
Using Queue Time Predictions for ProcessorAllocationAllen B. DowneyUniversity of California, Berkeley CA 94720Abstract. When a moldable job is submitted to a space-sharing parallelcomputer, it must choose whether to begin execution on a small, avail-able cluster or wait in queue for more processors to become available.To make this decision, it must predict how long it will have to wait forthe larger cluster. We propose statistical techniques for predicting thesequeue times, and develop an allocation strategy that uses these predic-tions. We present a workload model based on observed workloads at theSan Diego Supercomputer Center and the Cornell Theory Center, anduse this model to drive simulations of various allocation strategies. We�nd that prediction-based allocation not only improves the turnaroundtime of individual jobs; it also improves the utilization of the system asa whole.1 IntroductionLike many shared resources, parallel computers are susceptible to a tragedy ofthe commons { individuals acting in their own interests tend to overuse anddegrade the resource. Speci�cally, users trying to minimize run times for theirjobs might allocate more processors than they can use e�ciently. This indulgencelowers the utilization of the system and increases queue times.A partial solution to this problem is a programming model that supportsadaptive jobs, that is, jobs that can be con�gured to run on clusters of varioussizes. These jobs improve system utilization by using fewer processors whensystem load is high, thereby running more e�ciently and increasing the numberof jobs in the system simultaneously.But adaptive jobs are not a su�cient solution to the tragedy of the commons,because users have no direct incentive to restrict the cluster sizes of their jobs.Furthermore, even altruistic users might not have the information they need tomake the best decisions.One approach to this problem is a system-centric scheduler that chooses clus-ter sizes automatically, trying to optimize (usually heuristically) a system-wideperformance metric like utilization or average turnaround time. We present sev-eral problems with this approach, and suggest an alternative, job-centric schedul-ing, in which users (or a system agent acting on their behalf) make schedulingdecisions on a job-by-job basis in order to satisfy user-speci�ed goals.In order to make these decisions, users need to be able to predict the queuetime until a given cluster size is available, and the run time of the job as a function

of its cluster size. Toward this end we have developed statistical techniques forpredicting queue times on space-sharing parallel computers, and a model forusing historical information to predict the run times of parallel jobs. The goalof this paper is to evaluate the usefulness of these predictions for processorallocation.1.1 Adaptive JobsFeitelson and Rudolph [8] propose the following classi�cation of adaptive par-allel jobs: rigid jobs can run only on a �xed cluster size; moldable jobs can becon�gured to run on a range of cluster sizes, but once they begin execution,they cannot change cluster size. Evolving jobs change cluster size as they exe-cute; these changes are initiated by the job, and usually correspond to programphases.Malleable jobs can also change size dynamically, but unlike evolving jobs,they can respond to system-initiated recon�guration requests.Many of the SPMD parallel languages used for scienti�c computing generatestatic jobs (rigid or moldable), but few generate dynamic jobs (evolving or mal-leable). Thus, workloads in current supercomputing environments are made upalmost entirely of static jobs. There is some evidence that the fraction of mold-able jobs is signi�cant [6], and it is likely to increase as users shift to higher-levelprogramming models. This paper addresses scheduling strategies for moldablejobs.1.2 System-centric SchedulingMany simulation and analytic studies have examined the performance of system-centric allocation strategies, that is, strategies designed to maximize an aggregateperformance metric without regard for individual jobs. In most cases, this metricis average turnaround time [10] [17] [16] [9] [1] [15], although some studies alsoconsider throughput [13]. Rosti, Smirni et al. use power, which is the ratio ofthroughput to mean response time [14]. In prior work we used a parallel extensionof slowdown, which is the ratio of the actual response time of a job to the timeit would have taken on a dedicated machine [3]. Feitelson and Rudolph use adi�erent formulation of slowdown [7].There are several common problems with system-centric schedulers:Starvation: For many system-centric schedulers there is an identi�able class ofjobs that receives unacceptable service. For example, utilization-maximizingschedulers tend to starve jobs with low parallel e�ciency and odd-sized jobsthat cause fragmentation. Turnaround-minimizing schedulers tend to starvelarge jobs. Although it may be desirable to give di�erent quality of serviceto di�erent classes of jobs, it is not acceptable for a real system to allow jobsto starve.One metric �ts all: Another problem is that system-centric schedulers areusually based on a single performance metric. In real systems there are oftenclasses of jobs with di�erent performance requirements. For example, users

sometimes submit short batch jobs and wait for the results; for these jobs,turnaround time is critical. On the other hand, many users submit jobs be-fore lunch or before leaving for the day and have no interest in turnaroundtime; in this case the performance goal is to complete before a given dead-line. Other scheduling goals include minimizing the completion time of a setof jobs and minimizing the accounting cost of a job.Perverse incentives: System-centric schedulers often force users to accept de-cisions that are good for the system as a whole, but contrary to their imme-diate interests. For example, if there is a job in queue and one idle processor,a utilization-maximizing system might require the job to run, whereas thejob might obtain a shorter turnaround time by waiting for more processors.If such strategies are implemented, users will be unsatis�ed with the system,and some of them will take steps to subvert it. Since these systems oftenrely on job information provided by users, it is not hard for a disgruntleduser to manipulate the system for his own bene�t. In anecdotal reports fromsupercomputer centers, this sort of behavior is common, and not restrictedto malevolent users; rather, it is understood that users will take advantageof loopholes in system policies.In summary, system-centric schedulers often provide unacceptable service forsome jobs, force other jobs to pay for quality of service they do not require, andcreate incentives for users to subvert the system.1.3 Job-centric SchedulingA possible solution to these problems is job-centric scheduling, in which the user(or a system agent acting on the user's behalf) makes scheduling decisions on ajob-by-job basis in order to satisfy user-speci�ed goals. Some examples are:1. A user might minimize the cost of a calculation by choosing the smallestcluster size that allows the job to �t in memory.2. A user might choose a cluster size that yields an acceptable probability thatthe job will complete before a deadline.3. A user might choose the cluster size that minimizes the turnaround time ofa job (the sum of its queue time and run time).The strategy we propose in this paper tries to minimize the turnaround timeof each job (the third example), but the techniques we develop can be extendedto address the other two goals. Thus, job-centric scheduling can solve the one-metric problem.Also, since the scheduling strategy we propose is based on a FIFO queue,it has no problems with starvation. Compared with some system-centric sched-ulers, it tends to improve the performance of large, highly-parallel jobs at theexpense of smaller jobs, but in supercomputing environments this discriminationis acceptable, if not desirable.Finally, because job-centric scheduling makes decisions on behalf of individualjobs, it does not create incentives for users to subvert its decisions. As a resultthis strategy is robust in the presence of self-interested users.

1.4 Why FIFO?In order to minimize the average turnaround time of a set of jobs, it is optimalto schedule the shortest job �rst. In supercomputing environments, though, thesystem seldom knows the run times of jobs a priori. Nevertheless, the system canoften use information about queued jobs (executable names, user names, queuenames) to identify and give priority to short jobs. Such non-FIFO strategies havebeen shown to improve overall system performance [9][1].One problem with such strategies is that they tend to starve large jobs;that is, jobs that request a large cluster size might wait in queue inde�nitelywhile smaller jobs run. This problem is not hypothetical, but has been observedfrequently at supercomputing sites like the San Diego Supercomputer Center.This situation is particularly problematic because supercomputer centers have amandate to run large, highly-parallel jobs that cannot run anywhere else. Thus,these sites have been forced to adopt ad hoc measures to expedite large jobs. Insome cases, an operator has to override the system's scheduler to rescue starvingjobs. It is clear that this is not an appropriate long-term solution.Another problem with non-FIFO strategies is that they make the systemless predictable. Predictability is a useful property because it allows users todecide what jobs (and what problem sizes) to run, when to run them and, in adistributed system, where to run them.Because of these problems, we have chosen to focus on FIFO queueing strate-gies. However, there is a natural extension of FIFO scheduling, called back�lling,that has the potential to increase system performance without causing starva-tion. In a FIFO system, when a large job is waiting at the head of the queue,there may be smaller jobs in queue that could run. Back�lling is the process ofallowing these jobs to run, on the condition that they not delay the large job.The EASY scheduler uses this strategy [18] for rigid jobs. In future work we planto add back�lling to our strategy for moldable jobs.1.5 OutlineSection 2 presents speedup model we use in Sect. 3 to develop an abstract work-load model. This workload is based on observations from the San Diego Super-computer Center and the Cornell Theory Center. Section 4 describes the statis-tical techniques we use to predict queue times. Section 5 describes the simulatorwe use to evaluate various allocation strategies. Section 6 presents our evaluationof these strategies from the job's point of view, and Sect. 7 discusses the e�ectthese strategies have on the system as a whole.2 Job ModelIn order to evaluate the proposed allocation strategies, we will use a simula-tion based on an abstract workload model. On existing systems, we often collectstatistics about actual (concrete) workloads; for example, we might know the

duration and cluster size of each job. The workloads we observe are the resultof interactions between the job mix, the properties of the hardware, and thebehavior of the allocation strategy. Thus, it may not be correct to use a concreteworkload from one system to simulate and evaluate another. Our goal is to cre-ate an abstract workload that separates the characteristics of the job mix fromthe e�ect of the system.Previously [2], we proposed a model of moldable jobs that characterizes eachjob by three parameters: L, the sequential lifetime of the job, A, the averageparallelism, and �, which measures the job's variance in parallelism. Using thismodel we can calculate the speedup and run time of a job on any number ofprocessors. This section summarizes our job model.Once we have a model of individual jobs, we can construct a workload modelthat describes the system load, the arrival process, and the distribution of jobparameters. Section 3 presents this abstract workload model.2.1 A Model of Moldable JobsOur model of parallel speedup is based on a family of curves parameterizedby average parallelism, A, and variance in parallelism, V . For given values ofthese parameters, we construct a hypothetical parallelism pro�le1 with thosevalues, and use the pro�le to derive a speedup curve. We use two families ofpro�les, one for programs with low V , the other for programs with high V . Inprevious work we showed that this family of speedup pro�les captures, at leastapproximately, the behavior of a variety of parallel scienti�c applications on avariety of architectures [2].2.2 Low-variance Model, � � 1Figure 1a shows a hypothetical parallelism pro�le for a program with low vari-ance in parallelism. The degree of parallelism is A for all but some fraction � ofthe duration (0 � � � 1). The remaining time is divided between a sequentialcomponent and a high-parallelism component. The average parallelism of thispro�le is A; the variance is V = �(A � 1)2.A program with this pro�le would have the following speedup as a functionof cluster size: S(n) =8>>><>>>: AnA+�=2(n�1) 1 � n � AAn�(A�1=2)+n(1��=2) A � n � 2A� 1A n � 2A� 1 (1)1 Sevcik de�nes the parallelism pro�le as the distribution of potential parallelism dur-ing the execution of a program[17].

a)
σ
2

σ
2

Low
variance
model

1

2A-1

σ1 -

Time

Hypothetical parallelism profile

De
gr

ee
 of

 pa
ra

lle
lis

m
A

b)
σ

High
variance
model

A

1

1

Time

Hypothetical parallelism profile

σA+A -

De
gr

ee
 of

 pa
ra

lle
lis

m

σ

Fig. 1. The hypothetical parallelism pro�les we use to derive our speedup model.2.3 High-variance Model, � � 1In the low variance model, � cannot exceed 1, and thus the variance cannotexceed V = (A� 1)2. In this section, we propose an extended model in which �can exceed 1 and the variance is unbounded. The two models can be combinednaturally because (1) when the parameter � = 1, the two models are identical,and (2) for both models the variance is �(A � 1)2.From the latter property we derive the semantic content of the parameter� { it is approximately the square of the coe�cient of variation of parallelism,CV 2. This approximation follows from the de�nition of coe�cient of variation,CV = pV =A. Thus, CV 2 is �(A � 1)2=A2, which for large A is approximately�. Figure 1b shows a hypothetical parallelism pro�le for a program with highvariance in parallelism. A program with this pro�le would have the followingspeedup as a function of cluster size:

0 32 64 96 128 160
0

16

32

48

64

80

Number of processors

S
pe

ed
up

Speedup models

σ
0.0

0.5

1.0

σ

1.0

2.0

inf

Fig. 2. Speedup curves for a range of values of �.S(n) =8<: nA(�+1)�(n+A�1)+A 1 � n � A+A� � �A n � A+A� � � (2)Figure 2 shows speedup curves for a range of values of � (with A = 64).When � = 0 the curve matches the theoretical upper bound for speedup {bound at �rst by the \hardware limit" (linear speedup) and then by the \softwarelimit" (the average parallelismA). As � approaches in�nity, the curve approachesthe theoretical lower bound on speedup derived by Eager et al. [5]: Smin(n) =An=(A+ n� 1).Of course, for many jobs there will be ranges of n where this model is in-applicable. For example, a job with large memory requirements will run poorly(or not at all) when n is small. Also, when n is large, speedup may decreaseas communication overhead overwhelms computational speedup. Finally, thereare some applications that require cluster sizes with speci�c characteristics; e.g.powers of two and perfect squares. Thus we qualify our job model with theunderstanding that for each job there may be a limited range of viable clustersizes.3 Workload Model3.1 Distribution of LifetimesIdeally, we would like to know the distribution of L, the sequential lifetime, fora real workload. Sequential lifetime is the time a job would take on a singleprocessor, so if we knew L, A and �, we could calculate the speedup, S(n;A; �),

Distribution of total allocated time
(fraction of processes with total T < t)

t (sec−PEs)

SDSC

Paragon at SDSC

24907 jobs

mean = 353,000 s

median = 5340 s

CTC
SP2 at CTC

50864 jobs

mean = 88,600 s

median = 2670 s

0

0.2

0.4

0.6

0.8

1.0

1s 10s 100s 1h 10h 100h 1KhFig. 3. Distribution of total allocated time for jobs at SDSC and CTC.on n processors and the run time, L=S. But for most jobs we do not know L;often it is not even de�ned, because memory requirements prevent some jobsfrom running on a single processor. On the other hand, we do know the totalallocated time, T , which is the product of wall clock lifetime and cluster size.For programs with linear speedup, T equals L, but for programs with sublinearspeedups, T can be much larger than L.Figure 3 shows the distribution of total allocated time for jobs from the IntelParagon at SDSC and the IBM SP2 at CTC. On both machines, the distributionis approximately uniform (linear) in log space, or a uniform-log distribution. Thusthe cumulative distribution function (cdf) of T has the form:cdfT (t) = PrfT � tg = �0 + �1 ln t (3)where tmin � t � tmax, and �0 and �1 are the intercept and slope of the observedline. The upper and lower bounds of this distribution are tmin = e��0=�1 andtmax = e(1:0��0)=�1 .We know of no theoretical reason that the distribution should have this shape,but we believe that it is pervasive among batch workloads, since we have observedsimilar distributions on the Cray C90 at SDSC, and other authors have reportedsimilar distributions on other systems [6][20].Depending on the allocation policy, the distribution of T could di�er fromthe distribution of L. For all practical policies, though, the two distributionshave the same shape, with di�erent parameters. Thus, in our simulations, weassume that the distribution of L is uniform-log. For the scheduling policies we

Distribution of cluster sizes
(fraction of jobs with cluster size < n)

Number of processors (n)

SDSC

CTC

0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32 64 128 256Fig. 4. Distribution of cluster sizes for jobs at SDSC and CTC.consider, the resulting distribution of T is also uniform-log, excepting a few ofthe longest and shortest jobs.In our simulations, L is distributed between e2 and e12 seconds (approxi-mately 7 seconds to 45 hours). The median of this distribution is 18 minutes;the mean is 271 minutes.3.2 Distribution of Average ParallelismFor our workload model, we would like to know the parallelism pro�le of the jobsin the workload. But the parallelism pro�le reects potential parallelism, as ifthere were an unbounded number of processors available, and in general it is notpossible to derive this information by observing the execution of the program.In the accounting data we have from SDSC and CTC, we do not have infor-mation about the average parallelism of jobs. On the other hand, we do knowthe cluster size the user chose for each job, and we hypothesize that these clustersizes, in the aggregate, reect the parallelism of the workload.Figure 4 shows this distribution for the workloads from SDSC and CTC. Inboth cases, most jobs have cluster sizes that are powers of two. Neither the IntelParagon nor the IBM SP2 require power-of-two cluster sizes, but in both casesthe interface to the queueing system suggests powers of two and few users havean incentive to resist the combination of suggestion and habit. We believe thatthe step-wise pattern in the distribution of cluster sizes reects this habit and notthe true distribution of A. Thus for our workload model, we use a uniform-log

distribution with parameters Amin = 1 and Amax = N , where N is the numberof processors in the system. The gray line in the �gure shows this model.Our model �ts the SDSC distribution well, but the CTC distribution con-tains signi�cantly more sequential jobs than the model. This excess is likely dueto the fact that the SP2 at CTC has more memory on each node than mostworkstations, and provides some software that is not available on workstations.Thus, many users submit sequential jobs to the SP2 that they would ordinarilyrun on workstations. Our workload does not model this behavior because it isnot typical of supercomputer sites.3.3 Distribution of Variance (�)In general there is no way to measure the variance in potential parallelism ofexisting codes explicitly. In previous work, we proposed a way to infer this valuefrom observed speedup curves [2]. To test this technique, we collected speedupcurves for a variety of scienti�c applications running on a variety of parallelcomputers. We found that the parameter �, which approximates the coe�cientof variance of parallelism, was typically in the range 0{2, with occasional highervalues.Although these observations provide a range of values for �, they do not tellus its distribution in a real workload. For this study, we use a uniform distributionbetween 0 and 2.4 Predicting Queue TimesIn previous work we presented statistical techniques for predicting the remainingqueue time for a job at the head of the queue [4]. Since we use these predictionsin Sect. 6.3, we summarize the techniques here.We describe the state of the machine at the time of an arrival as follows:there are p jobs running, with ages ai and cluster sizes ni (in other words, theith job has been running on ni processors for ai seconds). We would like topredict Q(n0), the time until n0 additional processors become available, wheren0 = n�nfree, n is the number of processors requested, and nfree is the numberof processors already available. In the next two sections we present ways toestimate the median and mean of Q(n0).4.1 Median PredictorWe can calculate the median of Q(n0) exactly by enumerating all possible out-comes (which jobs complete and which are still running), and calculating theprobability that the request will be satis�ed before a given time t. Then we setthis probability to 0:5 and solve for the median queue time. This approach is notfeasible when there are many jobs in the system, but it leads to an approximationthat is fast to compute and almost as accurate.

We represent each outcome by a bit vector, b, where for each bit, bi = 0indicates that the ith job is still running, and bi = 1 indicates that the ith jobhas completed before time t. Since we assume independence between jobs in thesystem, the probability of a given outcome is the product of the probabilitiesof each event (the completion or non-completion of a job). The probability ofeach event comes from the conditional distribution of lifetimes. For a uniform-logdistribution of lifetimes, the conditional distribution cdfLja is1� cdfLja(t) = PrfL > tjL > ag= 1� cdfL(t)1� cdfL(a)= 1� �0 � �1 ln t1� �0 � �1 ln a (4)where tmin � a � t � tmax. Thus, the probability of a given outcome isPrfbg = Yijbi=0 cdfLjai(t) � Yijbi=1�1� cdfLjai(t)� (5)For a given outcome, the number of free processors is the sum of the proces-sors freed by each job that completes:F (b) =Xi bi � ni (6)Thus at time t, the probability that the number of free processors is at leastthe requested cluster size is the sum of the probabilities of all the outcomes thatsatisfy the request: PrfF � n0g = XbjF (b)�n0 Prfbg (7)Finally, we �nd the median value of Q(n0) by setting PrfF > n0g = 0:5 andsolving for t.Of course, the number of possible outcomes (and thus the time for this cal-culation) increases exponentially with p, the number of running jobs. Thus thisis not a feasible approach when there are many running jobs. But when thenumber of additional processors required (n0) is small, it is often the case thatthere are several jobs running in the system that will single-handedly satisfy therequest when they complete. In this case, the probability that the request will besatis�ed by time t is dominated by the probability that one of these benefactorswill complete before time t.In other words, the chance that the queue time for n0 processors will exceedtime t is approximately equal to the probability that none of the benefactorswill complete before t:PrfF < n0g � Yijni�n0 1� cdfLjai(t) (8)

The running time of this calculation is linear in p. Of course, it is onlyapproximately correct, since it ignores the possibility that several small jobsmight complete and satisfy the request. Thus, we expect this predictor to beinaccurate when there are many small jobs running in the system, few of whichcan single-handedly handle the request. The next section presents an alternativepredictor that we expect to be more accurate in this case.4.2 Mean PredictorWhen a job is running, we know that at some time in the future it will completeand free all of its processors. Given the age of the job, we can use the conditionaldistribution (4) to calculate the probability that it will have completed beforetime t.We approximate this behavior by a model in which processors are a contin-uous (rather than discrete) resource that jobs release gradually as they execute.In this case, we imagine that the conditional cumulative distribution indicateswhat fraction of a job's processors will be available at time t.For example, a job that has been running for 30 minutes might have a 50%chance of completing in the next hour, releasing all of its processors. As anapproximation of this behavior, we predict that the job will (deterministically)release 50% of its processors within the next hour.Thus we predict that the number of free processors at time t will be the sumof the processors released by each job:F =Xi ni � cdfLjai(t) (9)To estimate the mean queue time we set F = n0 and solve for t.4.3 Combining the PredictorsSince we expect the two predictors to do well under di�erent circumstances,it is natural to use each when we expect it to be most accurate. In general,we expect the Median Predictor to do well when there are many jobs in thesystem that can single-handedly satisfy the request (benefactors). When thereare few benefactors, we expect the Mean Predictor to be better (especially since,if there are none, we cannot calculate the Median Predictor at all). Thus, in oursimulations, we use the Median Predictor when the number of benefactors is 2 ormore, and the Mean Predictor otherwise. The particular value of this thresholddoes not a�ect the accuracy of the combined predictor drastically.5 SimulationsTo evaluate the bene�t of using predicted queue times for processor allocation, weuse the models in the previous section to generate workloads, and use a simulator

to construct schedules for each workload according to the proposed allocationstrategies. We compare these schedules according to several performance metrics.Our simulations try to capture the daily work cycle that has been observed inseveral supercomputing environments (the Intel iPSC/860 at NASA Ames andthe Paragon at SDSC [6] [20]):{ In early morning there are few arrivals, utilization is at its lowest, and queuelengths are short.{ During the day, the arrival rate increases and jobs accumulate in queue.Utilization is highest late in the day.{ In the evening, the arrival rate falls but the utilization stays high as the jobsin queue begin execution.To model these variations, we divide each simulated day into two 12-hourphases: during the daytime, jobs arrive according to a Poisson process and eitherbegin execution or join the queue, depending on the state of the system. Duringthe night, no new jobs arrive, but the existing jobs continue to run until allqueued jobs have been scheduled.We choose the day-time arrival rate in order to achieve a speci�ed o�eredload, �. We de�ne the o�ered load as the total sequential load divided by theprocessing capacity of the system: � = � � E[L]=N , where � is the arrival rate(in jobs per second), E[L] is the average sequential lifetime (271 minutes inour simulations), and N is the number of processors in the system (128 in oursimulations). The number of jobs per day is between 160 (when � = 0:5) and320 (when � = 1:0).6 Results: Job Point-of-viewIn this section, we simulate a commonly-proposed, system-centric schedulingstrategy and show that this strategy often makes decisions that are contrary tothe interests of users. We examine how users might subvert such a system, andmeasure the potential bene�t of doing so.Our baseline strategy is AVG, which assigns free processors to queued jobs inFIFO order, giving each job no more than A processors, where A is the averageparallelism of the job. Several studies have shown that this strategy performswell for a range of workloads [17] [9] [12] [19] [1] [3].The problem with this strategy is that it forces users to accept decisionsthat are contrary to their interests. For example, if there is a large job at thehead of the queue, it will be forced to run on any available cluster, even a singleprocessor. From the system's point of view, this decision is expected to yieldhigh utilization; from the job's point of view, though, it would be better to waitfor a larger cluster.To see how often this situation arises, we ran 120 simulated days with theAVG strategy and an o�ered load, �, of 0.75 (30421 jobs). Most jobs (63%) areallocated the maximum cluster size, A processors. So there is no reason for usersto intervene on behalf of these jobs.

For each of the remaining jobs, we used oracular prediction to �nd the op-timal cluster size. In other words, we found the value of n that minimized theturnaround time Q(n) +R(n), where Q(n) is the queue time until n processorsare available, and R(n) is the run time of the job on n processors. As underAVG, n can be no greater than A. We call this strategy OPT.For the jobs allocated fewer than A processors, most of the time (62%) thebest thing is to accept the decision of the system and begin running immediately.Only 38% of these jobs (14% of all jobs) would bene�t by waiting for a largercluster.But for those jobs, which we call rebels, the bene�t can be substantial. Foreach rebel, we calculated the time savings, which is the di�erence between thejob's turnaround time on the system-chosen cluster, and the turnaround timeit would have on the optimal cluster size. The median savings per rebel is 15minutes (the median duration of all jobs is only 3 minutes). The average timesavings is 1.6 hours (the average duration of all jobs is 1.3 hours). Thus, al-though most jobs are well-served by system-centric scheduling, many jobs cansigni�cantly improve their performance by subverting the system.In the following sections, we will consider several strategies users might em-ploy to subvert a system-centric scheduler and improve the performance of theirjobs. These strategies are based on the assumption that users have the ability toimpose minimum cluster sizes on their jobs. It is probably necessary for a realsystem to provide such a mechanism, because many jobs cannot run on smallclusters due to memory constraints.The metric we use to compare these strategies is time savings per job: thetotal time savings (for all rebels) divided by the number of jobs (including non-rebels). This metric is more meaningful than time savings per rebel { accordingto the latter metric, it is optimal to choose only one rebel with the largest timesavings. The strategy that users would choose is the one that maximizes timesavings per job. Under OPT, the average time savings per job is 13.8 minutes.6.1 STUB: Stubborn Self-interestPreviously [3], we evaluated a simple strategy, STUB, in which users impose aminimum cluster size on their jobs of fA, where f is some fraction between 0 and1. We believe that this strategy models user behavior in existing supercomputingenvironments: users choose a �xed cluster size for their jobs that is roughlyproportional to the job's available parallelism, but unrelated to current systemload. For values of f greater than 0.5, the performance of this strategy degradesdrastically.For this paper, we examine this strategy from the point of view of individualjobs. Testing a range of values of f , we �nd that the time savings per job peaksat 8.8 minutes, with f = 0:4. Under this strategy, 37% of the jobs rebel, ofwhom 34% end up worse o� { their turnaround times would have been shorterif they had not waited. Nevertheless, from the point of view of individual users,STUB is an acceptable if not optimal strategy. Most jobs that hold out for more

processors improve their turnaround times by doing so, and the average timesavings are signi�cant.6.2 HEUR: Using Job CharacteristicsUsing additional information about jobs, we expect that we can identify moresuccessfully the jobs that will bene�t by rebelling. Assuming that users know,approximately, the run times of their jobs, we construct a heuristic policy, HEUR,that allows only long jobs with high parallelism to rebel.Speci�cally, any job with sequential lifetime greater than Lthresh and paral-lelism greater than Athresh will wait for at least some fraction, f , of its maximumcluster size, A. The parameters Athresh, Lthresh, and f must be tuned accordingto system and workload characteristics.If we know the run times of jobs, we can make a further improvement to thisstrategy, which is to cut the losses of a rebel that is waiting too long in queue.To do this, we calculate its potential time savings, tsave = R(nfree) � R(fA),where nfree is the number of free processors, fA is the number of processors thejob is waiting for, and R(n) is the job's run time on n processors.Based on the time savings, we calculate a trial period the rebel is willing towait, ktsave, where k is a free parameter. If this period elapses before the rebelbegins execution, the rebel runs on the available processors.Searching the space of feasible parameters, we �nd that the following valuesare best: Lthresh = 0, Athresh = 1, f = 1:0 and k = 0:2. Thus, contrary to ourintuition, job characteristics are not useful for choosing which jobs should rebel;rather, they are most useful for deciding how long a rebel should wait beforegiving up.Using these parameters, the average time savings per job is 12.8 minutes,which is 45% higher than under STUB. As under STUB, 37% of the jobs rebel,but twice as many of them (68%) end up worse o�. Although the majorityof rebels su�er, the overall performance of HEUR is good because the loserslose small and the winners win big. Thus, self-interested users might adopt thisstrategy, if they are not too averse to risk.6.3 PRED: Using Predicted Queue TimesIn this section we evaluate a strategy, called PRED, that uses the queue timepredictors described in Sect. 4. PRED chooses an optimal cluster size for eachjob in the same way as OPT, except that instead of using deterministic queuetimes, PRED estimates Q(n) based on the current state of the system.Under PRED, a rebel may reconsider its decision after some time and, basedon a new set of predictions, decide to start running. Because recomputing pre-dictions incurs overhead, it is not clear how often jobs should be prompted toreconsider. In our system, jobs reconsider whenever a job completes or a newjob arrives in queue, and whenever the predicted queue time elapses.The average time savings per job under PRED is 12.8 minutes. Thus, from thepoint of view of individual jobs, PRED is no better than HEUR. The di�erence

is that PRED is more deft in its selection of rebels. Only 8% of all jobs rebel,and the vast majority of them end up with shorter turnaround times (92%). Forthe losers the time lost is small (3.7 minutes on average), but for the majority,the bene�t is substantial (the median time savings is 55 minutes; the average is2.7 hours). Thus, risk-averse users would prefer PRED over HEUR.Another advantage of PRED over HEUR is that it has no free parameters. Ina real system, it may be di�cult to tune HEUR's four parameters; their valueswill depend on both system and workload characteristics.6.4 BIAS: Bias-corrected PredictionEach time a simulated job uses a prediction to make an allocation decision,we record the prediction and the outcome. Figure 5a shows a scatterplot of thesepredicted and actual queue times. We measure the quality of the predictions bytwo metrics, accuracy and bias. Accuracy is the tendency of the predictions andoutcomes to be correlated; the coe�cient of correlation (CC) of the values inFig. 5a is 0:48 (calculated under a logarithmic transformation).Bias is the tendency of the predictions to be consistently too high or toolow. The lines in the �gure, which track the mean and median of each column,show that short predictions (under ten minutes) are unbiased, but that longerpredictions have a strong tendency to be too high. We can quantify this bias by�tting a least-squares line to the scatterplot. For a perfect predictor, the slopeof this line would be 1 and the intercept 0; for our predictors the slope is 0.6and the intercept 1.7.Fortunately, if we know that a predictor is biased, we can use previous pre-dictions to estimate the parameters of the bias, and apply a corrective transfor-mation to the calculated values. In this case, we estimate the intercept (�0) andslope (�1) of the trend line, and apply the transformation qcorr = q � �1 + �0,where q is the calculated prediction and qcorr is the bias-corrected prediction.Figure 5b shows the e�ect of running the simulator again using this transforma-tion. The slope of the new trend line is 1.01 and the intercept is -0.01, indicatingthat we have almost completely eliminated the bias.Although we expected to be able to correct bias, we did not expect thistransformation to improve the accuracy of the predictions; the coe�cient of cor-relation should be invariant under an a�ne transformation. Surprisingly, biascorrection raises CC from 0.48 to 0.59. This e�ect is possible because past pre-dictions inuence system state, which inuences future predictions; thus the twoscatterplots do not represent the same set of predictions. But we do not knowwhy unbiased predictions in the past lead to more accurate predictions in thefuture.The improvement in bias and accuracy is reected in greater time savings.Under BIAS (PRED with bias-corrected prediction) the average time savingsper job increases from 12.8 minutes to 13.5 minutes, within 3% of optimal. Inpractice, the disadvantage of BIAS is that it requires us to record the result ofpast predictions and estimate the parameters �0 and �1 dynamically.

a) Raw predictors
Actual vs. predicted queue times

predicted

actual

10s 100s 10m 1hr 6hrs

10s

100s

10m

1hr

6hrs

b) Predictors with bias correction
Actual vs. predicted queue times

predicted

actual

10s 100s 10m 1hr 6hrs

10s

100s

10m

1hr

6hrs

Fig. 5. Scatterplot of predicted and actual queue times (log scale). The white linesshow the identity function; i.e. a perfect predictor. The solid lines show the average ofthe actual queue times in each column; the broken lines show the median.

6.5 Summary of Allocation StrategiesTable 1. Comparison of the strategies (job point-of-view).Information Average time Fraction Average time Fractionused savings per of jobs savings per of rebelsjob (minutes) that rebel rebel (minutes) that loseSTUB A 8.8 37% 23.8 34%HEUR A,R(n) 12.8 37% 34.6 68%PRED A,R(n),E[Q(n)] 12.8 8% 160 8%BIAS A,R(n),E[Q(n)],�0,�1 13.5 10% 135 8%OPT A,R(n),Q(n) 13.8 14% 98.6 0%Table 1 summarizes the performance of the various allocation strategies.Not surprisingly, the strategies that use more information generally yield betterperformance.PRED and BIAS are more conservative than OPT; that is, they choose fewerrebellious jobs. PRED's conservativism is clearly a consequence of the tendencyof our predictions to be too long. By overestimating queue times, we discouragejobs from rebelling. But it is not as clear why BIAS, which does not overestimate,is more conservative than OPT. In any case, both prediction-based strategies doa good job of selecting successful rebels; only 8% of rebels ended up spendingmore time in queue than they save in run time.7 Results: System Point-of-viewUntil now, we have been considering the e�ect of allocation strategies onindividual jobs. Thus in our simulations we have not allowed jobs to e�ect theirallocation decisions; we have only measured what would happen if they had.Furthermore, when we tuned these strategies, we chose parameters that werebest for individual jobs.In this section we modify our simulations to implement the proposed strate-gies and evaluate their e�ect on the performance of the system as a whole. Weuse two metrics of system performance: average turnaround time and utilization.We de�ne utilization as the average of e�ciency over time and processors, wheree�ciency is the ratio of speedup to cluster size, S(n)=n. The e�ciency of an idleprocessor is de�ned to be 0. In our simulations, we can calculate e�ciencies be-cause we know the speedup curves for each job. In real systems this informationis not usually available.

Table 2. Performance from the system's point-of-view.Average Averageutilization turnaround(120 days) time in minutes(30421 jobs)AVG .557 79.9STUB .523 113HEUR .526 109PRED .570 77.5BIAS .561 84.1Table 2 shows the results for each allocation strategy, using the same work-load as in the previous section. In the presence of self-interested users, the perfor-mance of AVG degrades severely. If users choose cluster sizes naively (STUB) theutilization of the system drops by 6% and turnaround times increase by 41%.The situation is only slightly better if users take steps to reduce long delays(HEUR).PRED performs slightly better than AVG, which performs slightly betterthan BIAS. It may seem odd that PRED does better than BIAS, since BIASis based on more accurate predictions. The reason is that PRED's predictionsare consistently conservative, which has the e�ect of discouraging some border-line rebels. This conservativism reduces queue times and increases utilization.In practice, though, users might eventually notice that predicted queue timesare too high and apply bias correction on their own behalf. Thus, in the pres-ence of self-interested users, we expect PRED to yield performance similar toBIAS. Fortunately, this degradation is not nearly as severe as under AVG; theutilization of the system drops slightly (1:6%) and turnaround times increase by8:5%.One surprising result is that the predictive strategies yield higher utilizationthan AVG. Because these strategies often leave processors idle (which decreasesutilization) and allocate larger clusters (which decreases e�ciency), we expectedthese strategies to decrease overall utilization.The reason they do not is that these strategies are better able to avoid L-shaped schedules. Figure 6 shows two schedules for the same pair of jobs. UnderAVG, the second arrival would be forced to run immediately on the small cluster,which improves utilization in the short term by reducing the number of idleprocessors. But after the �rst job quits, many processors are left idle until thenext arrival. Our predictive strategies allow the second job to wait for a largercluster, which not only reduces the turnaround time of the second job; it alsoincreases the average utilization of the system.

ru
nn

in
g

jo
b

small cluster, long run time

many idle
processors

P
ro

ce
ss

or
s

time

Schedule under AVG

Schedule with prediction
ru

nn
in

g
jo

b

P
ro

ce
ss

or
s

time

wait

larger
cluster

fewer idle processors

Fig. 6. Sample schedules showing how longer queue times and larger cluster sizes can,paradoxically, improve system utilization. Queue time prediction makes it possible toavoid L-shaped schedules and thereby reduce the number of idle processors.7.1 Job-centric vs. System-centricWhat, then, is the performance advantage of job-centric scheduling over system-centric scheduling? It depends on how aggressively users subvert the system. Ifusers are docile, and do not interfere with the system, the di�erence is small:PRED saves about 3%, or 140 seconds per job, over AVG (95% con�dence in-terval 1.7% to 4.4%).But in the presence of self-interested users, the di�erence is much larger:compared to HEUR, BIAS saves 30%, or almost half an hour per job (95%con�dence interval 29.1% to 30.6%).8 ConclusionsWe have proposed a job-centric allocation policy with the following properties:{ Because it is based on a FIFO queueing system, jobs never starve.{ Because it makes decisions on behalf of individual jobs, it does not createincentives for users to subvert the system. As a result, we show that it isrobust in the presence of self-interested users.{ The overall performance of the system under this strategy is between 3%and 30% better than under a comparable system-centric policy.

users
Self-interestedDocile users

3%

PRED

AVG

BIAS

HEUR

STUB

30 - 35%

Fig. 7. The performance of many scheduling strategies, like AVG, degrades in thepresence of self-interested users. The performance of our job-centric scheduler, PRED,does not degrade as severely.Also, we show that the prediction techniques we propose are su�ciently ac-curate for making allocation decisions. From the point of view of individualjobs, our predictive strategy is within 3% of an optimal strategy (with perfectprediction).8.1 Future WorkIn this paper we have considered a single system size (128 processors), distribu-tion of job characteristics (see Sect. 3), and load (� = 0:75). We would like toevaluate the e�ect of each of these parameters on our results.Also, we have modeled an environment in which users provide no informa-tion to the system about the run times of their jobs. As a result, our queue timepredictions are not very accurate. In the real systems we have examined, the in-formation provided by users signi�cantly improves the quality of the predictions[4]. We would like to investigate the e�ect of this improvement on our results.As part of the DOCT project [11] we are in the process of implementingsystem agents that provide predicted queue times on space-sharing parallel ma-chines. Users can take advantage of this information to choose what jobs to run,when to run them, and how many processors to allocate for each. We expect thatthis information will improve user satisfaction with these systems, and hope that,as in our simulations, it will lead to improvement in the overall performance ofthe system.AcknowledgementsI would like to thank George Kremenek at SDSC and Steven Hotovy at CTCfor providing workload data; Reagan Moore at SDSC, Jenny Schopf and Rich

Wolski at the University of California at San Diego, Ken Sevcik at the Universityof Toronto and the workshop reviewers for comments that greatly improved thequality and clarity of this paper.References1. Su-Hui Chiang, Rajesh K. Mansharamani, and Mary K. Vernon. Use of applica-tion characteristics and limited preemption for run-to-completion parallel proces-sor scheduling policies. In Proceedings of the 1994 ACM Sigmetrics Conference onMeasurement and Modeling of Computer Systems, 1994.2. Allen B. Downey. A model for speedup of parallel programs. Technical ReportCSD-97-933, University of California at Berkeley, 1997.3. Allen B. Downey. A parallel workload model and its implications for processorallocation. In The Sixth IEEE International Symposium on High PerformanceDistributed Computing (HPDC '97), 1997. To appear. Also available as Universityof California technical report number CSD-96-922.4. Allen B. Downey. Predicting queue times on space-sharing parallel computers. InProceedings of the 11th International Parallel Processing Symposium, April 1997.5. Derek L. Eager, John Zahorjan, and Edward L. Lazowska. Speedup versus ef-�ciency in parallel systems. IEEE Transactions on Computers, 38(3):408{423,March 1989.6. Dror G. Feitelson and Bill Nitzberg. Job characteristics of a production parallelscienti�c workload on the NASA Ames iPSC/860. In Job Scheduling Strategies forParallel Processing, Springer-Verlag LNCS Vol 949, pages 337{360, April 1995.7. Dror G. Feitelson and Larry Rudolph. Evaluation of design choices for gangscheduling using distributed hierarchical control. Journal of Parallel and Dis-tributed Computing, 35:18{34, 1996.8. Dror G. Feitelson and Larry Rudolph. Towards convergence in job schedulersfor parallel supercomputers. In Job Scheduling Strategies for Parallel Processing,Springer-Verlag LNCS Vol 1162, pages 1{26, April 1996.9. Dipak Ghosal, Giuseppe Serazzi, and Satish K. Tripathi. The processor working setand its use in scheduling multiprocessor systems. IEEE Transactions on SoftwareEngineering, 17(5):443{453, May 1991.10. Shikharesh Majumdar, Derek L. Eager, and Richard B. Bunt. Scheduling in mul-tiprogrammed parallel systems. In Proceedings of the ACM Sigmetrics Conferenceon Measurement and Modeling of Computer Systems, pages 104{113, 1988.11. Reagan Moore and Richard Klobuchar. DOCT (distributed-object computationtestbed) home page http://www.sdsc.edu/doct. San Diego Supercomputer Cen-ter, 1996.12. Vijay K. Naik, Sanjeev K. Setia, and Mark S. Squillante. Performance analysis ofjob scheduling policies in parallel supercomputing environments. In Supercomput-ing '93 Conference Proceedings, pages 824{833, March 1993.13. Eric W. Parsons and Kenneth C. Sevcik. Coordinated allocation of memory andprocessors in multiprocessors. In Proceedings of the ACM Sigmetrics Conferenceon Measurement and Modeling of Computer Systems, pages 57{67, May 1996.14. Emilia Rosti, Evgenia Smirni, Lawrence W. Dowdy, Giuseppe Serazzi, andBrian M. Carlson. Robust partitioning policies of multiprocessor systems. Per-formance Evaluation, 19(2-3):141{165, Mar 1994.

15. Emilia Rosti, Evgenia Smirni, Giuseppe Serazzi, and Lawrence W. Dowdy. Analy-sis of non-work-conserving processor partitioning policies. In Job Scheduling Strate-gies for Parallel Processing, Springer-Verlag LNCS Vol 949, pages 165{181, April1995.16. Sanjeev K. Setia and Satish K. Tripathi. A comparative analysis of static processorpartitioning policies for parallel computers. In Proceedings of the InternationsalWorkshop on Modeling and Simulation of Computer and Telecommunications Sys-tems (MASCOTS), January 1993.17. Kenneth C. Sevcik. Characterizations of parallelism in applications and their usein scheduling. Performance Evaluation Review, 17(1):171{180, May 1989.18. Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The EASY {LoadLeveler API project. In Job Scheduling Strategies for Parallel Processing,Springer-Verlag LNCS Vol 1162, pages 41{47, April 1996.19. Evgenia Smirni, Emilia Rosti, Lawrence W. Dowdy, and Giuseppe Serazzi. Evalu-ation of multiprocessor allocation policies. Technical report, Vanderbilt University,1993.20. Kurt Windisch, Virginia Lo, Dror Feitelson, Bill Nitzberg, and Reagan Moore.A comparison of workload traces from two production parallel machines. In 6thSymposium on the Frontiers of Massively Parallel Computation, 1996.

This article was processed using the LATEX macro package with LLNCS style

