
Global State Detection using Network Preemption

Atsushi Hori Hiroshi Tezuka Yutaka Ishikawa

Tsukuba Research Center

Real World Computing Partnership

1-6-1 Takezono, Tsukuba-shi, Ibaraki 305, JAPAN

TEL:+81-298-53-1661, FAX:+81-298-53-1652

E-mail:fhori,tezuka,ishikawag@trc.rwcp.or.jp

URL:http://www.rwcp.or.jp/

Abstract

Gang scheduling provides shorter response time and

enables interactive parallel programming. To utilize

processor resources on interactive parallel programs,

global state of distributed parallel processes should be

detected. This problem is well-known as \distributed

termination problem." In this paper, we propose a

practical method to detect a global state of distributed

processes. There are two key methods to detect a global

state described in this paper. One is by network pre-

emption and the other is by combining global state de-

tection with gang scheduling. The overhead for the

detection of a global state is negligible. To implement

our scheme, we extend our gang scheduler, SCore-D,

to an operating system by implementing a system-call

mechanism. We con�rmed that our proposed global

state detection scheme is very useful on SCore-D.

1 Introduction

Gang scheduling is thought to be e�ective especially

for �ne-grain parallel programs [16, 5]. The most ben-

e�t of gang-scheduling is that it can provide shorter

response time than batch scheduling. Taking hours

of running time can be reduced to minutes on a par-

allel machine or a workstation cluster. Thus, gang

scheduling enables some sort of parallel applications

to be interactive [6].

In UNIX, a state transition of a process is clearly

de�ned. An idle state of a process means that there

exists a blocked system-call. However, the state tran-

sition of gang-scheduled processes can be di�erent

from that of sequential processes. There could be a

case in that processes are gang-scheduled every time

a system-call is blocked. This strategy introduces a

number of gang context switches proportional to the

number of processors. Considering the overhead of

gang context switch, this situation should be avoided.

So it is desirable that the processes are gang-switched

when every process is idle or blocked.

The detection of \no running process" in a set of

communicating processes is well known as as a \dis-

tributed termination problem." A number of algo-

rithms have been proposed to tackle this distributed

termination detection problem [4, 15]. Essentially,

there are two key points to detect the global termi-

nation of a distributed parallel processes. One is to

detect the termination of all processes. The other

is to guarantee that there exists no message for the

processes in the communication network. If these

predicates are true, then the processes are assumed

globally terminated. Some algorithms require extra

marker messages to detect the non-existence of mes-

sages, some require counting the number of messages,

and so on. Those additional mechanisms add extra

overhead to the underlying computation.

Globally terminated or idling distributed processes

should be detected by a parallel operating system.

The operating system is responsible for not allocating

resources in vain. These idling processes can be pre-

empted and switched to another runnable distributed

processes. Of course, a globally terminated process

should be terminated by the operating system too.

We have developed a user-level parallel operating

system, called SCore-D [10, 9], for workstation clus-

ters. The key idea enabling gang scheduling in SCore-

D is network preemption. Under SCore-D, distributed

user processes can communicate by manipulating net-

work hardware directly. When switching processes,

the messages are 
ushed out from the network. Then



the 
ushed messages and the network hardware status

are saved and restored on each processor.

We applied this network preemption technique to

the global state detection problem. Each time pro-

cesses are gang-switched, the saved network status is

investigated on each processor. When every process

is idle and there is no message in saved network con-

text, then the distributed processes are assumed to be

globally terminated. The bene�ts of this method are

that the overhead to detect a global state is negligi-

ble, and there is no need of a special mechanism for

the underlying computation.

Here, we slightly modify the de�nition of the global

termination by considering the viewpoint of parallel

operating systems. In addition to the conditions of

detecting a global termination, if there exists at least

one blocked system-call, then the distributed process

is assumed to be globally idle. After the system-call

is done, then the distributed processes become ready

to run. Most of the blocking system-calls causing

global idle situations are I/O operations. For a multi-

threaded system, it could be argued that the blocking

time can be hidden by scheduling other threads. Disk

related I/O operations usually end within after tens of

milli-seconds, and there could be a su�cient quantity

and/or length of threads in a distributed processes.

However, there is also the case waiting for human re-

action, quite a problem if he or she has been out at a

restaurant having a lunch. It is hard to imagine that

there can always be a su�cient quantity and/or length

of threads to �ll several hours.

We implemented a system-call mechanism and

some I/O devices in the SCore-D. In addition to the

global termination detection, we also implemented

global idle detection. Eventually, we con�rmed that

this global idle detection is very e�ective for maximiz-

ing system throughput and for decreasing user frus-

tration.

2 SCore-D Overview

At this time, the nature of parallel operating sys-

tems is still unclear, it is important to implement and

evaluate the proposed parallel operating system func-

tions. To catch up state-of-the-art hardware technol-

ogy, fast development is crucial. Therefore develop-

ment a parallel operating system at user-level is rea-

sonable for parallel operating system research. SCore-

D is a user-level parallel operating system on top of

UNIX [10, 9].

Figure 1 shows the software structure of SCore-D.

A unique feature of SCore-D is that it is written in

WS or PC Myrinet

UNIX

Application Program

PM

Language Runtime

SCore-D

Figure 1: Software structure of SCore-D

MPC

++

[11], a multi-threaded C++. Although the

runtime library of MPC

++

is hidden in this �gure,

The runtime system of MPC

++

has been developed for

SCore-D and user programs. The runtime system of

the other parallel object-oriented language, OCore[14],

is now supported by SCore-D.

Currently, SCore-D is running on both our work-

station cluster (36 SparcStation 20s) and PC cluster

[8] (32 Pentium PCs). Myrinet [3] is used as the inter-

processor communication hardware in both clusters.

We have developed Myrinet driver software, called

PM [19]. PM supports not only low-level communica-

tion, but also some functions for network preemption.

SCore-D is independent of network hardware and the

programming language of application programs. We

are now developing an Ethernet communication li-

brary too.

To execute a user program, a user has to connect

to a SCore-D server via TCP on Ethernet and sup-

ply the required information to execute the user pro-

gram, including user ID, the current directory path,

the executable �lename, number of processors, and so

on. If the user program is linked with an appropriate

runtime library, then all procedures take place in the

runtime library. SCore-D then forks and execs user

program over the processors. After user processes are

forked, the runtime library initializes the PM library

according to information passed from SCore-D, and

the user program starts. For gang scheduling and job

control, user processes are controlled via UNIX signals



Table 1: PM performance

Machine Clock Latency Bandwidth

[MHz] [�s] [MB=s]

SS20 75 8.0 38.6

Pentium 166 7.2 117.6

Table 2: PM interface

Send and Receive

GetSendBuf allocate send bu�er

Send send a message

Receive check message arrival

PutReceiveBuf free receive bu�er

Network Preemption Support

SendStable con�rm message arrivals

SaveChannel save network context

RestoreChannel restore network context

GetChannelStatus return channel status

by SCore-D [10].

2.1 PM

PM consists of a Myrinet �rmware (LANai pro-

gram) and a low-level communication library [19]. PM

allows its users to access Myrinet hardware. Avoiding

system-calls to UNIX and interrupts (whenever possi-

ble), we succeeded in reducing software overhead dra-

matically. The same technique can be found in [17].

Table 1 shows the one-way latency and bandwidth

on SparcStation 20s (SS20) and PC-ATs. Although

the Myrinet link has a bandwidth of 160 MB/s, PM's

bandwidths are limited by the I/O bus speed used in

these machines.

Table 2 shows a list of functions related to com-

munication and network preemption. Communica-

tion with PM is asynchronous. To send a message,

�rst a message bu�er should be allocated by calling

GetSendBuf(). Next the runtime constructs or pack-

etizes a message in the allocated bu�er area. Then

the message bu�er is sent to a destination proces-

sor by calling Send(). This allocation and sending

procedure can avoid extra memory copying. The re-

ceiving procedure is almost the same as the sending.

The lower half functions in Table 2 are for network

preemption and are used in SCore-D only. PM sup-

ports multiple communication channels. The function

GetChannelStatus() is to obtain channel information

Table 3: Context Save and Restore Time

SS20 save restore

Send Full 3747 3002

Recv Full 7203 5201

Both Empty 1866 1094

Both Full 8963 7073

Pentium save restore

Send Full 2399 1843

Recv Full 4663 2955

Both Empty 938 365

Both Full 6118 4427

[�sec]

including the numbers of messages waiting for sending

and receiving.

Table 3 shows the time required to save and restore

network context. The time to save and restore de-

pends on the number of messages and the total amount

of message size in the receive and send bu�ers in a

channel. In this table, \Send Full" means the send

bu�er contains 511 messages (49,056 bytes in total),

and \Recv Full" means receive bu�er contains 4,095

messages (65,520 bytes). Larger bu�er size contributes

communication performance, however, it takes longer

time to save and restore network context.

SCore-D initializes Myrinet hardware and uses one

channel for its inter-processor communications, while

the user processes use the other channel. When SCore-

D creates a new user processes, it resets the other

channel for the user's inter-processor communication.

With this multiple channel feature of PM, SCore-D

and user process can share a Myrinet hardware. All

the send and receive operations in PM are safe from

preemption of CPU at any time, so that SCore-D can

preempt user process at any time.

From the viewpoint of SCore-D, the functions in

Table 2 is an API. SCore-D does not assume having

Myrinet interface, but assumes a communication li-

brary having the same functions de�ned in Table 2.

2.2 Network preemption

Since PM allows its users to access network hard-

ware directly, the network hardware status is also

saved and restored when switching processes. How-

ever, this is not enough. There exists the possibility

of receiving a message belonging to the process before

switching. To avoid this, the messages in the network

should be 
ushed out before starting a new process.



PM uses a modi�ed Ack/Nack protocol for 
ow-

control. Although message delivery is reliable on

Myrinet, a 
ow-control mechanism is still needed. The

allocated sending message region is preserved until

the corresponding Ack message is received. Note that

these Ack/Nack messages are used for releasing or re-

sending the corresponding message. The Send() func-

tion sends a message asynchronously. Thus, latency

and bandwidth can be improved. We applied this

protocol to the detection of message 
ushing. The

SendStable() function returns if there exists a mes-

sage in transient.

When user processes are gang-scheduled, SCore-D

�rst sends UNIX signal SIGSTOP to all user processes.

On each processor, SCore-D waits until the user pro-

cess stops, then calls the SendStable() function to

wait for 
ushing of messages sending from the node.

The completion of the 
ushing at each node is syn-

chronized in a barrier fashion, and the 
ushing of user

messages in a network is then complete. The next

thing to do is to save the network context on each

processor, and to restore the network context of a new

process. After reloading a new network context, the

execution of new processes are resumed by sending

SIGCONT signals.

CM-5 has a hardware support for network preemp-

tion, called All-Fall-Down [20]. When an operating

system decides to switch processes, it sets a special

hardware register to trigger the All-Fall-Down. In All-

Fall-Down mode, all messages in the network fall down

to the nearest processor regardless of destination. To

restore the network context, the fallen messages are

reinjected into the network. Since the CM-5 network

was not designed to preserve message order, the dis-

turbance of message order by All-Fall-Down does not

cause a problem. PM preserves message order. Mes-

sage order is preserved even when network preemption

takes place. PM also guarantees reliable communi-

cation. These message order preserving and reliable

communication eliminate avoids the needed software

overhead to handling irregular situations.

Franke, et al. also implemented a gang-scheduler,

called SHARE on IBM SP-2 [7]. They also save and

restore network hardware context. The communica-

tion mechanism used in [7] does not guarantee reli-

able communication. The absence of reliability may

not require the network preemption. When a con-

text switch takes place and a message arrives at a

wrong process, then the message is discarded and then

its sender must resend the message. The PM guar-

antees reliable communication, and this feature not

only simpli�es the programming, but also contributes

User Process

SCore-D Process

(2
)P

ip
e

(1) Set
Syscall
Args

(3) Copyin
Args

(4) Copyout
Return Value

(5) Get Return Value
and resume thread

S
h

ar
ed

 M
em

o
ry

S
eg

m
en

t

Threads

Threads

Figure 2: Systemcall mechanism

the low-latency and high-bandwidth in communica-

tion shown in Table 1. The PM's reliable and asyn-

chronous features require extra mechanisms, the net-

work preemption including global synchronization, for

enabling gang scheduling. However, considering that

the frequency of communication is mush higher than

that of gang scheduling, lower-overhead communica-

tion is desirable.

2.3 System-call mechanism

In [10], SCore-D is introduced as a gang scheduler.

In addition, we have added the system-call mechanism

and have implemented I/O mechanisms and other op-

erating system functions. In this subsection, we brie
y

introduce the system-call mechanism implemented in

SCore-D.

SCore-D and a user process share a memory seg-

ment de�ned in System V IPC. This memory segment

is used to relay information to initialize a user pro-

cess. The segment is also used for system-calls from

user processes to SCore-D (Figure 2). The arguments

for a system-call are copied into a region of a shared

segment. SCore-D is noti�ed of the existence of a ser-

vice request via a UNIX pipe. SCore-D processes the

request, and the result is copied to the same region.



1 void idle_loop( void )

2 {

3 char *recv_buf;

4

5 while( 1 ) {

6 if( !Receive( channel, &recv_buf ) )

7 {

8 idle_flag = FALSE;

9 process_message( recv_buf );

10 PutReceiveBuf( channel );

11 break;

12 }

13 if( syscall_cell->status == DONE )

14 {

15 idle_flag = FALSE;

16 syscall_count --;

17 enqueue_thread(

18 syscall_cell->thread );

19 break;

20 }

21 idle_flag = TRUE;

22 }

23 return;

24 }

Figure 3: Skeleton of an idle loop

2.4 Thread model

SCore-D assumes that user programs are written

in a multi-threaded language and that the thread is

implemented at the user-level. Figure 3 is a skeleton

of idle loop for such a thread runtime library. We put

an integer variable idle_flag in the shared memory

segment to indicate if the user process is idle or not,

so that SCore-D can observe its status.

Suspending a thread invoking a system-call, the

thread runtime system can obtain the bene�ts both

of kernel threads and user threads. SCore-D assumes

that user programs run with a user-level thread run-

time library. There is no need of a UNIX system-call

to switch threads, and the runtime only suspends the

thread invoking a system-call. In an idle loop, shown

in Figure 3, a 
ag indicating the end of a system-call is

checked. If a system-call is �nished, then the runtime

re-schedules the suspended thread. No thread is pre-

empted when a system-call is done. Thus, our thread

model can avoid the critical section problem discussed

in [1].

3 Global State Detection

Although the asynchronous nature of PM con-

tributes to communication performance, it compli-

cates the detection of a global state. The overhead

to detect a global state should be as low as possible.

Some additional mechanism needed in user programs

is not ideal. Here, we propose a practical method to

detect a global state by combining network preemp-

tion for gang scheduling and global state detection.

In Figure 3, the idle_flag variable is located in the

shared memory segment. The syscall_count vari-

able counts pending system-calls and is also located

in the shared segment. Now, the SCore-D can detect

a global state in user's distributed processes each time

the processes are gang-scheduled.

1. Suspend user distributed processes.

2. Preempt the network.

3. Gather message count information in preempted

network context, the processes' activities, and the

system-call count from each process.

As a result, if no message can be found in the pre-

empted network, and there is no busy process, then

the distributed processes are assumed to be either

globally idle or terminated. Further, if there is no

pending system-call, then the processes are assumed

globally terminated, otherwise the processes are glob-

ally idle.

The �rst two steps in the above procedure follow the

normal procedure for gang scheduling, and is nothing

new in the detection of global state. Only the last

step is modi�ed. However, with normal gang schedul-

ing, the last step is still needed to synchronize all net-

work preemptions at each process. The overhead for

the global state detection is only in adding extra ar-

guments for the synchronizer. Thus the overhead for

adding this global state detection mechanism is negli-

gible.

The most drawback of this proposed method is that

a global state can be detected only when distributed

processes are gang-switched. This means that when

a distributed processes becomes globally idle, the pro-

cessors are idle for half of the time quantum in average.

In many cases, users may expect a shorter response

time with their interactive programs. To get a shorter

response time, the process switching should take place

in a shorter interval. However, the shorter the inter-

val, the larger the overhead. To answer the question

of how often, we have to know how much overhead

incurred by the network preemption and the degree

of user frustration concerning the interval. The mea-

sured overhead of gang scheduling under SCore-D is

shown in Section 4.

Generality

So far, we have been targeting multi-threaded pro-

grams. We assume that the local idle state of user



process can be detected by SCore-D. The idle_flag

in Figure 3 should be set with great care. The

idle_flag is set before incoming message is consumed

by PutReceiveBuf(), and before the system-call post-

processing. Otherwise, a user program can be mis-

taken as being globally idle or terminated.

Here, let us imagine a program in which a sin-

gle thread per processor is running on a distributed

shared memory machine, and the program code is

busy-waiting at a global 
ag that may be set by an-

other process. The idle_flag can be set in the busy-

wait loop. However, a problem can arise over the race

between the setting of the idle_flag and the consum-

ing of a remote-memory-write message. At the mo-

ment just after the message to set the 
ag arrives and

when the code is about to check the 
ag, a preemption

may occur. If there is no message in the network and

all the other processes are idle, then the program is

mistaken as being in an idle state.

Thus, the generality of the proposed method of

global state detection depends on the detection of a

local state and timing of message consumption. At

this moment, we are targeting multi-thread program-

ming environments, and we can not go into further

detail on shared memory programming models.

4 Gang Scheduling Overhead

The longer the time quantum, the lower the gang

scheduling overhead. However, longer time quantums

means a longer response time and an increased pos-

sibility of idling processors. Thus the time quantum

of gang scheduling is a trade-o� between these and

should be decided in accordance with its overhead.

We have developed two types of clusters. One is a

workstation cluster consisting of 36 SparcStation 20s

(Figure 4). The other is PC cluster consisting of 32

PCs (Figure 5) [8]. Myrinet is used to interconnect

the processors in each cluster.

Table 4 shows slowdown (overhead) due to the gang

scheduling, varying the time quantum, 0.2, 0.5, and

1.0 second. To measure the overhead, we run a special

program in which barrier synchronization is iterated

200,000 times running on 32 processors. Evaluating

with this special program, all possible gang schedul-

ing overhead, including co-scheduling skew[2], can be

included. The slowdown is compared with the same

program running with a stand-alone runtime library

(called SCore-S) of MPC

++

. On both our workstation

and PC cluster, the slowdown is 8.84 % and 4.16 %

with the time quantum of half second, respectively.

Figure 4: Workstation cluster

Figure 5: PC cluster



The overhead of PC cluster is much less than that of

workstation cluster. We guess this di�erence is domi-

nated by a scheduling policy of the local Unix operat-

ing system[10].

Although the time quantum is relatively larger than

that of Unix, granularities of execution time of paral-

lel applications considered to be larger than that of

sequential applications. It is not reasonable to run a

text editor on parallel machines. Scheduling tens of

processor to echo one character is meaningless. Thus,

even for an interactive parallel programming, process-

ing granularities triggered by input commands should

be larger, and the time quantum around one second is

considered to be still acceptable. The mechanism of

the global state detection of distributed processes can

utilize processor resource and can reduce users frus-

tration with interactive parallel programs.

Table 4: Slowdown due to gang scheduling [%]

Time Quantum [Sec:]

1.0 0.5 0.2

Workstation Cluster 6.96 8.84 28.7

PC Cluster 2.87 4.16 6.25

The overhead of gang scheduling under SCore-D is

not small. Sampling the global state of a user program

for each gang scheduling is assumed to be practical.

5 Related Works

The global state detection problem can also arise in

the area of distributed database [13], consistent check-

pointing [18], and global garbage collection [12]. The

most famous Chandy and Lamport algorithm to take

a snapshot of a global state [4] requires O(n

2

) mes-

sages, where n is the number of processors, to check

a global state. Although the number of required mes-

sages can be reduced when a network topology and

router hardware knowledge are given [18], the detec-

tion mechanism should be triggered periodically. The

other algorithm proposed by Misra proposed to use a

markermessage to guarantee non-existence of message

in the network [15]. Passing one marker message at a

time is required, and this marker message passing still

adds extra overhead.

In most global detection algorithms proposed so

far, it is assumed that messages in transient can not

be observed. However, the proposed network pre-

emption mechanism enables this with negligible ex-

tra overhead. As mentioned, global idle detection is

especially e�ective for gang-scheduled interactive par-

allel programs. Thus, integrating a global state detec-

tion mechanism into a gang-scheduler is very natural.

The message 
ushing mechanism implemented in PM

is needed not only for the network preemption, but

also for barrier synchronization. In many data par-

allel programming model, barrier synchronization is

used to guarantee that 1) the procedure on every pro-

cessor has reached at the synchronization point, and

2) remote memory write requests have been re
ected

to destination memory area. To guarantee the latter

item, the PM's message 
ushing mechanism can be

applied. In this case, the proper arrivals of all sending

messages should be guaranteed. While in the case of

network preemption, the non-existence of message in-

cluding Ack/Nack messages should be guaranteed, no

matter if sent messages are properly received.

As described, the most drawback of the proposed

method is that the global state can only be detected at

each time quantum. To investigate the global state,

the network preemption is su�cient, but the saving

and restoring network status are not needed. A global

state can be detected by only stopping user processes

and counting the 
ushed messages. More frequent in-

vestigation of global state than the gang switching can

reduce the possible idle time. As shown in Table 3, it

takes several milli-seconds to save and restore network

context. This idea is feasible.

6 Concluding Remarks

We showed a practical method implemented in

SCore-D, that of integrating global idle or termination

detection with network preemption. With the pro-

posed method, the overhead to detect a global state is

negligible, although there is the drawback of being an

o�-line (or, sync-and-stop in terms of [18]) algorithm.

On shared memory model programs, our proposed

method may not be applicable. However, global idle

or termination detection is very important to utilize

processor resources on interactive parallel programs.

Thus, global state detection should be implemented

in a parallel operating system.

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska,

and H. M. Levy. Scheduler Activations: E�ective

Kernel Support for the User-Level Management



of Parallelism. ACM Transactions on Computer

Systems, 10(1):53{79, February 1992.

[2] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat,

L. T. Liu, T. E. Anderson, and D. A. Patterson.

The Interaction of Parallel and Sequential Work-

loads on a Network of Workstations. UC Bereke-

ley Technical Report CS-94-838, Computer Sci-

ence Division, University of California, Berekeley,

1994.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E.

Kulawik, C. L. Seitz, J. N. Seizovic, and W.-K.

Su. Myrinet: A Gigabit-per-Second Local Area

Network. IEEE Micro, 15(1):29{36, February

1995.

[4] M. Chandy and L. Lamport. Distributed snap-

shot: Determining global states of distributed

systems. ACM Transactions on Computer Sys-

tems, 3(1):63{75, February 1985.

[5] D. G. Feitelson and L. Rudolph. Gang Schedul-

ing Performance Bene�ts for Fine-Grain Synchro-

nization. Journal of Parallel and Distributed

Computing, 16(4):306{318, 1992.

[6] D. G. Feitelson and L. Rudolph. Parallel Job

Scheduling: Issues and Approaches. In D. G. Fei-

telson and L. Rudolph, editors, Job Scheduling

Strategies for Parallel Processing, volume 949 of

Lecture Notes in Computer Science, pages 1{18.

Springer-Verlag, April 1995.

[7] H. Franke, P. Pattnaik, and L. Rudolph. Gang

Scheduling for Highly E�cient Distributed Multi-

processor Systems. In Frontier'96, October 1996.

[8] A. Hori and H. Tezuka. Hardware Design and

Implementation of PC Cluster. Technical Report

TR{96017, RWC, December 1996.

[9] A. Hori, H. Tezuka, and Y. Ishikawa. Global State

Detection using Network Preemption. In Cluster

Computing Conference '97, March 1997.

[10] A. Hori, H. Tezuka, Y. Ishikawa, N. Soda,

H. Konaka, and M. Maeda. Implementation

of Gang-Scheduling on Workstation Cluster. In

D. G. Feitelson and L. Rudolph, editors, IPPS'96

Workshop on Job Scheduling Strategies for Par-

allel Processing, volume 1162 of Lecture Notes in

Computer Science, pages 76{83. Springer-Verlag,

April 1996.

[11] Y. Ishikawa. Multi Thread Template Library {

MPC++ Version 2.0 Level 0 Document {. Tech-

nical Report TR{96012, RWC, September 1996.

[12] T. Kamada, S. Matsuoka, and A. Yonezawa. E�-

cient Parallel Global Garbage Collection on Mas-

sively Parallel Computers. In Supercomputing

Conference, pages 79{88, 1994.

[13] E. Knapp. Deadlock Detection in Distributed

Database. Computing Surveys, 19(4):303{328,

December 1987.

[14] H. Konaka, Y. Itoh, T. Tomokiyo, M. Maeda,

Y. Ishikawa, and A. Hori. Adaptive Data Paral-

lel Computation in the Parallel Object-Oriented

Language OCore. In Proc. of the International

Conference Euro-Par'96, Vol.I, pages 587{596,

1996.

[15] J. Misra. Detecting termination of distributed

computations using markers. In Second ACM

Symposium on Principles Distributed Computing,

pages 290{294, August 1983.

[16] J. K. Ousterhout. Scheduling Techniques for Con-

current Systems. In Proceedings of Third Interna-

tional Conference on Distributed Computing Sys-

tems, pages 22{30, 1982.

[17] S. Pakin, M. Lauria, and A. Chien. High Perfor-

mance Messaging on Workstations: Illinoi Fast

Messages (FM) for Myrinet. In Supercomput-

ing'95, December 1995.

[18] J. Plank. EFFICIENT CHECKPOINTING ON

MIMD ARCHITECTURES. PhD thesis, Print-

ceton University, 1993.

[19] H. Tezuka, A. Hori, and Y. Ishikawa. PM:

A High-Performance Communicatin Library for

Multi-user Parallel Environments. Technical Re-

port TR{96015, RWC, November 1996.

[20] Thinking Machines Corporation. NI Systems

Programming, October 1992. Version 7.1.


