
Memory Usage in the LANL CM-5 WorkloadDror G. FeitelsonInstitute of Computer ScienceThe Hebrew University, 91904 Jerusalem, Israelfeit@cs.huji.ac.il or http://www.cs.huji.ac.il/~feitAbstract. It is generally agreed that memory requirements should betaken into account in the scheduling of parallel jobs. However, so far thework on combined processor and memory scheduling has not been basedon detailed information and measurements. To rectify this problem, wepresent an analysis of memory usage by a production workload on a largeparallel machine, the 1024-node CM-5 installed at Los Alamos NationalLab. Our main observations are{ The distribution of memory requests has strong discrete components,i.e. some sizes are much more popular than others.{ Many jobs use a relatively small fraction of the memory availableon each node, so there is some room for time slicing among severalmemory-resident jobs.{ Larger jobs (using more nodes) tend to use more memory, but it isdi�cult to characterize the scaling of per-processor memory usage.1 IntroductionResource management includes a number of distinct topics, such as schedul-ing and memory management. However, in the context of parallel processing,scheduling is the single most important issue [9,6]. Memory management ishardly ever exercised, because of its performance implications and e�ect on syn-chronization [3,21]. Instead, jobs must be completely memory resident in orderto execute.Nevertheless, memory requirements may place severe constraints on schedul-ing, and therefore cannot be ignored. For example, in distributed memory ma-chines processor allocation includes allocating part of the system's memory aswell | the memory that is packaged with these processors. This memory mustbe large enough to ful�ll the job's requirements. This consideration limits dy-namic partitioning schemes and may prevent them from reducing the partitionsizes when the load increases, thus undermining the whole idea of dynamic par-titioning [16,17].While there has been some research on the e�ect of memory requirementson job scheduling, this research has been hampered by the lack of concrete in-formation about actual memory requirements that are experienced in practice.The unique contribution of this paper is to provide such information. We startwith a brief overview of the system we analyzed, the LANL CM-5, in the next



section. Section 3 contains the memory usage analysis, including such issues asthe distribution of memory usage, the correlation of memory usage with degreeof parallelism, the correlation of memory usage with runtime, and the relationbetween the memory requested and that actually used. Section 4 contains adiscussion of the results and their implications, and Section 5 presents the con-clusions.2 The Analyzed SystemThe analysis presented in this paper is based on a detailed accounting log fromthe 1056-node Connection Machine CM-5 installed at Los Alamos National Lab.While such machines are no longer manufactured, this one is still in active use,and considered quite powerful | it ranked 21st in the world in the November'96 Top500 list, and came in �rst among Connection Machines [4].The CM-5 is a distributed memory machine based on SPARC processors.1024 of the 1056 nodes are used for parallel computation, with a total of 32GB of memory (i.e. 32 MB per node). The machine is statically partitioned intopartitions with power-of-two numbers of processors from 32 up to 512. Withineach partition, jobs may be gang-scheduled, or they may request dedicated useof the partition [20]. While the fact that only 5 sizes are available is restrictive,other work on parallel workload characterization has shown conclusively thatusers prefer powers of two even if there are no architectural constraints [8,5].The part of the log we worked on covers most of 1996 (from January 1 toSeptember 23), and contains useful data on 36308 jobs (we ignore jobs that used0 time etc.). The data includes a lot of information about the submittal process,but we mostly used the data on the number of processors used, the runtime, therequested memory, the memory actually used, and whether or not the nodes werededicated. Runtimes are expressed in seconds (s), and memory usage in kilobytes(KB). The data was collected by DJM [14], the Distributed Job Manager usedon CM-5 machines. Most jobs were indeed run using DJM, but 1492 of themwere \foreign", i.e. launched directly by users. The log contains less informationabout foreign jobs, e.g. they do not have prede�ned resource requests.Fig. 1 shows the histograms of job sizes and resource use during this period(there were also three 1024-node jobs, not shown). When counting jobs (leftplot), 32-node jobs are the most common, followed by 128-node jobs. Whilethere are less jobs that use 256 or 512 nodes, their numbers are still signi�cant.If we weigh the number of jobs by the time they ran (middle plot), the varianceis smaller: 32-node jobs occupied about twice as much time as each of the othersizes, which are all similar. If we also weigh the jobs by the number of nodes theyuse, and plot the total node-seconds for each size (right plot), then we �nd thatthe large jobs use more resources than smaller ones. The dashed lines across thecolumns denote the boundary between dedicated and non-dedicated use of thenodes: below are dedicated, and above are shared or foreign. Nearly all 256 and512-node jobs ran in dedicated mode.
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ects the cumulative time that this amount of memory was used.Using such a plot to characterize total memory usage by jobs is equivalent tocreating a histogramwhere jobs are weighted by their runtime, rather than beinggiven equal weights.While characterizing the total memory usage by jobs is important, it is notenough. For parallel jobs, the memory used per processor is also important.Again, there are several ways to combine the requests of di�erent jobs and createa single representation. The most meaningful seems to be to weigh the per-processor usage by the product of runtime and number of processors. Thus a jobusing 1MB across 10 processors for 10 seconds imposes a load of 100KB on eachprocessor for 10 seconds, which is the same as 100 single-processor jobs using100KB and running for 1 second each.It should be stressed that choosing the right weights is extremely important,as typically a small fraction of the jobs account for a large fraction of the resourceusage. The di�erences are shown graphically in Fig. 2 for the case of per-processormemory usage. If all jobs are given equal weights, it seems that most jobs onlyrequire less than 5MB of memory per processor (top plot). But if the more
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KB per jobs node secproc user of % of % of1400 14 1.27 0.421640 usr1 6 0.13 0.18 1.18 1.191830 usr2 6 1.15 1.33 0.00 0.021840 usr2 20 13.25 14.06 0.01 0.072650 usr3 10 2.00 3.01 1.96 2.712660 usr4 13 1.29 3.22 1.41 2.81usr3 1.12 0.882900 usr5 7 0.26 0.40 1.37 1.933880 usr6 12 3.64 3.88 1.37 1.934040 20 1.89 0.224180 usr7 8 1.42 3.33 0.42 1.51usr3 1.17 0.464190 4 1.21 0.464340 7 0.34 1.014430 usr8 17 1.21 2.11 0.01 0.285950 usr5 4 0.25 0.31 1.55 1.947010 usr3 2 0.57 0.57 4.02 4.0210120 usr9 4 0.10 0.27 0.70 1.77usr5 0.17 1.0711150 usr9 4 0.16 0.40 1.08 2.68usr5 0.22 1.6011600 usr10 2 0.13 0.13 1.73 1.7312950 usr2 2 0.19 0.20 1.11 1.1213380 usr3 2 0.15 0.16 1.44 1.4413530 usr11 2 0.13 0.14 1.43 1.4417180 usr12 2 0.17 0.18 3.69 3.7119330 usr5 3 0.41 0.55 2.81 3.81usr9 0.14 0.9419810 usr12 1 0.05 0.05 1.09 1.0921120 usr5 3 0.40 0.52 2.85 3.7021890 usr9 4 0.15 0.48 2.04 6.21usr5 0.31 4.0822550 usr10 2 0.06 0.06 1.02 1.0225630 usr10 2 0.06 0.07 1.14 1.1527220 usr13 2 0.17 0.21 1.76 2.2828700 usr10 2 0.09 0.18 2.21 3.94usr1 0.09 1.73Table 1. Single-user contributions to discrete components that are above 1% of thetotal. User names are replaced by numbers. Column 3 gives the total number of userscontributing to this component. Columns 5 and 7 give the total fraction of jobs andnode-seconds in this component, respectively, while columns 4 and 6 give the fractioncontributed by the user speci�ed in column 2.



a few cases (1400, 4040, 4190, and 4340 KB per processor) the component isseen to be a combination of multiple users, who each contributed only less than1%. But in the other 26 discrete components, most of the resource usage can beattributed to a single user (or sometimes two users). In particular, the huge peakat 1840 KB per processor can be attributed to a single user who ran 13.25% ofall the jobs in the log, and in fact did so in just over one week. It is thus risky toassign too much meaning to the discrete components themselves, but it is safe toassume that such a discrete structure is common, because some users are muchmore active than others.Rendering with logarithmic scale Much information can be gleaned from thedetailed distributions of memory usage such as those shown in Fig. 2. However,when investigating the distribution of an essentially continuous variable, oneencounters the problem of choosing the granularity of observation. If the grainis too coarse, interesting details may be smoothed out. If it is too �ne, the datawill drown in a sea of noisy details.
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Fig. 3. Distributions of memory usage using coarse and �ne bucket sizes.When comparing jobs with di�erent attributes, we shall use logarithmically-sized buckets and count how many jobs (with appropriate weights) fall into eachsuch bucket. In order to reduce the granularity and observe �ner details, wemultiply the memory usage value by a scaling factor after taking the log. Thusthe mapping from memory usage m to bucket b isb = bf � log(m)cThe larger the scaling factor f , the more buckets that are used, with each onerepresenting a smaller part of the spectrum. In most of what follows, we use ascaling factor of 5, which we feel is a good compromise. In Fig. 3 we comparethe obtained distribution with one that would be obtained by using a scalingfactor of 25 (in these �gures the values for the di�erent buckets are connectedby a line; this is visually more convenient than drawing a bar chart with a bar



for each bucket). This shows that the peaks in the coarse view of the distri-bution correspond to the larger narrow discrete components in the �ne viewof the distribution, or to regions where there are multiple peaks that are veryclose together. Taking this to the extreme, we note that the peaks in the �nedistribution typically correspond to discrete peaks in the linear distribution ofFig. 2, where a linear scale and buckets of only 10 KB were used. The wholedistribution is a combination of \background noise" with these strong discretecomponents.
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is even more pronounced when they are weighted by time. The standard devi-ation in most cases is somewhat smaller than the average, indicating that thecoe�cient of variation is less than 1 for each job size.
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users sometimes have on the whole distribution, as described above.3.3 Memory Usage in Dedicated and Shared PartitionsThe same graphs are plotted again in Fig. 6, except that here the jobs areclassi�ed by their use of dedicated nodes rather than by size. About a third ofthe jobs ran in dedicated mode (12074 out of 36308), while the rest were gang-scheduled. However, it should be noted that nearly all jobs that ran on the largepartition sizes did so in dedicated mode, so these jobs account for a very largefraction of the total node-seconds used (about 85.2%).
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total memory memory per procjob class average sd average sdall 2029762 3299901 12187 8200dedicated 3295679 3843629 13537 8049shared 263188 334604 4444 3296Table 2. Average memory usage of di�erent job classes. Numbers for total memoryare weighted by runtime, and those for memory per processor by node seconds.3.4 Memory Usage vs. RequestsAnother interesting issue is the accuracy with which users request memory. Toget an idea of this accuracy, we plot the distribution of actual memory usageas a percentage of requested memory in Fig. 7, using buckets of 4 percentagepoints. While there is a peak of over 17% in the range of 4{8% of the request,the second highest peak of nearly 10% is at 96{100%, indicating that at least insome cases users make very accurate predictions (or possibly use up all what theyget). However, in general the distribution is rather 
at, indicating that usinguser input as an estimate of memory requirements leads to poor predictions.Moreover, it should also be noted that a signi�cant number of jobs (5992 to beexact, or 16.5%) used more memory than they requested (only partially shownin the graph), with a maximum factor of 32 time more!
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on shared nodes) they sometimes make very accurate estimates, and sometimesthey lie...3.5 Correlation of Memory Usage and RuntimeFinally, we investigate the possible correlation between memory usage and run-time. The scatter plot on the left of Fig. 8 shows all pairs of runtime and totalmemory usage. The most striking features of this plot are the well-de�ned bandof memory usage values, the horizontal stripes that indicate preferred memoryusage values, and the sharp limits on runtime at the right-end side (probably dueto NQS queue limits). But in addition, it is possible to discern a weak correlation:the weight at the left end is lower than at the right end.
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used because most jobs use a relatively small fraction of the available memory.The other is incorporation of memory requirements into workload models usedto drive simulations or as inputs to analytical evaluations. For example, a modelof how memory requirements change with the degree of parallelism facilitatesthe evaluation of scheduling policies for di�erent machine con�gurations.4.1 Time Slicing and Memory PressurePrevious work about incorporating memory considerations into scheduling algo-rithms has been quite limited, and included ideas such as the following:{ In systems that use space slicing, place a lower bound on partition size sothat enough memory will be available [16,17,13].{ When the partition size is adjustable, do not reduce it too much, becausesmall partitions cause jobs to run longer and thus increase the memorypressure [15].{ In systems that use swapping, make the residence time proportional to thememory footprint size in order to amortize the cost of loading the memoryimage [1,7].A recurring theme has been the worry that most applications will use all theavailable memory, thereby sharply limiting real-world solutions to schedulingproblems. In particular, concern has been expressed about the fact that gangscheduling requires multiple jobs to be memory resident at the same time, andthus increases memory pressure. Our results alleviate this concern, as the weightof the distribution of per-processor memory usage is far below the actual memoryavailable on each node, indicating that from amemory point of view there is roomfor sharing the nodes among a number of jobs (as indeed is done on the CM-5).
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To quantify this claim,we plot the cumulative distribution of the per-processormemory usage, weighted by runtime and number of processors (Fig. 9). This isactually the cumulative version of the distribution shown in the bottom plotof Fig. 2. The x axis shows the fraction of memory used on average on eachprocessor, using the conservative estimate that 29.08 MB are available (ratherthan 32 MB; this was the highest value observed in the trace). The y axis showscumulative node seconds. The way to read this graph is as follows: for each point(x; y) on the graph, y is the probability that up to x of the memory is beingused. But more importantly, it is also the probability that at least 1� x is free.Except for the extreme edges, the graph is above the diagonal, which indicatesrelatively low resource usage. For example, if we focus on the mid point of the xaxis, where up to half the memory is used, we �nd that this happens 62.7% of thetime on average. This means that there is a probability of 0.627 that a runningjob will leave at least half of the memory free for other jobs. Alternatively,if we focus on the midpoint of the y axis, we �nd that it corresponds to 38.3%memory usage. Thus half the time we will �nd that at least 61.7% of the memoryis available.
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P P P P P PP PFig. 10. With space slicing, processor allocation dictates memory allocation due to the\vertical" partitioning (top). With gang scheduling, memory is partitioned \horizon-tally", so memory allocation is decoupled from processor allocation (bottom).The fact that nodes can be time-sliced without undue increase in memorypressure has far reaching implications. An important observation is that gangscheduling allows \horizontal" partitioning of memory, rather than the morerigid and in
exible \vertical" partitioning that happens when space slicing isused (Fig. 10). This added 
exibility is expected to be instrumental in serving



more jobs and reducing fragmentation. As a result, it allows more jobs to �t intothe available memory, and delays the need to employ swapping.The relatively unaggressive memory usage observed also has implications forspace slicing policies, and particularly for adaptive and dynamic partitioning.One of the strengths of these policies is that the partition sizes are reduced underheavy load, leading to more e�cient use of the resources (because most jobsdisplay diminishing returns when more processors are added, and can use smallernumbers of processors more e�ectively than large numbers). Again, concern hasbeen expressed that it would not be possible to reduce the partition sizes andexploit this feature, because of memory requirements [16]. Our results indicatethat rather small partition sizes may su�ce in many cases.4.2 Modeling Memory UsageA separate issue is the modeling of memory usage for use in simulations andanalysis. Speci�cally, we would like to be able to model how resource require-ments change when applications scale to larger systems. Three models have beenproposed in the literature:{ Fixed work. This assumes that the work done by a job is �xed, and parallelismis used to solve the same problems faster. Therefore the runtime and per-processor memory usage are assumed to be inversely proportional to thedegree of parallelism. This model is the basis for Amdahl's law [2].{ Fixed time [11,12,22]. Here it is assumed that parallelism is used to solveincreasingly larger problems, under the constraint that the total runtimestays �xed. In this case, the runtime distribution is independent of the de-gree of parallelism, but the total memory usage is expected to increase withincreased parallelism.{ Memory bound [19]. This model assumes that the problem size is increasedto �ll the available memory on the larger machine, so that the per-processormemory usage is maintained. As the amount of productive work typicallygrows at least linearly with the dataset size, and the overheads associatedwith parallelism grow with the degree of parallelism, the total execution timewill actually increase with added parallelism.We can get some speculative evidence concerning this question by comparingthe resource requirements of jobs that actually ran on di�erent size partitions.Our preliminary results concerning memory usage, combined with our previ-ous results regarding the correlation between runtime and parallelism [5], indi-cate that the truth probably lies between the �xed-time model and the memorybound model. In a nutshell, all three resources tend to scale up together: largerjobs use more processors, use more memory, and run longer. However, it seemsthat all these models are over-simpli�ed to the point where it is hard to corre-late them with measured results. In particular, users con�gure their applicationsaccording to their needs rather than according to the way resources happen tobe packaged in the machine [18]. Thus users rarely use all the memory available,



on any size partition. It is true, however, that they tend to use more on largerpartitions.Finally, we note that modeling the memory usage distribution itself is noteasy, because it does not seem to be similar to commonly used \analytical"distributions. Instead, it has a number of large discrete components (Fig. 2).It is premature to draw too many conclusions about this distribution based onevidence from only one machine.5 ConclusionsScheduling is concerned with the allocation of scarce resources to competingjobs. Two of the most important resources are computing cycles and memorylocations. The allocation of computing cycles allows for some tradeo� betweenthe degree of parallelism and time | moldable and malleable jobs may useless processors for more time to accumulate the same overall number of cycles[10]. With memory, such a tradeo� is only possible if paging is used. As paging istypically considered to be too expensive due to its overhead and adverse e�ect oncommunication and synchronization, parallel jobs typically have to be memoryresident throughout their execution. Memory requirements therefore impose avery rigid constraint on the scheduler and may severely limit its options.In order to investigate the e�ect of memory requirements on scheduling,information about typical memory requirements is needed. We have studied thememory usage patterns of a production scienti�c workload on the LANL CM-5parallel supercomputer for this purpose. Our main observations are{ The distribution of memory requests is rather wide, with strong discretecomponents (i.e. some sizes are much more popular than others). It is notsimilar to commonly used and mathematically tractable distributions.{ Many jobs use a relatively small fraction of the memory available on eachnode, e.g. less than half. Thus there is typically room for more than one jobto be memory resident at the same time. However, it is advisable to pack thejobs according to their memory requirements, that is, to judiciously choosejobs with small requirements to �ll in the space left by a job with largerequirements. If this is done, time slicing among several memory-residentjobs is distinctly possible.{ Larger jobs (using more nodes) tend to use more memory than small jobs(using less nodes) in total, and also more memory per processor. However,it is di�cult to characterize this scaling precisely, and further investigation(based on data from additional machines) is required.AcknowledgementMany thanks to Curt Canada of Los Alamos National Lab for providing the rawdata used in this study.
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