while adaptive disciplines are free
to choose any allocation between the minimum and the maximum values.

If provided to the scheduler, service demand information is specified in terms
of the amount of computation required on a single processor and speedup charac-
teristics are specified in terms of the fraction of work that is sequential. Basically,
service-demand information is used to run jobs having the least remaining pro-
cessing time (to minimize mean response times) and speedup information is used
to favour efficient jobs in allocating processors. Since jobs can vary considerably
in terms of their speedup characteristics, computing the remaining processing
time will only be accurate if speedup information is available.

5.1 Run-to-Completion Disciplines

Next, we describe the run-to-completion disciplines. All three variants listed in
Table 1 (i.e., LSF-RTC, LSF-RTC-AD, and LSF-RTC-ADSUBSET) are quite
similar and, as such, are implemented in a single module of the scheduling ex-
tension. The LSF-RTC discipline is defined as follows:

LSF-RTC Whenever a job arrives or departs, the scheduler repeatedly scans
the pending queue until it finds the first job for which enough processors are
available. It assigns processors to the job and switches the job to the run
queue.

The LSF system, and hence the JSIC, maintains jobs in order of arrival, so
the default RTC discipline is FCFS (skipping any jobs at the head of the queue



for which not enough processors are available). If service-demand information is
provided to the scheduler, then jobs are scanned in order of increasing service
demand, resulting in a shortest processing time (SPT) discipline (again with
skipping).

The LSF-RTC-AD discipline is very similar to the ASP discipline proposed
by Setia et al. [ST93], except that jobs are selected for execution differently
because the LSF-based disciplines take into account memory requirements of
jobs (and hence cannot be called ASP).

LSF-RTC-AD Whenever a job arrives or departs, the scheduler scans the
pending queue, selecting the first job for which enough processors remain
to satisfy the job’s minimum processor requirements. When no more jobs
fit, leftover processors are used to equalize processor allocations among se-
lected jobs (i.e., giving processors to jobs having the smallest allocation). The
scheduler then assigns processors to the selected jobs and switches these jobs
to the run queue.

If speedup information is available, the scheduler allocates each leftover pro-
cessor, in turn, to the job whose efficiency will be highest after the alloca-
tion. This approach minimizes both the processor and memory occupancy in
a distributed-memory environment, leading to the highest possible sustainable
throughput [PS96a].

The SUBSET variant seeks to improve the efficiency with which processors
are utilized by applying an algorithm known as a subset-sum algorithm [MT90].
The basic principle is to try to minimize the number of processors allocated to
jobs in excess to each of the job’s minimum processor allocation (termed surplus
processors). Since we assume that a job utilizes processors more efficiently as
its allocation size decreases (down to the minimum allocation size), then this
principle allows the system to run at a higher overall efficiency.

LSF-RTC-ADSUBSET Let L be the number of jobs in the system and Ng be
the number of jobs selected by the first-fit algorithm used in LSF-RTC-AD.
The scheduler only commits to running the first N’ of these jobs, where

N = \‘NH * max (1 — ﬁ,O)J

(6 is a tunable parameter that determines how aggressively the scheduler
seeks to minimize surplus processors as the load increases; for our exper-
iments, we chose § = 5.) Using any leftover processors and leftover jobs,
the scheduler applies the subset-sum algorithm to select the set of jobs that
minimizes the number of surplus processors. The jobs chosen by the subset-
sum algorithm are added to the list of jobs selected to run, and any surplus
processors are allocated as in LSF-RTC-AD.

Simple Preemptive Disciplines In simple preemptive disciplines, jobs may be
suspended but their processes may not be migrated. Since the resources used by



jobs are not released when they are in a preempted state, however, one must be
careful to not over-commit system resources. In our disciplines, this is achieved by
ensuring that no more than a certain number of processes ever exist on any given
processor. In a more sophisticated implementation, we might instead ensure that
the swap space associated with each processor would never be overcommitted.

The two variants of the preemptive disciplines are quite different. In the rigid
discipline, we allow a job to preempt another only if it possesses the same desired
processor allocation. This is to minimize the possibility of packing losses that
might occur if jobs were not aligned in this way.® In the adaptive discipline,
we found this approach to be problematic. Consider a long-running job, either
arriving during an idle period or having a large minimum processor requirement,
that is dispatched by the scheduler. Any subsequent jobs preempting this first
one would be configured for a large allocation size, causing them, and hence
the entire system, to run inefficiently. As a result, we do not attempt to reduce
packing losses with the adaptive, simple preemptive discipline.

LSF-PREEMPT Whenever a job arrives or departs or when a quantum ex-
pires, the scheduler re-evaluates the selection of jobs currently running.
Available processors are first allocated in the same way as in LSF-RTC.
Then, the scheduler determines if any running job should be preempted by
a pending or stopped job, according to the following criteria:

1. A stopped job can only preempt a job running on the same set of pro-
cessors as those for which it is configured. A pending job can preempt
any running job that has a same desired processor allocation value.

2. If no service-demand information is available, the aggregate cumulative
processor time of the pending or stopped job must be some fraction
less than that of the running job (in our case, we use the value of 50%);
otherwise, the service demand of the preempting job must be a (different)
fraction less than that of the running job (in our case, we use the value
of 10%).

3. The running job must have been running for at least a certain specified
amount of time (one minute in our case, since suspension and resumption
only consist of sending a Unix signal to all processes of the job).

4. The number of processes present on any processor cannot exceed a pre-
specified number (in our case, five processes).

If several jobs can preempt a given running job, the one which has the
least acquired aggregate processing time is chosen first if no service-demand
knowledge is available, or the one with the shortest remaining service demand
if service-demand knowledge is available.

Our adaptive, simple preemptive discipline uses a matrix approach to sched-
uling jobs, where each row of the matrix represents a different set of jobs to run

6 Packing losses occur when processors are left idle, either because there are an insuf-
ficient number to meet the minimum processor requirements of pending jobs or if
only some of the processors required by stopped jobs are available.



and the columns the processors in the system. In Ousterhout’s co-scheduling dis-
cipline, an incoming job is placed in the first row of the matrix that has enough
free processors for the job; if no such row exists, then a new one is created. In
our approach, we use a more dynamic approach.

LSF-PREEMPT-AD Whenever the scheduler is awakened (due either to an

arrival or departure or to a quantum expiry), the set of jobs currently run-
ning or stopped (i.e., preempted) is organized into the matrix just described,
using the first row for those jobs that are running. Each row is then exam-
ined in turn. For each, the scheduler populates the uncommitted processors
with the best pending, stopped, or running jobs. (If service-demand infor-
mation is available, currently-stopped or running jobs may be preferable to
a pending job; these jobs can switch rows if all processors being used by the
job are uncommitted in the row currently being examined.) The scheduler
also ensures that jobs that are currently running, but which have run for
less than the minimum time since last being started or resumed, continue to
run. If such jobs cannot be accommodated in the row being examined, then
the scheduler skips to the next row.
Once the set of jobs that might be run in each row has been determined, the
scheduler chooses the row that has the job having the least acquired process-
ing time or, if service-demand information is available, the job having the
shortest remaining service demand. Processors in the selected row available
for pending jobs are distributed as before (i.e., equi-allocation if no speedup
knowledge is available, or favouring efficient jobs if it is).

Migratable and Malleable Preemptive Disciplines In contrast to the sim-
ple preemptive disciplines, the migratable and malleable ones assume that a job
can be checkpointed and restarted at a later point in time. The primary dif-
ference between the two types is that, in the migratable case, jobs are always
resumed with the same number of processors allocated when the job first started,
whereas in the malleable case, a job can be restarted with a different number of
processors.

LSF-MIG Whenever a job arrives or departs or when a quantum expires,
the scheduler re-evaluates the selection of jobs currently running. First,
currently-running jobs which have not run for at least a certain configurable
amount of time (in our case, ten minutes, since migration and processor
reconfiguration are relatively expensive) are allowed to continue running.
Processors not used by these jobs are considered to be available for re-
assignment. The scheduler then uses a first-fit algorithm to select the jobs
from those remaining to run next, using a job’s desired processor allocation.
As before, if service-demand information is available, jobs are selected in
order of least remaining service demand.

LSF-MIG-AD and LSF-MALL-AD Apart from their adaptiveness, these
two disciplines are very similar to the LSF-MIG discipline. In the malleable



version, the scheduler uses the same first-fit algorithm as in LSF-MIG to
select jobs, except that it always uses a job’s minimum processor allocation
to determine if a job fits. Any leftover processors are then allocated as before,
using an equi-allocation approach if no speedup information is available, and
favouring efficient jobs otherwise. In the migratable version, the scheduler
uses the size of a job’s current processor allocation instead of its minimum if
the job has already run (i.e., has been preempted) in the first-fit algorithm,
and does not change the size of such a job’s processor allocation if selected
to run.

Similar to the run-to-completion case, SUBSET-variants of the adaptive dis-
ciplines have also been implemented.

6 Performance Results

The evaluation of the disciplines described in the previous section is primarily
qualitative in nature. There are two reasons for this. First, experiments must be
performed in real time rather than in simulated time, requiring a considerable
amount of time to execute a relatively small number of jobs. Moreover, failures
that can (and do) occur during the experiments can significantly influence the
results, although such failures can be tolerated by the disciplines. Second, we
intend our implementations to demonstrate the practicality of a discipline and
to observe its performance in a real context, rather than to analyze its perfor-
mance under a wide variety of conditions (for which a simulation would be more
suitable).

The experimental platform for the implementation is a network of worksta-
tions (NOW), consisting of sixteen IBM 43P (133MHz, PowerPC 604) systems,
connected by three independent networks (155 Mbps ATM, 100 Mbps Ethernet,
10 Mbps Ethernet).

To exercise the scheduling software, we use a parameterizable synthetic ap-
plication designed to represent real applications. The basic reason for using a
synthetic application is that it could be designed to not use any processing re-
sources, yet behave in other respects (e.g., execution time, preemption) as a
real parallel application. This is important in the context of our network of
workstations, because the system is being actively used by a number of other
researchers. Using real (compute-intensive) applications would have prevented
the system from being used by others during the tests, or would have caused the
tests to be inconclusive if jobs were run at low priority.

Each of our scheduling disciplines ensures that only a single one of its jobs is
ever running on a given processor and that all processes associated with the job
are running simultaneously. As such, the behaviour of our disciplines, when used
in conjunction with our synthetic application, is identical to that of a dedicated
system running compute-intensive applications. In fact, by associating a different
set of queues with each discipline, each one configured to use all processors, it
was possible to conduct several experiments concurrently. (The jobs submitted
to each submit queue for the different disciplines were generated independently.)



The synthetic application possesses three important features. First, it can be
easily parameterized with respect to speedup and service demand, allowing it to
model a wide range of real applications. Second, it supports adaptive processor
allocations using the standard mechanism provided by LSF. Finally, it can be
checkpointed and restarted, to model both migratable and malleable jobs.

An experiment consists of submitting a sequence of jobs to the scheduler
according to a Poisson arrival process, using an arrival rate that reflects a
moderately-heavy load. A small initial number of these jobs (e.g., 200) are tagged
for mean response time and makespan measurements. (The makespan is the max-
imum completion time of any job in the set of jobs under consideration, assuming
that the first job arrives at time zero.) Each experiment terminates only when
all jobs in this initial set have left the system. To make the experiment more
representative of large systems, we assume that each processor corresponds to
eight processors in reality. Thus, all processor allocations are multiples of eight,
and the minimum allocation is eight processors. Scaling the number of proces-
sors in this way affects the synthetic application in determining the amount of
time it should execute and the scheduling disciplines in determining the expected
remaining service demand for a job.

6.1 Workload Model

Service demands for jobs are drawn from a hyper-exponential distribution, with
mean of 8000 seconds (2.2 hours) and coefficient of variation (CV) of 4, a dis-
tribution whose median is 2985 seconds.” The parameters are consistent with
measurements made over the past year at the Cornell Theory Center (scaled
to 128 processors) [Hot96b,Hot96a]. The most significant difference is that the
mean is about a quarter of that actually observed, which should not unduly affect
results as it only magnifies scheduling overheads. (Recall that in the migratable
and malleable preemption cases, we only preempt a job if it has run at least 10
minutes, since preemption requires at least one minute.) All disciplines received
exactly the same sequence of jobs in any particular experiment, and in general,
individual experiments required anywhere from 24 to 48 hours to complete.

Minimum processor allocation sizes are uniformly chosen from one to sixteen
processors, and maximum sizes are set at sixteen.® This distribution is similar to
those used in previous studies in this area [PS96a,MZ95,Set95]. The processor
allocation size used for rigid disciplines is chosen from a uniform distribution
between the minimum and the maximum processor allocations for the job.

It has been shown previously that performance benefits of knowing speedup
information can only be obtained if a large fraction of the total work in the
workload has good speedup, and moreover, if larger-sized jobs tend to have better
speedup than smaller-sized ones [PS96a]. As such, we let 75% of the jobs have

" The 25%, 50%, and 75% quantiles are 1230, 2985, and 6100 seconds, respectively.

& Note that maximum processor allocation information is only useful at lighter loads,
since at heavy loads, jobs seldom receive many more processors than their minimum
allocation.



good speedup, where 99.9% of the work is perfectly parallelizable (corresponding
to a speedup of 114 on 128 processors). Poor speedup jobs have a speedup of 6.4
on 8 processors and a speedup of 9.3 on 128 processors.’

6.2 Results and Lessons Learned

The performance results of all disciplines under the four knowledge cases (no
knowledge, service-demand knowledge, speedup knowledge, or both) are given
in Table 3 and summarized in Figs. 3 and 4. As can be seen, the response times
for the run-to-completion disciplines are much higher (by up to an order of
magnitude) than the migratable or malleable preemptive disciplines. The simple
preemptive, rigid discipline does not offer any advantages over the corresponding
run-to-completion version. The reason is that there is insufficient flexibility in
allowing a job to only preempt another that has the same desired processor
requirement. The adaptive preemptive discipline is considerably better in this
regard.

Adaptability appears to have the most positive effect for run-to-completion
and malleable disciplines (see Fig. 4). In the former case, makespans decreased
by nearly 50% from the rigid to the adaptive variant using the subset-sum algo-
rithm. To achieve this improvement, however, the mean response times generally
increased because processor allocations tended to be smaller (leading to longer
average run times). In the malleable case, adaptability resulted in smaller but
noticeable decreases in makespans (5-10%). It should be noted that the opportu-
nity for improvement is much lower than in the RTC case because the minimum
makespan is 65412 seconds for this experiment (compared to actual observed
makespans of approximately 78000 seconds).

Service-demand and speedup knowledge appeared to be most effective when
either the mean response time (for the former) or the makespan (for the latter)
were large, but may not be as significant as one might expect. Service-demand
knowledge had limited benefit in the run-to-completion disciplines because the
high response times result from long-running jobs being activated, which the
scheduler must do at some point. In the migratable and malleable preemptive
disciplines, the multilevel feedback approach achieved the majority of the bene-
fits of having service demand information. Highlighting this difference, we often
found queue lengths for run-to-completion disciplines to grow as high as 60 jobs,
while for migratable or malleable disciplines, they were rarely larger than five.

Given our workload, we found speedup knowledge to be of limited benefit
because poor-speedup jobs can rarely run efficiently. (To utilize processors effi-
ciently, such a job must have a low minimum processor requirement, and must
be started at the same time as a high-efficiency job; even in the best case, the
maximum efficiency of a poor-speedup job will only be 58% given a minimum
processor allocation of eight after scaling.) From the results, one can observe that

9 Such a two-speedup-class workload appears to be supported by data from the Cornell
Theory Center if we examine the amount of CPU time consumed by each job relative
to its elapsed time [Par97].



Table 3. Performance of LSF-based scheduling disciplines. In some trials, the discipline did not terminate within a reasonable amount

of time; in these cases, a minimum bound on the mean response times is reported (indicated by a >) and the number of unfinished jobs
is given in parenthesis.

DISCIPLINE No KNOWLEDGE |SERVICE-DEMAND SPEEDUP BotH

MRT MAKESPAN [MRT MAKESPAN [MRT MAKESPAN| MRT MAKESPAN
LSF-RTC 5853 147951 4040 140342 5279 130361 5627 143507
LSF-RTC-AD 10611 129093 8713 126531 8034 91003 8946 126917
LSF-RTC-ADSUBSET 8264 76637 8410 81767 8039 73324 8074 75340
LSF-PREEMPT 5793 145440 5039 143686 5280 130314 5028 143631
LSF-PREEMPT-AD > 2293 > 219105(2)| 1078 127204 2207 172768 821 111489
LSF-MIG 678 83985 662 81836 690 82214 660 82708
LSF-MIG-AD 769 88488 858 103876 784 86080 > 1342 > 192031(1)
LSF-MIG-ADSUBSET 770 90789 854 106065 769 85828 > 1347 > 193772(1)
LSF-MALL-AD 667 77534 632 78760 666 78215 650 78840
LSF-MALL-ADSUBSET| 681 78537 680 79191 680 76481 644 78065
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Fig. 5. Effects of highly variable service demands on the ability for a run-to-completion
scheduler to activate jobs having large minimum processor requirements. Because of the
long-running jobs, the system rarely reaches a state where all processors are available,
which is necessary to schedule a job having a large minimum processor requirement.

service-demand knowledge can sometimes negate the benefits of having speedup
knowledge as jobs having the least remaining service demand (rather than least
acquired processing time) are given higher priority.

While performing the our experiments, we monitored the behaviour of each

of our schedulers, in order to further understand the performance results. Our
observations can be summarized as follows:

— Jobs having large minimum processor requirements can often experience

significant delays in run-to-completion disciplines. Since service demands
have a high degree of variability, there is often at least one job running
having a large service demand, making it difficult to ever schedule a job
having large minimum processor requirement.

This behaviour is illustrated in Fig. 5. Even at light loads, it is quite likely for
some processors to be occupied, preventing the dispatching of a job having a
large processor requirement. Even the use of the SUBSET variant of the RTC
disciplines cannot counteract this effect because it still requires all processors
to be available at the time it makes its scheduling decision.

Adaptive run-to-completion disciplines can lead to more variable makespans.
In a 200-job workload, the makespan is dictated essentially by the long-
running jobs in the system (e.g., in one of our experiments, one job had
a sequential service demand of 265000 seconds, or almost 74 hours). The
makespan of a rigid discipline will be relatively predictable because the ex-
ecution time of these long jobs is set in advance. In the adaptive case, a
scheduler may allocate such jobs a small number of processors, which is
good from an efficiency standpoint, but can lead to much longer makespans.
Also, if long jobs are allocated few processors, which tends to occur in most
adaptive disciplines as the load increases, these long jobs will occupy pro-
cessors for longer periods of time (relative to the rigid case). This can make
it even more difficult for jobs with large minimum processor requirements to
ever find enough available processors.



The conclusion is that run-to-completion disciplines are even more prob-
lematic than originally indicated. It has previously been shown how high
variability in service demands can lead to poor response times if memory
is abundant; these observations show that highly variable service demands
can also lead to starvation for jobs having large minimum processor require-
ments.

— Migratable disciplines can significantly reduce response times relative to

RTC ones. However, adaptive versions of migratable disciplines can exhibit
unpredictable completion times for long-running jobs, as a scheduler must
commit to an allocation when a job is first activated. In some cases, the
scheduler allocates a small number of processors to long-running jobs, only
to have other processors subsequently become available. In a production en-
vironment, this may encourage users submitting high service-demand jobs
to specify a large minimum processor allocation simply to ensure that their
jobs complete within a more desirable amount of time, but having a negative
effect on the sustainable throughput.
In other cases, long-running jobs were allocated a large number of processors,
leading to potential starvation problems. (This was the cause of the large
makespans in the full-knowledge LSF-MIGRATE-AD and LSF-MIGRATE-
ADSUBSET experiments.) In order to resume such a job once stopped, the
scheduler must be capable of preempting a sufficient number of running jobs
to satisfy the stopped job’s processor requirement. This can be difficult at
high loads where jobs with small processor allocations are continuously being
started, suspended, and resumed, since we only preempt jobs that have run
at least ten minutes. In a real workload, we believe this problem will become
less important as the ratio of the migration overhead to the mean service
demand becomes smaller.

— From a user’s perspective, malleable disciplines are most attractive. During
periods of heavy load, the system allocates jobs a small number of processors,
and as the load becomes lighter, long-running jobs receive more processors.
Unused processors arising from imperfect packing are never a problem, al-
lowing a high level of utilization to be achieved. Also, jobs rarely experience
starvation because the scheduler does not commit itself to a processor alloca-
tion upon activating a job for the first time. As a result, adaptive malleable
disciplines consistently performed best and have the highest potential for
low response times and high throughputs (even given a 10% re-allocation
overhead).

7 Conclusions

In this paper, we present the design of parallel-job scheduling implementations,
based on Platform Computing’s Load Sharing Facility (LSF). We consider a
wide range of disciplines, from run-to-completion to malleable preemptive ones,
each with varying degrees of knowledge of job characteristics. Although these
disciplines were implemented on a network of workstations, they can be used on
any distributed-memory multiprocessor system supporting LSF.



The primary objective of this work was to demonstrate the practicality of im-
plementing parallel-job scheduling disciplines. By building on top of an existing
commercial software package, we found that implementing new disciplines was
relatively straightforward. Given the lack of maturity of parallel-job scheduling,
the approach taken in extending commercial scheduling software is a good one.
Future work in this area, however, would be aided by the inclusion of the Job
and System Information Cache (JSIC) and the corresponding update routines
directly into the base scheduling software.

The secondary objective of this work was to study the behaviour of these
disciplines in a more realistic environment and to illustrate the benefits of dif-
ferent types of preemption and knowledge. We found that preemption is crucial
to obtaining good response times. We believe that the most attractive discipline
for today is a hybrid migratable/malleable discipline. Many long-running jobs in
production environments already perform checkpointing to tolerate failures, and
as mentioned before, technology exists to perform automatic checkpointing of
many parallel jobs. Given that only long-running jobs ever need to be migrated
or “malleated”, disciplines that expect either of these two types of preemption
are practical today. Although the majority of applications used today may sup-
port only migratable preemption, it is relatively simple to modify our adaptive
migratable/malleable scheduling module to support both kinds of jobs. Using
such a hybrid scheduling discipline would greatly benefit jobs that already sup-
port malleable preemption, and would further encourage application writers to
support this kind of preemption in new applications.

Our observations suggest that further work could be done to better choose
processor allocations given approximate speedup and service-demand knowledge
about jobs in order to reduce the variability in completion times for any given
job. In particular, better decisions may be made by taking into consideration
average load over some period of time rather than instantaneous load. Such
improvements would be most relevant for simple and migratable preemption,
since in this case, the scheduler must commit to a processor allocation for a job
when the job is first started.
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