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Abstract. The job workloads of general-purpose multiprocessors usu-
ally include both compute-bound parallel jobs, which often require gang
scheduling, as well as I/O-bound jobs, which require high CPU priority
for the individual gang members of the job in order to achieve inter-
active response times. Our results indicate that an effective interactive
multiprocessor scheduler must be flexible and tailor the priority, time
quantum, and extent of gang scheduling to the individual needs of each
job.

Flexible gang scheduling is required because of several weaknesses
of traditional gang scheduling. In particular, we show that the response
time of I/O-bound jobs suffers under traditional gang scheduling. In
addition, we show that not all applications benefit equally from gang
scheduling; most real applications can tolerate at least a small amount
of scheduling skew without major performance degradation. Finally, we
show that messaging statistics contain information about whether ap-
plications require gang scheduling. Taken together these results provide
evidence that flexible gang scheduling is both necessary and feasible.

1 Introduction

While gang scheduling provides better performance than uncoordinated schedul-
ing for compute-bound parallel jobs with frequent synchronization, it leads to
poor performance of I/O-bound jobs that require short, high-priority bursts of
processing. Rather than religiously following the gang scheduling paradigm, a
scheduler for a parallel computer should be flexible, capable of delivering accept-
able performance for both compute and I/O-bound jobs.

Uniprocessor schedulers assign I/O-bound jobs higher priority than compute-
bound jobs in the hope of reducing the average response time and without de-
creasing the machine utilization. It is well known that scheduling shortest job
first minimizes the average response time. Traditional multiprocessor gang sched-
ulers, on the other hand, schedule jobs in a strict round-robin fashion and ensure
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that each member of a gang be allocated a processor at the same time. The CPUs
allocated to gang members that perform I/0 often sit idle. The disks allocated
to gang members I/O requests often sit idle until the member gets a chance to
execute again.

In effect, the presence of 1/O-bound jobs complicates scheduling decisions
by exerting pressure on the system not to gang schedule. The pressure comes
in two forms. The first comes from the opportunity to improve response time
by interrupting gang scheduled, compute-bound jobs in order to execute a I/O-
bound job. The second comes from the need to schedule fragmented cpu re-
sources. These features of flexible gang scheduling motivate the need to find out
how compute-bound jobs benefit from gang scheduling. We study this issue and
show that many applications can in fact tolerate the nearly gang environments
provided by a flexible gang scheduler.

The studies of both I/O-bound jobs and compute-bound jobs demonstrate
that flexible gang scheduling can be an improvement over traditional gang
scheduling. Central to the realization of a flexible gang scheduler is the abil-
ity to determine dynamically the level to which individual applications benefit
from gang scheduling. We show how one can extract such information from raw
messaging statistics.

Although gang scheduling improves the performance of many workloads, it
conflicts with the goal of providing good response time for workloads containing
I/O-bound applications. The results in this paper motivate the need to analyze
the costs and benefits of gang scheduling each job by showing that gang schedul-
ing jobs increase the response time of I/O-bound applications and by showing
that some jobs benefit only marginally from a dedicated machine abstraction.
In addition, we show that a scheduler can collect the necessary information for
a cost-benefit analysis from raw messaging statistics.

The rest of the paper is organized as follows. Section 2 describes our ex-
perimental environment. Section 3 studies the impact of gang scheduling on
I/O-bound applications. Section 4 studies the performance of compute-bound
applications in near-gang scheduled environments. Section 5 explores the use of
messaging statistics to aid scheduling decisions. Finally, Section 6 and Section 7
present related work and conclude, respectively.

2 Experimental Setup

In this section, we describe the experimental environment used in Sections 4
and 5. The environment also provides the basis for the more abstract simulation
models used in Section 3. We provide information about the Fugu multiprocessor,
the scheduler, and the multiprocessor simulator used by the experiments.

Fugu is an experimental, distributed-memory multiprocessor supporting both
cache-coherent shared memory and fine-grain message passing communication
mechanisms [13]. The applications studied in this paper use only the message-
passing mechanism. Messages in Fugu have extremely low overhead, costing
roughly 10 cycles to send and roughly 100 cycles to process a null active message



via an interrupt. The Fugu operating system, Glaze, supports virtual memory,
preemptive multiprogramming and user-level threads. The message system is
novel in that messages received when a process is not scheduled are buffered by
the operating system at an extra cost.

The Fugu scheduler is a distributed application organized as a two-level hi-
erarchy with a global component and local, per-processor components. The cost
of the global communication and computation is amortized by pre-computing a
round of several time-slices of work which is then distributed to the local sched-
ulers. Results for this paper employ a four-processor configuration running small
workloads, so the cost of the global work is small and the round size is kept min-
imal. The scheduler uses an Ousterhout-style matrix coscheduling algorithm to
assign work to processors. Jobs have fixed processor needs and are assigned to
processors statically, one process per processor, at the time the jobs begin. Each
job 1s marked with a gang bit that indicates to the scheduler whether constituent
processes may independently yield their time-slices when they have no work to
do.

Experiments are run on an instruction-level simulator of the Fugu multipro-
cessor. The simulator counts instructions, not strictly cycles. Since the schedul-
ing issues we are interested in are orthogonal to any memory hierarchy issues,
we believe instruction counts will give us the same qualitative results as cycle
counts.

3 Gang Scheduling and I/O Jobs

In this section we study the implications of gang scheduling in the presence of
I/O-bound jobs. We find that the requirements of gang scheduling lead to a
tradeoff between disk utilization and cpu utilization. Traditional uniprocessor
schedulers, based on multilevel feedback queues, manipulate job priorities to
effectively overlap disk requests with processing. Because gang schedulers ignore
information about job behavior, they make suboptimal choices which lead to
slowdowns for both 1/O-bound and compute-bound jobs.

Section 3.1 discusses a variety of ways in which gang scheduling can lead
to poor I/O and cpu utilization. Section 3.2 demonstrates the tradeoffs that
gang scheduling must make between I/O and compute-bound jobs. Our results
suggest that gang schedulers require considerable information to make good de-
cisions. Along with the priority information collected by traditional uniprocessor
schedulers, a gang scheduler can benefit from knowledge about the coscheduling
requirements of compute-bound jobs.

3.1 Costs of Gang Scheduling

The costs of gang scheduling can be divided into two categories, under-utilization
of disk resources, which we call priority inversion, and under-utilization of cpu
resources, which we call cpu fragmentation. Disk resources can best be utilized
if processes of I/O-bound jobs are given priority to use the cpu whenever they
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Fig. 1. Adverse effects of gang scheduling in the presence of I/O. In processor
i (left), the process for job A reaches the end of its quantum before it is able to issue an
1/0. The disk is left idle for the entire duration of the quantum for job B. In processor
j (middle), an I/O request from job A finishes before the end of quantum B. The higher
priority, I/O-bound process must wait till the end of job B’s quantum. When job A
makes a request before the end of its quantum (processor k, right), it leaves behind
fragmented CPU resources.

are ready to run. This policy ensures that a process’s next I/O request will come
as soon as possible after the previous one finishes. Note that it 1s the thread or
process, not the job, that makes an 1/O request. When a job consists of multiple
threads or processes, it is likely that only a subset of them will block on an
I/O operation. Since gang schedulers schedule whole jobs, they cause priority
inversion problems whenever they permit a compute-bound job to use the cpu
while processes of an 1/O-bound job is ready to run.

There are two different causes of priority inversion. Either the scheduling
quantum length for an I/O-bound job can be set too short, or the scheduling
quantum length for a compute-bound job can be set too long. The left hand side
of Figure 1 demonstrates the first of these problems. Here, the quantum for job
A, an I/O-bound job, ends shortly before process i of job A is ready to make
an I/0 request. The disk sits idle for the entirety of quantum B before job A is
permitted to resume. If quantum A had been slightly longer, a disk access could
have been overlapped with job B’s computation.

A second form of priority inversion occurs when the scheduler sets the quan-
tum length for a compute-bound job too long. This problem is shown in the
middle part of Figure 1. In this case, process j of job A makes an I/O request.
Shortly afterward, job A’s quantum expires and the scheduler switches to run-
ning job B. When the I/O request finishes, the scheduler does not return to
job A because job B’s quantum has not yet finished. The time remaining in the
quantum is devoted to the compute-bound job, which unnecessarily delays the
occurrence of the next I/O operation from job A.

In contrast, the right hand side of Figure 1 demonstrates the cpu fragmen-
tation problem that occurs when the quantum for an 1/O-bound is too long. In
this case process k of job A makes an I/O request considerably before the end
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Fig. 2. Increasing the cpu-bound job’s quantum length increases prior-
ity inversion but reduces cpu fragmentation. An I/O-bound job and a com-
pute-bound job are scheduled against each other on a 32-processor, gang-scheduled
machine. Each process of the I/O job uses the CPU for an average of 5 msec between
making 20-msec I/O requests. Three experiments are shown, with the scheduler quanta
for the I/O-bound job set to 2.5, 10, and 20 msec. The scheduler quanta for the com-
pute-bound job is varied on the X axis for both graphs. The left graph plots the level of
priority inversion, represented as a slowdown factor of the I/O-bound job as compared
to running the job on a dedicated machine. The right graph plots the amount of cpu
fragmentation as a percentage of the total available cpu resources.

of quantum A. Because job B requires gang scheduling, it is unable to make
progress because the rest of the processors are still running processes of job A.
Processor k remains idle until the beginning of quantum B.

The next subsection examines these issues quantitatively and finds that deal-
ing with priority inversion requires that the quanta be allocated dynamically to
suit the I/O requirements of the workload. A more flexible scheduling scheme
can deal with the problems of priority inversion and resource fragmentation by
allowing the characteristics of each job to drive the schedule.

3.2 I/0O-CPU Utilization Tradeoffs

By varying the quantum length for different jobs, the effects discussed above can
be observed. In particular, priority inversion, which causes poor disk utilization,
occurs when either the quantum length for an 1/O-bound job is too short or when
the quantum length for a compute-bound job is too long. Cpu fragmentation,
which causes poor ¢pu utilization, occurs when the quantum length of the I/0O-
bound job 1s too long.

Because a variable quantum policy requires considerably more flexibility than
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Fig. 3. Increasing the I/O-bound job’s quantum length generally reduces
priority inversion but increases cpu fragmentation. The workload parameters
are identical to those in the last figure. Three experiments are shown, with the scheduler
quanta for the compute-bound job set to 10, 20 and 40 msec. For both graphs, the
scheduler quanta for the I/O-bound job is varied on the X axis. The left graph plots
the slowdown of the I/O-bound job, which reflects the level of priority inversion; the
right graph plots the amount of cpu fragmentation.

is traditionally available in gang schedulers, the experiments reported in this
section were run on a simple event-driven simulator. The experiments consist of
gang scheduling a synthetic I/O-bound job against a synthetic compute-bound
job. Like a traditional gang scheduler; the scheduler in the experiments switches
back and forth between the two jobs in a round-robin fashion; however, the
quantum lengths for the two jobs are not required to be the same, and in fact
they are varied across different runs of the experiment. When a process for the
I/O-bound job is blocked on an I/O operation, its remaining time quantum is
donated to the process of the cpu-bound job.

The I/0O-bound job alternates between short bursts where it requires the
cpu and I/O requests where it simply waits for a disk request to finish. Tts
cpu time is modeled by an FErlang-5 distribution, which resembles a normal
distribution, with a mean of 5 msec. The latency of I/O requests is fixed at 20
msec. The compute-bound job makes no I/O requests, and it represents a job
with heavy synchronization so that it makes progress only when all its processes
are scheduled simultaneously.

We vary the gang scheduler quantum allocated to each of the two jobs, and
we infer the level of priority inversion and cpu fragmentation by observing the
slowdown for each job, defined to be the ratio of the run times of the job when
it is run in the experimental environment versus when it is run in a dedicated
machine. Priority inversion relates directly to the slowdown of the I/O-bound



job. The greater the priority inversion, the higher the slowdown of the I/O-bound
job. CPU fragmentation is computed by subtracting the amount of useful work
done by the cpu-bound job from the amount of cpu resources allocated to it.
The results are shown by the two pairs of plot in Figures 2 and 3.

In the first experiment, three different settings — 2.5 msec, b msec, and 10
msec — are used for the quantum length for the I/O-bound job. The quantum
length for the compute-bound job is varied from 1 msec to 40 msec. Figure 2
shows the results. In general, as the quantum length of the compute-bound job
is increased while the quantum length of the IO-bound job is held constant, the
level of priority inversion increases and the level of cpu fragmentation decreases.
This behavior can readily be explained in terms of the proportion of resources
allocated to the I/O-bound job. As the quantum length for the compute-bound
job increases, the I/O-bound job gets a smaller share of the cpu. This change
in ratio causes an increase in priority inversion and leads to a degradation in
performance of the I/O-bound job. At the same time, the decreasing share of cpu
allocated to I/O-bound job reduces cpu fragmentation because fragmentation
only occurs during the scheduling of 1/O-bound jobs.

Most of the curves for both graphs in Figure 2 follow the monotonic trend
expected from the explanation in the previous paragraph. The “waviness” in the
priority inversion plot, as well as the bumps in the cpu fragmentation plot, are
a result of the harmonics between the periodicity of the I/O-bound job (at a
frequency of about 25 msec) and the scheduling quanta.

Figure 3 presents the result of the second experiment, where the quantum
length of the I/O-bound job is varied from 1 msec to 40 msec while the quantum
length for the compute-bound job is fixed at either 10 msec, 20 msec, or 40 msec.
The general results can be explained as before. Increasing the quantum length
for the I/O-bound job increases the share of cpu allocated to the I/O-bound
job, which generally reduces priority inversion but increases cpu fragmentation.
The deviation from this expectation, more prominent in this figure than in the
previous one, comes from the harmonics between the periodicity of the I/0-
bound job and the scheduling quanta.

Note that Figure 3 illustrates clearly the inherent tradeoff between the level
of priority inversion and the amount of cpu fragmentation. In the regions where
the level of priority inversion is low (namely, the 10 msec curve and the 20 msec
curve with IO-job quantum length between 10-15 ms and 25-40 ms), the amount
of cpu fragmentation is high.

3.3 Summary

Two lessons follow from these experiments. First, CPU fragmentation can be
a significant effect, especially when one optimizes for the response time of 10-
bound jobs. Second, proper quantum lengths depend on the characteristics of
each job as well as the workload. In order to provide interactive response time,
a multiprocessor scheduler needs to carefully monitor the requirements of each
of its jobs and react accordingly. Today’s gang schedulers lack this reactive ca-
pability, making them unsuitable for workloads containing I/O-bound jobs.



Even an adaptive quantum length is not sufficient to deal completely with the
problems of priority inversion and cpu fragmentation. A more flexible scheduling
policy is called for, where higher priority jobs can interrupt lower priority jobs in
order to keep disk utilization high. In addition, the cpu fragmentation problem
can be partially alleviated if compute-bound jobs can be scheduled into the
fragmented slots.

Interrupting processes of a low priority job and scheduling them in frag-
mented slots will only be beneficial, however, if that job is amenable to schedul-
ing skew. If a compute-bound parallel job synchronizes frequently, interrupting
one of 1ts processes may improve disk utilization only at the cost of a large drop
in cpu utilization. The next section explores the issue of skew in more depth.

4 Application Performance In Near-Gang Scheduled
Environments

The presence of I/O-bound jobs exerts pressure against perfectly gang scheduling
compute-bound jobs. This pressure appears in two forms. The first comes from
the opportunity to reduce priority inversion by interrupting gang scheduled,
compute-bound jobs to run I/O-bound jobs. The second comes from the need
to schedule fragmented cpu resources. Together, they motivate the desire to
flexibly gang schedule, and they lead to two questions about compute-bound jobs
which relate to the cost of flexible gang scheduling. The first question concerns
how well parallel jobs tolerate interruptions. The second question considers how
fragmented resources can be utilized by parallel jobs.

This section explores the degree to which compute-bound applications benefit
from gang scheduling. The more a job benefits from gang scheduling, the less
it can tolerate interruptions, and the less efficiently it can utilize non-gang,
fragmented resources. Qur goal is to identify characteristics of an application
which relate to its degree of benefit from gang scheduling.

Many studies have measured the benefits of gang scheduling relative to un-
coordinated scheduling [1, 3, 9, 17]. Our study differs in that we are interested
in the marginal benefit of a pure gang scheduled environment when compared
to a gang scheduled environment with disruptions.

In order to get a quantification tool, we measure the performance of ap-
plications under various near-gang scheduled environments on a four-processor
machine. These environments are produced by introducing perturbations ? to a
fully ganged environment. We set up four environments, each with a different
set of perturbation characteristics.

In two of the environments, Subpx and Subrp, each perturbation removes
a quantum of processing time from a single processor. In Subpx , the processor

2 We use the term perturbation to refer to both positive deviations (granting of
additional resources) and negative deviations (revocation of originally allocated
resources)



PO P1 P2 P3 PO P1 P2 P3

Time Quantum when
application is running

V Time Quantum taken
7 away

Time

% 7

_ 7

§ n

@ (b)

Fig.4. Experimental setup for (a) fixed-processor takeaway and (b) round-robin take-
away

is fixed. We call this experiment fixed-processor takeaway. In Subgg, the pro-
cessor 1s selected in a round-robin fashion. We call this experiment round-robin
takeaway. See Figure 4.

In environments Addrpx and Addgg, each perturbation gives an extra time
quantum of processing time to a single processor. In Addpx, called fixed-pro-
cessor giveaway, the processor is fixed. In Addgg, called round-robin giveaway,
the processor is selected by round-robin.

The exact times of the perturbations are randomly distributed across the run
time of the application in batches of four. Within a batch of four, the time of the
first perturbation determines the times for the other perturbations. A fixed in-
terval of three time quanta separate perturbations within a batch. Perturbations
are batched in closely spaced groups of fours so that round-robin perturbations
maintain coarse-grain load balance.

Quantum size 1s fixed at 500,000 instructions across the runs.

The motivations for the setup of these environments are as follows. The
takeaway experiments indicates how compute-bound jobs behave when some of
their processes are interrupted by I/O-bound jobs. The giveaway experiments
indicates whether compute-bound jobs can utilize fragmented cpu resources. The
results of the fixed-processor experiments are compared with the results of the
round-robin experiments to examine the issue of load balance.

We run each application under the four scheduling environments, and we
compare the run time of each to the run time under perfect gang scheduling.
The results are presented in two sections below, one for a set of synthetic ap-
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Table 1. Information on the synthetic applications used in the giveaway/takeaway
experiments. Applications are grouped into four types. Each entry gives the name of
the type of application, the number of applications in that type, a description of the
type of applications, and the parameter whose value differs between different members
of that type.

plications and one for a set of real applications, which includes three applica-
tions from the SPLASH benchmark suite. As expected, we find that for load
balanced applications with fine grain synchronization, the perturbations effect
applications significantly. Real applications, however, exhibit internal algorith-
mic load-imbalance and are often somewhat latency tolerant. Because of these
factors, the effects of perturbations on these applications are between a factor
two and four smaller on a four-processor machine.

4.1 Synthetic Applications

Table 1 describes the set of synthetic applications used in this experiment.
Based on the experimental results, each application can be classified as one
of three types. Figure b presents the characteristic plots of the three types of
applications. Each line on the graph plots the number of perturbations versus
the change in run time for an environment. We have plotted the lines for all four
experiments on the same graph. The three types of applications are:

i. Synchronization intensive This type of applications makes little progress
unless it 1s being gang scheduled. When time quanta are taken away from a
processor, all other processors stall as well. The entire application slows by
the amount of time taken away. When time quanta are given to a processor,
the processor stalls also, so the application receives no benefit from the extra
time at all. Barrier and all of the Msg applications fall into this category.

ii. Embarrassingly parallel This type of applications exhibits the same poor
behavior as synchronization intensive applications when time is given to or
taken away from a single processor. However, the behavior is caused not
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by synchronization but by load imbalance. In the round-robin experiments,
where load balance is maintained, application of this type performs much
better. When time quanta are taken away round-robin, run time degrades
by 1/P quantum (here, P=4) per quantum taken away. The factor of 1/P
arises because the single quantum of lost processing time is jointly recovered
by the P processors. Similarly, when extra quanta are given to the job round-
robin, run time improves by 1/P. Emp and coarse-grain Workpile (work unit
= 24 time quanta) belong in this category.

iii. Self load-balancing This type of applications performs optimally under
all scheduling conditions, because it suffers from neither synchronization nor
load imbalances. Performance degrades by 1/P quantum per quantum taken
away, and it improves by 1/P quantum per quantum given away. Three of
the four Workpile applications fall into this category. Their granularity of
work unit ranges from 14% of a time quantum to 240%.

Each class of applications above may also be identified by their minimum
scheduling requirements. Synchronization intensive applications require gang
scheduling. Embarrassingly parallel applications require fair scheduling of the
constituent processes. We call this scheduling criteria interprocess fairness. Self
load-balancing applications can utilize any processor resource; they have no re-
quirement at all.

Of course, applications from real life will not fit cleanly into one of the above
classes. An application with a moderate but nontrivial synchronization rate,
for example, will have behavior which falls somewhere between that of a syn-
chronization intensive application and an embarrassingly parallel application.
Similarly, workpile-like applications with limited load-balancing mechanism will
have behavior which falls somewhere between that of an embarrassingly parallel
application and a self-scheduling application. We can indeed run the experi-



App. |Quanta/Barrier| Type Msgs |Msgs/Pr0c/Quantum
Enum 50|Non-blocking 254
Water 10|Blocking 12
LU 10|Blocking 3
Barnes 50|Blocking 28

Table 2. Characteristics of the real applications

ments with more exhaustive sets of parameter values to quantify some of these
effects, but such studies have been done before before [6, 9, 18], and here we are
more interested in the qualitative difference in behavior at extreme ends of the
application spectrum.

4.2 Real Applications

The takeaway/giveaway experiments are applied to four real applications as well.
One, Enum, finds the total number of solutions to the triangle puzzle (a sim-
ple board game) by enumerating all possibilities breadth-first. The other three,
Barnes, Water, and LU, are scientific applications from the Splash benchmark
suite implemented using CRL, an all-software shared-memory system [12]. See
Table 2 for statistics describing the applications. Because the applications are
non-homogeneous in time, we obtain each data point by taking the average re-
sult from 20 runs, each with a different set of time quanta given or taken away.
Because the applications are also non-homogeneous across processors, we run
the fixed processor takeaway experiment on processors 0, 1, and 3.

Figures 6-9 show the results of the experiments. To better understand the
applications for the purpose of explaining the results, we obtain a trace for
each application run under gang scheduling, and we plot the progress made on
each processor versus time. These traces are presented next to the experimental
results. Because the progress plot for Water follows such a regular pattern, only
a magnified subsection is presented.

Enum Of the four sets of results, EFnum stands out by itself. Its experimental
plot closely resembles that of an embarrassingly parallel application. In reality,
Enum has three characteristics which make it embarrassingly parallel:

— It 1s load balanced, as suggested by its progress plot.

— It has infrequent barrier synchronization (compared to the length of a time
quantum).

— It communicates with non-blocking messages.

The results for Enum are actually consistently worse than that of a perfect
embarrassingly parallel application for three reasons. First, even in the absence
of synchronization, failure to gang schedule incurs overhead in the form buffering
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four dotted lines are reference lines representing time taken away (worst case slow-
down), 1/4 of time taken away (best case slowdown), zero (worst case speedup), and
-1/4 of time given away (best case speedup).

cost in our system. At about 250 instructions per buffered message, this overhead
can be up to three quanta when 20 quanta are taken away. Note that this cost
is smaller for the quantum giveaway experiments because the buffer overhead is
spread over P-1 processors.

Second, as load balanced as any real application can expect to be, Enum still
has some load imbalances. The effect of imbalances on run time is evident by
comparing the run time of the takeaway experiment from processor 3 with the
run time of the takeaway experiments from processors 0 and 1. Processor 3 is
the bottleneck processor for over 60% of the application (as evident by the lack
of valleys in much of the progress graph). As a result, taking away time from
processor 3 results in a slower run time than taking away time from processor 0
or 1.

Finally, for the round-robin experiments, the benefit from maintaining inter-
process fairness is lost if a barrier interrupts a set of round-robin perturbations.
Consequently, the slowdown is noticeably higher than the expected 25% of the
time taken away.

Water, LU, and Barnes The results for Water, LU, and Barnes are similar.
Because these applications exhibit significant load imbalances (as seen by the
deep and long valleys in their progress plots), their results do not directly re-
semble that of any of the synthetic applications. In fact, load imbalance and
blocking messages are two common features which explain most of the results
for these applications.

In the fixed-processor quantum takeaway experiments, the amount by which
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the application slows down depends largely on the degree to which the processor
taken away is a bottleneck. In the progress plot, a processor bottleneck is marked
by full progress (absence of a valley) at a time when one or more processors are
not making progress (valleys). For Water, processor 3 is the clear bottleneck, so
taking away cpu time from processor 3 slows down the application by 100% of the
time taken away. For LU, processors 0 and 3 alternate as bottlenecks. However,
when processor 0 1s the bottleneck, it is only slightly behind the other processors.
So any other processor with time taken away readily overtakes processor 0’s role
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Fig.9. Experimental plot (left) and progress plot under gang scheduling (right) for
Barnes.

as half the bottleneck. The plot reflects these bottleneck conditions: processor 3
slows down by close to 100% of time taken away, while processors (0 and 1 slow
down by considerably less, with processor 0 slower than processor 1 by a small
amount. Finally, in Barnes, processor 0 is the major bottleneck for the latter 2/3
of the application, while neither processor 1 or 3 is a significant bottleneck. As
a result, takeaway from processor 0 is considerably worse than takeaway from
processors 1 or 3.

When quanta are taken away from a non-bottleneck processor, run time
degrades due to blocking requests sent to it by a bottleneck processor. In all
three of our applications, this effect degrades performance by about 50% of
the time taken away. This 50% ratio also holds for round-robin takeaway: the
application communicates with blocking messages too frequently to benefit from
the coarse grain interprocess fairness ensured by round-robin takeaway.

As for the giveaway experiments, fixed processor giveaway from processor 1
fails to improve performance for all three applications because processor 1 is
not the bottleneck processor. Round-robin giveaway improves performance of
Water and LU because time is given to the bottleneck processor and the rate
of blocking request is low. On the other hand, round-robin giveaway fails to
improve performance of Barnes due to the application’s high rate of blocking
requests.

4.3 Summary

We summarize the results of the experiments with several observations and con-
clusions.

Synchronization intensive applications reap full benefits from gang scheduling
and in fact require it for good performance. Embarrassingly parallel applications



and self load-balancing applications, on the other hand, do not benefit from
gang scheduling. Note that the volume of communication is an orthogonal issue.
Enum 1s an example of a real embarrassingly parallel application, even though
1t communicates a lot.

Load imbalance is a common application characteristic in practice. Enforcing
gang scheduling on applications with this characteristic hurts machine utiliza-
tion.

Many real applications can tolerate at least a small amount of perturbations
in a gang scheduling environment. Load imbalanced applications are tolerant
of perturbations if they are not occurring at the bottleneck processors. And all
applications that we studied are tolerant to round-robin perturbations. Even the
inherently load-imbalanced CRL applications slow down by only 50-60% of the
time taken away by the round-robin disturbances. This is because round-robin
perturbations do not introduce severe artificial load imbalances.

For applications without self load-balancing, two characteristics primarily
determine how they behave under various scheduling conditions. The character-
istics are the level of load imbalances and the volume of blocking communication.
Total volume of communication is a second order effect.

To avoid scheduler-induced load imbalances, interprocess fairness is a good
criteria to keep in mind when a gang scheduler does alternate scheduling. The
failure to do so could be a reason why research has found that random alternate
scheduling provides little gain to system throughput [17].

To first order, there are two types of blocking communication. One is the
barrier-like communication used to check that processes have all reached a check-
point. The other type is the request/reply-type message, where one process is
trying to obtain information which can be readily provided by another.3

The two types of communication have different scheduling characteristics.
Wait time for barrier is affected by load imbalances. To minimize this wait time,
it is more important to minimize the load imbalances than it 1s to gang schedule.
Wait time for request/reply, on the other hand, depends on whether the sender
and receiver are scheduled simultaneously. This wait time can only be minimized
by gang scheduling the sender/receiver pair.

5 Runtime Identification of Gangedness

Section 3 illustrates the benefits of flexible gang scheduling derived from not be-
ing required to gang schedule compute-bound jobs. Section 4 shows that the costs
of relaxing gang scheduling varies between applications. Together, they suggest
that a scheduler can benefit from identifying the gangedness of each application,
defined to be the level to which the application benefits from gang scheduling.
Jobs with high gangedness indicate both a low tolerance of interruptions and

? We can also have blocking communication where the receiver is blocked instead
of the sender. A processor blocks waiting for an incoming message containing the
information it requires. But there is no fundamental difference between that and
request /reply: it’s like request/reply done with “polling.”



the inability to utilize fragmented cpu resources, while jobs with low gangedness
can be scheduled much more flexibly to improve overall system performance.

In this section, we consider how gangedness can be determined from coarse-
grain messaging statistics.

5.1 Information Content of Message Arrival Times

To relate messaging statistics to gangedness, we look at the high level information
contained in message arrival times, and we try to find a relationship between
that information and gangedness.

First, messages contain information about synchronization, because they are
the medium through which synchronization is implemented. And synchroniza-
tion relates directly to gangedness. Unfortunately, messages don’t necessarily
synchronize; and there is no way of distinguishing synchronizing messages from
non-synchronizing ones.

Alternatively, message arrival times contain information about the state of a
process. A process can send a message only if it is not blocked, or in other words,
if the process 1s making forward progress. To relate gangedness to progress, a
high gangedness means that an application must be gang scheduled in order to
make forward progress.

5.2 Experiment

We test our intuition on the relationship between message counts and ganged-
ness with the following experiment. For each of the real applications described in
Subsection 4.2, we run it in the fixed-processor takeaway environment described
in Section 4. The environment is suitable because it contains both gang sched-
uled quanta and non-gang scheduled quanta. Any of the four environments in
Section 4 could have been used for this purpose, and we do not expect the choice
of environment to effect the conclusions we draw.

For every processor-quantum unit, we collect the number of messages received
and the amount of progress made. These statistics are used to generate four
pairs of values per quantum, one pair for each processor. In the pair of values,
we associate the number of messages received by a processor to the amount
of progress made by all other processors. This association corresponds to the
intuition that the number of messages received should correlate with the amount
of progress made by the senders of the messages.

Within this scheduling environment, we distinguish between three sets of data
values. Gang-all is the set of values collected on ganged, undisturbed quanta.
Non-Gang-running is the set of values collected on the running processors in non-
ganged, disturbed quanta. Finally, Non-Gang-non-running is the set of values
collected on the non-running processors in non-ganged, disturbed quanta.

To collect enough data values for all three sets, we run the experiment five
times. Table 3 summarizes the results. Each row gives the average and standard
deviation of message count per quantum as well as the average and standard
deviation of progress per quantum.



Description Msg Avg|Msg SD|Prog Avg|Prog SD

Enum

Gang-all 247.73|  47.51| 1483678| 209519
Non-Gang-running 162.29| 60.21| 882735| 307236
Non-Gang-non-running| 242.30| 88.57| 1324103| 459779
Water

Gang-all 15.41 19.63| 1127732 485835
Non-Gang-running 2.54 3.40| 479135| 387983
Non-Gang-non-running 1.17 0.70| 718703| 554749
LU

Gang-all 2.85 3.19| 1242051| 397927
Non-Gang-running 1.40 1.82| T740624| 313568
Non-Gang-non-running 0.89 0.73| 1110937 421677
Barnes

Gang-all 28.44| 56.99| 1436370 282763
Non-Gang-running 2.53 3.00| 507318| 300674
Non-Gang-non-running 1.80 0.78| T760978| 389349

Table 3. Aggregate statistics for correlation experiment in non-gang environment.
Each row gives the average and standard deviation of message count, and the average
and standard deviation of sender progress.

The progress data are consistent with the characteristics of the applica-
tions. Fnum uses infrequent barriers and non-blocking messages; so it can make
progress without gang scheduling. As expected, the experiment shows that sender
progress for gang-all and non-gang-running are roughly within 10% of each other
(1483678 vs. 1324103). The sender progress for non-gang-non-running is lower
than that of gang-all and non-gang-running, but that only reflects the fact it
has one less sender than the other data values; normalizing these values with the
number of senders would yield the expected nearly i1dentical values.

Water, LU, and Barnes all have infrequent barriers, but they use blocking
messages. The rate of messages then determines how much progress an applica-
tion can make in a non-gang time quantum. * LU has the lowest message rate,
so low that it in fact runs quite well in non-gang quanta. Barnes and Water,
on the other hand, have message rates which are high enough to cause their
performance to degrade in non-gang quanta, with Barnes’s higher rate yielding
a more severe degradation.

Figure 10 plots the range of number of messages received for each application
in both gang quanta and non-gang quanta. To obviate the need to normalize all
the values by the number of sender processors, for the non-gang quanta we

* As Section 4 shows, the issue of load balance is an important consideration as well.
Frequency of barriers and blocking messages determines the level of progress that can
be made in non-gang environments. Level of load balance determines whether such
progress is ultimately useful, i.e., whether it reduces the run time of the application.
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Fig.10. Number of messages received per quantum per processor for each application
in gang quanta (G) and non-gang quanta (NG). Each bar represents the 90% confidence
interval; the thick line within the bar marks the average message count. Each number in
parenthesis below the application name shows the ratio of the average message counts
between the non-gang and the gang quanta.

use data from non-gang-non-running, which has the same number of sender
processors as gang-all.

The results confirm our intuition. Enum is the only application which uses
non-blocking messages. Therefore, it is the only application which can sustain a
high volume of communication in non-gang quanta. As stated in Subsection 5.1,
this run-time observation allows one to conclude that the application has low
gangedness and does not require gang scheduling. On the other hand, Water,
LU, and Barnes all use blocking messages, so their volume of communication
during non-gang quanta is low. One cannot, however, draw any conclusion about
gangedness from this lack of communication: applications can be making progress
without sending any message.

Rather than using message count of non-gang quanta, a more robust way
to determine the gangedness of an application is to use its ratio of message
counts between non-gang and gang quanta. A high ratio corresponds to low
gangedness, while a low ratio corresponds to high gangedness. As shown in Fig-
ure 10, ordering the applications by ratio corresponds exactly to reverse-ordering
the applications by gangedness. Moreover, the ratios for applications with low
gangedness (Enum and LU) are at least a factor of five larger than the ratios for
applications with high gangedness (Water and Barnes). This sizable difference
makes it easy to accurately categorize the applications into a high gangedness



class and a low gangedness class simply based on their message ratios.

5.3 Summary

We summarize what we learn about the relationships between message count,
progress, and gangedness. Message count relates to progress in the following way.
High message count always implies progress. Low message count, on the other
hand, can arise because the application is not sending any message, so it does
not necessarily imply a lack of progress.

As for the relationship between message count and gangedness, a high mes-
sage count while an application is not gang scheduled shows that an application
can make progress without gang scheduling. It thus indicates a low ganged-
ness. More generally, one can compare the average message counts between non-
gang and gang environments to determine the gangedness of the application. A
high ratio of non-gang message count to gang message count corresponds to low
gangedness, while a low ratio corresponds to high gangedness.

Note that our conclusion is somewhat counterintuitive to conventional think-
ing. Conventional thinking has the notion that the more an application makes
use of communication resources, the greater the need for the application to be
gang scheduled. In fact, Sobalvarro [17] bases his dynamic coscheduling scheme
directly on this principle, as he achieves coscheduling behavior by taking each
incoming message as a cue to schedule the addressed process. We argue that if
a processor continues to receive messages for an unscheduled process, the send-
ing processes must be making progress under the status quo, and no scheduler
intervention 1s necessary.

6 Related Work

Multiprocessors can be shared by partitioning in space, in time, or both. Much
work has been done to explore and compare the various options [7]. Space-sharing
can be very efficient for compute-bound applications and is desirable when per-
mitted by the programming model and application characteristics [3, 11]. Time-
sharing remains desirable for flexibility in debugging and in interleaving I/O with
computation. These considerations become more important as multiprocessors
become more mainstream.

Ousterhout introduced the idea of coscheduling or gang scheduling to im-
prove the performance of parallel applications under timesharing [15]. There are
two benefits to gang scheduling. First, from a programmability standpoint, gang
scheduling is attractive because it is compatible with conventional programming
models, where processes of a parallel application are assumed to be scheduled
simultaneously. This feature simplifies reasoning about performance issues as
well as correctness issues like deadlock and livelock. Second, from a performance
standpoint, gang scheduling is absolutely necessary for applications that syn-
chronize frequently.



Several studies have quantified the benefits of gang scheduling [1, 3, 9]. Fei-
telson and Rudolph [9] demonstrate that gang scheduling benefits applications
that perform fine-grain synchronization. Arpaci et al[1] and Mraz [14] observe
that the disruption of system daemons in a network of workstation is poten-
tially intolerable without some efforts to synchronize gangs across processors.
Our study confirms these observations and draws detailed conclusions about the
causes of slowdown for specific applications.

There are costs to gang scheduling as well. Much literature focuses on its cost
of implementation [2, 8, 17, 19]. This cost comes about because gang scheduling
requires global coordination and centralized scheduling. The implementation of
our scheduler uses a two level distributed hierarchical control structure for effi-
ciency similar to Distributed Hierarchical Control [8, 19]. But even in a system
where these features come for free, gang scheduling still has costs which make
its universal use undesirable. Our study shows the degradation of response time
due to a form of priority inversion. Other effects degrade utilization, for instance
by losses due to constraints on the packing of jobs into the global schedule and
by the inability to recover wasted time in a job with load imbalance. An ideal
scheduler would perform a cost-benefit analysis which gives proper weights to
all the issues above.

Studies have pointed out that parallel scientific applications may consist of a
significant amount of /O activities due to reading and writing of results [4, 5].
I/O activities may also come from paging activities, and Wang [20] notices that
even for programs written with a SPMD programming model, there is little
coordination of I/O across processing nodes because of data dependencies. This
behavior is consistent with our assumption in the experiments that I/O activities
across the processing nodes are independent.

In our work, we assume that the members of the job are known a priori
and concentrate on the problem of deciding whether to gang schedule based on
indirect measurements. A fully dynamic solution to gang scheduling includes
the identification of gang members at run-time. Sobalvarro [17] uses individual
message arrivals as cues to the identification of a gang, while Feitelson and
Rudolph [10] monitor the rate at which shared communication objects are being
accessed to determine whether and which processes need to be ganged.

Given the processes that make up each job, our system monitors communica-
tion rate between job members to identify those jobs that require coscheduling
versus those jobs that can tolerate having their processes individually sched-
uled. In this respect our scheduler differs from both the Meiko CS-2 [16], and
SGI IRIX [2] schedulers.

7 Conclusion

We summarize the results presented in this paper. First, traditional gang schedul-
ing hurts workloads containing I/O. Second, interrupting ganged, compute-
bound jobs can benefit workloads. Third, one needs to schedule fragmented cpu
resources intelligently, by selecting jobs with low gangedness to run in those



spaces, and by preserving interprocess fairness. Finally, message statistics can
identify the gangedness of applications.

We envision a scheduling strategy flexible enough to accommodate all jobs.
I/O-bound jobs can have either coordinated I/O or uncoordinated I/0O. Com-
pute bound jobs may either be perturbation-friendly or perturbation-sensitive.
Scheduling would be done in two sets of rounds. Uncoordinated I/O-bound
jobs and perturbation-friendly compute-bound jobs are scheduled in rounds
with loose coordination. Coordinated I/O-bound jobs and perturbation-sensitive
compute-bound jobs can be scheduled in rounds with strict coordination.

At the very high level, we demonstrate that a flexible gang scheduler is both
necessary and possible.
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