Using Queue Time Predictions for Processor
Allocation

Allen B. Downey

University of California, Berkeley CA 94720

Abstract. When a moldable job is submitted to a space-sharing parallel
computer, it must choose whether to begin execution on a small, avail-
able cluster or wait in queue for more processors to become available.
To make this decision, it must predict how long it will have to wait for
the larger cluster. We propose statistical techniques for predicting these
queue times, and develop an allocation strategy that uses these predic-
tions. We present a workload model based on observed workloads at the
San Diego Supercomputer Center and the Cornell Theory Center, and
use this model to drive simulations of various allocation strategies. We
find that prediction-based allocation not only improves the turnaround
time of individual jobs; it also improves the utilization of the system as
a whole.

1 Introduction

Like many shared resources, parallel computers are susceptible to a tragedy of
the commons — individuals acting in their own interests tend to overuse and
degrade the resource. Specifically, users trying to minimize run times for their
jobs might allocate more processors than they can use efficiently. This indulgence
lowers the utilization of the system and increases queue times.

A partial solution to this problem is a programming model that supports
adaptive jobs, that is, jobs that can be configured to run on clusters of various
sizes. These jobs improve system utilization by using fewer processors when
system load is high, thereby running more efficiently and increasing the number
of jobs in the system simultaneously.

But adaptive jobs are not a sufficient solution to the tragedy of the commons,
because users have no direct incentive to restrict the cluster sizes of their jobs.
Furthermore, even altruistic users might not have the information they need to
make the best decisions.

One approach to this problem is a system-centric scheduler that chooses clus-
ter sizes automatically, trying to optimize (usually heuristically) a system-wide
performance metric like utilization or average turnaround time. We present sev-
eral problems with this approach, and suggest an alternative, job-centric schedul-
ing, in which users (or a system agent acting on their behalf) make scheduling
decisions on a job-by-job basis in order to satisfy user-specified goals.

In order to make these decisions, users need to be able to predict the queue
time until a given cluster size is available, and the run time of the job as a function

of its cluster size. Toward this end we have developed statistical techniques for
predicting queue times on space-sharing parallel computers, and a model for
using historical information to predict the run times of parallel jobs. The goal
of this paper is to evaluate the usefulness of these predictions for processor
allocation.

1.1 Adaptive Jobs

Feitelson and Rudolph [8] propose the following classification of adaptive par-
allel jobs: rigid jobs can run only on a fixed cluster size; moldable jobs can be
configured to run on a range of cluster sizes, but once they begin execution,
they cannot change cluster size. Evolving jobs change cluster size as they exe-
cute; these changes are initiated by the job, and usually correspond to program
phases. Malleable jobs can also change size dynamically, but unlike evolving jobs,
they can respond to system-initiated reconfiguration requests.

Many of the SPMD parallel languages used for scientific computing generate
static jobs (rigid or moldable), but few generate dynamic jobs (evolving or mal-
leable). Thus, workloads in current supercomputing environments are made up
almost entirely of static jobs. There is some evidence that the fraction of mold-
able jobs is significant [6], and it is likely to increase as users shift to higher-level
programming models. This paper addresses scheduling strategies for moldable
jobs.

1.2 System-centric Scheduling

Many simulation and analytic studies have examined the performance of system-
centric allocation strategies, that is, strategies designed to maximize an aggregate
performance metric without regard for individual jobs. In most cases, this metric
is average turnaround time [10] [17] [16] [9] [1] [15], although some studies also
consider throughput [13]. Rosti, Smirni et al. use power, which is the ratio of
throughput to mean response time [14]. In prior work we used a parallel extension
of slowdown, which is the ratio of the actual response time of a job to the time
it would have taken on a dedicated machine [3]. Feitelson and Rudolph use a
different formulation of slowdown [7].
There are several common problems with system-centric schedulers:

Starvation: For many system-centric schedulers there is an identifiable class of
jobs that receives unacceptable service. For example, utilization-maximizing
schedulers tend to starve jobs with low parallel efficiency and odd-sized jobs
that cause fragmentation. Turnaround-minimizing schedulers tend to starve
large jobs. Although it may be desirable to give different quality of service
to different classes of jobs, it is not acceptable for a real system to allow jobs
to starve.

One metric fits all: Another problem is that system-centric schedulers are
usually based on a single performance metric. In real systems there are often
classes of jobs with different performance requirements. For example, users

sometimes submit short batch jobs and wait for the results; for these jobs,
turnaround time is critical. On the other hand, many users submit jobs be-
fore lunch or before leaving for the day and have no interest in turnaround
time; in this case the performance goal is to complete before a given dead-
line. Other scheduling goals include minimizing the completion time of a set
of jobs and minimizing the accounting cost of a job.

Perverse incentives: System-centric schedulers often force users to accept de-
cisions that are good for the system as a whole, but contrary to their imme-
diate interests. For example, if there is a job in queue and one idle processor,
a utilization-maximizing system might require the job to run, whereas the
job might obtain a shorter turnaround time by waiting for more processors.
If such strategies are implemented, users will be unsatisfied with the system,
and some of them will take steps to subvert it. Since these systems often
rely on job information provided by users, it is not hard for a disgruntled
user to manipulate the system for his own benefit. In anecdotal reports from
supercomputer centers, this sort of behavior is common, and not restricted
to malevolent users; rather, it is understood that users will take advantage
of loopholes in system policies.

In summary, system-centric schedulers often provide unacceptable service for
some jobs, force other jobs to pay for quality of service they do not require, and
create incentives for users to subvert the system.

1.3 Job-centric Scheduling

A possible solution to these problems is job-centric scheduling, in which the user
(or a system agent acting on the user’s behalf) makes scheduling decisions on a
job-by-job basis in order to satisfy user-specified goals. Some examples are:

1. A user might minimize the cost of a calculation by choosing the smallest
cluster size that allows the job to fit in memory.

2. A user might choose a cluster size that yields an acceptable probability that
the job will complete before a deadline.

3. A user might choose the cluster size that minimizes the turnaround time of
a job (the sum of its queue time and run time).

The strategy we propose in this paper tries to minimize the turnaround time
of each job (the third example), but the techniques we develop can be extended
to address the other two goals. Thus, job-centric scheduling can solve the one-
metric problem.

Also, since the scheduling strategy we propose is based on a FIFO queue,
it has no problems with starvation. Compared with some system-centric sched-
ulers, it tends to improve the performance of large, highly-parallel jobs at the
expense of smaller jobs, but in supercomputing environments this discrimination
is acceptable, if not desirable.

Finally, because job-centric scheduling makes decisions on behalf of individual
jobs, it does not create incentives for users to subvert its decisions. As a result
this strategy is robust in the presence of self-interested users.

1.4 Why FIFO?

In order to minimize the average turnaround time of a set of jobs, it is optimal
to schedule the shortest job first. In supercomputing environments, though, the
system seldom knows the run times of jobs a priori. Nevertheless, the system can
often use information about queued jobs (executable names, user names, queue
names) to identify and give priority to short jobs. Such non-FIFO strategies have
been shown to improve overall system performance [9][1].

One problem with such strategies is that they tend to starve large jobs;
that is, jobs that request a large cluster size might wait in queue indefinitely
while smaller jobs run. This problem is not hypothetical, but has been observed
frequently at supercomputing sites like the San Diego Supercomputer Center.
This situation is particularly problematic because supercomputer centers have a
mandate to run large, highly-parallel jobs that cannot run anywhere else. Thus,
these sites have been forced to adopt ad hoc measures to expedite large jobs. In
some cases, an operator has to override the system’s scheduler to rescue starving
jobs. It is clear that this is not an appropriate long-term solution.

Another problem with non-FIFO strategies is that they make the system
less predictable. Predictability is a useful property because it allows users to
decide what jobs (and what problem sizes) to run, when to run them and, in a
distributed system, where to run them.

Because of these problems, we have chosen to focus on FIFO queueing strate-
gies. However, there is a natural extension of FIFO scheduling, called backfilling,
that has the potential to increase system performance without causing starva-
tion. In a FIFO system, when a large job is waiting at the head of the queue,
there may be smaller jobs in queue that could run. Backfilling is the process of
allowing these jobs to run, on the condition that they not delay the large job.
The EASY scheduler uses this strategy [18] for rigid jobs. In future work we plan
to add backfilling to our strategy for moldable jobs.

1.5 Outline

Section 2 presents speedup model we use in Sect. 3 to develop an abstract work-
load model. This workload is based on observations from the San Diego Super-
computer Center and the Cornell Theory Center. Section 4 describes the statis-
tical techniques we use to predict queue times. Section 5 describes the simulator
we use to evaluate various allocation strategies. Section 6 presents our evaluation
of these strategies from the job’s point of view, and Sect. 7 discusses the effect
these strategies have on the system as a whole.

2 Job Model

In order to evaluate the proposed allocation strategies, we will use a simula-
tion based on an abstract workload model. On existing systems, we often collect
statistics about actual (concrete) workloads; for example, we might know the

duration and cluster size of each job. The workloads we observe are the result
of interactions between the job mix, the properties of the hardware, and the
behavior of the allocation strategy. Thus, it may not be correct to use a concrete
workload from one system to simulate and evaluate another. Our goal is to cre-
ate an abstract workload that separates the characteristics of the job mix from
the effect of the system.

Previously [2], we proposed a model of moldable jobs that characterizes each
job by three parameters: L, the sequential lifetime of the job, A, the average
parallelism, and o, which measures the job’s variance in parallelism. Using this
model we can calculate the speedup and run time of a job on any number of
processors. This section summarizes our job model.

Once we have a model of individual jobs, we can construct a workload model
that describes the system load, the arrival process, and the distribution of job
parameters. Section 3 presents this abstract workload model.

2.1 A Model of Moldable Jobs

Our model of parallel speedup is based on a family of curves parameterized
by average parallelism, A, and variance in parallelism, V. For given values of
these parameters, we construct a hypothetical parallelism profile' with those
values, and use the profile to derive a speedup curve. We use two families of
profiles, one for programs with low V, the other for programs with high V. In
previous work we showed that this family of speedup profiles captures, at least
approximately, the behavior of a variety of parallel scientific applications on a
variety of architectures [2].

2.2 Low-variance Model, o0 < 1

Figure 1a shows a hypothetical parallelism profile for a program with low vari-
ance in parallelism. The degree of parallelism is A for all but some fraction o of
the duration (0 < ¢ < 1). The remaining time is divided between a sequential
component and a high-parallelism component. The average parallelism of this
profile is A; the variance is V = o(4 — 1)%.

A program with this profile would have the following speedup as a function
of cluster size:

An
Ato/2(n-1) I<n<A
S(n) = g(A_1/2)Afn(1—a/2) A<n<24-1 (1)
A n>24A-1

! Sevcik defines the parallelism profile as the distribution of potential parallelism dur-
ing the execution of a program[17].

a) Hypothetical parallelism profile

2A-1
E) Low
=2 variance
<
= model
o
kS A
D
L
(2]
D
(=)
1
o o
> 1-o© >
Time
b) Hypothetical parallelism profile
AFAC- O |
5 High
© variance
© model
<
o
kS
§ A
[=2]
D
[
1
o 1
Time

Fig. 1. The hypothetical parallelism profiles we use to derive our speedup model.

2.3 High-variance Model, o0 > 1

In the low variance model, o cannot exceed 1, and thus the variance cannot
exceed V = (A — 1)2. In this section, we propose an extended model in which o
can exceed 1 and the variance is unbounded. The two models can be combined
naturally because (1) when the parameter o = 1, the two models are identical,
and (2) for both models the variance is o(A — 1)2.

From the latter property we derive the semantic content of the parameter
o — it is approximately the square of the coefficient of variation of parallelism,
CV2. This approximation follows from the definition of coefficient of variation,
CV =V /A. Thus, CV?is 0(A — 1)?/A2, which for large A is approximately
.

Figure 1b shows a hypothetical parallelism profile for a program with high
variance in parallelism. A program with this profile would have the following
speedup as a function of cluster size:

Speedup models
80 ‘

Speedup

0 L L L L
0 32 64 96 128 160
Number of processors

Fig. 2. Speedup curves for a range of values of o.

__nA(o+1) _
S(n) = { T FA-DFA 1<n<A+Ac-o o)
A n>A+ Ao —o

Figure 2 shows speedup curves for a range of values of o (with A = 64).
When o = 0 the curve matches the theoretical upper bound for speedup —
bound at first by the “hardware limit” (linear speedup) and then by the “software
limit” (the average parallelism A). As o approaches infinity, the curve approaches
the theoretical lower bound on speedup derived by Eager et al. [5]: Spin(n) =
An/(A+n—1).

Of course, for many jobs there will be ranges of n where this model is in-
applicable. For example, a job with large memory requirements will run poorly
(or not at all) when n is small. Also, when n is large, speedup may decrease
as communication overhead overwhelms computational speedup. Finally, there
are some applications that require cluster sizes with specific characteristics; e.g.
powers of two and perfect squares. Thus we qualify our job model with the
understanding that for each job there may be a limited range of viable cluster
sizes.

3 Workload Model

3.1 Distribution of Lifetimes

Ideally, we would like to know the distribution of L, the sequential lifetime, for
a real workload. Sequential lifetime is the time a job would take on a single
processor, so if we knew L, A and o, we could calculate the speedup, S(n, 4, o),

Distribution of total allocated time
(fraction of processes with total T <t)

1.0
o
SP2atCTC o
08 50864 jobs ctc ¢
“1 mean=88,600s { SDSC
median = 2670 s i
I
0.6 - ,f
i
£
/
0.4 f"
Paragon at SDSC
24907 jobs
0.2 4 y mean = 353,000 s
median = 5340 s
-
O T T T T T T
1s 10s 100s i1h 10h 100h 1Kh

t (sec—PEs)

Fig. 3. Distribution of total allocated time for jobs at SDSC and CTC.

on n processors and the run time, L/S. But for most jobs we do not know L;
often it is not even defined, because memory requirements prevent some jobs
from running on a single processor. On the other hand, we do know the total
allocated time, T, which is the product of wall clock lifetime and cluster size.
For programs with linear speedup, T equals L, but for programs with sublinear
speedups, T' can be much larger than L.

Figure 3 shows the distribution of total allocated time for jobs from the Intel
Paragon at SDSC and the IBM SP2 at CTC. On both machines, the distribution
is approximately uniform (linear) in log space, or a uniform-log distribution. Thus
the cumulative distribution function (cdf) of T' has the form:

cdfr(t) = Pr{T <t} = fBo + p1Int (3)

where tin <t < timaz, and By and B are the intercept and slope of the observed
line. The upper and lower bounds of this distribution are tp:, = e~7/f1 and
t . = (10-50)/B1

We know of no theoretical reason that the distribution should have this shape,
but we believe that it is pervasive among batch workloads, since we have observed
similar distributions on the Cray C90 at SDSC, and other authors have reported
similar distributions on other systems [6][20].

Depending on the allocation policy, the distribution of T could differ from
the distribution of L. For all practical policies, though, the two distributions
have the same shape, with different parameters. Thus, in our simulations, we
assume that the distribution of L is uniform-log. For the scheduling policies we

Distribution of cluster sizes
(fraction of jobs with cluster size < n)

1.0

0.8
CTC

06 sbsc

0.4

0.2

0 T T T T T T T T
1 2 4 8 16 32 64 128 256

Number of processors (n)

Fig. 4. Distribution of cluster sizes for jobs at SDSC and CTC.

consider, the resulting distribution of T is also uniform-log, excepting a few of
the longest and shortest jobs.

In our simulations, L is distributed between e? and e'? seconds (approxi-
mately 7 seconds to 45 hours). The median of this distribution is 18 minutes;
the mean is 271 minutes.

2 2

3.2 Distribution of Average Parallelism

For our workload model, we would like to know the parallelism profile of the jobs
in the workload. But the parallelism profile reflects potential parallelism, as if
there were an unbounded number of processors available, and in general it is not
possible to derive this information by observing the execution of the program.

In the accounting data we have from SDSC and CTC, we do not have infor-
mation about the average parallelism of jobs. On the other hand, we do know
the cluster size the user chose for each job, and we hypothesize that these cluster
sizes, in the aggregate, reflect the parallelism of the workload.

Figure 4 shows this distribution for the workloads from SDSC and CTC. In
both cases, most jobs have cluster sizes that are powers of two. Neither the Intel
Paragon nor the IBM SP2 require power-of-two cluster sizes, but in both cases
the interface to the queueing system suggests powers of two and few users have
an incentive to resist the combination of suggestion and habit. We believe that
the step-wise pattern in the distribution of cluster sizes reflects this habit and not
the true distribution of A. Thus for our workload model, we use a uniform-log

distribution with parameters A, = 1 and Apqe = N, where IV is the number
of processors in the system. The gray line in the figure shows this model.

Our model fits the SDSC distribution well, but the CTC distribution con-
tains significantly more sequential jobs than the model. This excess is likely due
to the fact that the SP2 at CTC has more memory on each node than most
workstations, and provides some software that is not available on workstations.
Thus, many users submit sequential jobs to the SP2 that they would ordinarily
run on workstations. Our workload does not model this behavior because it is
not typical of supercomputer sites.

3.3 Distribution of Variance (o)

In general there is no way to measure the variance in potential parallelism of
existing codes explicitly. In previous work, we proposed a way to infer this value
from observed speedup curves [2]. To test this technique, we collected speedup
curves for a variety of scientific applications running on a variety of parallel
computers. We found that the parameter o, which approximates the coefficient
of variance of parallelism, was typically in the range 0-2, with occasional higher
values.

Although these observations provide a range of values for o, they do not tell
us its distribution in a real workload. For this study, we use a uniform distribution
between 0 and 2.

4 Predicting Queue Times

In previous work we presented statistical techniques for predicting the remaining
queue time for a job at the head of the queue [4]. Since we use these predictions
in Sect. 6.3, we summarize the techniques here.

We describe the state of the machine at the time of an arrival as follows:
there are p jobs running, with ages a; and cluster sizes n; (in other words, the
ith job has been running on n; processors for a; seconds). We would like to
predict Q(n'), the time until n’ additional processors become available, where
n' =n —njfree, n is the number of processors requested, and n ... is the number
of processors already available. In the next two sections we present ways to
estimate the median and mean of Q(n').

4.1 Median Predictor

We can calculate the median of Q(n') exactly by enumerating all possible out-
comes (which jobs complete and which are still running), and calculating the
probability that the request will be satisfied before a given time ¢. Then we set
this probability to 0.5 and solve for the median queue time. This approach is not
feasible when there are many jobs in the system, but it leads to an approximation
that is fast to compute and almost as accurate.

We represent each outcome by a bit vector, b, where for each bit, b; = 0
indicates that the ith job is still running, and b; = 1 indicates that the ith job
has completed before time t. Since we assume independence between jobs in the
system, the probability of a given outcome is the product of the probabilities
of each event (the completion or non-completion of a job). The probability of
each event comes from the conditional distribution of lifetimes. For a uniform-log
distribution of lifetimes, the conditional distribution cdfr,, is

1 —cdfro(t) = Pr{L>t|L>a}
1 — cdf,(t)

1 — cdfr(a)
1—0p—pB1Int
1-Bo—pBilna

where tin < a <t < tpee. Thus, the probability of a given outcome is

Prity = [edfopa, @)~] (1~ cdfoja(t)) (5)
i|b;=0 i|bi=1
For a given outcome, the number of free processors is the sum of the proces-
sors freed by each job that completes:

F(b) = Z b; - (6)

Thus at time ¢, the probability that the number of free processors is at least
the requested cluster size is the sum of the probabilities of all the outcomes that
satisfy the request:

Pr{F >n'} = Z Pr{b} (7)
b F(b)>n’
Finally, we find the median value of Q(n') by setting Pr{F > n'} = 0.5 and
solving for ¢.

Of course, the number of possible outcomes (and thus the time for this cal-
culation) increases exponentially with p, the number of running jobs. Thus this
is not a feasible approach when there are many running jobs. But when the
number of additional processors required (n') is small, it is often the case that
there are several jobs running in the system that will single-handedly satisfy the
request when they complete. In this case, the probability that the request will be
satisfied by time ¢ is dominated by the probability that one of these benefactors
will complete before time .

In other words, the chance that the queue time for n' processors will exceed
time ¢ is approximately equal to the probability that none of the benefactors
will complete before ¢:

Pr{iF<n'}~ [1-cdfpa(t) (8)

iln; >n'

The running time of this calculation is linear in p. Of course, it is only
approximately correct, since it ignores the possibility that several small jobs
might complete and satisfy the request. Thus, we expect this predictor to be
inaccurate when there are many small jobs running in the system, few of which
can single-handedly handle the request. The next section presents an alternative
predictor that we expect to be more accurate in this case.

4.2 Mean Predictor

When a job is running, we know that at some time in the future it will complete
and free all of its processors. Given the age of the job, we can use the conditional
distribution (4) to calculate the probability that it will have completed before
time £.

We approximate this behavior by a model in which processors are a contin-
uous (rather than discrete) resource that jobs release gradually as they execute.
In this case, we imagine that the conditional cumulative distribution indicates
what fraction of a job’s processors will be available at time ¢.

For example, a job that has been running for 30 minutes might have a 50%
chance of completing in the next hour, releasing all of its processors. As an
approximation of this behavior, we predict that the job will (deterministically)
release 50% of its processors within the next hour.

Thus we predict that the number of free processors at time ¢ will be the sum
of the processors released by each job:

F= an ~cdf)q; () 9)

To estimate the mean queue time we set F' = n' and solve for t.

4.3 Combining the Predictors

Since we expect the two predictors to do well under different circumstances,
it is natural to use each when we expect it to be most accurate. In general,
we expect the Median Predictor to do well when there are many jobs in the
system that can single-handedly satisfy the request (benefactors). When there
are few benefactors, we expect the Mean Predictor to be better (especially since,
if there are none, we cannot calculate the Median Predictor at all). Thus, in our
simulations, we use the Median Predictor when the number of benefactors is 2 or
more, and the Mean Predictor otherwise. The particular value of this threshold
does not affect the accuracy of the combined predictor drastically.

5 Simulations

To evaluate the benefit of using predicted queue times for processor allocation, we
use the models in the previous section to generate workloads, and use a simulator

to construct schedules for each workload according to the proposed allocation
strategies. We compare these schedules according to several performance metrics.

Our simulations try to capture the daily work cycle that has been observed in
several supercomputing environments (the Intel iPSC/860 at NASA Ames and
the Paragon at SDSC [6] [20]):

— In early morning there are few arrivals, utilization is at its lowest, and queue
lengths are short.

— During the day, the arrival rate increases and jobs accumulate in queue.
Utilization is highest late in the day.

— In the evening, the arrival rate falls but the utilization stays high as the jobs
in queue begin execution.

To model these variations, we divide each simulated day into two 12-hour
phases: during the daytime, jobs arrive according to a Poisson process and either
begin execution or join the queue, depending on the state of the system. During
the night, no new jobs arrive, but the existing jobs continue to run until all
queued jobs have been scheduled.

We choose the day-time arrival rate in order to achieve a specified offered
load, p. We define the offered load as the total sequential load divided by the
processing capacity of the system: p = A - E[L]/N, where X is the arrival rate
(in jobs per second), E[L] is the average sequential lifetime (271 minutes in
our simulations), and N is the number of processors in the system (128 in our
simulations). The number of jobs per day is between 160 (when p = 0.5) and
320 (when p = 1.0).

6 Results: Job Point-of-view

In this section, we simulate a commonly-proposed, system-centric scheduling
strategy and show that this strategy often makes decisions that are contrary to
the interests of users. We examine how users might subvert such a system, and
measure the potential benefit of doing so.

Our baseline strategy is AVG, which assigns free processors to queued jobs in
FIFO order, giving each job no more than A processors, where A is the average
parallelism of the job. Several studies have shown that this strategy performs
well for a range of workloads [17] [9] [12] [19] [1] [3].

The problem with this strategy is that it forces users to accept decisions
that are contrary to their interests. For example, if there is a large job at the
head of the queue, it will be forced to run on any available cluster, even a single
processor. From the system’s point of view, this decision is expected to yield
high utilization; from the job’s point of view, though, it would be better to wait
for a larger cluster.

To see how often this situation arises, we ran 120 simulated days with the
AVG strategy and an offered load, p, of 0.75 (30421 jobs). Most jobs (63%) are
allocated the maximum cluster size, A processors. So there is no reason for users
to intervene on behalf of these jobs.

For each of the remaining jobs, we used oracular prediction to find the op-
timal cluster size. In other words, we found the value of n that minimized the
turnaround time Q(n) + R(n), where Q(n) is the queue time until n processors
are available, and R(n) is the run time of the job on n processors. As under
AVG, n can be no greater than A. We call this strategy OPT.

For the jobs allocated fewer than A processors, most of the time (62%) the
best thing is to accept the decision of the system and begin running immediately.
Only 38% of these jobs (14% of all jobs) would benefit by waiting for a larger
cluster.

But for those jobs, which we call rebels, the benefit can be substantial. For
each rebel, we calculated the time savings, which is the difference between the
job’s turnaround time on the system-chosen cluster, and the turnaround time
it would have on the optimal cluster size. The median savings per rebel is 15
minutes (the median duration of all jobs is only 3 minutes). The average time
savings is 1.6 hours (the average duration of all jobs is 1.3 hours). Thus, al-
though most jobs are well-served by system-centric scheduling, many jobs can
significantly improve their performance by subverting the system.

In the following sections, we will consider several strategies users might em-
ploy to subvert a system-centric scheduler and improve the performance of their
jobs. These strategies are based on the assumption that users have the ability to
impose minimum cluster sizes on their jobs. It is probably necessary for a real
system to provide such a mechanism, because many jobs cannot run on small
clusters due to memory constraints.

The metric we use to compare these strategies is time savings per job: the
total time savings (for all rebels) divided by the number of jobs (including non-
rebels). This metric is more meaningful than time savings per rebel — according
to the latter metric, it is optimal to choose only one rebel with the largest time
savings. The strategy that users would choose is the one that maximizes time
savings per job. Under OPT, the average time savings per job is 13.8 minutes.

6.1 STUB: Stubborn Self-interest

Previously [3], we evaluated a simple strategy, STUB, in which users impose a
minimum cluster size on their jobs of fA, where f is some fraction between 0 and
1. We believe that this strategy models user behavior in existing supercomputing
environments: users choose a fixed cluster size for their jobs that is roughly
proportional to the job’s available parallelism, but unrelated to current system
load. For values of f greater than 0.5, the performance of this strategy degrades
drastically.

For this paper, we examine this strategy from the point of view of individual
jobs. Testing a range of values of f, we find that the time savings per job peaks
at 8.8 minutes, with f = 0.4. Under this strategy, 37% of the jobs rebel, of
whom 34% end up worse off — their turnaround times would have been shorter
if they had not waited. Nevertheless, from the point of view of individual users,
STUB is an acceptable if not optimal strategy. Most jobs that hold out for more

processors improve their turnaround times by doing so, and the average time
savings are significant.

6.2 HEUR: Using Job Characteristics

Using additional information about jobs, we expect that we can identify more
successfully the jobs that will benefit by rebelling. Assuming that users know,
approximately, the run times of their jobs, we construct a heuristic policy, HEUR,
that allows only long jobs with high parallelism to rebel.

Specifically, any job with sequential lifetime greater than Lsp,.sn and paral-
lelism greater than A;p...s, will wait for at least some fraction, f, of its maximum
cluster size, A. The parameters Aypresh, Lihresh, and f must be tuned according
to system and workload characteristics.

If we know the run times of jobs, we can make a further improvement to this
strategy, which is to cut the losses of a rebel that is waiting too long in queue.
To do this, we calculate its potential time savings, tsave = R(nfree) — R(fA),
where n .. is the number of free processors, fA is the number of processors the
job is waiting for, and R(n) is the job’s run time on n processors.

Based on the time savings, we calculate a trial period the rebel is willing to
wait, ktsqve, where k is a free parameter. If this period elapses before the rebel
begins execution, the rebel runs on the available processors.

Searching the space of feasible parameters, we find that the following values
are best: Lipresh = 0, Aipresnh = 1, f = 1.0 and k£ = 0.2. Thus, contrary to our
intuition, job characteristics are not useful for choosing which jobs should rebel;
rather, they are most useful for deciding how long a rebel should wait before
giving up.

Using these parameters, the average time savings per job is 12.8 minutes,
which is 45% higher than under STUB. As under STUB, 37% of the jobs rebel,
but twice as many of them (68%) end up worse off. Although the majority
of rebels suffer, the overall performance of HEUR is good because the losers
lose small and the winners win big. Thus, self-interested users might adopt this
strategy, if they are not too averse to risk.

6.3 PRED: Using Predicted Queue Times

In this section we evaluate a strategy, called PRED, that uses the queue time
predictors described in Sect. 4. PRED chooses an optimal cluster size for each
job in the same way as OPT, except that instead of using deterministic queue
times, PRED estimates Q(n) based on the current state of the system.

Under PRED, a rebel may reconsider its decision after some time and, based
on a new set of predictions, decide to start running. Because recomputing pre-
dictions incurs overhead, it is not clear how often jobs should be prompted to
reconsider. In our system, jobs reconsider whenever a job completes or a new
job arrives in queue, and whenever the predicted queue time elapses.

The average time savings per job under PRED is 12.8 minutes. Thus, from the
point, of view of individual jobs, PRED is no better than HEUR. The difference

is that PRED is more deft in its selection of rebels. Only 8% of all jobs rebel,
and the vast majority of them end up with shorter turnaround times (92%). For
the losers the time lost is small (3.7 minutes on average), but for the majority,
the benefit is substantial (the median time savings is 55 minutes; the average is
2.7 hours). Thus, risk-averse users would prefer PRED over HEUR.

Another advantage of PRED over HEUR is that it has no free parameters. In
a real system, it may be difficult to tune HEUR'’s four parameters; their values
will depend on both system and workload characteristics.

6.4 BIAS: Bias-corrected Prediction

Each time a simulated job uses a prediction to make an allocation decision,
we record the prediction and the outcome. Figure 5a shows a scatterplot of these
predicted and actual queue times. We measure the quality of the predictions by
two metrics, accuracy and bias. Accuracy is the tendency of the predictions and
outcomes to be correlated; the coefficient of correlation (CC) of the values in
Fig. 5a is 0.48 (calculated under a logarithmic transformation).

Bias is the tendency of the predictions to be consistently too high or too
low. The lines in the figure, which track the mean and median of each column,
show that short predictions (under ten minutes) are unbiased, but that longer
predictions have a strong tendency to be too high. We can quantify this bias by
fitting a least-squares line to the scatterplot. For a perfect predictor, the slope
of this line would be 1 and the intercept 0; for our predictors the slope is 0.6
and the intercept 1.7.

Fortunately, if we know that a predictor is biased, we can use previous pre-
dictions to estimate the parameters of the bias, and apply a corrective transfor-
mation to the calculated values. In this case, we estimate the intercept (8y) and
slope (B31) of the trend line, and apply the transformation geo.. = ¢ * 81 + Bo,
where ¢ is the calculated prediction and ¢...- is the bias-corrected prediction.
Figure 5b shows the effect of running the simulator again using this transforma-
tion. The slope of the new trend line is 1.01 and the intercept is -0.01, indicating
that we have almost completely eliminated the bias.

Although we expected to be able to correct bias, we did not expect this
transformation to improve the accuracy of the predictions; the coefficient of cor-
relation should be invariant under an affine transformation. Surprisingly, bias
correction raises C'C from 0.48 to 0.59. This effect is possible because past pre-
dictions influence system state, which influences future predictions; thus the two
scatterplots do not represent the same set of predictions. But we do not know
why unbiased predictions in the past lead to more accurate predictions in the
future.

The improvement in bias and accuracy is reflected in greater time savings.
Under BIAS (PRED with bias-corrected prediction) the average time savings
per job increases from 12.8 minutes to 13.5 minutes, within 3% of optimal. In
practice, the disadvantage of BIAS is that it requires us to record the result of
past predictions and estimate the parameters 3y and 8; dynamically.

a) Raw predictors

Actual vs. predicted queue times
actual
6hrs

1lhr

10m

100s

10s

B o

T T T
10s 100s 10m 1lhr 6hrs
predicted

b) Predictors with bias correction

Actual vs. predicted queue times
actual
6hrs

1hr

10m -

100s

10s -

T T T T
10s 100s 10m 1hr 6hrs
predicted

Fig. 5. Scatterplot of predicted and actual queue times (log scale). The white lines
show the identity function; i.e. a perfect predictor. The solid lines show the average of
the actual queue times in each column; the broken lines show the median.

6.5 Summary of Allocation Strategies

Table 1. Comparison of the strategies (job point-of-view).

Information Average time | Fraction | Average time | Fraction
used savings per of jobs savings per | of rebels
job (minutes) | that rebel | rebel (minutes) | that lose

STUB A 8.8 37% 23.8 34%
HEUR A,R(n) 12.8 37% 34.6 63%
PRED | A,R(n),E[Q(n)] 12.8 8% 160 8%
BIAS |A,R(n),E[Q(n)],30,6: 13.5 10% 135 8%
OPT A,R(n),Q(n) 13.8 14% 98.6 0%

Table 1 summarizes the performance of the various allocation strategies.
Not surprisingly, the strategies that use more information generally yield better
performance.

PRED and BIAS are more conservative than OPT; that is, they choose fewer
rebellious jobs. PRED’s conservativism is clearly a consequence of the tendency
of our predictions to be too long. By overestimating queue times, we discourage
jobs from rebelling. But it is not as clear why BIAS, which does not overestimate,
is more conservative than OPT. In any case, both prediction-based strategies do
a good job of selecting successful rebels; only 8% of rebels ended up spending
more time in queue than they save in run time.

7 Results: System Point-of-view

Until now, we have been considering the effect of allocation strategies on
individual jobs. Thus in our simulations we have not allowed jobs to effect their
allocation decisions; we have only measured what would happen if they had.
Furthermore, when we tuned these strategies, we chose parameters that were
best for individual jobs.

In this section we modify our simulations to implement the proposed strate-
gies and evaluate their effect on the performance of the system as a whole. We
use two metrics of system performance: average turnaround time and utilization.
We define utilization as the average of efficiency over time and processors, where
efficiency is the ratio of speedup to cluster size, S(n)/n. The efficiency of an idle
processor is defined to be 0. In our simulations, we can calculate efficiencies be-
cause we know the speedup curves for each job. In real systems this information
is not, usually available.

Table 2. Performance from the system’s point-of-view.

Average Average
utilization turnaround
(120 days) | time in minutes
(30421 jobs)

AVG 557 79.9
STUB .523 113
HEUR .526 109
PRED .570 77.5
BIAS .561 84.1

Table 2 shows the results for each allocation strategy, using the same work-
load as in the previous section. In the presence of self-interested users, the perfor-
mance of AVG degrades severely. If users choose cluster sizes naively (STUB) the
utilization of the system drops by 6% and turnaround times increase by 41%.
The situation is only slightly better if users take steps to reduce long delays
(HEUR).

PRED performs slightly better than AVG, which performs slightly better
than BIAS. It may seem odd that PRED does better than BIAS, since BIAS
is based on more accurate predictions. The reason is that PRED’s predictions
are consistently conservative, which has the effect of discouraging some border-
line rebels. This conservativism reduces queue times and increases utilization.
In practice, though, users might eventually notice that predicted queue times
are too high and apply bias correction on their own behalf. Thus, in the pres-
ence of self-interested users, we expect PRED to yield performance similar to
BIAS. Fortunately, this degradation is not nearly as severe as under AVG; the
utilization of the system drops slightly (1.6%) and turnaround times increase by
8.5%.

One surprising result is that the predictive strategies yield higher utilization
than AVG. Because these strategies often leave processors idle (which decreases
utilization) and allocate larger clusters (which decreases efficiency), we expected
these strategies to decrease overall utilization.

The reason they do not is that these strategies are better able to avoid L-
shaped schedules. Figure 6 shows two schedules for the same pair of jobs. Under
AVG, the second arrival would be forced to run immediately on the small cluster,
which improves utilization in the short term by reducing the number of idle
processors. But after the first job quits, many processors are left idle until the
next arrival. Our predictive strategies allow the second job to wait for a larger
cluster, which not only reduces the turnaround time of the second job; it also
increases the average utilization of the system.

Schedule under AVG

o]
o | .
5 | o many idle
=
? |2 rocessors
g1 | °
o |2
Q- .
small cluster, long run time
time
Schedule with prediction
Qo .
w | S fewer idle processors
2 18 -
& = arger
o |2 cluster
a
wait
time

Fig. 6. Sample schedules showing how longer queue times and larger cluster sizes can,
paradoxically, improve system utilization. Queue time prediction makes it possible to
avoid L-shaped schedules and thereby reduce the number of idle processors.

7.1 Job-centric vs. System-centric

What, then, is the performance advantage of job-centric scheduling over system-
centric scheduling? It depends on how aggressively users subvert the system. If
users are docile, and do not interfere with the system, the difference is small:
PRED saves about 3%, or 140 seconds per job, over AVG (95% confidence in-
terval 1.7% to 4.4%).

But in the presence of self-interested users, the difference is much larger:
compared to HEUR, BIAS saves 30%, or almost half an hour per job (95%
confidence interval 29.1% to 30.6%).

8 Conclusions

We have proposed a job-centric allocation policy with the following properties:

— Because it is based on a FIFO queueing system, jobs never starve.

— Because it makes decisions on behalf of individual jobs, it does not create
incentives for users to subvert the system. As a result, we show that it is
robust in the presence of self-interested users.

— The overall performance of the system under this strategy is between 3%
and 30% better than under a comparable system-centric policy.

Docile users Self-interested

users
A
e A
30 - 35%
AVG
¥
HEUR
STUB

Fig. 7. The performance of many scheduling strategies, like AVG, degrades in the
presence of self-interested users. The performance of our job-centric scheduler, PRED,
does not degrade as severely.

Also, we show that the prediction techniques we propose are sufficiently ac-
curate for making allocation decisions. From the point of view of individual
jobs, our predictive strategy is within 3% of an optimal strategy (with perfect
prediction).

8.1 Future Work

In this paper we have considered a single system size (128 processors), distribu-
tion of job characteristics (see Sect. 3), and load (p = 0.75). We would like to
evaluate the effect of each of these parameters on our results.

Also, we have modeled an environment in which users provide no informa-
tion to the system about the run times of their jobs. As a result, our queue time
predictions are not very accurate. In the real systems we have examined, the in-
formation provided by users significantly improves the quality of the predictions
[4]. We would like to investigate the effect of this improvement on our results.

As part of the DOCT project [11] we are in the process of implementing
system agents that provide predicted queue times on space-sharing parallel ma-
chines. Users can take advantage of this information to choose what jobs to run,
when to run them, and how many processors to allocate for each. We expect that
this information will improve user satisfaction with these systems, and hope that,
as in our simulations, it will lead to improvement in the overall performance of
the system.

Acknowledgements

I would like to thank George Kremenek at SDSC and Steven Hotovy at CTC
for providing workload data; Reagan Moore at SDSC, Jenny Schopf and Rich

Wolski at the University of California at San Diego, Ken Sevcik at the University
of Toronto and the workshop reviewers for comments that greatly improved the
quality and clarity of this paper.

References

10.

11.

12.

13.

14.

Su-Hui Chiang, Rajesh K. Mansharamani, and Mary K. Vernon. Use of applica-
tion characteristics and limited preemption for run-to-completion parallel proces-
sor scheduling policies. In Proceedings of the 199/ ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, 1994.

. Allen B. Downey. A model for speedup of parallel programs. Technical Report

CSD-97-933, University of California at Berkeley, 1997.

Allen B. Downey. A parallel workload model and its implications for processor
allocation. In The Sizth IEEE International Symposium on High Performance
Distributed Computing (HPDC ’97), 1997. To appear. Also available as University
of California technical report number CSD-96-922.

Allen B. Downey. Predicting queue times on space-sharing parallel computers. In
Proceedings of the 11th International Parallel Processing Symposium, April 1997.
Derek L. Eager, John Zahorjan, and Edward L. Lazowska. Speedup versus ef-
ficiency in parallel systems. IEEE Transactions on Computers, 38(3):408-423,
March 1989.

Dror G. Feitelson and Bill Nitzberg. Job characteristics of a production parallel
scientific workload on the NASA Ames iPSC/860. In Job Scheduling Strategies for
Parallel Processing, Springer-Verlag LNCS Vol 949, pages 337-360, April 1995.
Dror G. Feitelson and Larry Rudolph. Evaluation of design choices for gang
scheduling using distributed hierarchical control. Journal of Parallel and Dis-
tributed Computing, 35:18-34, 1996.

Dror G. Feitelson and Larry Rudolph. Towards convergence in job schedulers
for parallel supercomputers. In Job Scheduling Strategies for Parallel Processing,
Springer-Verlag LNCS Vol 1162, pages 1-26, April 1996.

Dipak Ghosal, Giuseppe Serazzi, and Satish K. Tripathi. The processor working set
and its use in scheduling multiprocessor systems. IEEE Transactions on Software
Engineering, 17(5):443-453, May 1991.

Shikharesh Majumdar, Derek L. Eager, and Richard B. Bunt. Scheduling in mul-
tiprogrammed parallel systems. In Proceedings of the ACM Sigmetrics Conference
on Measurement and Modeling of Computer Systems, pages 104-113, 1988.
Reagan Moore and Richard Klobuchar. DOCT (distributed-object computation
testbed) home page http://www.sdsc.edu/doct. San Diego Supercomputer Cen-
ter, 1996.

Vijay K. Naik, Sanjeev K. Setia, and Mark S. Squillante. Performance analysis of
job scheduling policies in parallel supercomputing environments. In Supercomput-
ing ‘93 Conference Proceedings, pages 824-833, March 1993.

Eric W. Parsons and Kenneth C. Sevcik. Coordinated allocation of memory and
processors in multiprocessors. In Proceedings of the ACM Sigmetrics Conference
on Measurement and Modeling of Computer Systems, pages 57-67, May 1996.
Emilia Rosti, Evgenia Smirni, Lawrence W. Dowdy, Giuseppe Serazzi, and
Brian M. Carlson. Robust partitioning policies of multiprocessor systems. Per-
formance Evaluation, 19(2-3):141-165, Mar 1994.

15.

16.

17.

18.

19.

20.

Emilia Rosti, Evgenia Smirni, Giuseppe Serazzi, and Lawrence W. Dowdy. Analy-
sis of non-work-conserving processor partitioning policies. In Job Scheduling Strate-
gies for Parallel Processing, Springer-Verlag LNCS Vol 949, pages 165-181, April
1995.

Sanjeev K. Setia and Satish K. Tripathi. A comparative analysis of static processor
partitioning policies for parallel computers. In Proceedings of the Internationsal
Workshop on Modeling and Simulation of Computer and Telecommunications Sys-
tems (MASCOTS), January 1993.

Kenneth C. Sevcik. Characterizations of parallelism in applications and their use
in scheduling. Performance Evaluation Review, 17(1):171-180, May 1989.

Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The EASY -
LoadLeveler API project. In Job Scheduling Strategies for Parallel Processing,
Springer-Verlag LNCS Vol 1162, pages 41-47, April 1996.

Evgenia Smirni, Emilia Rosti, Lawrence W. Dowdy, and Giuseppe Serazzi. Evalu-
ation of multiprocessor allocation policies. Technical report, Vanderbilt University,
1993.

Kurt Windisch, Virginia Lo, Dror Feitelson, Bill Nitzberg, and Reagan Moore.
A comparison of workload traces from two production parallel machines. In 6th
Symposium on the Frontiers of Massively Parallel Computation, 1996.

This article was processed using the KTEX macro package with LLNCS style

