
Modeling of Workload in MPPs

Joefon Jann, Pratap Pattnaik, Hubertus Franke
IBM T. J. Watson Research Center, P. O. Box 218, Yorktown Heights, NY 10598

Fang Wang
Computer Science Department, Yale University, New Haven, CT 06520-8285

Joseph Skovira, Joseph Riordan
Cornell Theory Center, Cornell University, Ithaca, NY 14853-3801

email: joefon@watson.ibm.com

Abstract

In this paper we have characterized the inter-arrival time and service time distributions
for jobs at a large MPP supercomputing center. Our findings show that the distributions
are dispersive and complex enough that they require Hyper Erlang distributions to cap-
ture the first three moments of the observed workload. We alsopresent the parameters
from the characterization so that they can be easily used forboth theoretical studies
and the simulations of various scheduling algorithms.

1 Introduction

In recent years massively parallel processors (MPP) computers have made a significant
presence. With this growth in MPPs, a number of researchers have developed and are
continuing to develop various job scheduling subsystems for these MPPs [1, 2, 3, 4,
5, 6]. During the development of these schedulers and their related algorithms, it is
important to have an accurate characterization of the workloads experienced by the
MPPs. It is extremely advantageous to have these workloads characterized by a compact
model that is representable by a few parameters, is suitablefor theoretical queuing
analysis of scheduling algorithms, and is reasonably straight-forward for the generation
of synthetic workloads. In this paper we propose such a model, and demonstrate its
efficacy by using it to fit the workload from the Cornell University Supercomputer.

The model we use for representing the inter-arrival time andthe service time of
jobs is a phase type distribution model, specifically, the Hyper Erlang Distribution of
Common Order. Since we expect this model to be used by researchers with diverse
background, we take a pedagogical approach in this paper, rather than simply refer
the readers to the literature. In section 4, we describe the model parameter extraction
procedure. In section 5, we present the parameters extracted from the workload of the
SP2 at the Cornell Theory Center experienced during the period from June 25, 1996 to
September 12, 1996. In section 6, we describe ways to generate synthetic workloads for
simulation studies. In the appendix, we present a sample program to generate synthetic
workloads.



2 Phase Type Distribution

The exponential distribution and the related Poisson process have been pervasively used
in the stochastic modeling of computers and network workloads. The primary reason for
the popularity of the exponential distribution is the ease with which it can be manipu-
lated in theoretical studies, and not because of the presence of a large body of empirical
data supporting it in a wide range of real life situations. The tractability of the exponen-
tial distribution in analytical work comes mainly from its memoryless property, leading
to a simple form for the Laplace transform of the probabilitydistribution function (pdf),
namely, f�(s) = � �s + ��; (1)

and to an underlying Markovian process. In this expression1=� is the first moment of
the distribution and represents the average value of the random variable with the expo-
nential distribution. In a Markovian process, the transition rate from a state to the next
state depends only on the current state, and does not explicitly depend on past history.
This property simplifies the steady state equations and enables one to represent all the
needed information by a one dimensional vector of the current state, thus making the
queuing analysis of the problem tractable. In 1947, Erlang generalized the exponential
distribution to include more complex probability distributions, while preserving the an-
alytic tractability. This generalized distribution is called the Erlang distribution and its
Laplace transform is f�(s) = � �s + ��n: (2)

Service time distributions that can be represented by the Erlang distribution can be
thought of as originating from a system where the job goes throughn phases or stages
before completion. At each stage a job spends an exponentially distributed random
amount of time, with the average time being1=�. The distribution of the total service
time of the jobs is then the convolution of n exponential distributions. The Laplace
transform of this convolution is equation 2. The Erlang distribution, like the exponential
distribution, has an underlying Markovian process, thus making it attractive for use in
queuing theory. The Erlang distribution can represent moretypes of systems than the
exponential distribution can. Finally in 1955, Cox, in a seminal paper [7], demonstrated
that the key advantage of the Erlang and the exponential distributions for analytical
work stems from the fact that their Laplace transforms are rational. He also developed
a generalized distribution known as the Phase Type Distribution, which is capable of
representing any stochastic process whose associated pdf’s have Laplace transforms
that are rational. Practically all the relevant systems oneencounters in the stochastic
modeling of workloads in computers can be modeled by the Phase Type Distribution.

In practice, one approximates only the first few moments of the probability distri-
butions under study with Phase Type Distributions; and these Phase Type Distributions
are characterized by a set of parametersm, p0, pi, ni and�i;j (where i,j=1,2,3,...), such
that their Laplace transforms are of the formf�(s) = p0 + mXi=1 pi niYj=1� �i;js + �i;j � (3)



with f�(0) = 1: (4)

Service time distributions representable by equation 3 canbe thought of as coming
from a system where jobs may reach completion using any of them-possible paths. If
a job goes through theith path, then it will traverse throughni phases or stages before
completion; and like the Erlang distribution, the job spends an exponentially distributed
random amount of time at each stage. These exponential distributions are characterized
by the parameters�i;j.

The Phase Type Distribution, in addition to its ability to conveniently represent a
wide class of stochastic processes, provides an underlyingMarkovian process, a great
advantage for queuing studies [8], for the reasons described earlier. Recently they have
also been used successfully in analyzing gang-scheduling in MPPs [5].

3 Hyper Erlang Distribution of Common Order

Oftentimes, in analytical modeling of a stochastic process, only the first few moments
of the random variables are considered. For most stochasticprocesses, the first few
moments represent attributes that tend to be relatively sample invariant. Here we con-
sider the first three moments of the random variables for our modeling. They carry the
information about the mean, the variance, and the skewness of the random variables
respectively.

In this paper, we choose the simplest distribution with an underlying Markovian
process, that can fit the the first three moments of the observed data. As mentioned in
the previous section, the underlying Markovian process makes the distribution tractable
in theoretical studies. The distribution we have chosen is the Hyper Erlang Distribution
of Common Order, which is a Phase Type Distribution that can exactly fit the first
three moments of the observed random distribution. The Hyper Erlang Distribution of
Common Order is a generalization of the exponential, the hyper exponential, and the
Erlang distribution. Our fitting procedure automatically selects the simplest of these 4
distributions that is commensurate with the first three moments of the observed data.

The Hyper Erlang Distribution of Common Order distributionhas a Laplace trans-
form of the form f�(s) = 2Xi=1 pi� �is + �i�n (5)

wheren, a positive integer, is called the order of the distribution, and0 � pi � 1 withp1 + p2 = 1. The Erlang distribution is a special case of the Hyper Erlang Distribution
of Common Order with one of thepis equal to 1, e.g.p1 = 1. The hyper exponen-
tial distribution is a Hyper Erlang Distribution of Common Order withn = 1. The
exponential distribution is also a special case withp1 = 1 andn = 1.

An example of a server with service time distributionexpressable by a Hyper Erlang
Distribution of Common Order is a system where a job must passthrough one and only
one of two service paths to completion. In each path it has to pass throughn stages (or
phases), spending a random amount of service time at each of then stages. The pdf



of service time at each stage of path 1 is an exponential distribution with mean time1=�1, and that of path 2 is an exponential distribution with mean time 1=�2. Let p1
be the probability of the job selecting path 1, and(1 � p1) be that of selecting path 2.
Pictorially, the stages of this system can be depicted by���������2�1��ZZp11� p1 ���������2 �2���������1 �1 q q qq q q �����1�����2

Thekth non-central moment of a distribution, for all integersk � 1, can be obtained
from the Laplace transform of the distribution by,�k = E[tk] = (�1)khdkf�(s)dsk is=0 (6)

which, for Hyper Erlang distribution of Common Order, is�k = 2Xi=1 pin(n+ 1):::(n+ k � 1)�ki (7)

The moments for the Erlang distribution are obtained by setting p1 = 1 andp2 = 0 in
equation 7, yielding �k = n(n+ 1):::(n+ k � 1)�k : (8)

The moments for the hyper exponential distribution are obtained by settingn = 1 in
equation 7, yielding �k = 2Xi=1 pi k!�ki (9)

The moments for the exponential distribution is obtain by letting n = 1 in equation 8,
giving �k = k!�k (10)

Examining the expressions for the first three moments of these distributions, and
because physical situations imply non-negativepis and�is, one finds a number of in-
terrelationships among these moments. These interrelationships specify the constraints
that must be satisfied by the moments of the observed data, fora particular model to rep-
resent the data. Without going into the proof (which is straight forward in most cases,
but involves lengthy algebraic manipulations in the non-obvious cases), we state here
the constraints on the first three moments of various distribution.

The constraints for the exponential distribution are:�2 = 2 � �12 (11)

and �3 = 6 � �13 (12)



Since the exponential distribution is a one parameter model, all higher moments are just
functions of first moments. In the data we examined in this paper, none of the observed
moments, either for inter-arrival time or the service time,fulfill this condition.

The constraints for the hyper exponential distribution are:�1�3 > 32�22 (13)

and �2 > 2�21 (14)

The constraints for the Erlang distribution are:�1�3 = n + 2n + 1�22 (15)

and �2 = �1 + 1n��21 (16)

The constraints for Hyper Erlang of Common Order are�1�3 > n + 2n + 1�22 (17)

and �2 > n+ 1n �21 (18)

4 Our Modeling Procedure

Our procedure for modeling, selects the simplest model amongst exponential, hyper ex-
ponential, Erlang and Hyper Erlang Distribution of Common Order, as long as the first
three moments of the data do not violate the constraints of the model under consider-
ation. It also exactly matches the first three moments of the data to that of the model.
In our procedure for modeling the data, we start with the three non-central moments
of the data, namely the�s and fit them to the Hyper Erlang of Common Order distri-
bution with the lowest value ofn satisfying equations 17 and 18. The Hyper Erlang
of Common Order distribution has four unknowns, namely�1; �2; n andp1, p2 wherep1 + p2 = 1. For a givenn, one can extract the remaining three parameters of this
model by matching the expressions for�1; �2; and�3 obtained from equation 7,to the
first three observed non-central moments. This involves solving 3 simultaneous equa-
tions with 3 unknowns. The analytical expression for the three parameters has been
derived by Johnson and Taaffe [9]. In general, an infinite number ofn’s can fit the data,
while satisfying equations 17 and 18. We select the smallestsuchn. Furthermore, after
solving for thepis, if one of thepis is very close to zero, we set it to zero yielding an
Erlang or exponential distribution as a model for the data.

For example, the first three moments of the distribution of inter-arrival times for
jobs requiring just one processor in our Cornell SP2 data are�1 = 1:05� 103, �2 =8:86� 106 and�3 = 1:78� 1011 (table 7). The unit of time used in these moments is
one second. An examination of the above moments for inter-arrival time will show that



they satisfy the constraints (equations 13, 14, 17 and 18) ofthe hyper exponential and
the Hyper Erlang Distribution of Common Order, and do not satisfy those of the Erlang
and the exponential distributions. Hence we choose the hyper exponential distribution
(i.e. Hyper Erlang Distribution of Common Order, withn = 1, see line 2 of tables 1
and 2) to represent this data.

The moments for the service time distribution of these jobs requiring only one pro-
cessor are:�1 = 1:54� 104, �2 = 6:05� 108 and�3 = 2:94� 1013. This set of data
cannot be represented by exponential, hyper exponential orErlang distributions, as the
three moments do not satisfy the constraints of these distributions. A Hyper Erlang Dis-
tribution of Order 4 was needed to represent this data and this is reflected in the results
section of this paper (see line 2 in tables 3, 4, 5 and 6, columnn).

As the results section shows, none of the inter-arrival timeand service time data
examined in this paper is under-dispersive enough to satisfy equation 16, hence their
second non-central moments are not representable by an Erlang or an exponential dis-
tribution. This over-dispersive data is sometimes referred to as longtail data.

Once the parameters of the model have been determined, it canbe used either di-
rectly in theoretical studies, or in simulations by creating synthetic workloads. In the
section following the results section, we outline a way to generate synthetic workloads
from the model parameters presented in this paper. Also in the appendix section, we
give a sample C program to illustrate the procedure for generating workloads.

5 Results

In our experimental workload, we have examined all the jobs for a 322 node SP2 at
the Cornell Theory Center, for the period from June 25, 1996 to September 12, 1996.
During this period, a total of 17440 jobs were serviced by thesystem. All these jobs
required dedicated use of CPUs, and different jobs requireddifferent numbers of CPUs
of the SP2. We have characterized the workload using Hyper Erlang Distribution of
Common Order to model the inter-arrival time and the servicetime, the latter being the
cumulative CPU time used by a job. For this, we have grouped the jobs into classes
based on the number of CPUs they used. A job requestingp processors is assigned to
a class, such thatpmin � p � pmax, wherepmin andpmax are the minimum and
maximum number of processors of that class. Thepmin andpmax values for classes
considered in our study here are shown in tables 1 through 12.Tables 7 through 12 give
the first three moments of the real workload, and these moments were used to extract
the model parameters, shown in tables 1 through 6.

In order to provide models for different needs, we have done this classification in
two different ways. In tables 1, 3 and 5, we have grouped jobs into classes by defining
the upper boundary of the classes (pmax) at powers of two. In tables 2, 4 and 6, we
have grouped jobs into classes by defining the upper class boundaries at multiples of
five, except at the low end. Also when a class has less than 1% ofthe jobs, we have
merged it with a neighboring class that has a smaller number of jobs; and we continue
this process until the combined class contains at least 1% ofthe jobs. For completeness,
we have included in the first row of each table information on the workload where we
do not separate jobs into classes.



Columns 3 through 6 in tables 1, 2, 3, 4, 5 and 6, provide the parameters of the
model. Column 7 givesE4, which is the relative discrepancy (in percentage) between
the non-central fourth moment of the data and that of the model. Since the model pa-
rameters are derived by fitting only the first three non-central moments,E4 gives an
estimate of the accuracy of the fit. The last column in these tables gives the percent of
jobs in the workload that is modeled in this class.

A point to note is that the first three moments of the data and those of the model
are identical, a consequence of our modeling procedure. Hence the numerical values
of these moments, for any row of any of the tables in this paper, can be obtained by
substituting the 4 parameter values (�1, �2, n, p1) from the table into equation 7. For
the convenience of the readers we have also included these first three moments from the
workload data in tables 7 through 12. The rows in these tablesare organized analogous
to the rows of the corresponding table in tables 1 through 6.

Often in statistical modeling, one utilizes either the observed cumulative distribution
function (cdf) or the moments of the random variables, as they do not depend on the
quantization interval. To graphically illustrate the discrepancy between the observed
cdf and the cdf obtained from the model, we show in Figure 1 thecdf’s of the inter-
arrival time of jobs requesting between 9 to 16 processors. Qualitatively the curves
in this figure are typical in comparisons. Quantitatively this figure shows one of the
workloads with high relative error between the fourth moment of the model and that of
the observed data, namely 17% as shown in table 1, line 6, columnE4. We purposely
chose this example so as to give an idea graphically of the accuracy of our modeling,
even when the relative error in�4 is high. Even in this case, our model agrees quite well
with the observed cdf for large values of inter-arrival time. This is a consequence of the
ability of our model to handle long-tail (i.e. over-dispersive) distributions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10000 20000 30000 40000 50000 60000

C
D

F

Inter-Arrival Time (secs)

Data
Model

Fig. 1. Comparison of the observed cdf and that from the model for theinter-arrival time distri-
bution for jobs requesting between 9 to 16 processors



Besides the inter-arrival time and CPU time, we have also characterized a derived
quantity, which we call Scaled Wall-clock time. This is the amount of wall-clock time,
in seconds, the job would need if it could use the maximum number of processors in
its assigned class, while preserving its parallel efficiency. For example, if a job used 3
processors and 300 cumulative CPU seconds, i.e. running for100 seconds concurrently
on 3 processors, and we classify that job into a class having amaximum of 4 processors,
then we define the Scaled Wall-clock time as 75 seconds, namely 100 � 3=4 seconds.

Scaled Wall-clock time is often a theoretical quantity, as most of the time the parallel
efficiencies are not invariant. We characterized this quantity because we feel that it is
useful as an optimistic workload for various theoretical studies. The characterization of
this Scaled Wall-clock time is presented in tables 5 and 6, ina format analogous to that
in tables 3 and 4.pmin pmax �1 �2 n p1 E4 %of jobs

1 3222.04e-043.80e-031 3.46e-0211 100.00
1 1 1.43e-042.05e-031 8.56e-02 2 40.42
2 2 3.31e-059.94e-041 1.67e-01 5 7.17
3 4 5.58e-051.13e-031 1.55e-01 5 11.97
5 8 7.37e-051.88e-031 2.38e-01 9 11.64
9 16 6.87e-057.16e-041 1.30e-0117 13.61

17 32 4.08e-054.98e-041 1.49e-0112 7.89
33 64 5.67e-054.91e-031 4.79e-01 6 4.91
65 1283.33e-056.07e-042 5.03e-01 3 1.32

129 2564.48e-062.78e-041 2.78e-0116 0.64
257 3221.69e-061.99e-051 1.18e-0117 0.37

Table 1.Hyper Erlang parameters for inter-arrival time. Unit of time is in seconds. The symbols
are defined in Sections 3 and 5.

6 Synthetic Workload Generation

The first step in generating a synthetic workload from the models presented in this paper
is to select the classes of jobs to be included in the synthetic workload, namely which
rows or sets ofpmin andpmax from table 1 or 2 are to be included.In the program in the
appendix, we denote the number of classes included in the workload generation by the
variablenmodels. Also we choose the size of the synthetic workload either in terms of
the number of jobs to be generated in each of the chosen classes, or in terms of the total
length of time for all arrivals to be generated. If one prefers to use the former criterion
but only knows the total number of jobs for the synthetic workload, then the number
of jobs in each of the chosen classes can be obtained by relative portioning of the total
number of jobs amongst the chosen classes. These portions should be proportional to
the % of jobs, i.e.the last column in the corresponding table. In the sample program in



pmin pmax �1 �2 n p1 E4 %of jobs
1 3222.04e-043.80e-031 3.46e-0211 100.00
1 1 1.43e-042.05e-031 8.56e-02 2 40.42
2 2 3.31e-059.94e-041 1.67e-01 5 7.17
3 4 5.58e-051.13e-031 1.55e-01 5 11.97
5 10 8.48e-051.95e-031 2.06e-01 9 14.91

11 15 1.17e-051.58e-041 2.29e-01 2 1.71
16 20 6.57e-055.99e-041 1.81e-0112 10.27
21 30 1.05e-055.72e-051 1.89e-01 5 1.30
31 35 3.78e-055.15e-041 2.00e-0112 6.16
36 1254.97e-051.23e-021 5.04e-01 8 4.13

126 3223.43e-056.46e-042 3.43e-01 1 1.90

Table 2.Hyper Erlang parameters for inter-arrival time. Unit of time is in seconds. The symbols
are defined in Sections 3 and 5.pmin pmax �1 �2 n p1 E4 %of jobs

1 3223.40e-072.06e-051 1.48e-02 9 100.00
1 1 1.23e-044.72e-034 4.60e-01 7 40.43
2 2 8.04e-051.02e-017 3.94e-01 6 7.17
3 4 3.23e-051.61e-024 2.51e-01 9 11.97
5 8 1.17e-059.18e-031 3.76e-01 9 11.65
9 16 7.65e-066.40e-043 2.87e-01 9 13.62

17 32 2.80e-062.51e-041 3.75e-0110 7.90
33 64 1.59e-067.99e-053 2.78e-01 9 4.92
65 1281.19e-063.99e-046 2.07e-01 7 1.32

129 2561.62e-053.15e-033 1.48e-01 9 0.65
257 3225.18e-074.51e-046 1.65e-01 5 0.37

Table 3. Hyper Erlang parameters for CPU time used by the jobs. Unit oftime is in seconds,
and it is the cumulative CPU time used in all the processors onwhich the job is executing. The
symbols are defined in Sections 3 and 5.

the appendix, we use the number of jobs to define the size of theworkload, and comment
on what needs to be modified to have the workload size based on total length of time for
arrivals.

The model parameters for each of these classes are obtained from tables 1 through
6. With this information, for each job in each class to be included in the synthetic work-
load, one generates 3 random numbers: one for the inter-arrival time, one for the service
time (i.e. CPU time used), and one for the number of CPUs needed for the job. The first
of these 3 random numbers is from a Hyper Erlang distributionof Common Order (or
a hyper exponential distribution, which is a special case ofHyper Erlang of Common
Order), with appropriate model parameters for the particular class obtained from either



pmin pmax �1 �2 n p1 E4 %of jobs
1 3223.40e-072.06e-051 1.48e-02 9 100.00
1 1 1.23e-044.72e-034 4.60e-01 7 40.43
2 2 8.04e-051.02e-017 3.94e-01 6 7.17
3 4 3.23e-051.61e-024 2.51e-01 9 11.97
5 10 8.89e-063.21e-041 3.28e-01 8 14.91

11 15 1.34e-053.86e-035 1.68e-01 6 1.71
16 20 6.60e-061.29e-023 3.35e-0110 10.28
21 30 3.66e-061.96e-042 2.10e-01 8 1.31
31 35 2.50e-066.90e-051 3.81e-0111 6.17
36 1251.45e-061.95e-043 2.86e-01 7 4.13

126 3223.42e-071.99e-042 1.75e-01 3 1.91

Table 4. Hyper Erlang parameters for CPU time used by the jobs. Unit oftime is in seconds,
and it is the cumulative CPU time used in all the processors onwhich the job is executing. The
symbols are defined in Sections 3 and 5.pmin pmax �1 �2 n p1 E4 %of jobs

1 3226.80e-074.12e-051 1.48e-02 9 100.00
1 1 1.23e-044.72e-034 4.60e-01 7 40.43
2 2 1.61e-042.05e-017 3.94e-01 6 7.17
3 4 6.46e-053.23e-024 2.51e-01 9 11.97
5 8 2.33e-051.84e-021 3.76e-01 9 11.65
9 16 1.53e-051.28e-033 2.87e-01 9 13.62

17 32 5.60e-065.01e-041 3.75e-0110 7.90
33 64 3.17e-061.60e-043 2.78e-01 9 4.92
65 1282.39e-067.97e-046 2.07e-01 7 1.32

129 2563.24e-056.29e-033 1.48e-01 9 0.65
257 3221.04e-069.01e-046 1.65e-01 5 0.37

Table 5.Hyper Erlang parameters for Scaled Wall-clock time usedd bythe jobs. Unit of time is
in seconds. The symbols are defined in Sections 3 and 5.

table 1 or 2. Similarly, the second random number is also froma Hyper Erlang of Com-
mon Order (or hyper exponential) distribution, with appropriate model parameters for
the particular class obtained from the corresponding table. The last random number,
representing the number of CPUs needed, is a uniform random number that has been
scaled to remain within the range ofpmin andpmax. Once these 3 random numbers
are obtained, one has the inter-arrival time, the service time, and the number of pro-
cessors required by the job, which are commensurate with theworkload model. This
process continues for other jobs in the class until the desired amount of workload has
been generated, and then the process is repeated for each of the other chosen classes in
the synthetic workload.



pmin pmax �1 �2 n p1 E4 %of jobs
1 3226.80e-074.12e-051 1.48e-02 9 100.00
1 1 1.23e-044.72e-034 4.60e-01 7 40.43
2 2 1.61e-042.05e-017 3.94e-01 6 7.17
3 4 6.46e-053.23e-024 2.51e-01 9 11.97
5 10 1.78e-056.41e-041 3.28e-01 8 14.91

11 15 2.67e-057.71e-035 1.68e-01 6 1.71
16 20 1.32e-052.58e-023 3.35e-0110 10.28
21 30 7.31e-063.92e-042 2.10e-01 8 1.31
31 35 5.00e-061.38e-041 3.81e-0111 6.17
36 1252.89e-063.91e-043 2.86e-01 7 4.13

126 3226.84e-073.98e-042 1.75e-01 3 1.91

Table 6.Hyper Erlang parameters for Scaled Wall-clock time used by the jobs. Unit of time is in
seconds. The symbols are defined in Sections 3 and 5.pmin pmax �1 �2 �3 %of jobs

1 3224.234e+021.794e+062.449e+10 99.99
1 1 1.046e+038.858e+061.778e+11 40.42
2 2 5.893e+033.070e+082.766e+13 7.17
3 4 3.529e+031.011e+085.371e+12 11.97
5 8 3.635e+038.808e+073.569e+12 11.64
9 16 3.107e+035.842e+072.416e+12 13.61

17 32 5.358e+031.858e+081.320e+13 7.89
33 64 8.544e+032.975e+081.573e+13 4.91
65 1283.182e+042.727e+093.265e+14 1.32

129 2566.471e+042.775e+101.857e+16 0.64
257 3221.142e+058.698e+101.469e+17 0.37

Table 7.First three non-central moments of the of inter-arrival time distribution in the observed
workload. Unit of time is in seconds. The symbols are defined in Sections 3 and 5. The model
parameters extracted from these moments are given in table 1.

The only remaining algorithm that needs to be discussed hereis a method to gener-
ate random numbers from a Hyper Erlang distribution of Common Order with appro-
priate model parameters for a particular class. A way to generate a sequence of random
numbers,fxjg, based on a non-uniform distribution, is to solve forxj inyj = cdf(xj) (19)

wherefyjg, is a uniformly distributed sequence of random numbers, andcdf(xj) is
the cumulative distribution function for the statistical model. For the Hyper Erlang dis-
tribution of Common Order, the cdf is obtained from equation5 by inverse Laplace
transform followed by a simple integral. After some straight-forward algebra, one ar-



pmin pmax �1 �2 �3 %of jobs
1 3224.234e+021.794e+062.449e+10 99.99
1 1 1.046e+038.858e+061.778e+11 40.42
2 2 5.893e+033.070e+082.766e+13 7.17
3 4 3.529e+031.011e+085.371e+12 11.97
5 10 2.838e+035.774e+072.027e+12 14.91

11 15 2.447e+043.410e+098.593e+14 1.71
16 20 4.118e+038.825e+073.842e+12 10.27
21 30 3.207e+043.891e+099.927e+14 1.30
31 35 6.859e+032.869e+082.234e+13 6.16
36 1251.019e+044.085e+082.467e+13 4.13

126 3222.205e+041.759e+092.040e+14 1.90

Table 8.First three non-central moments of the of inter-arrival time distribution in the observed
workload. Unit of time is in seconds. The symbols are defined in Sections 3 and 5. The model
parameters extracted from these moments are given in table 2.pmin pmax �1 �2 �3 %of jobs

1 3229.126e+042.601e+112.255e+18 100.00
1 1 1.537e+046.051e+082.941e+13 40.43
2 2 3.432e+043.412e+093.821e+14 7.17
3 4 3.130e+044.814e+098.939e+14 11.97
5 8 3.230e+045.526e+091.421e+15 11.65
9 16 1.160e+055.895e+103.852e+16 13.62

17 32 1.365e+059.567e+101.024e+17 7.90
33 64 5.527e+051.328e+124.184e+18 4.92
65 1281.052e+066.107e+124.097e+19 1.32

129 2562.816e+046.754e+092.085e+15 0.65
257 3221.928e+062.592e+134.005e+20 0.37

Table 9.First three non-central moments of the distribution of the CPU time used by the jobs in
the observed workload. Unit of time is in seconds, and it is the cumulative CPU time used in all
the processors on which the job is executing. The symbols aredefined in Section 5. The model
parameters extracted from these moments are given in table 3.

rives at an analytical expression for the cdf of the models used in this paper, namelycdf(xj) = 1� 2Xi=1 pie��ixj�n�1Xk=0 (xj�i)kk! �
(20)

From this expression of thecdf and a uniform random number generator, U[0,1], the
random variablesfxjg that are commensurate with equation 5 can be obtained by solv-
ing for xj in equation 19. Since acdf(x) is a monotonic function that is bounded by 0



pmin pmax �1 �2 �3 %of jobs
1 3229.126e+042.601e+112.255e+18 100.00
1 1 1.537e+046.051e+082.941e+13 40.43
2 2 3.432e+043.412e+093.821e+14 7.17
3 4 3.130e+044.814e+098.939e+14 11.97
5 10 3.898e+048.313e+092.802e+15 14.91

11 15 6.409e+042.829e+101.482e+16 1.71
16 20 1.526e+059.239e+106.998e+16 10.28
21 30 1.230e+059.442e+101.032e+17 1.31
31 35 1.613e+051.223e+111.465e+17 6.17
36 1256.043e+051.640e+125.665e+18 4.13

126 3221.032e+068.971e+121.049e+20 1.91

Table 10.First three non-central moments of the distribution of the CPU time used by the jobs in
the observed workload. Unit of time is in seconds, and it is the cumulative CPU time used in all
the processors on which the job is executing. The symbols aredefined in Sections 3 and 5. The
model parameters extracted from these moments are given in table 4.pmin pmax �1 �2 �3 %of jobs

1 3224.563e+046.504e+102.819e+17 100.00
1 1 1.537e+046.051e+082.941e+13 40.43
2 2 1.716e+048.530e+084.776e+13 7.17
3 4 1.565e+041.204e+091.117e+14 11.97
5 8 1.615e+041.382e+091.777e+14 11.65
9 16 5.801e+041.474e+104.815e+15 13.62

17 32 6.824e+042.392e+101.280e+16 7.90
33 64 2.763e+053.319e+115.230e+17 4.92
65 1285.262e+051.527e+125.121e+18 1.32

129 2561.408e+041.688e+092.606e+14 0.65
257 3229.641e+056.480e+125.006e+19 0.37

Table 11.First three non-central moments of the distribution of the Scaled Wall-clock time used
by the jobs in the observed workload. Unit of time is in seconds, and it is the cumulative CPU
time used in all the processors on which the job is executing.The symbols are defined in Sections
3 and 5. The model parameters extracted from these moments are given in table 5.

and 1, equation 19 can easily be solved by using any of the simple root finding tech-
niques such as interval halving, etc.

Among the functions shown in the appendix,

– functionH Er cdf() computes thecdf(xj) based on equation 20,
– functionsolvebisec()finds the root of an equation by interval halving, and
– functionur to HER r() solves equation 19 for a giveny.



pmin pmax �1 �2 �3 %of jobs
1 3224.563e+046.504e+102.819e+17 100.00
1 1 1.537e+046.051e+082.941e+13 40.43
2 2 1.716e+048.530e+084.776e+13 7.17
3 4 1.565e+041.204e+091.117e+14 11.97
5 10 1.949e+042.078e+093.502e+14 14.91

11 15 3.205e+047.073e+091.852e+15 1.71
16 20 7.631e+042.310e+108.748e+15 10.28
21 30 6.148e+042.361e+101.290e+16 1.31
31 35 8.067e+043.056e+101.832e+16 6.17
36 1253.021e+054.100e+117.081e+17 4.13

126 3225.158e+052.243e+121.311e+19 1.91

Table 12.First three non-central moments of the distribution of the Scaled Wall-clock time used
by the jobs in the observed workload. Unit of time is in seconds, and it is the cumulative CPU
time used in all the processors on which the job is executing.The symbols are defined in Sections
3 and 5. The model parameters extracted from these moments are given in table 6.

7 Conclusions

In this paper we have characterized in a compact model the workload of a large super-
computing center. For this characterization we have chosena phase type distribution,
namely Hyper Erlang distribution of Common Order, that exactly fits the first three
moments of the observed workload, and when appropriate, reduces to a simpler model
such as exponential, hyper exponential or Erlang. The important findings of our study
here are:

– The observed workload is quite dispersive, namely, the coefficient of variation is
greater than one, and cannot be adequately represented by anErlang or exponential
distribution.A point to note is that, typically the number of users in these MPPs are
relatively small, hence there is no a priori reason to expectan under-dispersive dis-
tribution to be able to represent the observed inter-arrival time or service time. Thus
for theoretical studies and simulations dealing with scheduling of jobs in MPPs, it
is more desirable, in our opinion, to use hyper exponential or Hyper Erlang distri-
butions rather than simple exponential or Erlang distributions.

– Even though the inter-arrival time can often be modeled by hyper exponential dis-
tributions, the service time and the Scaled Wall-clock timeoften require Hyper
Erlang distributions of order greater than one.

Another point to note is that, in light of the number of jobs wehave sampled in each
class, the relative errors in the fourth moment (shown as percentage in column 7 of the
tables 1 through 6) are sometimes relatively high. However,as shown by Schassberger
[10, 11, 12, 13], a number of steady state properties such as mean queue lengths, average
waiting times, etc., depend only on the first few moments of the random distributions,



and since we want a model that is simple enough to be tractablein theoretical studies
of scheduling algorithms and parameters, we feel that our model for characterization of
the workloads in MPPs is quite adequate.

8 Acknowledgments

Joseph Riordan’s portion of this research was funded by the Cornell Theory Center,
which receives major funding from NSF (the National ScienceFoundation) and New
York State, with additional support from the National Center for Research Resources
at the NIH (National Institute of Health), IBM Corporation,and other members of the
center’s Corporate Partnership Program.

9 Appendix

The program shown in this section can be used to generate synthetic workloads for
model parameters given in the results section of this paper.The overall algorithm used
in this program is described in section 6. Here we point out a few specifics relevant to
the accurate generation of workloads.

– This program needs a uniform random number generator generating random num-
bers in the interval of 0 to 1. This is assumed to be obtained from a library function
calleddrand48(). If this function is not available in your computer, or if youhave
a different favorite one, replace the call todrand48() with an appropriate call. The
use of a good uniform random number generator is essential tothe quality of the
generated workloads. In our simulations, instead ofdrand48(), we used a very high
quality, but machine dependent random number generator.

– A point to note is that, for each job we need 3 random numbers, drawn from inde-
pendent uniform random number pools. We achieve this from a high quality, single
uniform random number generator by creating 3 pools or streams of uniform ran-
dom numbers. This is done in the functionstr rand().

– The tolerance for solution parameter,tol, in functionsolvebisec()should be tight.

– At the end of the program we also compute the non-central moments�k for each
of the classes, from the jobs generated in the synthetic workload. These should be
close to the corresponding numbers from tables 7 through 12.

This program generates a workload based on one class withpmin = 65 andpmax =128, and the CPU time is used as the service time. The parameters correspond to row 9
in tables 1 and 3. The�k should be compared with row 9 of tables 7 and 9.

/* This program generates a stream of jobs based on the
* models described in the main text of this paper.
* To keep this program simple, we have elimated all



* the checkings of the input. If you use the
* program often, we strongly recommend you to
* add code to catch the error conditions. This
* program is meant for illustration purposes only.
*/
#include <stdio.h>
#include <math.h>

#define min(a,b) (((a) < (b)) ? (a) : (b))
#define RANSTREAM 3
#define RANPOOLSIZE 10000

typedef struct
{ double p1,lambda1,lambda2,ur;

int order;
} MODEL_DATA;

/* Global Variables: */
double ran_pool[RANSTREAM][RANPOOLSIZE];
int ran_remain[RANSTREAM];

/* --------- Function prototypes: ------------------ */
double ur_to_HER_r( double ur, MODEL_DATA model);

double H_Er_cdf(double x, void *model);

void solve_bisec( double xleft_0,
double xright_0,
double tol,
double *x,
double *y,
void *model_data,
double (*f)(double, void *),
int *rc);

double fn_to_solve(double x, void *);

int fac(int k);

double str_rand(int str);

/* =================================================== */
main(int argc, char **argv)
{ MODEL_DATA inter_arrival_model, cpu_model;
double inter_arrival_mu1, inter_arrival_mu2,



inter_arrival_mu3;
double cpu_mu1, cpu_mu2, cpu_mu3;
double simtime, inter_arrival_time, cpu_time_used;
double dtemp;

int njobs, pmin,pmax,p_needed;
int ijob, nmodels, imodel;
int i,j;

/* One needs to change the value of nmodels here to
* reflect the number of models (namely number of
* lines from Tables 1 through 6 in the Results
* section of this paper) concurrently used for
* generating the job stream.
*/
nmodels=1;

for(imodel=0; imodel<nmodels; imodel++)
{ simtime=0;

/* The following section describes the parameters
* of model imodel, and should be modified to
* correspond to your chosen model.
*/
pmin = 65;
pmax = 128;

inter_arrival_model.lambda1 = 3.33e-05;
inter_arrival_model.lambda2 = 6.07e-04;
inter_arrival_model.order=2;
inter_arrival_model.p1=5.03e-01;

cpu_model.lambda1 = 1.19e-06;
cpu_model.lambda2 = 3.99e-04;
cpu_model.order=6;
cpu_model.p1=2.07e-01;

njobs=10000;
/* End of the Input section */

inter_arrival_mu1=0;
inter_arrival_mu2=0;
inter_arrival_mu3=0;

cpu_mu1=0;



cpu_mu2=0;
cpu_mu3=0;

ijob=0;

/* Here we are using the number of jobs (njobs) as the
* termination criterion. One may choose to use
* simtime (i.e. total length of time represented
* in this workload) as a termination criterion.
* In that case, use simtime in the following while
* statement.
*/

while( ijob < njobs)
{ ijob++;

dtemp=str_rand(0);
inter_arrival_time =

ur_to_HER_r(dtemp,inter_arrival_model);
simtime += inter_arrival_time;
inter_arrival_mu1 +=inter_arrival_time;
inter_arrival_mu2 +=(inter_arrival_time *

inter_arrival_time);
inter_arrival_mu3 +=(inter_arrival_time *

inter_arrival_time *
inter_arrival_time);

dtemp=str_rand(1);
cpu_time_used = ur_to_HER_r(dtemp,cpu_model);
cpu_mu1 += cpu_time_used;
cpu_mu2 += (cpu_time_used *

cpu_time_used);
cpu_mu3 += (cpu_time_used *

cpu_time_used *
cpu_time_used);

dtemp=str_rand(2);
dtemp *= (pmax-pmin+1);
j=dtemp;
if( ((double) j) < dtemp ) { p_needed = j + pmin; }
else { p_needed = j + pmin - 1; }

/* One needs to replace the following section



* (enclosed by #if and #endif) with appropriate
* statements to output the job stream information.
* If multiple models are concurrently used, it
* might be desirable to sort the final output by
* job arrival time.
*/

#if 0
if(ijob < 50 )
{ printf( "Job used %d CPUs and %e cummulative CPUtime",

p_needed, cpu_time_used);
printf( " arrived at time %e \n", simtime);

}
#endif

} /* end of the while loop */

printf(" For Model %d :\n",imodel);
inter_arrival_mu1 /= (double)ijob;
inter_arrival_mu2 /= (double)ijob;
inter_arrival_mu3 /= (double)ijob;
printf("Inter-arrival Time Moments of the jobs are \n");
printf( " %d mu1 = %e "

" mu2 = %e "
" mu3 = %e \n",

ijob, inter_arrival_mu1,
inter_arrival_mu2,
inter_arrival_mu3 );

cpu_mu1 /= (double)ijob;
cpu_mu2 /= (double)ijob;
cpu_mu3 /= (double)ijob;
printf("CPU Time Moments of the jobs are \n");
printf(" %d mu1 = %e "

"mu2 = %e "
"mu3 = %e\n",

ijob, cpu_mu1, cpu_mu2, cpu_mu3 );

} /* end of loop over models */
} /* end of main program */

/* ================================================== */
double ur_to_HER_r(double ur, MODEL_DATA m)
{ double xleft, xright;

double x,y;
int rc;



m.ur = ur;
xleft = 1.e-20; /* a small +ve number */
xright = -log(1.0-ur) / min(m.lambda1,m.lambda2);
xright *= 100;

solve_bisec(xleft, xright,
(double) 1.e-12,
&x, &y, &m,
fn_to_solve, &rc);

if(rc !=0 )
{ printf("Unable to find the Random Number for

ur = %e \n",m.ur);
}
return(x);

}
/* =================================================== */
double fn_to_solve(double x, void *model_data)
{ MODEL_DATA *m;

m = (MODEL_DATA *) model_data;
return( H_Er_cdf(x, model_data) - m->ur );

}
/* =================================================== */
double H_Er_cdf(double x, void *model_data)
{ MODEL_DATA *p;

double cdf, t1,t2, dtemp;
int k;
t1=0;
t2=0;
p = (MODEL_DATA *) model_data;

for(k=0; k< p->order; k++)
{ dtemp=fac(k);

t1 += (pow(x*p->lambda1,k)/dtemp);
t2 += (pow(x*p->lambda2,k)/dtemp);

}
cdf = 1.0 - p->p1 *exp(-(p->lambda1*x))*t1

- (1-p->p1)*exp(-(p->lambda2*x))*t2;
return(cdf);

}
/* =================================================== */
void solve_bisec(double xleft_0,

xright_0,
double tol,



double *x,
double *y,
void *model_data,
double (*f)(double, void *),
int *rc)

{ double xleft, yleft,
xright, yright,
xnext,ynext;

int ic;

xleft=xleft_0; xright=xright_0;
yleft=(*f)(xleft, model_data);
yright=(*f)(xright,model_data);
*rc=1; ic=0;

if( yleft*yright > 0.0 ) { return; }
/* No solution in this interval */

while(ic < 100000 )
{ ic++;

xnext=(xleft+xright)/2.0;
ynext=(*f)(xnext,model_data);
if( ynext*yright > 0.0 )
{ xright=xnext;

yright=ynext;
}
else
{ xleft=xnext;

yleft=ynext;
}
if( fabs(ynext) < tol )
{ *x=xnext; *y=ynext; *rc=0; return;}

}
}
/* =================================================== */
int fac(int k)
{ int i,j;

j=1;

if(k==0) return (j);
j=1;
for(i=1;i<=k;i++) j*=i;
return(j);

}



/* =================================================== */
double str_rand(int strm)
{ int i;

if( ran_remain[strm] <= 0 )
{ for(i=0;i<RANPOOLSIZE;i++)

ran_pool[strm][i]=drand48();
ran_remain[strm]=RANPOOLSIZE;

}
ran_remain[strm]--;
return( ran_pool[strm] [RANPOOLSIZE-ran_remain[strm]]) ;

}

References

1. A. Tucker and A. Gupta, “Process control and scheduling issues for multiprogrammed
shared-memory multiprocessors,” inProceedings of the 12th. ACM Symposium on Oper-
ating Systems Principle, pp. 159–166, 1989.

2. D. Feitelson and L. Rudolph, “Mapping and scheduling in a shared parallel environment
using distributed hierarchical control,” inIntl. Conf. Parallel Processing, pp. 1–8, 1990.

3. D. G. Feitelson, “Packing schemes for gang scheduling,” in Job Scheduling Strategies for
Parallel Processing Springer-Verlag, LNCS Vol. 1162, Apr 1996, pp. 89–110, 1996.

4. F. Wang, H. Franke, M. Papaefthymiou, P. Pattnaik, L. Rudolph, and M. S. Squillante, “A
gang scheduling design for multiprogrammed parallel computing environments,” inJob
Scheduling Strategies for Parallel Processing Springer-Verlag, LNCS Vol. 1162, Apr 1996,
pp. 111–125, 1996.

5. M. S. Squillante, F. Wang, and M. Papaefthymiou, “An analysis of gang scheduling for mul-
tiprogrammed parallel computing environments,” inProceedings of the Annual ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA), pp. 89–98, 1996.

6. H. Franke, P. Pattnaik, and L. Rudolph, “Gang scheduling for highly efficient distributed
multiprocessor systems,” inProceedings of the 6th Symposium on the Frontiers of Massively
Parallel Computation, Annapolis, MD, pp. 1–9, 1996.

7. D. R. Cox, “A use of complex probabilities in the theory of stochastic process,”Proc. Cam-
bridge Philos. Soc, 1955.

8. M. F. Neuts,Matrix-Geometric Solutions in Stochastic Models. The John Hopkins Univer-
sity Press, 1981.

9. M. A. Johnsonand M. R. Taaffe, “Matching moments to phase distributions,”Commun. Stat.
Stochastics Models, vol. 5, pp. 711–743, 1989.

10. R. Schassberger, “Insensitivity of steady-state distributions of generalized semi-markov pro-
cesses i,”Ann. Prob., pp. 87–99, 1977.

11. R. Schassberger, “Insensitivity of steady-state distributions of generalized semi-markov pro-
cesses ii,”Ann. Prob., pp. 85–93, 1978.

12. R. Schassberger, “Insensitivity of steady-state distributions of generalized semi-markov pro-
cesses with speeds,”Adv. Appl. Prob., pp. 836–851, 1978.

13. R. Schassberger, “The insensitivity of stationary probabilities in networks of queues,”Adv.
Appl. Prob., pp. 906–912, 1978.

This article was processed using the LATEX macro package with LLNCS style


