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Abstract. It is generally agreed that memory requirements should be
taken into account in the scheduling of parallel jobs. However, so far the
work on combined processor and memory scheduling has not been based
on detailed information and measurements. To rectify this problem, we
present an analysis of memory usage by a production workload on a large
parallel machine, the 1024-node CM-5 installed at Los Alamos National
Lab. Our main observations are

— The distribution of memory requests has strong discrete components,
i.e. some sizes are much more popular than others.

— Many jobs use a relatively small fraction of the memory available
on each node, so there is some room for time slicing among several
memory-resident jobs.

— Larger jobs (using more nodes) tend to use more memory, but it is
difficult to characterize the scaling of per-processor memory usage.

1 Introduction

Resource management includes a number of distinct topics, such as schedul-
ing and memory management. However, in the context of parallel processing,
scheduling is the single most important issue [9,6]. Memory management is
hardly ever exercised, because of its performance implications and effect on syn-
chronization [3,21]. Instead, jobs must be completely memory resident in order
to execute.

Nevertheless, memory requirements may place severe constraints on schedul-
ing, and therefore cannot be ignored. For example, in distributed memory ma-
chines processor allocation includes allocating part of the system’s memory as
well — the memory that is packaged with these processors. This memory must
be large enough to fulfill the job’s requirements. This consideration limits dy-
namic partitioning schemes and may prevent them from reducing the partition
sizes when the load increases, thus undermining the whole idea of dynamic par-
titioning [16,17].

While there has been some research on the effect of memory requirements
on job scheduling, this research has been hampered by the lack of concrete in-
formation about actual memory requirements that are experienced in practice.
The unique contribution of this paper is to provide such information. We start
with a brief overview of the system we analyzed, the LANL CM-5, in the next



section. Section 3 contains the memory usage analysis, including such issues as
the distribution of memory usage, the correlation of memory usage with degree
of parallelism, the correlation of memory usage with runtime, and the relation
between the memory requested and that actually used. Section 4 contains a
discussion of the results and their implications, and Section 5 presents the con-
clusions.

2 The Analyzed System

The analysis presented in this paper is based on a detailed accounting log from
the 1056-node Connection Machine CM-5 installed at Los Alamos National Lab.
While such machines are no longer manufactured, this one is still in active use,
and considered quite powerful — 1t ranked 21st in the world in the November
’96 Top500 list, and came in first among Connection Machines [4].

The CM-5 i1s a distributed memory machine based on SPARC processors.
1024 of the 1056 nodes are used for parallel computation, with a total of 32
GB of memory (i.e. 32 MB per node). The machine is statically partitioned into
partitions with power-of-two numbers of processors from 32 up to 512. Within
each partition, jobs may be gang-scheduled, or they may request dedicated use
of the partition [20]. While the fact that only b sizes are available is restrictive,
other work on parallel workload characterization has shown conclusively that
users prefer powers of two even if there are no architectural constraints [8,5].

The part of the log we worked on covers most of 1996 (from January 1 to
September 23), and contains useful data on 36308 jobs (we ignore jobs that used
0 time etc.). The data includes a lot of information about the submittal process,
but we mostly used the data on the number of processors used, the runtime, the
requested memory, the memory actually used, and whether or not the nodes were
dedicated. Runtimes are expressed in seconds (s), and memory usage in kilobytes
(KB). The data was collected by DJM [14], the Distributed Job Manager used
on CM-5 machines. Most jobs were indeed run using DJM, but 1492 of them
were “foreign” | i.e. launched directly by users. The log contains less information
about foreign jobs, e.g. they do not have predefined resource requests.

Fig. 1 shows the histograms of job sizes and resource use during this period
(there were also three 1024-node jobs, not shown). When counting jobs (left
plot), 32-node jobs are the most common, followed by 128-node jobs. While
there are less jobs that use 256 or 512 nodes, their numbers are still significant.
If we weigh the number of jobs by the time they ran (middle plot), the variance
is smaller: 32-node jobs occupied about twice as much time as each of the other
sizes, which are all similar. If we also weigh the jobs by the number of nodes they
use, and plot the total node-seconds for each size (right plot), then we find that
the large jobs use more resources than smaller ones. The dashed lines across the
columns denote the boundary between dedicated and non-dedicated use of the
nodes: below are dedicated, and above are shared or foreign. Nearly all 256 and
512-node jobs ran in dedicated mode.
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Fig. 1. Histograms of job sizes in the analyzed log. In the left graph, all jobs have
equal weights. In the middle, jobs are weighted by their runtime. At right, jobs are
weighted by the product of runtime and parallelism, which is equivalent to counting
node-seconds.

3 Memory Usage Analysis

3.1 Memory Usage Distribution

Our goal is to characterize memory usage on parallel supercomputers. But mem-
ory by itself 1s not the resource in question: it is the occupation of memory for a
period of time. A job that uses IMB of memory for one second obviously requires
less resources than one that uses the same 1MB for an hour. Therefore, the unit
of resource use is not the KB, but the KB-s, or KiloByte Second.

On the other hand, a job using 1MB for one second also requires different
resources from one that uses 10KB for 100 seconds, even though the total KB-s
in both cases are equal. We therefore characterize memory usage by a weighted
distribution, where the # axis denotes the amount of memory used (in KB), and
the y axis reflects the cumulative ttme that this amount of memory was used.
Using such a plot to characterize total memory usage by jobs is equivalent to
creating a histogram where jobs are weighted by their runtime, rather than being
given equal weights.

While characterizing the total memory usage by jobs is important, it is not
enough. For parallel jobs, the memory used per processor is also important.
Again, there are several ways to combine the requests of different jobs and create
a single representation. The most meaningful seems to be to weigh the per-
processor usage by the product of runtime and number of processors. Thus a job
using 1MB across 10 processors for 10 seconds imposes a load of 100KB on each
processor for 10 seconds, which is the same as 100 single-processor jobs using
100KB and running for 1 second each.

It should be stressed that choosing the right weights is extremely important,
as typically a small fraction of the jobs account for a large fraction of the resource
usage. The differences are shown graphically in Fig. 2 for the case of per-processor
memory usage. If all jobs are given equal weights, 1t seems that most jobs only
require less than 5MB of memory per processor (top plot). But if the more
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Fig. 2. The distribution of per-processor memory usage, using a linear scale and buckets
of 10 KB. In the top plot, all jobs have equal weight. In the middle, jobs are weighted
according to their run time. The bottom plot shows the distribution for individual
processors, which is equivalent to weighing the jobs according to the product of runtime
and degree of parallelism.

correct node-second weighting is used (bottom plot), it is evident that actually
at any given moment a significant fraction of the processors are using a significant
fraction of their memory (in the range of 20-30MB). In particular, the highest
peak in the first plot, representing 14% of all the jobs, all but disappears in the
other plots, because all these jobs were extremely short lived.

Characterization of discrete components A prominent feature of all these dis-
tributions is their discrete nature: they are composed of a number of very high
discrete components, and very low “background noise”. The question is what
leads to this structure.

Table 1 contains information about all the discrete components that represent
more than 1% of the total jobs or more than 1% of the total node-seconds. For
each one, users that individually contributed more than 1% are identified. In



KB per jobs node sec
proc | user of % of % of
1400 14 1.27 0.42
1640 | usrl 6| 013 | 018 | 1.18 | 1.19
1830 | usr2 6| 1.15| 1.33| 0.00 | 0.02
1840 | usr2 | 20 | 13.25 | 14.06 | 0.01 | 0.07
2650 | usr3 10 | 2.00 | 3.01| 1.96 | 2.71
2660 | usrd | 13| 1.29 | 3.22 | 1.41 | 2.81
usr3 1.12 0.88
2900 | usrb 7| 026 | 040 | 1.37| 1.93
3880 | usr6 12| 3.64| 3.88| 1.37| 1.93
4040 20 1.89 0.22
4180 | usr7 8| 1.42] 3.33| 042 1.51
usr3 1.17 0.46
4190 4 1.21 0.46
4340 7 0.34 1.01
4430 | usr8 17 | 1.21| 211 0.01| 0.28
5950 | usrb 4| 0.25| 0.31| 1.55| 1.94
7010 | usr3 2| 057 057| 4.02| 4.02
10120 | usr9 4| 0.10 | 0.27| 0.70 | 1.77
usrb 0.17 1.07
11150 | usr9 4| 0.16 | 0.40 | 1.08 | 2.68
usrd 0.22 1.60
11600 | usrl0 | 2| 0.13 | 0.13 | 1.73 | 1.73
12950 | usr2 2] 019 0.20| 1.11 ]| 1.12
13380 | usr3 2| 015| 016 | 1.44 | 1.44
13530 | usrll 2| 013 014 | 1.43 | 1.44
17180 | usrl2 | 2| 0.17 | 0.18 | 3.69 | 3.71
19330 | usrb 3| 041 ] 055 | 2.81 | 3.81
usr9 0.14 0.94
19810 | usrl2 1| 0.05| 0.05| 1.09 | 1.09
21120 | usrb 3| 040| 052 | 2.85| 3.70
21890 | usr9 4| 0.15| 0.48 | 2.04 | 6.21
usrd 0.31 4.08
22550 | usrl0 | 2| 0.06 | 0.06 | 1.02 | 1.02
25630 | usrl0 | 2| 0.06 | 0.07 | 1.14 | 1.15
27220 |usr13 | 2| 0.17 | 0.21 | 1.76 | 2.28
28700 | usrl0 | 2| 0.09 | 0.18 | 2.21 | 3.94
usrl 0.09 1.73

Table 1. Single-user contributions to discrete components that are above 1% of the
total. User names are replaced by numbers. Column 3 gives the total number of users
contributing to this component. Columns 5 and 7 give the total fraction of jobs and
node-seconds in this component, respectively, while columns 4 and 6 give the fraction

contributed by the user specified in column 2.




a few cases (1400, 4040, 4190, and 4340 KB per processor) the component is
seen to be a combination of multiple users, who each contributed only less than
1%. But in the other 26 discrete components, most of the resource usage can be
attributed to a single user (or sometimes two users). In particular, the huge peak
at 1840 KB per processor can be attributed to a single user who ran 13.25% of
all the jobs in the log, and in fact did so in just over one week. It is thus risky to
assign too much meaning to the discrete components themselves, but it is safe to
assume that such a discrete structure is common, because some users are much
more active than others.

Rendering with logarithmic scale Much information can be gleaned from the
detailed distributions of memory usage such as those shown in Fig. 2. However,
when investigating the distribution of an essentially continuous variable, one
encounters the problem of choosing the granularity of observation. If the grain
is too coarse, interesting details may be smoothed out. If it is too fine, the data
will drown in a sea of noisy details.
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Fig. 3. Distributions of memory usage using coarse and fine bucket sizes.

When comparing jobs with different attributes, we shall use logarithmically-
sized buckets and count how many jobs (with appropriate weights) fall into each
such bucket. In order to reduce the granularity and observe finer details, we
multiply the memory usage value by a scaling factor after taking the log. Thus
the mapping from memory usage m to bucket b is

b= | -log(m)]

The larger the scaling factor f, the more buckets that are used, with each one
representing a smaller part of the spectrum. In most of what follows, we use a
scaling factor of 5, which we feel is a good compromise. In Fig. 3 we compare
the obtained distribution with one that would be obtained by using a scaling
factor of 25 (in these figures the values for the different buckets are connected
by a line; this is visually more convenient than drawing a bar chart with a bar



for each bucket). This shows that the peaks in the coarse view of the distri-
bution correspond to the larger narrow discrete components in the fine view
of the distribution, or to regions where there are multiple peaks that are very
close together. Taking this to the extreme, we note that the peaks in the fine
distribution typically correspond to discrete peaks in the linear distribution of
Fig. 2, where a linear scale and buckets of only 10 KB were used. The whole
distribution is a combination of “background noise” with these strong discrete
components.
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Fig.4. Average memory usage by jobs of different sizes. The top graphs are for total
memory usage, and the bottom ones for per-processor usage. In each pair, the left graph
is a simple average, while the right one is weighted by time. The error bars denote the
standard deviation.

3.2 Correlation of Memory Usage and Parallelism

The average memory usage by jobs of different sizes is shown in Fig. 4. Obviously,
larger jobs require more memory, but the distribution is very wide. Interestingly,
when the memory usage per processor is plotted, one sees that larger jobs also
use more memory per-processor. The effect of larger memory use by larger jobs



is even more pronounced when they are weighted by time. The standard devi-
ation in most cases is somewhat smaller than the average, indicating that the
coefficient of variation is less than 1 for each job size.
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Fig. 5. Distributions of memory usage by all jobs and jobs of different sizes.

Left: total memory usage, weighted by job runtime. Right: average memory usage per
processor, weighted by job runtime and number of processors. Top: pointwise distribu-
tion. Bottom: cumulative distribution (each normalized independently).

The full memory usage distributions for jobs using different numbers of pro-
cessors are shown in Fig. 5, using the logarithmic scale with coarse granularity.
Both pointwise and cumulative distributions are shown for clarity, for both to-
tal and per-processor memory usage. Recall that peaks in these graphs actually
correspond to very narrow discrete components in the distributions, and that
weighing by time is used.

The distribution of memory usage for all jobs is rather wide, but the distribu-
tions for the different sizes are clearly distinguishable. This is especially clear in
the cumulative plot of total memory usage, where the plots are neatly arranged
in partition-size order, indicating that when more nodes are used, the weight of
the distribution moves to higher memory usage values. The per-processor usage
plots show again that this is not only a result of using memory on more nodes.

Interestingly, some of the discrete peaks in the distribution are dominated by
a single partition size. This corresponds to the effects that the activity of single



users sometimes have on the whole distribution, as described above.

3.3 Memory Usage in Dedicated and Shared Partitions

The same graphs are plotted again in Fig. 6, except that here the jobs are
classified by their use of dedicated nodes rather than by size. About a third of
the jobs ran in dedicated mode (12074 out of 36308), while the rest were gang-
scheduled. However, it should be noted that nearly all jobs that ran on the large
partition sizes did so in dedicated mode, so these jobs account for a very large
fraction of the total node-seconds used (about 85.2%).
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Fig. 6. Distributions of memory usage by jobs using dedicated or shared nodes.

Left: total memory usage, weighted by job runtime. Right: average memory usage per
processor, weighted by job runtime and number of processors. Top: pointwise distribu-
tion. Bottom: cumulative distribution (each normalized independently).

On average, dedicated jobs used more memory than jobs that shared their
nodes with other jobs, as shown in Table 2. The distributions agree with this
observation and show that actually the whole weight of the distributions is higher
for dedicated jobs. Indeed, high memory usage values are completely dominated
by dedicated jobs. This correlates with the fact that nearly all large jobs (on 256
and 512 processors) were dedicated.



total memory memory per proc
job class average sd average sd
all 2029762 | 3299901 12187 8200
dedicated | 3295679 | 3843629 13537 8049
shared 263188 334604 4444 3296

Table 2. Average memory usage of different job classes. Numbers for total memory
are weighted by runtime, and those for memory per processor by node seconds.

3.4 Memory Usage vs. Requests

Another interesting issue is the accuracy with which users request memory. To
get an idea of this accuracy, we plot the distribution of actual memory usage
as a percentage of requested memory in Fig. 7, using buckets of 4 percentage
points. While there is a peak of over 17% in the range of 4-8% of the request,
the second highest peak of nearly 10% is at 96-100%, indicating that at least in
some cases users make very accurate predictions (or possibly use up all what they
get). However, in general the distribution is rather flat, indicating that using
user input as an estimate of memory requirements leads to poor predictions.
Moreover, it should also be noted that a significant number of jobs (5992 to be
exact, or 16.5%) used more memory than they requested (only partially shown
in the graph), with a maximum factor of 32 time more!
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Fig. 7. Distribution of actual memory usage as a fraction of requested memory.

Some insight into the nature of user input is obtained by classifying the jobs
into those that ran on dedicated nodes vs. those that shared their nodes with
other jobs. It turns out that the peak at 4-8% can be attributed completely to
dedicated jobs, whereas the peak at 96-100% is due to shared jobs. Furthermore,
nearly all jobs that used more memory than requested ran on shared nodes (5887
out of 5992). This means that jobs that ran in dedicated mode typically did so
for reasons other than their memory requirements. It also means that when users
actually need to provide low memory estimates in order to run (as is the case



on shared nodes) they sometimes make very accurate estimates, and sometimes
they lie...

3.5 Correlation of Memory Usage and Runtime

Finally, we investigate the possible correlation between memory usage and run-
time. The scatter plot on the left of Fig. 8 shows all pairs of runtime and total
memory usage. The most striking features of this plot are the well-defined band
of memory usage values, the horizontal stripes that indicate preferred memory
usage values, and the sharp limits on runtime at the right-end side (probably due
to NQS queue limits). But in addition, it is possible to discern a weak correlation:
the weight at the left end is lower than at the right end.
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Fig. 8. Scatter plot and functional relationship of memory usage and runtime.

The graph on the right shows this correlation more clearly. Here the jobs
are partitioned into a number of equal sized buckets according to their runtime
(e.g. when using 4 buckets, the first bucket includes a quarter of the jobs, and
specifically those with the shortest runtimes; the second bucket includes the next
quadrant, and so on). One data point is drawn for each bucket, at the average
runtime and average memory usage of the jobs in the bucket. When using 2
or 4 such buckets, the resulting graph is smooth and monotonically increasing.
With 8 or 16 buckets, it is seen that some buckets with a high average runtime
actually have a low average memory usage. Interestingly, the runtimes of these
buckets correspond to the most prominent runtime limit from the scatter plot.

4 Discussion and Implications

The motivation for studying memory usage in parallel workloads is to provide
data for the design and evaluation of scheduling algorithms that take memory
requirements into account. This takes two forms. One is direct effects on schedul-
ing algorithms and policies, for example the assertion that time slicing may be



used because most jobs use a relatively small fraction of the available memory.
The other is incorporation of memory requirements into workload models used
to drive simulations or as inputs to analytical evaluations. For example, a model
of how memory requirements change with the degree of parallelism facilitates
the evaluation of scheduling policies for different machine configurations.

4.1 Time Slicing and Memory Pressure

Previous work about incorporating memory considerations into scheduling algo-
rithms has been quite limited, and included ideas such as the following:

— In systems that use space slicing, place a lower bound on partition size so
that enough memory will be available [16,17,13].

— When the partition size is adjustable, do not reduce it too much, because
small partitions cause jobs to run longer and thus increase the memory
pressure [15].

— In systems that use swapping, make the residence time proportional to the
memory footprint size in order to amortize the cost of loading the memory
image [1,7].

A recurring theme has been the worry that most applications will use all the
available memory, thereby sharply limiting real-world solutions to scheduling
problems. In particular, concern has been expressed about the fact that gang
scheduling requires multiple jobs to be memory resident at the same time, and
thus increases memory pressure. Qur results alleviate this concern, as the weight
of the distribution of per-processor memory usage is far below the actual memory
available on each node, indicating that from a memory point of view there i1s room
for sharing the nodes among a number of jobs (as indeed is done on the CM-5).
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To quantify this claim, we plot the cumulative distribution of the per-processor
memory usage, weighted by runtime and number of processors (Fig. 9). This is
actually the cumulative version of the distribution shown in the bottom plot
of Fig. 2. The z axis shows the fraction of memory used on average on each
processor, using the conservative estimate that 29.08 MB are available (rather
than 32 MB; this was the highest value observed in the trace). The y axis shows
cumulative node seconds. The way to read this graph is as follows: for each point
(z,y) on the graph, y is the probability that up to # of the memory is being
used. But more importantly, it is also the probability that at least 1 — x is free.

Except for the extreme edges, the graph is above the diagonal, which indicates
relatively low resource usage. For example, if we focus on the mid point of the z
axis, where up to half the memory is used, we find that this happens 62.7% of the
time on average. This means that there is a probability of 0.627 that a running
job will leave at least half of the memory free for other jobs. Alternatively,
if we focus on the midpoint of the y axis, we find that it corresponds to 38.3%
memory usage. Thus half the time we will find that at least 61.7% of the memory
is available.
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Fig.10. With space slicing, processor allocation dictates memory allocation due to the
“vertical” partitioning (top). With gang scheduling, memory is partitioned “horizon-
tally”, so memory allocation is decoupled from processor allocation (bottom).

The fact that nodes can be time-sliced without undue increase in memory
pressure has far reaching implications. An important observation is that gang
scheduling allows “horizontal” partitioning of memory, rather than the more
rigid and inflexible “vertical” partitioning that happens when space slicing is
used (Fig. 10). This added flexibility is expected to be instrumental in serving



more jobs and reducing fragmentation. As a result, it allows more jobs to fit into
the available memory, and delays the need to employ swapping.

The relatively unaggressive memory usage observed also has implications for
space slicing policies, and particularly for adaptive and dynamic partitioning.
One of the strengths of these policies is that the partition sizes are reduced under
heavy load, leading to more efficient use of the resources (because most jobs
display diminishing returns when more processors are added, and can use smaller
numbers of processors more effectively than large numbers). Again, concern has
been expressed that it would not be possible to reduce the partition sizes and
exploit this feature, because of memory requirements [16]. Our results indicate
that rather small partition sizes may suffice in many cases.

4.2 Modeling Memory Usage

A separate issue is the modeling of memory usage for use in simulations and
analysis. Specifically, we would like to be able to model how resource require-
ments change when applications scale to larger systems. Three models have been
proposed in the literature:

— Fized work. This assumes that the work done by a job is fixed, and parallelism
is used to solve the same problems faster. Therefore the runtime and per-
processor memory usage are assumed to be inversely proportional to the
degree of parallelism. This model is the basis for Amdahl’s law [2].

— Fized time [11,12,22]. Here it is assumed that parallelism is used to solve
increasingly larger problems, under the constraint that the total runtime
stays fixed. In this case, the runtime distribution is independent of the de-
gree of parallelism, but the total memory usage is expected to increase with
increased parallelism.

— Memory bound [19]. This model assumes that the problem size is increased
to fill the available memory on the larger machine, so that the per-processor
memory usage is maintained. As the amount of productive work typically
grows at least linearly with the dataset size, and the overheads associated
with parallelism grow with the degree of parallelism, the total execution time
will actually increase with added parallelism.

We can get some speculative evidence concerning this question by comparing
the resource requirements of jobs that actually ran on different size partitions.
Our preliminary results concerning memory usage, combined with our previ-
ous results regarding the correlation between runtime and parallelism [5], indi-
cate that the truth probably lies between the fixed-time model and the memory
bound model. In a nutshell, all three resources tend to scale up together: larger
jobs use more processors, use more memory, and run longer. However, it seems
that all these models are over-simplified to the point where it is hard to corre-
late them with measured results. In particular, users configure their applications
according to their needs rather than according to the way resources happen to
be packaged in the machine [18]. Thus users rarely use all the memory available,



on any size partition. It is true, however, that they tend to use more on larger
partitions.

Finally, we note that modeling the memory usage distribution itself is not
easy, because it does not seem to be similar to commonly used “analytical”
distributions. Instead, it has a number of large discrete components (Fig. 2).
It is premature to draw too many conclusions about this distribution based on
evidence from only one machine.

5 Conclusions

Scheduling is concerned with the allocation of scarce resources to competing
jobs. Two of the most important resources are computing cycles and memory
locations. The allocation of computing cycles allows for some tradeoff between
the degree of parallelism and time — moldable and malleable jobs may use
less processors for more time to accumulate the same overall number of cycles
[10]. With memory, such a tradeoff is only possible if paging is used. As paging is
typically considered to be too expensive due to 1ts overhead and adverse effect on
communication and synchronization, parallel jobs typically have to be memory
resident throughout their execution. Memory requirements therefore impose a
very rigid constraint on the scheduler and may severely limit its options.

In order to investigate the effect of memory requirements on scheduling,
information about typical memory requirements is needed. We have studied the
memory usage patterns of a production scientific workload on the LANL CM-5
parallel supercomputer for this purpose. Our main observations are

— The distribution of memory requests i1s rather wide, with strong discrete
components (i.e. some sizes are much more popular than others). Tt is not
similar to commonly used and mathematically tractable distributions.

— Many jobs use a relatively small fraction of the memory available on each
node, e.g. less than half. Thus there is typically room for more than one job
to be memory resident at the same time. However, it is advisable to pack the
jobs according to their memory requirements, that is, to judiciously choose
jobs with small requirements to fill in the space left by a job with large
requirements. If this is done, time slicing among several memory-resident
jobs is distinctly possible.

— Larger jobs (using more nodes) tend to use more memory than small jobs
(using less nodes) in total, and also more memory per processor. However,
it is difficult to characterize this scaling precisely, and further investigation
(based on data from additional machines) is required.
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