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Abstract

In this paper we have characterized the inter-arrival tirmelgervice time distributions
for jobs at a large MPP supercomputing center. Our findingssthat the distributions
are dispersive and complex enough that they require Hyplamigrdistributions to cap-
ture the first three moments of the observed workload. Wepsés®ent the parameters
from the characterization so that they can be easily usedé&th theoretical studies
and the simulations of various scheduling algorithms.

1 Introduction

In recent years massively parallel processors (MPP) coenptive made a significant
presence. With this growth in MPPs, a number of researclears teveloped and are
continuing to develop various job scheduling subsystemshfese MPPs [1, 2, 3, 4,
5, 6]. During the development of these schedulers and te&ted algorithms, it is
important to have an accurate characterization of the wadg experienced by the
MPPs. Itis extremely advantageous to have these workldetacterized by a compact
model that is representable by a few parameters, is suifabléneoretical queuing
analysis of scheduling algorithms, and is reasonablygiteiorward for the generation
of synthetic workloads. In this paper we propose such a maael demonstrate its
efficacy by using it to fit the workload from the Cornell Uniséy Supercomputer.

The model we use for representing the inter-arrival time tedservice time of
jobs is a phase type distribution model, specifically, th@étyErlang Distribution of
Common Order. Since we expect this model to be used by részarwith diverse
background, we take a pedagogical approach in this pageerrthan simply refer
the readers to the literature. In section 4, we describe thdehparameter extraction
procedure. In section 5, we present the parameters exdricim the workload of the
SP2 at the Cornell Theory Center experienced during thegé&mm June 25, 1996 to
September 12, 1996. In section 6, we describe ways to gersnathetic workloads for
simulation studies. In the appendix, we present a samplgranoto generate synthetic
workloads.



2 Phase Type Distribution

The exponential distribution and the related Poisson mobave been pervasively used
in the stochastic modeling of computers and network wokdo@he primary reason for
the popularity of the exponential distribution is the easwwhich it can be manipu-
lated in theoretical studies, and not because of the pres#draclarge body of empirical
data supporting it in a wide range of real life situationse Ttactability of the exponen-
tial distribution in analytical work comes mainly from itssmoryless property, leading
to a simple form for the Laplace transform of the probabditstribution function (pdf),
namely, \

£ =(5) &)
and to an underlying Markovian process. In this expres$jonis the first moment of
the distribution and represents the average value of thaorarvariable with the expo-
nential distribution. In a Markovian process, the trawsitiate from a state to the next
state depends only on the current state, and does not épliepend on past history.
This property simplifies the steady state equations andlemalne to represent all the
needed information by a one dimensional vector of the ctistate, thus making the
gueuing analysis of the problem tractable. In 1947, Erlaewegalized the exponential
distribution to include more complex probability distrtlns, while preserving the an-
alytic tractability. This generalized distribution is kel the Erlang distribution and its
Laplace transform is \

£ =(5) @
Service time distributions that can be represented by tlhengrdistribution can be
thought of as originating from a system where the job goesutinn phases or stages
before completion. At each stage a job spends an exporigrdiatributed random
amount of time, with the average time beibg\. The distribution of the total service
time of the jobs is then the convolution of n exponential ritisttions. The Laplace
transform of this convolution is equation 2. The Erlangrilisttion, like the exponential
distribution, has an underlying Markovian process, thukingit attractive for use in
gueuing theory. The Erlang distribution can represent mgpes of systems than the
exponential distribution can. Finally in 1955, Cox, in a seahpaper [7], demonstrated
that the key advantage of the Erlang and the exponentiailaibns for analytical
work stems from the fact that their Laplace transforms atiemal. He also developed
a generalized distribution known as the Phase Type Digtabuwhich is capable of
representing any stochastic process whose associates tpalfe Laplace transforms
that are rational. Practically all the relevant systems emepunters in the stochastic
modeling of workloads in computers can be modeled by thed”Tigse Distribution.

In practice, one approximates only the first few moments efgrobability distri-
butions under study with Phase Type Distributions; andelidsase Type Distributions
are characterized by a set of parametero, p;, n; and; ; (where i,j=1,2,3,...), such
that their Laplace transforms are of the form

Fe) =p+Yonl (i—A) 3)
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with

) =1 (4)

Service time distributions representable by equation 3klmamthought of as coming
from a system where jobs may reach completion using any of-tp®ssible paths. If
a job goes through thi&” path, then it will traverse through; phases or stages before
completion; and like the Erlang distribution, the job spead exponentially distributed
random amount of time at each stage. These exponentidbdistns are characterized
by the parameters; ;.

The Phase Type Distribution, in addition to its ability tangeniently represent a
wide class of stochastic processes, provides an undefargovian process, a great
advantage for queuing studies [8], for the reasons destebdier. Recently they have
also been used successfully in analyzing gang-scheduliktPiPs [5].

3 Hyper Erlang Distribution of Common Order

Oftentimes, in analytical modeling of a stochastic processy the first few moments
of the random variables are considered. For most stochpsiesses, the first few
moments represent attributes that tend to be relativelypkaimvariant. Here we con-
sider the first three moments of the random variables for adating. They carry the
information about the mean, the variance, and the skewrfeb® sandom variables
respectively.

In this paper, we choose the simplest distribution with adaulying Markovian
process, that can fit the the first three moments of the oldela. As mentioned in
the previous section, the underlying Markovian processamdlie distribution tractable
in theoretical studies. The distribution we have chosehédtyper Erlang Distribution
of Common Order, which is a Phase Type Distribution that ceactty fit the first
three moments of the observed random distribution. The Hggang Distribution of
Common Order is a generalization of the exponential, theehggponential, and the
Erlang distribution. Our fitting procedure automatical@fests the simplest of these 4
distributions that is commensurate with the first three musief the observed data.

The Hyper Erlang Distribution of Common Order distributiwers a Laplace trans-

form of the form ,
N A \"
6 =) (5)
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wheren, a positive integer, is called the order of the distributamd0 < p;, < 1 with
p1 + p2 = 1. The Erlang distribution is a special case of the Hyper Eyl@aistribution
of Common Order with one of thg;s equal to 1, e.gp; = 1. The hyper exponen-
tial distribution is a Hyper Erlang Distribution of Commorrd@r withn = 1. The
exponential distribution is also a special case with= 1 andn = 1.

An example of a server with service time distribution expedde by a Hyper Erlang
Distribution of Common Order is a system where a job must gassigh one and only
one of two service paths to completion. In each path it hagss phrough stages (or
phases), spending a random amount of service time at eadie afgtages. The pdf




of service time at each stage of path 1 is an exponentialildision with mean time
1/A1, and that of path 2 is an exponential distribution with mdametl/X,. Let p,
be the probability of the job selecting path 1, gid- p;) be that of selecting path 2.
Pictorially, the stages of this system can be depicted by
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Thek?* non-central moment of a distribution, for all integérs 1, can be obtained
from the Laplace transform of the distribution by,

dkf* (5)
— k] — (_1\E
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which, for Hyper Erlang distribution of Common Order, is
2
nn+1).(n+k—1
P = Zpi ( ) )\(@ ) (7)
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The moments for the Erlang distribution are obtained byirsgt; = 1 andp, = 0 in
equation 7, yielding
nn+1)..(n+k—-1
pe = Mot Denr b2 D) ®

The moments for the hyper exponential distribution are iabthby setting: = 1 in
equation 7, yielding

2 k!
Mk = sz’)\—k 9)
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The moments for the exponential distribution is obtain kting » = 1 in equation 8,
giving
k!
P = N (10)

Examining the expressions for the first three moments ofetléstributions, and
because physical situations imply non-negagiy@and;s, one finds a number of in-
terrelationships among these moments. These interne$dtips specify the constraints
that must be satisfied by the moments of the observed datapfmticular model to rep-
resent the data. Without going into the proof (which is gtinaforward in most cases,
but involves lengthy algebraic manipulations in the noriobs cases), we state here
the constraints on the first three moments of various digioh.

The constraints for the exponential distribution are:

po = 2% pg’ (11)

and
pa = 6% pp® 12)



Since the exponential distributionis a one parameter matléligher moments are just
functions of first moments. In the data we examined in thispapone of the observed
moments, either for inter-arrival time or the service tifudfll this condition.

The constraints for the hyper exponential distribution are

3
pips > 5#% (13)
and
pio > 2443 (14)

The constraints for the Erlang distribution are:

= 2 15
Hipts "+ 1#2 (15)
and
1 2
P2 = (1 + ;)#1 (16)
The constraints for Hyper Erlang of Common Order are
n+2 ,
—_— 17
Paps > ks 17)
and 1
n
po > ——p (18)

4 Our Modeling Procedure

Our procedure for modeling, selects the simplest model gista@xponential, hyper ex-
ponential, Erlang and Hyper Erlang Distribution of Commaonl€, as long as the first
three moments of the data do not violate the constraintseofrtbdel under consider-
ation. It also exactly matches the first three moments of Hta tb that of the model.
In our procedure for modeling the data, we start with theahren-central moments
of the data, namely thegs and fit them to the Hyper Erlang of Common Order distri-
bution with the lowest value of satisfying equations 17 and 18. The Hyper Erlang
of Common Order distribution has four unknowns, namelyX,, n andp;, p2 where

p1 + p2 = 1. For a givenn, one can extract the remaining three parameters of this
model by matching the expressions far, 12, and 3 obtained from equation 7,to the
first three observed non-central moments. This involvegspl3 simultaneous equa-
tions with 3 unknowns. The analytical expression for thee¢hparameters has been
derived by Johnson and Taaffe [9]. In general, an infinitelnemofr’s can fit the data,
while satisfying equations 17 and 18. We select the smalledin. Furthermore, after
solving for thep;s, if one of thep;s is very close to zero, we set it to zero yielding an
Erlang or exponential distribution as a model for the data.

For example, the first three moments of the distribution ¢ériarrival times for
jobs requiring just one processor in our Cornell SP2 datauare 1.05 x 103, uy =
8.86 x 10° andus = 1.78 x 10'! (table 7). The unit of time used in these moments is
one second. An examination of the above moments for intarahtime will show that



they satisfy the constraints (equations 13, 14, 17 and 18)eohyper exponential and
the Hyper Erlang Distribution of Common Order, and do nas$athose of the Erlang
and the exponential distributions. Hence we choose therteygmnential distribution
(i.e. Hyper Erlang Distribution of Common Order, with= 1, see line 2 of tables 1
and 2) to represent this data.

The moments for the service time distribution of these j&uogiiring only one pro-
cessor areu; = 1.54 x 10%, us = 6.05 x 10® andus = 2.94 x 103, This set of data
cannot be represented by exponential, hyper exponentialang distributions, as the
three moments do not satisfy the constraints of these loligtons. A Hyper Erlang Dis-
tribution of Order 4 was needed to represent this data asdshéeflected in the results
section of this paper (see line 2 in tables 3, 4, 5 and 6, colomn

As the results section shows, none of the inter-arrival tamd service time data
examined in this paper is under-dispersive enough to gagigliation 16, hence their
second non-central moments are not representable by amgEytaan exponential dis-
tribution. This over-dispersive data is sometimes retetoeas longtail data.

Once the parameters of the model have been determined, tecased either di-
rectly in theoretical studies, or in simulations by cregtgsynthetic workloads. In the
section following the results section, we outline a way toeyate synthetic workloads
from the model parameters presented in this paper. Alsodrafipendix section, we
give a sample C program to illustrate the procedure for getimgy workloads.

5 Results

In our experimental workload, we have examined all the jalvysaf 322 node SP2 at
the Cornell Theory Center, for the period from June 25, 1@98dptember 12, 1996.
During this period, a total of 17440 jobs were serviced bydhstem. All these jobs
required dedicated use of CPUs, and different jobs requiiféefent numbers of CPUs
of the SP2. We have characterized the workload using HygangmDistribution of
Common Order to model the inter-arrival time and the sertiioe, the latter being the
cumulative CPU time used by a job. For this, we have groupeddbs into classes
based on the number of CPUs they used. A job requegtprgcessors is assigned to
a class, such that,in, < p < pmaz, Wherepy,;, andpn,., are the minimum and
maximum number of processors of that class. Phe, andp.... values for classes
considered in our study here are shown in tables 1 throughab?es 7 through 12 give
the first three moments of the real workload, and these maweartte used to extract
the model parameters, shown in tables 1 through 6.

In order to provide models for different needs, we have dbigedassification in
two different ways. In tables 1, 3 and 5, we have grouped jotmsdlasses by defining
the upper boundary of the classes, ;) at powers of two. In tables 2, 4 and 6, we
have grouped jobs into classes by defining the upper clagsdaoies at multiples of
five, except at the low end. Also when a class has less than ltegbbs, we have
merged it with a neighboring class that has a smaller numhjebs; and we continue
this process until the combined class contains at least I#egbbs. For completeness,
we have included in the first row of each table information o workload where we
do not separate jobs into classes.



Columns 3 through 6 in tables 1, 2, 3, 4, 5 and 6, provide thameters of the
model. Column 7 give#4, which is the relative discrepancy (in percentage) between
the non-central fourth moment of the data and that of the m&iece the model pa-
rameters are derived by fitting only the first three non-@ntroments,E4 gives an
estimate of the accuracy of the fit. The last column in thelskesagives the percent of
jobs in the workload that is modeled in this class.

A point to note is that the first three moments of the data andefof the model
are identical, a consequence of our modeling procedurecedtre numerical values
of these moments, for any row of any of the tables in this pagmr be obtained by
substituting the 4 parameter values (2, n, p1) from the table into equation 7. For
the convenience of the readers we have also included thesthfege moments from the
workload data in tables 7 through 12. The rows in these tarkesrganized analogous
to the rows of the corresponding table in tables 1 through 6.

Oftenin statistical modeling, one utilizes either the alied cumulative distribution
function (cdf) or the moments of the random variables, ag tleenot depend on the
guantization interval. To graphically illustrate the diggancy between the observed
cdf and the cdf obtained from the model, we show in Figure 1ctifés of the inter-
arrival time of jobs requesting between 9 to 16 processotsli@tively the curves
in this figure are typical in comparisons. Quantitativelistfigure shows one of the
workloads with high relative error between the fourth mohedrithe model and that of
the observed data, namely 17% as shown in table 1, line 6neoky. We purposely
chose this example so as to give an idea graphically of theracg of our modeling,
even when the relative error jry, is high. Even in this case, our model agrees quite well
with the observed cdf for large values of inter-arrival tifibis is a consequence of the
ability of our model to handle long-tail (i.e. over-dispgg) distributions.
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Fig. 1. Comparison of the observed cdf and that from the model foirteg-arrival time distri-
bution for jobs requesting between 9 to 16 processors



Besides the inter-arrival time and CPU time, we have alsoacierized a derived
guantity, which we call Scaled Wall-clock time. This is thmaunt of wall-clock time,
in seconds, the job would need if it could use the maximum rernolb processors in
its assigned class, while preserving its parallel effiojeRor example, if a job used 3
processors and 300 cumulative CPU seconds, i.e. runnid@fdseconds concurrently
on 3 processors, and we classify that job into a class hawimg@num of 4 processors,
then we define the Scaled Wall-clock time as 75 seconds, yarék 3/4 seconds.

Scaled Wall-clock time is often a theoretical quantity, astof the time the parallel
efficiencies are not invariant. We characterized this gtiahecause we feel that it is
useful as an optimistic workload for various theoreticatis. The characterization of
this Scaled Wall-clock time is presented in tables 5 and ,farmat analogous to that
in tables 3 and 4.

=]

Pmin [Pmaz )\1 >\2 P E4 %Of jObS
3222.04e-043.80e-031(3.46e-0211 100.00
1{1.43e-042.05e-031|8.56e-02 2| 40.42

1
1
2 2|3.31e-0%9.94e-041|1.67e-01 5 7.17
3
5

4/5.58e-0%1.13e-031(1.55e-01 5| 11.97
8|7.37e-0%1.88e-031|2.38e-01 9| 11.64
9| 16|6.87e-0%7.16e-041/1.30e-0117| 13.61
17| 32|4.08e-0%4.98e-041|1.49e-0112 7.89
33| 64/5.67e-0%4.91e-031|4.79e-01 6 4.91
65| 1283.33e-0%6.07e-042|5.03e-01 3 1.32
129 256|4.48e-0¢2.78e-041/2.78e-0116 0.64
257 322/1.69e-061.99e-0%1|1.18e-0117 0.37,

Table 1.Hyper Erlang parameters for inter-arrival time. Unit of éins in seconds. The symbols
are defined in Sections 3 and 5.

6 Synthetic Workload Generation

The first step in generating a synthetic workload from the @®gdresented in this paper
is to select the classes of jobs to be included in the symthairkload, namely which
FOWS Or Sets Obyin andpmq. from table 1 or 2 are to be includdd.the programin the
appendix, we denote the number of classes included in thidweat generation by the
variablennodel s. Also we choose the size of the synthetic workload eithernimssof
the number of jobs to be generated in each of the chosen gJasda terms of the total
length of time for all arrivals to be generated. If one preferuse the former criterion
but only knows the total number of jobs for the synthetic woakl, then the number
of jobs in each of the chosen classes can be obtained byeefairtioning of the total
number of jobs amongst the chosen classes. These portionkidbe proportional to
the % of jobs, i.e.the last column in the corresponding tdhléhe sample program in



Pmin |Pmaz A1 Az n p1 fon %of JOb

1| 322/2.04e-043.80e-031|3.46e-0211| 100.0d

1 1{1.43e-042.05e-031|8.56e-02 2| 40.42

2 2|3.31e-0%9.94e-041|1.67e-01 5 7.17

3 4|5.58e-0%1.13e-031|1.55e-01 5| 11.97

5/ 10|8.48e-0%1.95e-031({2.06e-01 9| 14.91
11| 15/1.17e-0%1.58e-041|2.29e-01 2 1.7]
16| 20|6.57e-0%5.99e-041|1.81e-0112| 10.27
21| 30[{1.05e-0%5.72e-0%1|1.89e-01 5 1.30
31| 35(3.78e-0%5.15e-041|2.00e-0112 6.16
36| 125(4.97e-051.23e-021|5.04e-01 8 4.13
126| 3223.43e-0%6.46e-042|3.43e-01 1 1.90

Table 2. Hyper Erlang parameters for inter-arrival time. Unit of éins in seconds. The symbols
are defined in Sections 3 and 5.

Pmin |Pmaz A1 Az n p1 fon %of JOb

1| 322/3.40e-072.06e-051|1.48e-02 9| 100.0d

1 1/1.23e-044.72e-034(4.60e-01 7| 40.43

2 2|8.04e-0%1.02e-017|3.94e-01 6 7.17

3 4(3.23e-0%1.61e-024|2.51e-01 9| 11.97

5 8|1.17e-099.18e-031(3.76e-01 9| 11.65

9| 16|7.65e-066.40e-043(2.87e-01 9| 13.62
17] 32|2.80e-062.51e-041|3.75e-01 10| 7.90
33| 64{1.59e-067.99e-0%3|2.78e-01 9 4.92
65 128/1.19e-063.99e-046|2.07e-01 7 1.32
129 256/1.62e-0%3.15e-033|1.48e-01 9 0.65
257 322/5.18e-074.51e-046|1.65e-01 5 0.37

Table 3. Hyper Erlang parameters for CPU time used by the jobs. Uniinad is in seconds,
and it is the cumulative CPU time used in all the processonmstunh the job is executing. The
symbols are defined in Sections 3 and 5.

the appendix, we use the number of jobs to define the sizewbthad, and comment
on what needs to be modified to have the workload size basedabfength of time for
arrivals.

The model parameters for each of these classes are obtaimedables 1 through
6. With this information, for each job in each class to beuded in the synthetic work-
load, one generates 3 random numbers: one for the inteaktime, one for the service
time (i.e. CPU time used), and one for the number of CPUs mkfedi¢he job. The first
of these 3 random numbers is from a Hyper Erlang distributficdommon Order (or
a hyper exponential distribution, which is a special casklygder Erlang of Common
Order), with appropriate model parameters for the padicelass obtained from either



Pmin |Pmaz A1 A2 n j 41 E4|%of jObS
1| 322/3.40e-072.06e-051|1.48e-02 9| 100.0d

1 1/1.23e-044.72e-034|4.60e-01 7| 40.43

2 2|8.04e-0%1.02e-017|3.94e-01 6 7.17

3 4/3.23e-051.61e-024|2.51e-01 9| 11.97

5/ 10|8.89e-063.21e-041|3.28e-01 8| 14.91
11| 15|1.34e-0%3.86e-035(1.68e-01 6 1.71
16| 20|6.60e-061.29e-023(3.35e-0110; 10.28
21| 30[3.66e-061.96e-042|2.10e-01 8 1.31
31| 35[2.50e-066.90e-0%1|3.81e-0111] 6.17
36| 125/1.45e-061.95e-043|2.86e-01 7 4.13
126 3223.42e-071.99e-042|1.75e-01 3 1.9]

Table 4. Hyper Erlang parameters for CPU time used by the jobs. Uniinod is in seconds,
and it is the cumulative CPU time used in all the processomsiunh the job is executing. The
symbols are defined in Sections 3 and 5.

Pmin |Pmaz A1 A2 n j 41 E4|%of jObS
1| 322/6.80e-074.12e-051|1.48e-02 9| 100.0d

1 1/1.23e-044.72e-034|4.60e-01 7| 40.43

2 2|1.61e-042.05e-017|3.94e-01 6 7.17

3 4|6.46e-053.23e-024|2.51e-01 9| 11.97

5 8|2.33e-0%1.84e-021(3.76e-01 9| 11.65

9| 16|1.53e-0%1.28e-033|2.87e-01 9| 13.62
17] 32|5.60e-065.01e-041(3.75e-01 10| 7.90
33| 64{3.17e-061.60e-043|2.78e-01 9 4.92
65| 128/2.39e-067.97e-046|2.07e-01 7 1.32
129 256/3.24e-0%6.29e-033|1.48e-01 9 0.65
257 3221.04e-049.01e-046|1.65e-01 5 0.37

Table 5.Hyper Erlang parameters for Scaled Wall-clock time usedthbyjobs. Unit of time is
in seconds. The symbols are defined in Sections 3 and 5.

table 1 or 2. Similarly, the second random number is also fadtlyper Erlang of Com-
mon Order (or hyper exponential) distribution, with appiafe model parameters for
the particular class obtained from the corresponding talle last random number,
representing the number of CPUs needed, is a uniform randonber that has been
scaled to remain within the range ©f.;» andpm,.. Once these 3 random numbers
are obtained, one has the inter-arrival time, the servioe,tiand the number of pro-
cessors required by the job, which are commensurate witlvtitkload model. This
process continues for other jobs in the class until the désimount of workload has
been generated, and then the process is repeated for edwhather chosen classes in
the synthetic workload.



Pmin |Pmaz A1 Az n p1 fon %of JOb

1| 322/6.80e-074.12e-051|1.48e-02 9| 100.0d

1 1/1.23e-044.72e-034(4.60e-01 7| 40.43

2 2|1.61e-042.05e-017|3.94e-01 6 7.17

3 4|6.46e-0%3.23e-024|2.51e-01 9| 11.97

5| 10|1.78e-0%6.41e-041(3.28e-01 8| 14.91
11| 15|2.67e-0%7.71e-035|1.68e-01 6 1.7]
16/ 20|1.32e-0%2.58e-023|3.35e-0110; 10.28
21| 30{7.31e-063.92e-042|2.10e-01 8 1.31
31| 35/5.00e-061.38e-041|3.81e-0111] 6.17
36| 125/2.89e-063.91e-043|2.86e-01 7 4.13
126| 322/6.84e-0713.98e-042|1.75e-01 3 1.91

Table 6.Hyper Erlang parameters for Scaled Wall-clock time usediyjdbs. Unit of time is in
seconds. The symbols are defined in Sections 3 and 5.

Pmin |Pmaz H1 H2 H3 %ijObS
1| 322/4.234e+021.794e+062.449e+10 99.99
1 1{1.046e+08.858e+041.778e+11 40.42
2 2/5.893e+03.070e+08.766e+1 7.17
3
5

D

L

B

4|3.529e+081.011e+08.371e+12 11.97

8(3.635e+0B.808e+013.569e+12 11.64

9| 16/3.107e+0%.842e+072.416e+12 13.6]
17| 32/5.358e+03.858e+081.320e+13  7.89
33| 64/8.544e+0R.975e+081.573e+13  4.91
65 1283.182e+04R.727e+083.265e+14  1.32

129 2566.471e+040.775e+101.857e+16  0.64

257 322/1.142e+0%B.698e+1(1.469e+1Y  0.37

Table 7. First three non-central moments of the of inter-arrivaldtidistribution in the observed
workload. Unit of time is in seconds. The symbols are defimeSéctions 3 and 5. The model
parameters extracted from these moments are given in table 1

The only remaining algorithm that needs to be discussedif@renethod to gener-
ate random numbers from a Hyper Erlang distribution of Comr@oder with appro-
priate model parameters for a particular class. A way to igge& sequence of random
numbers{z;}, based on a non-uniform distribution, is to solve grin

y; = cdf(z;) (19)

where{y;}, is a uniformly distributed sequence of random numbers, calfift:; ) is

the cumulative distribution function for the statisticabdel. For the Hyper Erlang dis-
tribution of Common Order, the cdf is obtained from equatiohy inverse Laplace
transform followed by a simple integral. After some straifgrward algebra, one ar-



Pmin|Pmaz M1 H2 Hs3 %of jobg
1| 3224.234e+021.794e+062.449e+10 99.99
1 1/1.046e+038.858e+061.778e+11 40.42
2 2(5.893e+03B.070e+082.766e+18  7.17
3 4/|3.529e+08..011e+085.371e+12 11.97

5| 10|2.838e+08%.774e+072.027e+12 14.9]

11y 15|2.447e+043.410e+09B.593e+14 1.71

D
4
3
3
4

16| 20|4.118e+038.825e+073.842e+12 10.27
21 30[3.207e+043.891e+0%0.927e+14 1.30
31 35/6.859e+08.869e+082.234e+1 6.16
36| 1251.019e+044.085e+082.467e+1 4.13
126 3222.205e+041.759e+0%.040e+14 1.90

Table 8. First three non-central moments of the of inter-arrivaldidistribution in the observed
workload. Unit of time is in seconds. The symbols are defime8eactions 3 and 5. The model
parameters extracted from these moments are given in table 2

Pmin |Pmaz M1 H2 Hs3 %of job
1| 3229.126e+042.601e+112.255e+18 100.0(
1 1/1.537e+046.051e+082.941e+13 40.43
2 2(3.432e+048.412e+0$B.821e+14 7.17
3 4|3.130e+044.814e+09B.93%e+14 11.97
5 8(3.230e+046.526e+0%1.421e+1% 11.65

17| 32|1.365e+01.567e+1(1.024e+1]} 7.90
33| 64(5.527e+0%51.328e+14.184e+1 4.92
65 1281.052e+0(6.107e+14.097e+1 1.32
129 2562.816e+046.754e+0{2.085e+1 0.65
257 322/1.928e+0(2.592e+134.005e+2 0.37,

3
3
4
4
b
9| 16/1.160e+0%.895e+1(B.852e+16 13.62
1
3
)
b
D

Table 9. First three non-central moments of the distribution of tiJQime used by the jobs in
the observed workload. Unit of time is in seconds, and it ésgmulative CPU time used in all
the processors on which the job is executing. The symboldefiaed in Section 5. The model
parameters extracted from these moments are given in table 3

rives at an analytical expression for the cdf of the modetslus this paper, namely

2 n—1 Y k
cdf(z;) = 1_Zpie—>macj (Z ( Jk)‘!z) ) (20)
k=0

=1

From this expression of thelf and a uniform random number generator, U[0,1], the
random variable$z; } that are commensurate with equation 5 can be obtained by solv
ing for z; in equation 19. Since &if (z) is a monotonic function that is bounded by 0



Pmin |Pmaz M1 | H2 Hs3 %of job
1| 3229.126e+04.601e+112.255e+18 100.0(
1 1{1.537e+045.051e+08.941e+18 40.43
2 2(3.432e+048.412e+04B.821e+14  7.17
3 4/3.130e+04.814e+09B.93%e+14 11.97
5| 10/3.898e+048.313e+0{2.802e+1% 14.9]
11y 15/6.409e+042.829e+1(1.482e+16 1.71
16| 20]1.526e+0%.239e+1(6.998e+16 10.2§

[

[

3

D

21 30/1.230e+0¥®.442e+1(1.032e+1] 1.31
31 35/1.613e+0%.223e+111.465e+1] 6.17
36| 1256.043e+0%.640e+135.665e+1 4.13
126/ 3221.032e+0§B.971e+171.049e+2 1.91

Table 10.First three non-central moments of the distribution of tiQime used by the jobs in
the observed workload. Unit of time is in seconds, and it ésdchmulative CPU time used in all
the processors on which the job is executing. The symboldefieed in Sections 3 and 5. The
model parameters extracted from these moments are givabla4.

Pmin |[Pmaz M1 | H2 Hs3 %of job

1| 3224.563e+046.504e+1(R.819e+1} 100.0(

1 1{1.537e+046.051e+08.941e+18 40.43

2 2(1.716e+048.530e+084.776e+18  7.17

3 4/1.565e+041.204e+091.117e+14 11.97

5 8[1.615e+041.382e+0%.777e+14 11.65

9| 16|5.801e+041.474e+1(4.815e+15 13.62
17| 32/6.824e+042.392e+1(1.280e+16  7.90
33| 64/2.763e+0%3.319e+115.230e+17 4.92
65| 1285.262e+05..527e+1%5.121e+18  1.32
129 256/1.408e+041.688e+0¢2.606e+14  0.65
257 3229.641e+0%.480e+135.006e+19  0.37

Table 11.First three non-central moments of the distribution of tieal&d Wall-clock time used
by the jobs in the observed workload. Unit of time is in sereohd it is the cumulative CPU
time used in all the processors on which the job is executihg.symbols are defined in Sections
3 and 5. The model parameters extracted from these momengs/an in table 5.

and 1, equation 19 can easily be solved by using any of thelsiropt finding tech-
niques such as interval halving, etc.
Among the functions shown in the appendix,

— functionH_Er _cdf() computes thedf(z,) based on equation 20,
— functionsolvebisec()finds the root of an equation by interval halving, and
— functionur to_HER _r() solves equation 19 for a given



Pmin|Pmaz M1 H2 Hs3 %of job
1| 3224.563e+046.504e+1(R.819e+1} 100.0(
1 1/1.537e+046.051e+082.941e+13 40.43
2 2(1.716e+048.530e+084.776e+18  7.17
3 4/1.565e+041.204e+091.117e+14 11.97
5| 10/1.949e+042.078e+098.502e+14 14.91
11y 15/3.205e+047.073e+091.852e+1%  1.71
16| 20|7.631e+042.310e+1(B.748e+1% 10.28

D

b

[

)

21 30[6.148e+042.361e+1(1.290e+1¢ 1.31
31 35/8.067e+043.056e+1(11.832e+1¢ 6.17
36| 1253.021e+0%.100e+117.081e+1] 4.13
126/ 322/5.158e+0%2.243e+121.311e+1 1.91

Table 12.First three non-central moments of the distribution of tkal&d Wall-clock time used
by the jobs in the observed workload. Unit of time is in seraohd it is the cumulative CPU
time used in all the processors on which the job is execulihg.symbols are defined in Sections
3 and 5. The model parameters extracted from these momengévan in table 6.

7 Conclusions

In this paper we have characterized in a compact model thkleaut of a large super-
computing center. For this characterization we have chasgimase type distribution,
namely Hyper Erlang distribution of Common Order, that #yafits the first three
moments of the observed workload, and when appropriatacesdo a simpler model
such as exponential, hyper exponential or Erlang. The itapbfindings of our study
here are:

— The observed workload is quite dispersive, namely, thefictasit of variation is
greater than one, and cannot be adequately representeddohaag or exponential
distribution. A point to note is that, typically the numbéusers in these MPPs are
relatively small, hence there is no a priori reason to expeatnder-dispersive dis-
tribution to be able to represent the observed inter-ditiive or service time. Thus
for theoretical studies and simulations dealing with scified of jobs in MPPs, it
is more desirable, in our opinion, to use hyper exponenti&lyper Erlang distri-
butions rather than simple exponential or Erlang distidng.

— Even though the inter-arrival time can often be modeled kpehgxponential dis-
tributions, the service time and the Scaled Wall-clock tiofien require Hyper
Erlang distributions of order greater than one.

Another point to note is that, in light of the number of jobshaye sampled in each
class, the relative errors in the fourth moment (shown asgoéage in column 7 of the
tables 1 through 6) are sometimes relatively high. Howeaeshown by Schassberger
[10, 11,12, 13], anumber of steady state properties sucleas queue lengths, average
waiting times, etc., depend only on the first few moments efrimdom distributions,



and since we want a model that is simple enough to be tractalteoretical studies
of scheduling algorithms and parameters, we feel that owlefrfor characterization of
the workloads in MPPs is quite adequate.
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9 Appendix

The program shown in this section can be used to generatbetimtvorkloads for
model parameters given in the results section of this pdper.overall algorithm used
in this program is described in section 6. Here we point o@vadpecifics relevant to
the accurate generation of workloads.

— This program needs a uniform random number generator gérgerandom num-
bers in the interval of 0 to 1. This is assumed to be obtainad f library function
calleddrand48(). If this function is not available in your computer, or if ybave
a different favorite one, replace the calldmand48() with an appropriate call. The
use of a good uniform random number generator is essenttaktquality of the
generated workloads. In our simulations, insteadrahd48(), we used a very high
quality, but machine dependent random number generator.

— A point to note is that, for each job we need 3 random numbeasyrd from inde-
pendent uniform random number pools. We achieve this froigladuality, single
uniform random number generator by creating 3 pools or istseaf uniform ran-
dom numbers. This is done in the functistn_rand().

— The tolerance for solution parameteal, in functionsolve bisec()should be tight.

— At the end of the program we also compute the non-central mtspg for each
of the classes, from the jobs generated in the syntheticlaadk These should be
close to the corresponding numbers from tables 7 through 12.

This program generates a workload based on one classpwith= 65 andpma: =
128, and the CPU time is used as the service time. The parameteespond to row 9
in tables 1 and 3. The, should be compared with row 9 of tables 7 and 9.

/* This programgenerates a streamof jobs based on the
* nodel s described in the main text of this paper.
* To keep this programsinple, we have elimted all



t he checkings of the input. If you use the
program often, we strongly recomrend you to
add code to catch the error conditions. This
programis meant for illustration purposes only.

* % F  * X

/
#i ncl ude <stdio. h>
#i ncl ude <mat h. h>

#define mn(a,b) (((a) < (b)) ? (a) : (b))
#def i ne RANSTREAM 3
#def i ne RANPOOLSI ZE 10000

t ypedef struct

{ doubl e p1,I|anbdal, | anbda2, ur;
i nt order;

}  MODEL_DATA,

/* d obal Variables: */
doubl e ran_pool [ RANSTREAM [ RANPOOLSI ZE] ;
i nt ran_remai n[ RANSTREAM ;

[* ceeeeeo-- Function prototypes: ------------------ */
doubl e ur_to HER r( doubl e ur, MODEL DATA nodel);

doubl e H Er_cdf (doubl e x, void *nodel);

voi d sol ve_bi sec( double xleft 0,
doubl e xright O,
doubl e tol
doubl e *x,
doubl e *vy,
voi d *nodel data
doubl e (*f)(double, void *),
int *rc);

double fn_to_solve(double x, void *);

i nt fac(int k);

doubl e str_rand(int str);

[* Smmmmmmm——————— oo
mai n(i nt argc, char **argv)

{ MODEL_DATA inter_arrival _nodel, cpu_nodel
doubl e inter_arrival _nul, inter_arrival _m2,



inter_arrival _mus3;

doubl e cpu_mul, cpu_nu2, cpu_nu3;

double sintine, inter_arrival _time, cpu_tine_used,
doubl e dtenp;

i nt njobs, pm n, pmax, p_needed;
int ijob, nnodel s, i nodel
int i,j;

/* One needs to change the val ue of nnodels here to
* reflect the nunber of nodels (nanely nunber of
* lines fromTables 1 through 6 in the Results
* section of this paper) concurrently used for
* generating the job stream
*/

nnodel s=1;

for (i nodel =0; i nodel <nnodel s; i nmodel ++)
{ sintine=0;

/* The follow ng section describes the paraneters
* of nodel inodel, and should be nodified to
* correspond to your chosen nodel

*/

pmin = 65;

pmax = 128

inter_arrival _nodel .l anbdal = 3. 33e-05;
inter_arrival _nodel .l anbda2 = 6. 07e-04;

inter_arrival _nodel . order=2;
inter_arrival _nodel.pl=5.03e-01

cpu_nvodel . | anbdal
cpu_nodel . | anbda2
cpu_nodel . or der =6;
cpu_nodel . p1=2. 07e-01;

1. 19e-06;
3. 99e- 04;

nj obs=10000;
/* End of the Input section */

inter_arrival _nul=0;
inter_arrival _nu2=0;
inter_arrival _nu3=0;

cpu_nul=0;



cpu_nu2=0;

cpu_nmu3=0;
i j ob=0;
/* Here we are using the nunmber of jobs (njobs) as the
* termination criterion. One may choose to use
* sintime (i.e. total length of tine represented
* in this workload) as a ternmination criterion
* |n that case, use simine in the follow ng while
* statenent.
*

/

while( ijob < njobs)
{ ijob++

dtenp=str_rand(0);
inter_arrival _tine =
ur_to_HER r(dtenp,inter_arrival _nodel);

sintime += inter_arrival _tine;

inter_arrival _nmul +=inter_arrival _tinme;

inter_arrival _nu2 +=(inter_arrival _tine *
inter_arrival _tine);

inter_arrival _nu3 +=(inter_arrival _tine *
inter_arrival _tinme *
inter_arrival _tine);

dt enp=str_rand(1);
cpu_time_used = ur_to HER r(dtenp, cpu_nodel);
cpu_nul += cpu_tine_used;
cpu_nu2 += (cpu_tine _used *
cpu_tinme_used);
cpu_nmu3d += (cpu_tine _used *
cpu_tinme_used *
cpu_tinme_used);

dt enp=str_rand(2);
dtenmp *= (pmax-pm n+l);

j =dt enp;
if( ((double) j) < dtenp ) { p_needed = + pnin; }
else { p_needed = + pmn - 1; }

/* One needs to replace the foll owi ng section



(encl osed by #if and #endif) with appropriate
statements to output the job streaminfornation
If rmultiple nodels are concurrently used, it

nm ght be desirable to sort the final output by
job arrival tine.
/

L T

#if O
if(ijob <50 )
{ printf( "Job used % CPUs and % cunmul ati ve CPUti me",
p_needed, cpu_tinme_used);
printf( " arrived at time % \n", sintine);
}
#endi f
} /* end of the while | oop */

printf(" For Mdel %l :\n",inodel);

inter_arrival _nmul /= (double)ijob

inter_arrival _mu2 /= (double)ijob

inter_arrival _nmu3 /= (double)ijob

printf("Inter-arrival Tinme Mnments of the jobs are \n");

printf( " % mul = %
" m2 = %
n3 = % \n",

ijob, inter_arrival _ml,
inter_arrival _m2,
inter_arrival _m3);

cpu_nmul /= (double)ijob
cpu_nmu2 /= (double)ijob
cpu_nmu3 /= (double)ijob
printf("CPU Tinme Monents of the jobs are \n");

printf(" % mul = %
"mu2 = % "
"mu3 = %\n",

ijob, cpu_nul, cpu_mu2, cpu_mu3 );

} /* end of |oop over nodels */
} /* end of main program*/

/* s S S S ., T, T, T, T, T, T T, T T S S S T S S S S S S S S S S S S S S S S S == */
doubl e ur_to HER r(doubl e ur, MODEL_DATA n)
{ double xleft, xright;

doubl e Xx,vy;

int rc;



}
/*

mur = ur;
xleft = 1.e-20; /* a small +ve nunber */

xright = -1og(1.0-ur) / mn(mlanbdal, mlanbda2);
xright *= 100

sol ve_bi sec(xl eft, xright,
(double) 1.e-12,
&, &y, &m
fn to _solve, &rc);
if(rc 1=0)
{ printf("Unable to find the Random Number for
ur = % \n", mur);
}

return(x);

double fn_to_sol ve(double x, void *npdel data)

{

}
/*

MODEL_DATA *m

m = ( MODEL_DATA *) nodel _dat a;
return( H Er cdf(x, nodel _data) - m>ur );

doubl e H Er_cdf (doubl e x, void *npdel data)

{

MODEL_DATA *p;
doubl e cdf, t1,t2, dtenp;

int k;

t 1=0;

t 2=0;

p = (MODEL_DATA *) nodel dat a;

for(k=0; k< p->order; Kk++)
{ dtenp=fac(k);

tl += (pow( x*p->l anbdal, k) / dt enp) ;

t2 += (pow( x*p->l anbdaz, k) / dt enp) ;
}
cdf = 1.0 - p->pl *exp(-(p->lanbdal*x))*t1l

- (1-p->pl) *exp(-(p->l anbda2*x))*t 2;

return(cdf);

voi d sol ve_bi sec(doubl e xl eft 0,

xright _0,
doubl e tol



doubl e *Xx,

doubl e *y,

voi d *nodel data

doubl e (*f)(double, void *),
int *rc)

{ double xleft, yleft,
xright, yright,
xnext, ynext;

i nt ic;

xleft=xleft_0; xright=xright_O;
yleft=(*f)(xleft, nodel _data);

yright=(*f)(xright, nodel _dat a);
*rc=1; ic=0

if( yleft*yright > 0.0) { return; }
/* No solution in this interval */

whil e(ic < 100000 )
{ ic++
xnext =(xl eft +xri ght)/2.0;
ynext =(*f) (xnext, nodel _dat a) ;
if( ynext*yright > 0.0 )
{ xri ght =xnext ;
yri ght =ynext ;
}
el se
{ x| ef t =xnext ;
yl ef t =ynext;

}
if( fabs(ynext) < tol )
{ *x=xnext; *y=ynext; *rc=0; return;}

}
}
/ * e s ——
int fac(int k)
{ int i,j;

j =1,

i f(k==0) return (j);

1 =1
for(i=1;i<=k;i++) j*=i;
return(j);



/* e s ——————— */
doubl e str_rand(int strm
{ int i;
if( ran_remain[strm <= 0)
{ for(i=0;i <RANPOOLSI ZE;i ++)
ran_pool [strm[i]=drand48();
ran_remai n[ st r Ml =RANPOCLSI ZE;

}
ran_remain[strmn--;
return( ran_pool [strm [RANPOCOLSI ZE-ran_remain[strni]) ;
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