
Implications of I/O for Gang ScheduledWorkloadsWalter Lee, Matthew Frank, Victor Lee, Kenneth Mackenzie, and LarryRudolph ?M.I.T. Laboratory for Computer ScienceCambridge, MA 02139, U.S.A.fwalt, mfrank, wklee, kenmac, rudolphg@lcs.mit.eduAbstract. The job workloads of general-purpose multiprocessors usu-ally include both compute-bound parallel jobs, which often require gangscheduling, as well as I/O-bound jobs, which require high CPU priorityfor the individual gang members of the job in order to achieve inter-active response times. Our results indicate that an e�ective interactivemultiprocessor scheduler must be
exible and tailor the priority, timequantum, and extent of gang scheduling to the individual needs of eachjob. Flexible gang scheduling is required because of several weaknessesof traditional gang scheduling. In particular, we show that the responsetime of I/O-bound jobs su�ers under traditional gang scheduling. Inaddition, we show that not all applications bene�t equally from gangscheduling; most real applications can tolerate at least a small amountof scheduling skew without major performance degradation. Finally, weshow that messaging statistics contain information about whether ap-plications require gang scheduling. Taken together these results provideevidence that
exible gang scheduling is both necessary and feasible.1 IntroductionWhile gang scheduling provides better performance than uncoordinated schedul-ing for compute-bound parallel jobs with frequent synchronization, it leads topoor performance of I/O-bound jobs that require short, high-priority bursts ofprocessing. Rather than religiously following the gang scheduling paradigm, ascheduler for a parallel computer should be
exible, capable of delivering accept-able performance for both compute and I/O-bound jobs.Uniprocessor schedulers assign I/O-bound jobs higher priority than compute-bound jobs in the hope of reducing the average response time and without de-creasing the machine utilization. It is well known that scheduling shortest job�rst minimizes the average response time. Traditionalmultiprocessor gang sched-ulers, on the other hand, schedule jobs in a strict round-robin fashion and ensure? This research is funded in part by ARPA contract # N00014-94-1-0985, in part byNSF Experimental Systems grant # MIP-9504399, in part by a NSF PresidentialYoung Investigator Award.

that each member of a gang be allocated a processor at the same time. The CPUsallocated to gang members that perform I/O often sit idle. The disks allocatedto gang members I/O requests often sit idle until the member gets a chance toexecute again.In e�ect, the presence of I/O-bound jobs complicates scheduling decisionsby exerting pressure on the system not to gang schedule. The pressure comesin two forms. The �rst comes from the opportunity to improve response timeby interrupting gang scheduled, compute-bound jobs in order to execute a I/O-bound job. The second comes from the need to schedule fragmented cpu re-sources. These features of
exible gang scheduling motivate the need to �nd outhow compute-bound jobs bene�t from gang scheduling. We study this issue andshow that many applications can in fact tolerate the nearly gang environmentsprovided by a
exible gang scheduler.The studies of both I/O-bound jobs and compute-bound jobs demonstratethat
exible gang scheduling can be an improvement over traditional gangscheduling. Central to the realization of a
exible gang scheduler is the abil-ity to determine dynamically the level to which individual applications bene�tfrom gang scheduling. We show how one can extract such information from rawmessaging statistics.Although gang scheduling improves the performance of many workloads, itcon
icts with the goal of providing good response time for workloads containingI/O-bound applications. The results in this paper motivate the need to analyzethe costs and bene�ts of gang scheduling each job by showing that gang schedul-ing jobs increase the response time of I/O-bound applications and by showingthat some jobs bene�t only marginally from a dedicated machine abstraction.In addition, we show that a scheduler can collect the necessary information fora cost-bene�t analysis from raw messaging statistics.The rest of the paper is organized as follows. Section 2 describes our ex-perimental environment. Section 3 studies the impact of gang scheduling onI/O-bound applications. Section 4 studies the performance of compute-boundapplications in near-gang scheduled environments. Section 5 explores the use ofmessaging statistics to aid scheduling decisions. Finally, Section 6 and Section 7present related work and conclude, respectively.2 Experimental SetupIn this section, we describe the experimental environment used in Sections 4and 5. The environment also provides the basis for the more abstract simulationmodels used in Section 3. We provide informationabout the Fugu multiprocessor,the scheduler, and the multiprocessor simulator used by the experiments.Fugu is an experimental, distributed-memorymultiprocessor supporting bothcache-coherent shared memory and �ne-grain message passing communicationmechanisms [13]. The applications studied in this paper use only the message-passing mechanism. Messages in Fugu have extremely low overhead, costingroughly 10 cycles to send and roughly 100 cycles to process a null active message

via an interrupt. The Fugu operating system, Glaze, supports virtual memory,preemptive multiprogramming and user-level threads. The message system isnovel in that messages received when a process is not scheduled are bu�ered bythe operating system at an extra cost.The Fugu scheduler is a distributed application organized as a two-level hi-erarchy with a global component and local, per-processor components. The costof the global communication and computation is amortized by pre-computing around of several time-slices of work which is then distributed to the local sched-ulers. Results for this paper employ a four-processor con�guration running smallworkloads, so the cost of the global work is small and the round size is kept min-imal. The scheduler uses an Ousterhout-style matrix coscheduling algorithm toassign work to processors. Jobs have �xed processor needs and are assigned toprocessors statically, one process per processor, at the time the jobs begin. Eachjob is marked with a gang bit that indicates to the scheduler whether constituentprocesses may independently yield their time-slices when they have no work todo.Experiments are run on an instruction-level simulator of the Fugu multipro-cessor. The simulator counts instructions, not strictly cycles. Since the schedul-ing issues we are interested in are orthogonal to any memory hierarchy issues,we believe instruction counts will give us the same qualitative results as cyclecounts.3 Gang Scheduling and I/O JobsIn this section we study the implications of gang scheduling in the presence ofI/O-bound jobs. We �nd that the requirements of gang scheduling lead to atradeo� between disk utilization and cpu utilization. Traditional uniprocessorschedulers, based on multilevel feedback queues, manipulate job priorities toe�ectively overlap disk requests with processing. Because gang schedulers ignoreinformation about job behavior, they make suboptimal choices which lead toslowdowns for both I/O-bound and compute-bound jobs.Section 3.1 discusses a variety of ways in which gang scheduling can leadto poor I/O and cpu utilization. Section 3.2 demonstrates the tradeo�s thatgang scheduling must make between I/O and compute-bound jobs. Our resultssuggest that gang schedulers require considerable information to make good de-cisions. Along with the priority information collected by traditional uniprocessorschedulers, a gang scheduler can bene�t from knowledge about the coschedulingrequirements of compute-bound jobs.3.1 Costs of Gang SchedulingThe costs of gang scheduling can be divided into two categories, under-utilizationof disk resources, which we call priority inversion, and under-utilization of cpuresources, which we call cpu fragmentation. Disk resources can best be utilizedif processes of I/O-bound jobs are given priority to use the cpu whenever they

Proc. j

I/O request
outstanding

Priority
Inversion

Proc. i

for
Job A

Quantum

for
Job B

Quantum Priority
Inversion

Proc. k

I/O Bound
Job using
CPU

CPU
Fragmentation

Job A

Job BFig. 1. Adverse e�ects of gang scheduling in the presence of I/O. In processori (left), the process for job A reaches the end of its quantum before it is able to issue anI/O. The disk is left idle for the entire duration of the quantum for job B. In processorj (middle), an I/O request from job A �nishes before the end of quantum B. The higherpriority, I/O-bound process must wait till the end of job B's quantum. When job Amakes a request before the end of its quantum (processor k, right), it leaves behindfragmented CPU resources.are ready to run. This policy ensures that a process's next I/O request will comeas soon as possible after the previous one �nishes. Note that it is the thread orprocess, not the job, that makes an I/O request. When a job consists of multiplethreads or processes, it is likely that only a subset of them will block on anI/O operation. Since gang schedulers schedule whole jobs, they cause priorityinversion problems whenever they permit a compute-bound job to use the cpuwhile processes of an I/O-bound job is ready to run.There are two di�erent causes of priority inversion. Either the schedulingquantum length for an I/O-bound job can be set too short, or the schedulingquantum length for a compute-bound job can be set too long. The left hand sideof Figure 1 demonstrates the �rst of these problems. Here, the quantum for jobA, an I/O-bound job, ends shortly before process i of job A is ready to makean I/O request. The disk sits idle for the entirety of quantum B before job A ispermitted to resume. If quantum A had been slightly longer, a disk access couldhave been overlapped with job B's computation.A second form of priority inversion occurs when the scheduler sets the quan-tum length for a compute-bound job too long. This problem is shown in themiddle part of Figure 1. In this case, process j of job A makes an I/O request.Shortly afterward, job A's quantum expires and the scheduler switches to run-ning job B. When the I/O request �nishes, the scheduler does not return tojob A because job B's quantum has not yet �nished. The time remaining in thequantum is devoted to the compute-bound job, which unnecessarily delays theoccurrence of the next I/O operation from job A.In contrast, the right hand side of Figure 1 demonstrates the cpu fragmen-tation problem that occurs when the quantum for an I/O-bound is too long. Inthis case process k of job A makes an I/O request considerably before the end

 IO Job Quantum = 2.5 msec
 IO Job Quantum = 5 msec
 IO Job Quantum = 10 msec

|

0
|

10
|

20
|

30
|

40

|0

|1

|2

|3

 Priority Inveresion

 CPU Job Quantum (msec)

 S
lo

w
do

w
n

of
 I/

O
-b

ou
nd

 jo
b

 IO Job Quantum = 2.5 msec
 IO Job Quantum = 5 msec
 IO Job Quantum = 10 msec

|

0
|

10
|

20
|

30
|

40

|0

|20
|40

|60

|80

 CPU Fragmentation

 CPU Job Quantum (msec)
 P

er
ce

nt
 o

f m
ac

hi
ne

Fig. 2. Increasing the cpu-bound job's quantum length increases prior-ity inversion but reduces cpu fragmentation. An I/O-bound job and a com-pute-bound job are scheduled against each other on a 32-processor, gang-scheduledmachine. Each process of the I/O job uses the CPU for an average of 5 msec betweenmaking 20-msec I/O requests. Three experiments are shown, with the scheduler quantafor the I/O-bound job set to 2.5, 10, and 20 msec. The scheduler quanta for the com-pute-bound job is varied on the X axis for both graphs. The left graph plots the level ofpriority inversion, represented as a slowdown factor of the I/O-bound job as comparedto running the job on a dedicated machine. The right graph plots the amount of cpufragmentation as a percentage of the total available cpu resources.of quantum A. Because job B requires gang scheduling, it is unable to makeprogress because the rest of the processors are still running processes of job A.Processor k remains idle until the beginning of quantum B.The next subsection examines these issues quantitatively and �nds that deal-ing with priority inversion requires that the quanta be allocated dynamically tosuit the I/O requirements of the workload. A more
exible scheduling schemecan deal with the problems of priority inversion and resource fragmentation byallowing the characteristics of each job to drive the schedule.3.2 I/O-CPU Utilization Tradeo�sBy varying the quantum length for di�erent jobs, the e�ects discussed above canbe observed. In particular, priority inversion, which causes poor disk utilization,occurs when either the quantum length for an I/O-bound job is too short or whenthe quantum length for a compute-bound job is too long. Cpu fragmentation,which causes poor cpu utilization, occurs when the quantum length of the I/O-bound job is too long.Because a variable quantum policy requires considerably more
exibility than

 CPU Job Quantum = 40 msec
 CPU Job Quantum = 20 msec
 CPU Job Quantum = 10 msec

|

0
|

10
|

20
|

30
|

40

|0

|1

|2

|3

 Priority Inversion

 IO Job Quantum (msec)

 S
lo

w
do

w
n

of
 I/

O
-b

ou
nd

 jo
b

 CPU Job Quantum = 40 msec
 CPU Job Quantum = 20 msec
 CPU Job Quantum = 10 msec

|

0
|

10
|

20
|

30
|

40

|0

|20

|40
|60

|80

 CPU Fragmentation

 IO Job Quantum (msec)

 P
er

ce
nt

 o
f m

ac
hi

ne
Fig. 3. Increasing the I/O-bound job's quantum length generally reducespriority inversion but increases cpu fragmentation. The workload parametersare identical to those in the last �gure. Three experiments are shown, with the schedulerquanta for the compute-bound job set to 10, 20 and 40 msec. For both graphs, thescheduler quanta for the I/O-bound job is varied on the X axis. The left graph plotsthe slowdown of the I/O-bound job, which re
ects the level of priority inversion; theright graph plots the amount of cpu fragmentation.is traditionally available in gang schedulers, the experiments reported in thissection were run on a simple event-driven simulator. The experiments consist ofgang scheduling a synthetic I/O-bound job against a synthetic compute-boundjob. Like a traditional gang scheduler, the scheduler in the experiments switchesback and forth between the two jobs in a round-robin fashion; however, thequantum lengths for the two jobs are not required to be the same, and in factthey are varied across di�erent runs of the experiment. When a process for theI/O-bound job is blocked on an I/O operation, its remaining time quantum isdonated to the process of the cpu-bound job.The I/O-bound job alternates between short bursts where it requires thecpu and I/O requests where it simply waits for a disk request to �nish. Itscpu time is modeled by an Erlang-5 distribution, which resembles a normaldistribution, with a mean of 5 msec. The latency of I/O requests is �xed at 20msec. The compute-bound job makes no I/O requests, and it represents a jobwith heavy synchronization so that it makes progress only when all its processesare scheduled simultaneously.We vary the gang scheduler quantum allocated to each of the two jobs, andwe infer the level of priority inversion and cpu fragmentation by observing theslowdown for each job, de�ned to be the ratio of the run times of the job whenit is run in the experimental environment versus when it is run in a dedicatedmachine. Priority inversion relates directly to the slowdown of the I/O-bound

job. The greater the priority inversion, the higher the slowdown of the I/O-boundjob. CPU fragmentation is computed by subtracting the amount of useful workdone by the cpu-bound job from the amount of cpu resources allocated to it.The results are shown by the two pairs of plot in Figures 2 and 3.In the �rst experiment, three di�erent settings { 2.5 msec, 5 msec, and 10msec { are used for the quantum length for the I/O-bound job. The quantumlength for the compute-bound job is varied from 1 msec to 40 msec. Figure 2shows the results. In general, as the quantum length of the compute-bound jobis increased while the quantum length of the IO-bound job is held constant, thelevel of priority inversion increases and the level of cpu fragmentation decreases.This behavior can readily be explained in terms of the proportion of resourcesallocated to the I/O-bound job. As the quantum length for the compute-boundjob increases, the I/O-bound job gets a smaller share of the cpu. This changein ratio causes an increase in priority inversion and leads to a degradation inperformance of the I/O-bound job. At the same time, the decreasing share of cpuallocated to I/O-bound job reduces cpu fragmentation because fragmentationonly occurs during the scheduling of I/O-bound jobs.Most of the curves for both graphs in Figure 2 follow the monotonic trendexpected from the explanation in the previous paragraph. The \waviness" in thepriority inversion plot, as well as the bumps in the cpu fragmentation plot, area result of the harmonics between the periodicity of the I/O-bound job (at afrequency of about 25 msec) and the scheduling quanta.Figure 3 presents the result of the second experiment, where the quantumlength of the I/O-bound job is varied from 1 msec to 40 msec while the quantumlength for the compute-bound job is �xed at either 10 msec, 20 msec, or 40 msec.The general results can be explained as before. Increasing the quantum lengthfor the I/O-bound job increases the share of cpu allocated to the I/O-boundjob, which generally reduces priority inversion but increases cpu fragmentation.The deviation from this expectation, more prominent in this �gure than in theprevious one, comes from the harmonics between the periodicity of the I/O-bound job and the scheduling quanta.Note that Figure 3 illustrates clearly the inherent tradeo� between the levelof priority inversion and the amount of cpu fragmentation. In the regions wherethe level of priority inversion is low (namely, the 10 msec curve and the 20 mseccurve with IO-job quantum length between 10-15 ms and 25-40 ms), the amountof cpu fragmentation is high.3.3 SummaryTwo lessons follow from these experiments. First, CPU fragmentation can bea signi�cant e�ect, especially when one optimizes for the response time of IO-bound jobs. Second, proper quantum lengths depend on the characteristics ofeach job as well as the workload. In order to provide interactive response time,a multiprocessor scheduler needs to carefully monitor the requirements of eachof its jobs and react accordingly. Today's gang schedulers lack this reactive ca-pability, making them unsuitable for workloads containing I/O-bound jobs.

Even an adaptive quantum length is not su�cient to deal completely with theproblems of priority inversion and cpu fragmentation. A more
exible schedulingpolicy is called for, where higher priority jobs can interrupt lower priority jobs inorder to keep disk utilization high. In addition, the cpu fragmentation problemcan be partially alleviated if compute-bound jobs can be scheduled into thefragmented slots.Interrupting processes of a low priority job and scheduling them in frag-mented slots will only be bene�cial, however, if that job is amenable to schedul-ing skew. If a compute-bound parallel job synchronizes frequently, interruptingone of its processes may improve disk utilization only at the cost of a large dropin cpu utilization. The next section explores the issue of skew in more depth.4 Application Performance In Near-Gang ScheduledEnvironmentsThe presence of I/O-bound jobs exerts pressure against perfectly gang schedulingcompute-bound jobs. This pressure appears in two forms. The �rst comes fromthe opportunity to reduce priority inversion by interrupting gang scheduled,compute-bound jobs to run I/O-bound jobs. The second comes from the needto schedule fragmented cpu resources. Together, they motivate the desire to
exibly gang schedule, and they lead to two questions about compute-bound jobswhich relate to the cost of
exible gang scheduling. The �rst question concernshow well parallel jobs tolerate interruptions. The second question considers howfragmented resources can be utilized by parallel jobs.This section explores the degree to which compute-bound applications bene�tfrom gang scheduling. The more a job bene�ts from gang scheduling, the lessit can tolerate interruptions, and the less e�ciently it can utilize non-gang,fragmented resources. Our goal is to identify characteristics of an applicationwhich relate to its degree of bene�t from gang scheduling.Many studies have measured the bene�ts of gang scheduling relative to un-coordinated scheduling [1, 3, 9, 17]. Our study di�ers in that we are interestedin the marginal bene�t of a pure gang scheduled environment when comparedto a gang scheduled environment with disruptions.In order to get a quanti�cation tool, we measure the performance of ap-plications under various near-gang scheduled environments on a four-processormachine. These environments are produced by introducing perturbations 2 to afully ganged environment. We set up four environments, each with a di�erentset of perturbation characteristics.In two of the environments, SubFX and SubRR, each perturbation removesa quantum of processing time from a single processor. In SubFX , the processor2 We use the term perturbation to refer to both positive deviations (granting ofadditional resources) and negative deviations (revocation of originally allocatedresources)

P0 P1 P2 P3 P0 P1 P2 P3

T
im

e

(a) (b)

Time Quantum when
application is running

Time Quantum taken
away

Fig. 4. Experimental setup for (a) �xed-processor takeaway and (b) round-robin take-awayis �xed. We call this experiment �xed-processor takeaway. In SubRR, the pro-cessor is selected in a round-robin fashion. We call this experiment round-robintakeaway. See Figure 4.In environments AddFX and AddRR, each perturbation gives an extra timequantum of processing time to a single processor. In AddFX , called �xed-pro-cessor giveaway, the processor is �xed. In AddRR, called round-robin giveaway,the processor is selected by round-robin.The exact times of the perturbations are randomly distributed across the runtime of the application in batches of four. Within a batch of four, the time of the�rst perturbation determines the times for the other perturbations. A �xed in-terval of three time quanta separate perturbations within a batch. Perturbationsare batched in closely spaced groups of fours so that round-robin perturbationsmaintain coarse-grain load balance.Quantum size is �xed at 500,000 instructions across the runs.The motivations for the setup of these environments are as follows. Thetakeaway experiments indicates how compute-bound jobs behave when some oftheir processes are interrupted by I/O-bound jobs. The giveaway experimentsindicates whether compute-bound jobs can utilize fragmented cpu resources. Theresults of the �xed-processor experiments are compared with the results of theround-robin experiments to examine the issue of load balance.We run each application under the four scheduling environments, and wecompare the run time of each to the run time under perfect gang scheduling.The results are presented in two sections below, one for a set of synthetic ap-

Type Num Description ParameterEmp 1 Constituent processes work independently with-out communication. |Barrier 1 Consists entirely of synchronizing barriers. |Workpile 4 Consists of a �xed amount of global work bro-ken into independent units of work. The units ofwork is distributed dynamically to maintain loadbalance under arbitrary scheduling conditions. Granularity of workunit (14%-2400% ofa quantum)Msg 4 Phases of request/reply communication are sep-arated by barriers. Requests are asynchronous,but all replies must be received before a processproceeds to the next phase. CommunicationpatternTable 1. Information on the synthetic applications used in the giveaway/takeawayexperiments. Applications are grouped into four types. Each entry gives the name ofthe type of application, the number of applications in that type, a description of thetype of applications, and the parameter whose value di�ers between di�erent membersof that type.plications and one for a set of real applications, which includes three applica-tions from the SPLASH benchmark suite. As expected, we �nd that for loadbalanced applications with �ne grain synchronization, the perturbations e�ectapplications signi�cantly. Real applications, however, exhibit internal algorith-mic load-imbalance and are often somewhat latency tolerant. Because of thesefactors, the e�ects of perturbations on these applications are between a factortwo and four smaller on a four-processor machine.4.1 Synthetic ApplicationsTable 1 describes the set of synthetic applications used in this experiment.Based on the experimental results, each application can be classi�ed as oneof three types. Figure 5 presents the characteristic plots of the three types ofapplications. Each line on the graph plots the number of perturbations versusthe change in run time for an environment. We have plotted the lines for all fourexperiments on the same graph. The three types of applications are:i. Synchronization intensiveThis type of applications makes little progressunless it is being gang scheduled. When time quanta are taken away from aprocessor, all other processors stall as well. The entire application slows bythe amount of time taken away. When time quanta are given to a processor,the processor stalls also, so the application receives no bene�t from the extratime at all. Barrier and all of the Msg applications fall into this category.ii. Embarrassingly parallel This type of applications exhibits the same poorbehavior as synchronization intensive applications when time is given to ortaken away from a single processor. However, the behavior is caused not

� fixed takeaway
� round-robin takeaway
� fixed giveaway
� round-robin giveaway

|

0
|

3
|

6
|

9
|

12
|

15
|

18
|

21

|-6

|-3

|0

|3

|6

|9

|12

|15

|18

|21

 Synchronization intensive application (barrier)

 Number of perturbations

 R
un

tim
e

de
lta

 v
s

ga
ng

 [t
im

e
qu

an
tu

m
s]

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �� �

� fixed takeaway
� round-robin takeaway
� fixed giveaway
� round-robin giveaway

|

0
|

3
|

6
|

9
|

12
|

15
|

18
|

21

|-6

|-3

|0

|3

|6

|9

|12

|15

|18

|21

 Embarassingly parallel application (emp)

 Number of perturbations

 R
un

tim
e

de
lta

 v
s

ga
ng

 [t
im

e
qu

an
tu

m
s]

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � �

� � � �

� � � �

� � � �

� � � �

� ��

� � � �

� � � �

� � � �

� � � �

� � � �

� fixed takeaway
� round-robin takeaway
� fixed giveaway
� round-robin giveaway

|

0
|

3
|

6
|

9
|

12
|

15
|

18
|

21

|-6

|-3

|0

|3
|6

|9

|12

|15

|18

|21

 Self load-balancing (workpile; unit = 14% of quantum)

 Number of perturbations

 R
un

tim
e

de
lta

 v
s

ga
ng

 [t
im

e
qu

an
tu

m
s]

� � � � �
� � � � � � � � � � �

� � � � �

� �

� �

� �Fig. 5. Characteristic plots from giveaway-takeaway experiment for three types of ap-plications. The actual application from which each plot is taken is listed in parenthesisbelow the plot. The four dotted lines are reference lines representing total cpu timetaken away (worst case slowdown), 1/4 (1/P) of time taken away (best case slowdown),zero (worst case speedup), and -1/4 of time given away (best case speedup).by synchronization but by load imbalance. In the round-robin experiments,where load balance is maintained, application of this type performs muchbetter. When time quanta are taken away round-robin, run time degradesby 1/P quantum (here, P=4) per quantum taken away. The factor of 1/Parises because the single quantum of lost processing time is jointly recoveredby the P processors. Similarly, when extra quanta are given to the job round-robin, run time improves by 1/P. Emp and coarse-grain Workpile (work unit= 24 time quanta) belong in this category.iii. Self load-balancing This type of applications performs optimally underall scheduling conditions, because it su�ers from neither synchronization norload imbalances. Performance degrades by 1/P quantum per quantum takenaway, and it improves by 1/P quantum per quantum given away. Three ofthe four Workpile applications fall into this category. Their granularity ofwork unit ranges from 14% of a time quantum to 240%.Each class of applications above may also be identi�ed by their minimumscheduling requirements. Synchronization intensive applications require gangscheduling. Embarrassingly parallel applications require fair scheduling of theconstituent processes. We call this scheduling criteria interprocess fairness. Selfload-balancing applications can utilize any processor resource; they have no re-quirement at all.Of course, applications from real life will not �t cleanly into one of the aboveclasses. An application with a moderate but nontrivial synchronization rate,for example, will have behavior which falls somewhere between that of a syn-chronization intensive application and an embarrassingly parallel application.Similarly, workpile-like applications with limited load-balancing mechanism willhave behavior which falls somewhere between that of an embarrassingly parallelapplication and a self-scheduling application. We can indeed run the experi-

App. Quanta/Barrier Type Msgs Msgs/Proc/QuantumEnum 50 Non-blocking 254Water 10 Blocking 12LU 10 Blocking 3Barnes 50 Blocking 28Table 2. Characteristics of the real applicationsments with more exhaustive sets of parameter values to quantify some of thesee�ects, but such studies have been done before before [6, 9, 18], and here we aremore interested in the qualitative di�erence in behavior at extreme ends of theapplication spectrum.4.2 Real ApplicationsThe takeaway/giveaway experiments are applied to four real applications as well.One, Enum, �nds the total number of solutions to the triangle puzzle (a sim-ple board game) by enumerating all possibilities breadth-�rst. The other three,Barnes, Water, and LU, are scienti�c applications from the Splash benchmarksuite implemented using CRL, an all-software shared-memory system [12]. SeeTable 2 for statistics describing the applications. Because the applications arenon-homogeneous in time, we obtain each data point by taking the average re-sult from 20 runs, each with a di�erent set of time quanta given or taken away.Because the applications are also non-homogeneous across processors, we runthe �xed processor takeaway experiment on processors 0, 1, and 3.Figures 6-9 show the results of the experiments. To better understand theapplications for the purpose of explaining the results, we obtain a trace foreach application run under gang scheduling, and we plot the progress made oneach processor versus time. These traces are presented next to the experimentalresults. Because the progress plot for Water follows such a regular pattern, onlya magni�ed subsection is presented.Enum Of the four sets of results, Enum stands out by itself. Its experimentalplot closely resembles that of an embarrassingly parallel application. In reality,Enum has three characteristics which make it embarrassingly parallel:{ It is load balanced, as suggested by its progress plot.{ It has infrequent barrier synchronization (compared to the length of a timequantum).{ It communicates with non-blocking messages.The results for Enum are actually consistently worse than that of a perfectembarrassingly parallel application for three reasons. First, even in the absenceof synchronization, failure to gang schedule incurs overhead in the form bu�ering

 fixed takeaway (proc 3)

 fixed takeaway (proc 0)
� fixed takeaway (proc 1)
� round-robin takeaway
� fixed giveaway (proc 1)
� round-robin giveawway

|

0
|

3
|

6
|

9
|

12
|

15
|

18
|

21

|-8

|-4

|0

|4

|8

|12

|16

|20

|24

 Enum

 Number of perturbations

 R
un

tim
e

de
lta

 v
s

ga
ng

 [t
im

e
qu

an
tu

m
s]

�
�

�

�

�

�

� �
�

�

�

�

� � �
�

�

�

� �
�

�
�

�

|

25
|

85
|

145
|

205
|

265
|

325
|

385
|

445
|

505

|
|

|
|

|
|

|
|

 Enum

 Time [quantum]
 P

ro
gr

es
s

Proc 0

Proc 1

Proc 2

Proc 3Fig. 6. Experimental plot (left) and progress plot under gang scheduling (right) forEnum. Note that in the experimental plot, each line starts at perturbation = 1. Thefour dotted lines are reference lines representing time taken away (worst case slow-down), 1/4 of time taken away (best case slowdown), zero (worst case speedup), and-1/4 of time given away (best case speedup).cost in our system. At about 250 instructions per bu�ered message, this overheadcan be up to three quanta when 20 quanta are taken away. Note that this costis smaller for the quantum giveaway experiments because the bu�er overhead isspread over P-1 processors.Second, as load balanced as any real application can expect to be, Enum stillhas some load imbalances. The e�ect of imbalances on run time is evident bycomparing the run time of the takeaway experiment from processor 3 with therun time of the takeaway experiments from processors 0 and 1. Processor 3 isthe bottleneck processor for over 60% of the application (as evident by the lackof valleys in much of the progress graph). As a result, taking away time fromprocessor 3 results in a slower run time than taking away time from processor 0or 1.Finally, for the round-robin experiments, the bene�t from maintaining inter-process fairness is lost if a barrier interrupts a set of round-robin perturbations.Consequently, the slowdown is noticeably higher than the expected 25% of thetime taken away.Water, LU, and Barnes The results for Water, LU, and Barnes are similar.Because these applications exhibit signi�cant load imbalances (as seen by thedeep and long valleys in their progress plots), their results do not directly re-semble that of any of the synthetic applications. In fact, load imbalance andblocking messages are two common features which explain most of the resultsfor these applications.In the �xed-processor quantum takeaway experiments, the amount by which

 fixed takeaway (proc 3)
� fixed takeaway (proc 1)
� round-robin takeaway

 fixed takeaway (proc 0)
� fixed giveaway (proc 1)
� round-robin giveawway

|

0
|

3
|

6
|

9
|

12
|

15
|

18
|

21

|-6

|-3

|0

|3

|6

|9

|12

|15

|18

|21

 Water

 Number of perturbations

 R
un

tim
e

de
lta

 v
s

ga
ng

 [t
im

e
qu

an
tu

m
s]

�

�
�

�

�

�

� �

�

�

�

�

�
� �

�
� �� �

�
�

�

�

|

25
|

29
|

33
|

37
|

41
|

45
|

49
|

53
|

57

|
|

|
|

|
|

|
|

 Water

 Time [quantum]

 P
ro

gr
es

s

Proc 0

Proc 1

Proc 2

Proc 3Fig. 7. Experimental plot (left) and progress plot under gang scheduling (right) forWater.

 fixed takeaway (proc 3)

 fixed takeaway (proc 0)
� fixed takeaway (proc 1)
� round-robin takeaway
� fixed giveaway (proc 1)
� round-robin giveawway

|

0
|

3
|

6
|

9
|

12
|

15
|

18
|

21

|-6

|-3

|0

|3

|6

|9

|12

|15

|18
|21

 Lu

 Number of perturbations

 R
un

tim
e

de
lta

 v
s

ga
ng

 [t
im

e
qu

an
tu

m
s]

�
�

�

�

�

�

�
�

�

�

�

�

� � � � � �� �
� �

�
�

|

25
|

45
|

65
|

85
|

105
|

125
|

145

|
|

|
|

|
|

|
|

 Lu

 Time [quantum]

 P
ro

gr
es

s

Proc 0

Proc 1

Proc 2

Proc 3Fig. 8. Experimental plot (left) and progress plot under gang scheduling (right) forLU.the application slows down depends largely on the degree to which the processortaken away is a bottleneck. In the progress plot, a processor bottleneck is markedby full progress (absence of a valley) at a time when one or more processors arenot making progress (valleys). For Water, processor 3 is the clear bottleneck, sotaking away cpu time from processor 3 slows down the application by 100% of thetime taken away. For LU, processors 0 and 3 alternate as bottlenecks. However,when processor 0 is the bottleneck, it is only slightly behind the other processors.So any other processor with time taken away readily overtakes processor 0's role

 fixed takeaway (proc 0)
� round-robin takeaway

 fixed takeaway (proc 3)
� fixed takeaway (proc 1)
� fixed giveaway (proc 1)
� round-robin giveawway

|

0
|

3
|

6
|

9
|

12
|

15
|

18
|

21

|-6

|-3

|0

|3

|6

|9

|12

|15

|18

|21

 Barnes

 Number of perturbations

 R
un

tim
e

de
lta

 v
s

ga
ng

 [t
im

e
qu

an
tu

m
s]

�
�

�

�

�

�

�
�

�

�

�

�

� � �
�

�
�

�
� �

�

�
�

|

25
|

75
|

125
|

175
|

225
|

275
|

325
|

375
|

425

|
|

|
|

|
|

|
|

 Barnes

 Time [quantum]
 P

ro
gr

es
s

Proc 0

Proc 1

Proc 2

Proc 3Fig. 9. Experimental plot (left) and progress plot under gang scheduling (right) forBarnes.as half the bottleneck. The plot re
ects these bottleneck conditions: processor 3slows down by close to 100% of time taken away, while processors 0 and 1 slowdown by considerably less, with processor 0 slower than processor 1 by a smallamount. Finally, in Barnes, processor 0 is the major bottleneck for the latter 2/3of the application, while neither processor 1 or 3 is a signi�cant bottleneck. Asa result, takeaway from processor 0 is considerably worse than takeaway fromprocessors 1 or 3.When quanta are taken away from a non-bottleneck processor, run timedegrades due to blocking requests sent to it by a bottleneck processor. In allthree of our applications, this e�ect degrades performance by about 50% ofthe time taken away. This 50% ratio also holds for round-robin takeaway: theapplication communicates with blocking messages too frequently to bene�t fromthe coarse grain interprocess fairness ensured by round-robin takeaway.As for the giveaway experiments, �xed processor giveaway from processor 1fails to improve performance for all three applications because processor 1 isnot the bottleneck processor. Round-robin giveaway improves performance ofWater and LU because time is given to the bottleneck processor and the rateof blocking request is low. On the other hand, round-robin giveaway fails toimprove performance of Barnes due to the application's high rate of blockingrequests.4.3 SummaryWe summarize the results of the experiments with several observations and con-clusions.Synchronization intensive applications reap full bene�ts from gang schedulingand in fact require it for good performance. Embarrassingly parallel applications

and self load-balancing applications, on the other hand, do not bene�t fromgang scheduling. Note that the volume of communication is an orthogonal issue.Enum is an example of a real embarrassingly parallel application, even thoughit communicates a lot.Load imbalance is a common application characteristic in practice. Enforcinggang scheduling on applications with this characteristic hurts machine utiliza-tion.Many real applications can tolerate at least a small amount of perturbationsin a gang scheduling environment. Load imbalanced applications are tolerantof perturbations if they are not occurring at the bottleneck processors. And allapplications that we studied are tolerant to round-robin perturbations. Even theinherently load-imbalanced CRL applications slow down by only 50-60% of thetime taken away by the round-robin disturbances. This is because round-robinperturbations do not introduce severe arti�cial load imbalances.For applications without self load-balancing, two characteristics primarilydetermine how they behave under various scheduling conditions. The character-istics are the level of load imbalances and the volume of blocking communication.Total volume of communication is a second order e�ect.To avoid scheduler-induced load imbalances, interprocess fairness is a goodcriteria to keep in mind when a gang scheduler does alternate scheduling. Thefailure to do so could be a reason why research has found that random alternatescheduling provides little gain to system throughput [17].To �rst order, there are two types of blocking communication. One is thebarrier-like communication used to check that processes have all reached a check-point. The other type is the request/reply-type message, where one process istrying to obtain information which can be readily provided by another.3The two types of communication have di�erent scheduling characteristics.Wait time for barrier is a�ected by load imbalances. To minimize this wait time,it is more important to minimize the load imbalances than it is to gang schedule.Wait time for request/reply, on the other hand, depends on whether the senderand receiver are scheduled simultaneously. This wait time can only be minimizedby gang scheduling the sender/receiver pair.5 Runtime Identi�cation of GangednessSection 3 illustrates the bene�ts of
exible gang scheduling derived from not be-ing required to gang schedule compute-bound jobs. Section 4 shows that the costsof relaxing gang scheduling varies between applications. Together, they suggestthat a scheduler can bene�t from identifying the gangedness of each application,de�ned to be the level to which the application bene�ts from gang scheduling.Jobs with high gangedness indicate both a low tolerance of interruptions and3 We can also have blocking communication where the receiver is blocked insteadof the sender. A processor blocks waiting for an incoming message containing theinformation it requires. But there is no fundamental di�erence between that andrequest/reply: it's like request/reply done with \polling."

the inability to utilize fragmented cpu resources, while jobs with low gangednesscan be scheduled much more
exibly to improve overall system performance.In this section, we consider how gangedness can be determined from coarse-grain messaging statistics.5.1 Information Content of Message Arrival TimesTo relate messaging statistics to gangedness, we look at the high level informationcontained in message arrival times, and we try to �nd a relationship betweenthat information and gangedness.First, messages contain information about synchronization, because they arethe medium through which synchronization is implemented. And synchroniza-tion relates directly to gangedness. Unfortunately, messages don't necessarilysynchronize, and there is no way of distinguishing synchronizing messages fromnon-synchronizing ones.Alternatively, message arrival times contain information about the state of aprocess. A process can send a message only if it is not blocked, or in other words,if the process is making forward progress. To relate gangedness to progress, ahigh gangedness means that an application must be gang scheduled in order tomake forward progress.5.2 ExperimentWe test our intuition on the relationship between message counts and ganged-ness with the following experiment. For each of the real applications described inSubsection 4.2, we run it in the �xed-processor takeaway environment describedin Section 4. The environment is suitable because it contains both gang sched-uled quanta and non-gang scheduled quanta. Any of the four environments inSection 4 could have been used for this purpose, and we do not expect the choiceof environment to e�ect the conclusions we draw.For every processor-quantum unit, we collect the number of messages receivedand the amount of progress made. These statistics are used to generate fourpairs of values per quantum, one pair for each processor. In the pair of values,we associate the number of messages received by a processor to the amountof progress made by all other processors. This association corresponds to theintuition that the number of messages received should correlate with the amountof progress made by the senders of the messages.Within this scheduling environment, we distinguish between three sets of datavalues. Gang-all is the set of values collected on ganged, undisturbed quanta.Non-Gang-running is the set of values collected on the running processors in non-ganged, disturbed quanta. Finally, Non-Gang-non-running is the set of valuescollected on the non-running processors in non-ganged, disturbed quanta.To collect enough data values for all three sets, we run the experiment �vetimes. Table 3 summarizes the results. Each row gives the average and standarddeviation of message count per quantum as well as the average and standarddeviation of progress per quantum.

Description Msg Avg Msg SD Prog Avg Prog SDEnumGang-all 247.73 47.51 1483678 209519Non-Gang-running 162.29 60.21 882735 307236Non-Gang-non-running 242.30 88.57 1324103 459779WaterGang-all 15.41 19.63 1127732 485835Non-Gang-running 2.54 3.40 479135 387983Non-Gang-non-running 1.17 0.70 718703 554749LUGang-all 2.85 3.19 1242051 397927Non-Gang-running 1.40 1.82 740624 313568Non-Gang-non-running 0.89 0.73 1110937 421677BarnesGang-all 28.44 56.99 1436370 282763Non-Gang-running 2.53 3.00 507318 300674Non-Gang-non-running 1.80 0.78 760978 389349Table 3. Aggregate statistics for correlation experiment in non-gang environment.Each row gives the average and standard deviation of message count, and the averageand standard deviation of sender progress.The progress data are consistent with the characteristics of the applica-tions. Enum uses infrequent barriers and non-blocking messages, so it can makeprogress without gang scheduling. As expected, the experiment shows that senderprogress for gang-all and non-gang-running are roughly within 10% of each other(1483678 vs. 1324103). The sender progress for non-gang-non-running is lowerthan that of gang-all and non-gang-running, but that only re
ects the fact ithas one less sender than the other data values; normalizing these values with thenumber of senders would yield the expected nearly identical values.Water, LU, and Barnes all have infrequent barriers, but they use blockingmessages. The rate of messages then determines how much progress an applica-tion can make in a non-gang time quantum. 4 LU has the lowest message rate,so low that it in fact runs quite well in non-gang quanta. Barnes and Water,on the other hand, have message rates which are high enough to cause theirperformance to degrade in non-gang quanta, with Barnes's higher rate yieldinga more severe degradation.Figure 10 plots the range of number of messages received for each applicationin both gang quanta and non-gang quanta. To obviate the need to normalize allthe values by the number of sender processors, for the non-gang quanta we4 As Section 4 shows, the issue of load balance is an important consideration as well.Frequency of barriers and blocking messages determines the level of progress that canbe made in non-gang environments. Level of load balance determines whether suchprogress is ultimately useful, i.e., whether it reduces the run time of the application.

100

200

300

Water

G NG

Barnes

G NG

LU

G NG

Enum

G NG

(0.978) (0.076)(0.314) (0.063)

0

M
es

sa
ge

s
R

ec
ei

ve
d

Fig. 10. Number of messages received per quantum per processor for each applicationin gang quanta (G) and non-gang quanta (NG). Each bar represents the 90% con�denceinterval; the thick line within the bar marks the average message count. Each number inparenthesis below the application name shows the ratio of the average message countsbetween the non-gang and the gang quanta.use data from non-gang-non-running, which has the same number of senderprocessors as gang-all.The results con�rm our intuition. Enum is the only application which usesnon-blocking messages. Therefore, it is the only application which can sustain ahigh volume of communication in non-gang quanta. As stated in Subsection 5.1,this run-time observation allows one to conclude that the application has lowgangedness and does not require gang scheduling. On the other hand, Water,LU, and Barnes all use blocking messages, so their volume of communicationduring non-gang quanta is low. One cannot, however, draw any conclusion aboutgangedness from this lack of communication: applications can be making progresswithout sending any message.Rather than using message count of non-gang quanta, a more robust wayto determine the gangedness of an application is to use its ratio of messagecounts between non-gang and gang quanta. A high ratio corresponds to lowgangedness, while a low ratio corresponds to high gangedness. As shown in Fig-ure 10, ordering the applications by ratio corresponds exactly to reverse-orderingthe applications by gangedness. Moreover, the ratios for applications with lowgangedness (Enum and LU) are at least a factor of �ve larger than the ratios forapplications with high gangedness (Water and Barnes). This sizable di�erencemakes it easy to accurately categorize the applications into a high gangedness

class and a low gangedness class simply based on their message ratios.5.3 SummaryWe summarize what we learn about the relationships between message count,progress, and gangedness. Message count relates to progress in the following way.High message count always implies progress. Low message count, on the otherhand, can arise because the application is not sending any message, so it doesnot necessarily imply a lack of progress.As for the relationship between message count and gangedness, a high mes-sage count while an application is not gang scheduled shows that an applicationcan make progress without gang scheduling. It thus indicates a low ganged-ness. More generally, one can compare the average message counts between non-gang and gang environments to determine the gangedness of the application. Ahigh ratio of non-gang message count to gang message count corresponds to lowgangedness, while a low ratio corresponds to high gangedness.Note that our conclusion is somewhat counterintuitive to conventional think-ing. Conventional thinking has the notion that the more an application makesuse of communication resources, the greater the need for the application to begang scheduled. In fact, Sobalvarro [17] bases his dynamic coscheduling schemedirectly on this principle, as he achieves coscheduling behavior by taking eachincoming message as a cue to schedule the addressed process. We argue that ifa processor continues to receive messages for an unscheduled process, the send-ing processes must be making progress under the status quo, and no schedulerintervention is necessary.6 Related WorkMultiprocessors can be shared by partitioning in space, in time, or both. Muchwork has been done to explore and compare the various options [7]. Space-sharingcan be very e�cient for compute-bound applications and is desirable when per-mitted by the programming model and application characteristics [3, 11]. Time-sharing remains desirable for
exibility in debugging and in interleaving I/O withcomputation. These considerations become more important as multiprocessorsbecome more mainstream.Ousterhout introduced the idea of coscheduling or gang scheduling to im-prove the performance of parallel applications under timesharing [15]. There aretwo bene�ts to gang scheduling. First, from a programmability standpoint, gangscheduling is attractive because it is compatible with conventional programmingmodels, where processes of a parallel application are assumed to be scheduledsimultaneously. This feature simpli�es reasoning about performance issues aswell as correctness issues like deadlock and livelock. Second, from a performancestandpoint, gang scheduling is absolutely necessary for applications that syn-chronize frequently.

Several studies have quanti�ed the bene�ts of gang scheduling [1, 3, 9]. Fei-telson and Rudolph [9] demonstrate that gang scheduling bene�ts applicationsthat perform �ne-grain synchronization. Arpaci et al [1] and Mraz [14] observethat the disruption of system daemons in a network of workstation is poten-tially intolerable without some e�orts to synchronize gangs across processors.Our study con�rms these observations and draws detailed conclusions about thecauses of slowdown for speci�c applications.There are costs to gang scheduling as well. Much literature focuses on its costof implementation [2, 8, 17, 19]. This cost comes about because gang schedulingrequires global coordination and centralized scheduling. The implementation ofour scheduler uses a two level distributed hierarchical control structure for e�-ciency similar to Distributed Hierarchical Control [8, 19]. But even in a systemwhere these features come for free, gang scheduling still has costs which makeits universal use undesirable. Our study shows the degradation of response timedue to a form of priority inversion. Other e�ects degrade utilization, for instanceby losses due to constraints on the packing of jobs into the global schedule andby the inability to recover wasted time in a job with load imbalance. An idealscheduler would perform a cost-bene�t analysis which gives proper weights toall the issues above.Studies have pointed out that parallel scienti�c applications may consist of asigni�cant amount of I/O activities due to reading and writing of results [4, 5].I/O activities may also come from paging activities, and Wang [20] notices thateven for programs written with a SPMD programming model, there is littlecoordination of I/O across processing nodes because of data dependencies. Thisbehavior is consistent with our assumption in the experiments that I/O activitiesacross the processing nodes are independent.In our work, we assume that the members of the job are known a prioriand concentrate on the problem of deciding whether to gang schedule based onindirect measurements. A fully dynamic solution to gang scheduling includesthe identi�cation of gang members at run-time. Sobalvarro [17] uses individualmessage arrivals as cues to the identi�cation of a gang, while Feitelson andRudolph [10] monitor the rate at which shared communication objects are beingaccessed to determine whether and which processes need to be ganged.Given the processes that make up each job, our system monitors communica-tion rate between job members to identify those jobs that require coschedulingversus those jobs that can tolerate having their processes individually sched-uled. In this respect our scheduler di�ers from both the Meiko CS-2 [16], andSGI IRIX [2] schedulers.7 ConclusionWe summarize the results presented in this paper. First, traditional gang schedul-ing hurts workloads containing I/O. Second, interrupting ganged, compute-bound jobs can bene�t workloads. Third, one needs to schedule fragmented cpuresources intelligently, by selecting jobs with low gangedness to run in those

spaces, and by preserving interprocess fairness. Finally, message statistics canidentify the gangedness of applications.We envision a scheduling strategy
exible enough to accommodate all jobs.I/O-bound jobs can have either coordinated I/O or uncoordinated I/O. Com-pute bound jobs may either be perturbation-friendly or perturbation-sensitive.Scheduling would be done in two sets of rounds. Uncoordinated I/O-boundjobs and perturbation-friendly compute-bound jobs are scheduled in roundswith loose coordination. Coordinated I/O-bound jobs and perturbation-sensitivecompute-bound jobs can be scheduled in rounds with strict coordination.At the very high level, we demonstrate that a
exible gang scheduler is bothnecessary and possible.References1. R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T. Anderson, and D. Patterson. TheInteraction of Parallel and Sequential Workloads on a Network of Workstations.In Proceedings of Sigmetrics/Performance '95, pages 267{278, May 1995.2. J. M. Barton and N. Bitar. A Scalable Multi-Discipline, Multiple-ProcessorScheduling Framework for IRIX. In Lecture Notes in Computer Science, 949,pages 45{69, Santa Barbara, 1995. Springer Verlag. Workshop on Parallel JobScheduling, IPPS '95.3. M. Crovella, P. Das, C. Dubnicki, T. LeBlanc, and E. Markatos. Multiprogram-ming on Multiprocessors. In Proceedings of the third IEEE Symposium on Paralleland Distributed Processing, 1991.4. R. Cypher, S. Konstantinidou, A. Ho, and P. Messina. A Quantitative Study ofParallel Scienti�c Applications with Explicit Communication. In The Journal ofSupercomputing, pages 5{24, January 1996.5. J. M. del Rosario and A. Choudhary. High Performance I/O for Parallel Comput-ers: Problems and Prospects. In IEEE Computers, vol. 27, no. 3, pages 59{68,1994.6. A. Dusseau, R. Arpaci, , and D. Culler. E�ective Distributed Scheduling of Par-allel Workloads. In Proceedings of ACM SIGMETRICS 1996, Philadelphia, May1996. ACM.7. D. G. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems.Technical Report IBM/RC 19790(87657), IBM, October 1994.8. D. G. Feitelson and L. Rudolph. Distributed Hierarchical Control for Parallel Pro-cessing. In Computer. IEEE, May 1990.9. D. G. Feitelson and L. Rudolph. Gang Scheduling Performance Bene�ts for Fine-Grain Synchronization. In Journal of Parallel and Distributed Computing, pages306{318, December 1992.10. D. G. Feitelson and L. Rudolph. Coscheduling Based on Runtime Identi�cation ofActivity Working Sets. In International Journal of Parallel Programming, pages135{160, April 1995.11. A. Gupta, A. Tucker, and L. Stevens. The Impact of Operating System SchedulingPolicies and Synchronization Methods of the Performance of Parallel Applications.In Proceedings of 1991 ACM Sigmetrics Conference, 1991.

12. K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL: High-Performance All-Software Distributed Shared Memory. In Proceedings of the 15th ACM Symposiumon Operating Systems Principles, December 1995.13. K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, V. Lee, A. Agarwal, and M. F.Kaashoek. UDM: User Direct Messaging for General-Purpose Multiprocessing.Technical Memo MIT/LCS/TM-556, March 1996.14. R. Mraz. Reducing the Variance of Point-to-Point Transfers for Parallel Real-TimePrograms. In IEEE Parallel & Distributed Technology, 1994.15. J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. In 3rd Interna-tional Conference on Distributed Computing Systems, pages 22{30, 1982.16. K. E. Schauser and C. J. Scheiman. Experience with Active Messages on the MeikoCS-2. In Proceedings of the 9th International Symposium on Parallel Processing,1995.17. P. G. Sobalvarro and W. E. Weihl. Demand-based Coscheduling of Parallel Jobson Multiprogrammed Multiprocessors. In Lecture Notes in Computer Science, 949,pages 106{126, Santa Barbara, 1995. Springer Verlag. Workshop on Parallel JobScheduling, IPPS '95.18. A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multipro-grammed Shared-Memory Multiprocessors. In Proceedings of the 12th ACM Sym-posium on Operating System Principles (SOSP-12), pages 159{166, December1989.19. F. Wang, H. Franke, M. Papaefthymiou, P. Pattnaik, L. Rudolph, and M. S. Squil-lante. A Gang Scheduling Design for Multiprogrammed Parallel Computing En-vironments. In Lecture Notes in Computer Science, 1162, pages 111{125, Hon-olulu,Hawaii, 1996. Springer Verlag. Workshop on Parallel Job Scheduling, IPPS'96.20. K. Y. Wang and D. C. Marinescu. Correlation of the Paging Activity of the Indi-vidual Node Programs in the SPMD Execution Mode. In Proceedings of the HawaiiInternational Conference on System Sciences, 1995.
This article was processed using the LaTEX macro package with LLNCS style

