
Theory and Practicein Parallel Job SchedulingDror G. Feitelson1, Larry Rudolph1, Uwe Schwiegelshohn2, Kenneth C.Sevcik3, and Parkson Wong41 Institute of Computer ScienceThe Hebrew University, 91904 Jerusalem, Israelffeit,rudolphg@cs.huji.ac.il2 Computer Engineering InstituteUniversity Dortmund, 44221 Dortmund, Germanyuwe@carla.e-technik.uni-dortmund.de3 Department of Computer ScienceUniversity of Toronto, Toronto, Ontario, Canada M5S 3G4kcs@cs.toronto.edu4 MRJ, Inc., NASA Contract NAS 2-14303Mo�ett Field, CA 94035-1000, USAparkson@nas.nasa.govAbstract. The scheduling of jobs on parallel supercomputer is becom-ing the subject of much research. However, there is concern about thedivergence of theory and practice. We review theoretical research inthis area, and recommendations based on recent results. This is con-trasted with a proposal for standard interfaces among the componentsof a scheduling system, that has grown from requirements in the �eld.1 IntroductionThe scheduling of jobs on parallel supercomputers is becoming the subject ofmuch research activity. See, for example the proceedings of three workshops [40],and a survey of a large number of proposed and implemented approaches [19].It has become a distinct research topic from the largely unrelated, but betterknown problem of DAG scheduling [1]. DAG scheduling assumes that all taskshave �xed and speci�ed dependencies, whereas job scheduling assumes that thejobs are mostly independent.This paper is about scheduling jobs on distributed memory massively par-allel processors (MPPs), which currently dominate the supercomputing arena.In terms of scheduling, on such machines memory is typically allocated in con-junction with the processors, rather than being treated as a distinct resource.However, this does not preclude a shared address space model of computation,and indeed many recent systems provide hardware support for di�erent levels ofmemory sharing.There are a growing number of high performance computing facilities thatsupport large diverse workloads of parallel jobs on multicomputers that have



tens to thousands of processors. The typical way that they are currently used isthat:1. The system is divided into \partitions" consisting of di�erent numbers ofprocessors. Most processors are allocated to partitions devoted to servingparallel jobs. One partition is typically set aside for support of interactivework through time-slicing of its processors. Another may be devoted to ser-vice tasks, such as running a parallel �le system. The con�guration of par-titions may be changed on a regular basis (for example, by providing largerpartitions for parallel jobs at night or over weekends, at the expense of theinteractive partition).2. A (large) number of queues are established, each one corresponding to aspeci�c combination of job characteristics. (For example, one queue mightcorrespond to jobs that require as many as 32 processors, and are expectedto run no longer than 15 minutes.) Some queues are served at higher prioritythan others, so the user tends to submit a job to the highest priority queuefor which the job quali�es based on its expected resource requirements.3. Each partition is associated with one or more queues, and its processorsserve as a pool for those queues. Whenever some processors are free, theassociated queues are searched in order of priority for one that is non-empty.The �rst job in that non-empty queue is then activated in the partition, andit runs until it completes, provided the number of free processors is su�cient.Within each queue jobs are processed strictly in �rst-come-�rst-served order.Thus:{ the number of processors assigned to a job is �xed by the user;{ once initiated the job runs to completion.While there exist some innovations that have been introduced into productionsystems, such as non-FCFS service and support for swapping, the general trendis to retain the same framework, and moreover, to cast it into a standard. Manystudies, however, show that more 
exibility in both the scheduler actions and theway programs make use of parallelism result in better performance. But thereis hope for convergence [25]. For example, theoretical analysis underscores thee�ectiveness of preemption in achieving low average response times, and alsoshows that considerable bene�ts are possible if the scheduler is allowed to tailorthe partition sizes in accordance with the current system load. Notably, muchof this work is based on workload models that are derived from measurementsat supercomputer installations.We survey the theoretical background in Section 2, and the speci�c recom-mendations that are made in Section 3. The standardization e�ort based onpractical work at large installations is reviewed in Section 4. Finally, we discussthis state of a�airs and present our conclusions in Section 5.2 Survey of Theoretical ResultsVarious kinds of scheduling or sequencing problems have been addressed since the�fties by theoretical researchers from the areas of computer science, operations



research, and discrete mathematics. The challenge of e�cient job managementon computers has frequently been named as a key reason to address this kindof problems. This is especially true for job scheduling on parallel systems witha large number of processors or nodes. Hence a direct use of many of thesetheoretical results in real applications would seem to be natural. However, manyof these theoretical resutls rely on a creative set of assumptions, in order to maketheir proofs tractable. This divergence from reality not only make them hard touse in practice, but also the diversity of divergence makes them hard to comparewith each other.2.1 The Diversity of DivergenceThis section covers many of the assumptions of theoretical work, by presentinga rough classi�cation of di�erent theoretical models. This includes di�erent costmetrics, di�erent features and operations available on the modeled system, anddi�erent algorithmic approaches.Cost metrics For the discussion of the various cost metrics we use the followingnotations: ti = completion time of job isi = release time of job iwi = weight of job idi = deadline of job iThe completion time ti is the time when the computer system has �nally com-pleted work on this job. Note that no information is provided on whether the jobhas been successfully completed or whether it has been removed from the systemfor other reasons. The release time si is the earliest time the computer systemcan start working on job i. Usually, the release time of a job is identical withits submital or arrival time, i.e. the �rst time when the system becomes awareof the new job. However, sometimes it is assumed that the scheduling system isaware of all jobs at time 0, but job i cannot be started before some time si � 0.The weight wi of a job is a way to prioritize one job over another. The deadlinedi is the time by which a job must complete its execution. There is no generallyaccepted de�nition as to what happens if the deadline is not met for a speci�cjob, i.e. ti > di.Obviously, the role of the scheduler is the allocation of limitted system re-sources to competing jobs. A job should somehow be charged for its resourcecomsumption. Often the cost of a schedule is simply the sum of the individualjob costs. This cost function serves as basis to compare and evaluate di�erentschedules. Assuming a job system � the following metrics are commonly used:



maxi2� ti = Makespan (throughput)jfi 2 � jti > digj = Deadline missesXi2� witi = Weighted completion timeXi2� wi(ti � si) = Weighted 
ow (response) timeXi2� wimaxf0; ti � dig = Weighted tardinessNote that response time and 
ow time usually have the same meaning. The originof these criteria often goes back to the �fties. For instance Smith [82] showedin 1956 that the sum of the weighted completion times for a system of jobson a single processor can be minimized if the tasks are scheduled by increasingexecution time to weight ratio, the so called Smith ratio. If all jobs have unitweight this algorithm becomes the well known shortest-job �rst method.These metrics allow a relatively simple evaluation of algorithms which may beone reason for their popularity, but there are some subtle di�erence in them. Aschedule with optimal weighted completion time also has the optimal weighted
ow time. This equality does not hold, however, when they deviate by evena constant factor from the optimum as shown by Kellerer et al. [42] and byLeonardi and Raz [47].In reality, the metrics attempt to formalize the real goals of a scheduler:1. Satisfy the users.2. Maximize the pro�t.For instance, a reduction of the job response time will most likely improve usersatisfaction.Example 1. Assume that a job i needs approximately 3 hours of computationtime. If the user submits the job in the morning (9am) he may expect to receivethe results after lunch. It probably does not matter to him whether the job isstarted immediately or delayed for an hour as long as it is done by 1pm. Anydelay beyond 1pm may cause annoyance and thus reduce user satisfaction, i.e.increase costs. This corresponds to tardiness scheduling. However, if the job isnot completed before 5pm it may be su�cient if the user gets his results earlynext morning. Moreover, he may be able to deal with the situation easily if heis informed at the time of submital that execution of the job by 5pm cannot beexpected. Also, if the user is charged for the use of system resources, he maybe willing to postpone execution of his job until nighttime when the charge isreduced.The use of metrics such as throughput and response time in many commercialinstallations may be due to the simplicity of the evaluation, or it may be a sign ofsome non-obvious in
uence from theory. On the other hand, a good managementpolicy for a commercial system may require that di�erent metrics are used during



di�erent times of the day: During daytime many users will actually wait for thecompletion of their submitted jobs. Thus a response time metric is appropriate.However, during the night it is best to maximize the throughput of jobs.
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Fig. 1. Workload of a parallel computer over the course of a day.Fig. 1 shows the load of a multiprocessor over the course of a day. For reasonsof simplicity each job is described as a rectangle. Black rectangles denote idleprocessors due to fragmentation. However, note that multiprocessors do notnecessarily require a linear one-dimensional processor space. But this way itis easier to visualize jobs. As shown in the �gure, during periods of high useractivity small jobs are given preference even if some processors remain idle dueto fragmentation of the processor space. Jobs are allocated resources such thatthe shortest response time is achieved. On the other hand during periods of lowuser activity large batch jobs are started. Also moldable jobs are run in a wayto increase e�ciency, i.e. using fewer processors while requiring longer executiontime.Recent studies, e.g. Charkrabarti et al. [7], explicitly address the problem ofbicriteria scheduling where scheduling methods are introduced which generate



good schedules with respect to the makespan and the weighted completion timemetric.The Model A large variety of di�erent machine and scheduling models havebeen used in studies of scheduling problems. The constraints incorporated intothese models directly a�ect operations of the scheduler. They are at least partlyinspired by the way real systems are managed and how parallel applications arewritten. The following roughly classi�es these models according to �ve criteria:1. Partition Speci�cation Each parallel job is executed in a partition that consistsof a number of processors. The size of such a partition may depend on themultiprocessor, the application, and the load of multiprocessor [25]. Moreover,the size of the partition of a speci�c job may change during the lifetime of thisjob in some models:{ Fixed. The partition size is de�ned by the system administrator and can bemodi�ed only by reboot.{ Variable. The partition size is determined at submission time of the jobbased on user request.{ Adaptive. The partition size is determined by the scheduler at the time thejob is initiated, based on the system load, and taking the user request intoaccount.{ Dynamic. The partition size may change during the execution of a job, tore
ect changing requirements and system load.Feldmann et al. [26] have considered �xed partitions generated by di�erentarchitectures such as hypercubes, trees, or meshes. Many other authors use thevariable partitioning paradigm, in which each job requires a speci�c numberof processors but can be scheduled on any subset of processors of the system.An example of a theoretical study based on the adaptive approach is the workof Turek et al. [88]. Here, the application does not require a speci�c number ofprocessors, but can use di�erent numbers. However, once a partition for a job hasbeen selected its size cannot change anymore. Finally, in dynamic partitioningthe size of a partition may change at run time. This model has, for instance,been used by Deng et al. [11].2. Job Flexibility As already mentioned advanced partitioning methods mustnot only be supported by the multiprocessor system but by the application aswell. Therefore, Feitelson and Rudolph [25] characterize applications as follows:{ Rigid jobs. The number of processors assigned to a job is speci�ed externalto the scheduler, and precisely that number of processors are made availableto the job throughout its execution.{ Moldable jobs. The number of processors assigned to a job is determinedby the system scheduler within certain constraints when the job is �rst ac-tivated, and it uses that many processors throughout its execution.



{ Evolving jobs. The job goes through di�erent phases that require di�erentnumbers of processors, so the number of processors allocated may changeduring the job's execution in response to the job requesting more processorsor relinquishing some. Each job is allocated at least the number of processorsit requires at each point in its execution (but it may be allocated more toavoid the overheads of reallocation at each phase).{ Malleable jobs. The number of processors assigned to a job may changeduring the job's execution, as a result of the system giving it additionalprocessors or requiring that the job release some.The manner in which an application is written determines which of the fourtypes is used1. The more e�ort devoted to writing the application with theintention of promoting it to one of the later types, the better a good schedulercan perform with respect to both the particular job, and the whole workload.Generally, a scheduler can start a job sooner if the job is moldable or evenmalleable than if it is rigid [87].If jobs are moldable, then processor allocations can be selected in accordancewith the current system load, which delays the onset of saturation as systemload increases [25]. It is generally not di�cult to write an application so that itis moldable, and is able to execute with processor allocations over some range(e.g., any power of two from four to 256). Evolving jobs arise when applicationsgo through distinct phases, and their natural parallelism is di�erent in di�erentphases. For such jobs, system calls are inserted at the appropriate points in theapplication code to indicate where parallelism changes [96].Certain parallel applications, such as those based on the \work crew" model2,can be modi�ed to be malleable relatively easily. An increased processor alloca-tion allows more processors to take work from the queue, while a reductionmeans that some processors cease picking up work and are deallocated [67]. Inmost cases, however, it is more di�cult to support malleability in the way anapplication is written. One way of attaining a limited form of malleability is bycreating as many threads in a job as the largest number of processors that wouldever be used, and then using multiplexing (or folding [51,38]) to have the jobexecute on a lesser number of processors. Alternatively, a job can be made mal-leable by inserting application speci�c code at particular synchronization pointsto repartition the data in response to any change in processor allocation. Thelatter approach is somewhat more e�ective, but it requires more e�ort from theapplication writer, as well as signi�cantly more system support. Much of the re-quired mechanisms for supporting malleable job scheduling is present in facilitiesfor checkpointing parallel jobs [66]. Hence, a combined bene�t can be derived ifprocessor allocations are changed only at times when checkpoints are taken.1 Some theoretical studies use di�erent terminology. For example, Ludwig and Tiwari[50] speak about \malleable" jobs which are equivalent to moldable jobs in ourterminology.2 In the \work crew" model, processors pick up relatively small and independent unitsof computation from a central queue.



For stable applications that are widely and frequently used by many users,the e�ort required to make them malleable may be well justi�ed. Otherwise, itis probably not worthwhile to write applications so that they are malleable.3. Level of Preemption Supported Another issue is the extent to which individualthreads or entire jobs can be preempted and potentially relocated during theexecution of a job:{ No Preemption.Once a job is initiated it runs to completion while holdingall its assigned processors throughout its execution.{ Local Preemption. Threads of a job may be preempted, but each threadcan only be resumed later on the same processor. This kind of preemptiondoes not require any data movement between processors.{ Migratable Preemption. Threads of a job may be suspended on one pro-cessor and subsequently resumed on another.{ Gang Scheduling. All active threads of a job are suspended and resumedsimultaneously. Gang scheduling may be implemented with or without mi-gration.While many theoretical scheduling studies only use a model without preemp-tion, more recently preemption has also been taken into account. Schwiegelshohn[71] uses a gang scheduling model without migration. The work of Deng et al.[11] is based upon migratable preemption.In a real system the preemption of a job requires that all the job's threads bestopped in a consistent state (i.e., without any messages being lost), and the fullstate of each thread must be preserved. The memory contents associated withthe job may be either explicitly written out of memory, or may be implicitlyremoved over time by a process such as page replacement. Whether or not thedata of a job is removed from memory when the job is preempted depends inpart on the memory requirements of the preempting job and the total amountof memory available.In addition migratable preemption needs the mechanism of moving a threadfrom one processor to another, while preserving all existing communication pathsto other threads. Also, when a thread is migrated, its associated data mustfollow. In message passing systems, this requires that the data be copied fromone processor to another. In shared memory systems, the data can be transferreda cache line or page at a time as it is referenced. Preemption may have greatbene�t in leading to improved performance, even if it is used infrequently andon only a small fraction of all jobs.Preemption in real machines has an overhead cost, e.g. Motwani et al. [55]address the overhead by minimizing the number of preemptions. In order tocompare a preemptive schedule with non-preemptive ones Schwiegelshohn [71]includes a time penalty for each preemption.4. Amount of Job and Workload Knowledge Available Systems di�er in the type,quantity, and accuracy of information available to and used by the scheduler.



Characteristics of individual jobs that are useful in scheduling include (i) thetotal processing requirement, and (ii) the speedup characteristics of the job.Full knowledge of the latter requires knowing the execution time of the job foreach number of processors on which it might be executed. Partial knowledgeis provided by characteristics such as average parallelism (the average numberof processors busy when the job is allocated ample processors), and maximumparallelism (the largest number of processors that a job can make use of at anypoint in its execution).Workload information is also useful in choosing a scheduling policy. For ex-ample, workload measurements at a number of high-performance computingfacilities have indicated that the variability in processing requirements amongjobs is extreme, with most jobs having execution times of a few seconds, but asmall number having execution times of many hours. The coe�cient of varia-tion3, or CV, of the service times of jobs has been observed to be in the fourto seventy range at several centers [8,64,21]. This implies that a mechanism toprevent short jobs from being delayed by long jobs is mandatory.The knowledge available to the scheduler may be at one of the followinglevels:{ None. No prior knowledge is available or used in scheduling, so all jobs aretreated the same upon submission.{ Workload. Knowledge of the overall distribution of service times in theworkload is available, but no speci�c knowledge about individual jobs. Again,jobs are treated the same, but policy attributes and parameters can be tunedto �t the workload.{ Class. Each submitted job is associated with a \class", and some key char-acteristics of jobs in the class are known, including, for example, estimatesof processing requirement, maximum parallelism, average parallelism, andpossibly more detailed speedup characteristics.{ Job. The execution time of the job on any given number of processors isknown exactly.Job knowledge, which is de�ned to be exact, is unrealistic in practice. How-ever, assuming omniscience in modeling studies makes it possible to obtain anoptimistic bound on performance that is not attainable in practice. Presumingjob knowledge in modeling studies sets a standard in performance against whichpractically realizable scheduling algorithms, which use class knowledge at most,can be compared.On-line scheduling has been addressed more frequently in recent years. Forinstance Shmoys et al. [78] discussed makespan scheduling if the job character-istics are not known until the release time and the execution time requirementsof the job are also not available before the job has been executed to completion.They show that any algorithm with all jobs available at time 0 can be converted3 The coe�cient of variation of a distribution is its standard deviation divided by itsmean.



to an algorithm that handles dynamic arrivals with a competitive factor at mosttwice larger.Many systems make no e�ort at all to use information that accompaniesa job submission to estimate the resource requirements of the job. However,smallest demand type disciplines (e.g., \Least Work First" (LWF)) can be usedto yield low average response times if the resource demand of each job is known(precisely or approximately). For example, in many current systems jobs aresubmitted to one of a large number of queues, and the queue selected indicatessuch information as the number of processors needed, a limit on the executiontime, and other parameters. Thus, each queue corresponds to a job class. Inthese systems, this information can be used implicitly through the way queuesare assigned to (�xed) partitions, and the relative priorities assigned to thequeues.Any information provided by the user relating to job resource requirementsmust be used carefully both because it is prohibitively di�cult for the user toconsistently provide information with high accuracy, and also because the usermay be motivated to deceive the scheduler intentionally. Thus, sources fromwhich to gain knowledge about job resource requirements must be broadened toinclude:{ consider user provided information (while recognizing that it is historicallyquite unreliable, in part because users aren't careful about making goodestimates);{ measure e�ciency during execution and increase processor allocations onlyfor jobs that are using their currently allocated processors e�ectively;{ keep track of execution time and speedup knowledge from past executionson a class by class basis, and use that information.All identifying characteristics associated with the submital of a job can po-tentially be used to determine its class. These characteristics include the userid, the �le to be executed, the memory size speci�ed, and possibly others. Anestimate of the e�ciency [59] or the execution time [31] of a job being scheduledcan be obtained from retained statistics on the actual resource usage of jobs fromthe same (or a similar) class that have been previously submitted and executed.A small database can be kept to record resource consumption of jobs on a classby class basis. This is very useful particularly for large jobs that are executedrepeatedly.5. Memory Allocation For high performance applications, memory is usually thecritical resource.This is particularly true in shared-memory systems, where the allocation ofmemory is relatively decoupled from the allocation of processors. Thus there aretwo types of memory to consider:{ DistributedMemory. Typically each processor and its associated memoryis allocated as a unit. Message passing is used to access data in remotememory.



{ Shared Memory. Access cost to shared memory can either be uniform(UMA) or nonuniform (NUMA) for all the processors. With UMA, there isthe potential for more equitable allocation of the memory resources. WithNUMA, the performance is sensitive to the allocation of a job to processorsand its data to memories.Mostly, memory requirements have been ignored in real scheduling systems andare not even part of the model in theoretical studies, although this is changing[65,73,62,61].Algorithmic Methods The intractability for many scheduling problems hasbeen well studied [28]. Examples in the speci�c area of parallel job schedulinginclude preemptive and non-preemptive gang scheduling by Du and Leung [13]using makespan, and Bruno, Co�man, and Sethi [6] and McNaughton [53] whouse weighted completion time as optimization criterion.With the intractability of many scheduling problems being established, poly-nomial algorithms guaranteeing a small deviation from the optimal scheduleappear more attractive. Some polynomial algorithms are still very complex,[70], while others are particular simple algorithms, like list scheduling meth-ods [41,95]. The latter promises to be of the greatest help for the selection ofscheduling methods in real systems.Although many of the approximation algorithms have a low computationalcomplexity and produce schedules that are close to the optimum, they are usuallynot the method of choice in commercial installations.The worst case approximation factor is usually of little relevance to a practicalproblem since a schedule that approaches the worst case is often unacceptablefor a production schedule. For instance, the makespan approximation factor forlist schedules of non-preemptive parallel job schedules is 2. In other words, upto 50% of the nodes of a multiprocessor system may be left idle. However, thesehigh costs are only encountered for a few job systems which may never be partof real workloads.Turek et al. [89] proposed \SMART" schedules for the o�-line non-preemptivecompletion time scheduling of parallel jobs. They prove an approximation factorof 8 [72] and give a worst case example with a deviation of 4.5. However, applyingthe algorithm on job systems obtained from the traces of the Intel Paragon at theSan Diego Supercomputing Center gave an average deviation from the optimumby 2. This result was further improved to the factor 1.4 by using the job orderof the SMART schedule as input for a list schedule [33]. But note that SMARTgenerates non-preemptive o�-line schedules and requires the knowledge of theexecution time of all jobs. The consideration of more complex constraints maymake any general approximation algorithm impossible [42,47].The evaluation of any scheduler can be either done by comparing its scheduleagainst the optimal schedule or against schedules generated by other methods.Sleator and Tarjan [80] introduced the notion of competitive analysis. An on-linealgorithm is competitive if it is guaranteed to produce a result that is withina constant factor of the optimal result. Only the deviation from the optimal



schedule can determine whether there is enough room for improvement to mo-tivate further algorithmic research. Unfortunately, the optimal schedule cannotbe obtained easily, but an analysis of an approximation algorithm can use lowerbounds for the optimal schedule to determine the competitive factor, e.g. thesquashed area bound introduced by Turek et al. [89].Moreover, the theoretical analysis may be able to pinpoint the conditionswhich may lead to a bad schedule. These methods can also be applied to anypractical approach and help to determine critical workloads. If the evaluation ofreal traces reveals that such critical workloads rarely or even never occur thenthey can either be ignored or the approach can be enhanced with a procedureto speci�cally handle those situations.For instance Kawaguchi and Kyan's LRF schedule [41] can be easily extendedto parallel jobs. As long as no parallel job requires more than 50% of the pro-cessors, this will only increase the approximation factor from 1.21 to 2 [87].However, if jobs requiring more processors are allowed in addition, no constantapproximation factor can be guaranteed.2.2 Some Speci�c StudiesWorkload Characterization Several workload characterization studies of pro-duction high-performance computing facilities have been carried out. They revealcharacteristics of actual workloads that can be exploited in scheduling.Feitelson and Nitzberg [21] noted that repeated runs of the same applicationoccurred frequently, and later runs tended to have similar resource consumptionpatterns as the corresponding earlier ones. Hotovy [37] studied a quite di�erentsystem, yet found many of the same observations to hold. Gibbons [30] alsoanalyzed workload data from the Cornell site in addition to two sites whereparallel applications are executed on a network of workstations, concluding thatin all three systems classifying the jobs by user, execution script, and requesteddegree of parallelism led to classes of jobs in which execution time variabilityis much lower than in the overall workload. The common conclusion is thatmuch information about a job's resource requirements can be uncovered withoutdemanding the user's cooperation.Feitelson [17] studied the memory requirements of parallel jobs in a CM-5environment. He found that memory is a signi�cant resource in high-performancecomputing, although he observed that users typically request more processorsthan naturally correspond to their memory requirements.Jann et al. [39] have produced a workload model based on measurements ofthe workload on the Cornell Theory Center SP2 machine. This model is intendedto be used by other researchers, leading to easier and more meaningful compar-ison of results. Nguyen at al. [58] have measured the speedup characteristics ofa variety of applications.Batch Job Scheduling In an e�ort to improve the way current schedulersbehave, several groups have modi�ed NQS implementations to allow queue re-ordering in order to achieve better packing. Lifka et al. [49,79] have developed



a scheduler on top of LoadLeveler with the feature that the strict FCFS or-der of activating jobs is relaxed. In this scheduler, known as \EASY", jobs arescheduled in a FCFS order to run at the earliest time that a su�cient numberof processors are available for them. However, this can mean that smaller jobsmay be executed before bigger jobs that arrived earlier, whenever they can doso without delaying the previously scheduled jobs4. It was found that user sat-isfaction was greatly increased since smaller jobs tended to get through faster,because they could bypass the very big ones.Henderson [35] describes the Portable Batch System (PBS), another systemin which performance gains are achieved by moving away from strict FCFSscheduling. Wan et al. [92] also implement a non-FCFS scheduler that uses avariation of a 2-D buddy system to do processor allocation for the Intel Paragon.Thread-oriented scheduling Nelson, Towsley, and Tantawi [57] compare fourcases in which parallel jobs are scheduled in either a centralized or de-centralizedfashion, and the threads of a job are either spread across all processors or allexecuted on one processor. They found that best performance resulted fromcentralized scheduling and spreading the threads across processors. Among theother options, decentralized scheduling of split tasks beat centralized schedulingwith no splitting under light load, but the reverse is true under heavy load.Dynamically Changing A Job's Processor Allocation Because the e�-ciency of parallel jobs generally decreases as their processor allocation increases,it is necessary to decrease processor allocations to moldable jobs as the over-all system load increases in order to avoid system saturation (see Sevcik [77]).Zahorjan and McCann [97] found that allocating processors to evolving jobsaccording to their dynamic needs led to much better performance than eitherrun-to-completion with a rigid allocation or round-robin. For the overhead pa-rameters they chose, round-robin beat run-to-completion only at quite low sys-tem loads.Ghosal et al. [29] propose several processor allocation schemes based on theprocessor working set (PWS), which is the number of allocated processors forwhich the ratio of execution time to e�ciency is minimized. (The PWS di�ersfrom the average parallelism of the job by at most a factor of two [16].) Thebest of the variants of PWS gives jobs at most their processor working set, butunder heavy load gives fewer and fewer processors to each job, thus increasinge�ciency and therefore system capacity.Setia, Squillante, and Tripathi [74] use a queuing theoretic model to inves-tigate how parallel processing overheads cause e�ciency to decrease with largerprocessor allocations. In a later study [75], they go on to show that dynamic par-titioning of the system beats static partitioning at moderate and heavy loads.Naik, Setia and Squillante [56] show that dynamic partitioning allows muchbetter performance than �xed partitioning, but that much of the di�erence in4 Actually, EASY only guarantees that the �rst job in the queue will not be delayed.



performance can be obtained by using knowledge of job characteristics, and as-signing non-preemptive priorities to certain job classes for admission to �xedpartitions.McCann and Zahorjan [51] found that \e�ciency-preserving" scheduling us-ing folding allowed performance to remain much better than with equipartition-ing (EQUI) as load increases. Padhye and Dowdy [60] compare the e�ectivenessof treating jobs as moldable to that of exploiting their malleability by fold-ing. They �nd that the former approach su�ces unless jobs are irregular (i.e.,evolving) in their pattern of resource consumption. Similarly, in the context ofquantum-based allocation of processing intervals, Chiang et al. [9] showed thatstatic processor allocations (for which jobs need only be moldable) led to perfor-mance nearly as good as that obtained by dynamic processor allocation (whichrequires that jobs be malleable).Foregoing Optimal Utilization Downey [12] studies the problem of schedul-ing in an environment where moldable jobs are activated from an FCFS queue,and run to completion. He suggests how to use predictions of the expected queu-ing time for awaiting the availability of di�erent numbers of processors in orderto decide when a particular job should be activated. The tradeo� is betweenstarting a job sooner with fewer processors and delaying its start (causing pro-cessors to be left idle) until a larger number of processors is available. Algorithmsthat leave processors idle in anticipation of future arrivals were also investigatedby Rosti et al. [69] and Smirni et al. [81].The Need for Preemption A number of studies have demonstrated thatdespite the overheads of preemption, the 
exibility derived from the ability topreempt jobs allows for much better schedules.The most often quoted reason for using preemption is that time slicing givespriority to short running jobs, and therefore approximates the Shortest-Job Firstpolicy, which is known to reduce the average response time. This is especiallytrue when the workload has a very high variability (which is the case in realproduction systems). Parsons and Sevcik [64] show the importance of preemptionunder high variance by comparing versions with and without preemption of thesame policy. Good support for short running jobs is important because it allowsfor interactive feedback.Another use of preemption that is also known from conventional uniprocessorsystems is that it allows the overlap of computation and I/O. This is especiallyimportant in large scale systems that perform I/O to mass storage devices, anoperation that may take several minutes to complete. Lee et al. [45] have shownthat some jobs are more sensitive to perturbations than others, therefore somejobs have a stronger requirement for gang scheduling. However, all parallel jobsbene�t from rate-equivalent scheduling, that is all threads get to run for the samefraction of the wallclock time, but not necessarily simultanously.Preemption is also useful to control the share of resources allocated to com-peting jobs. Stride and lottery scheduling use the notion of tickets to fairly



allocate resources, including CPU time [90,91]. Each job gets a proportion ofthe CPU, according to the proportion of tickets assigned to the job. A time lineis then produced for each job containing the periods when the job is scheduledto run. That is, the time quantums are placed at strides along the timeline. Thetimelines from all the jobs are pushed down onto a single timeline, and idle timesqueezed out.In parallel systems, preemption is also useful in reducing fragmentation. Forexample, with preemption it is not necessary to accumulate idle processors in or-der to run a large job. Feitelson and Jette [20] demonstrate that the preemptionsinherent in time-slicing allow the system to escape from bad processor allocationdecisions, boosting utilization over space-slicing for rigid jobs, and avoiding theneed for non-work conserving algorithms. Also, preemtion is needed in order tomigrate processes to actively counter fragmentation.Finally, in many computing centers it was noted that a non-negligible numberof parallel batch jobs failed to run more than a minute due to reasons such as anincorrectly speci�ed data �le. Therefore, it might be reasonable that jobs shouldbe started immediately after submission, then interrupted after 1 minute and�nally resumed and completed at a later time.Time-Slicing and Space-Slicing Scheduling Many variations of schedulingalgorithms based on time-slicing and space-slicing have been proposed and eval-uated. Time-slicing is motivated by the high variability and imperfect knowledgeof service times, as described above, while space-slicing is motivated by the goalof having processors used with high e�ciency.Time slicing is typically implemented by gang scheduling, that is, all thethreads in a job are scheduled (and de-scheduled) simultaneously. Gang schedul-ing is compared to local scheduling and is found to be superior by Feitelsonand Rudolph [24]. Squillante et al. [85] and Wang et al. [94] have analyzed avariation of gang scheduling that involves providing service cyclically among aset of �xed partition con�gurations, each having a number of partitions equalto some power of two. They �nd that long jobs bene�t substantially from thisapproach, but only at the cost of longer response times for short jobs. Feitelsonand Rudolph [23] and Hori et al. [36] analyze a more 
exible policy in whichthere is time slicing among multiple active sets of partitions. Lee et al. [45]study the interaction of gang scheduling and I/O, and found that many jobsmay tolerate the perturbations caused by I/O, that I/O bound jobs su�er undergang scheduling, and therefore argue in favor a 
exible gang scheduling.Several studies have revealed that EQUI does very well, even when some mod-erate charge for the overhead of frequent preemptions is made [86,48]. Squillante[84] provides an analysis of the performance of dynamic partitioning. Deng etal. show that EQUI is optimally competitive [11]. Dussa et al. [14] comparesspace-slicing against no partitioning, and �nds that space-partitioning pays o�.Knowledge-Based Scheduling Majumdar, Eager and Bunt showed that, un-der high variability service time distributions, round-robin (RR) was far better



than FCFS, but that policies based on knowledge of the processing requirement(such as least work �rst) were still better. Knowledge of the average parallelism ofa job makes it possible to allocate each job an appropriate number of processorsto make it operate at a near-optimal ratio of execution time to e�ciency [16].With the knowledge of how many processors each job uses, policies for packingthe jobs into frames for gang scheduling are investigated by Feitelson [18]. Feitel-son and Rudolph [22] describe a discipline in which processes that communicatefrequently are identi�ed, and it is assured that the corresponding threads are allactivated at the same time. Similar schemes in which co-scheduling is triggeredby communication events were described by Sobalvarro and Weihl [83] and byDusseau, Arpaci, and Culler [15].Taking system load and minimum and maximumparallelism of each job intoaccount as well, still higher throughputs can be sustained [77]. Chiang et al. [8]show that use of knowledge of some job characteristics plus permission to usea single preemption per job allows run-to-completion policies to approach ideal(i.e., no overhead) EQUI, and Anastasiadis et al. [3] show that, by setting theprocessor allocation of moldable jobs based on some known job characteristics,disciplines with little or no preemption can do nearly as well as EQUI.Other Factors in Scheduling McCann and Zahorjan [52] studied the schedul-ing problem where each job has a minimumprocessor allocation due to its mem-ory requirement. They �nd that a discipline based on allocation by a buddysystem consistently does well. Alverson et al. [2] describe the scheduling policyfor the Tera MTA, which includes consideration of memory requirements. Brecht[5] has carried out an experimental evaluation of scheduling in systems whereprocessors are identi�ed with clusters or pools, and intracluster memory accessis faster than intercluster access. A surprising result is that worst-�t scheduling,where each job is allocated to the pool with the most available processors, beatsbest-�t scheduling, where jobs are placed where they come closest to �lling outa pool. This is a result of using a model of evolving jobs, where it is best toleave these jobs space to grow. Yue [96] describes the creation of evolving jobsby selecting (in the compiler) at the top of each loop what degree of parallelismshould be used for that loop.Experiments with Parallel Scheduling Many of the results of the modelingstudies described above have been corroborated by experimental studies in whichvarious policies were implemented in real systems.Gibbons has experimented with a number of scheduling disciplines for schedul-ing rigid jobs in a network of workstations environment. His conclusions include:{ Activating jobs in Least Expected Work First (LEWF) order rather thanFCFS reduces the resulting average response time by factors from two to sixin various circumstances.{ If service times are unknown or if only estimates are available, then \back-�lling" (as in EASY) reduces average response times by a factor of two or



more. (If service times are known exactly, then back-�lling has less relativebene�t.){ Whether back-�lling is used or not, knowledge of service times is very helpful(particularly if preemption is supported). Having job knowledge and using itleads to response times that are a factor of three to six smaller than for thecase of no knowledge. When the knowledge is restricted to class knowledgebased on the a small database that records execution characteristics of jobs,the average response times are roughly half those with no knowledge.{ If some knowledge (class or job) is available, then preemption is much lessvaluable than in the case where no knowledge is available and bad decisionsare made (which can only be corrected by preemption).Parsons has experimented with a broader class of disciplines, most of whichexploit moldable and malleable jobs. His positive observations include:{ If migratable preemption is supported at low cost, then very good perfor-mance can be achieved, even if no service time knowledge is available. (Also,malleability is not of much additional bene�t.){ If only local preemption is supported, then class knowledge of service timesis needed in order to do well by using LEWF order for activation.{ When preemption is not supported, class knowledge and LEWF order arehelpful (roughly halving average response times), but not as much as withlocal preemption supported.{ In (typical) environments where the distribution of service times has veryhigh variance, LERWF does very well when some service time knowledge isavailable; otherwise, if malleability doesn't lead to excessive overhead, thena simple rule like EQUI does well.Some additional observations on the negative side are:{ The value of local preemption is restricted by the fragmentation that occursbecause jobs must be restarted on the same set of processors on which theypreviously ran. (In this case, either clever packing strategies or even �xedpartitioning are bene�cial, because the dependencies among jobs are thenlimited [25].){ Even with moldable jobs, performance is poor unless preemption is sup-ported, because if inappropriate allocations are occasionally made to verylong jobs, then only preemption can remedy the situation.3 Recommendations and Future DirectionsThe current state-of-the-art regarding scheduling on large-scale parallel machinesis to use simple and in
exible mechanisms. In essence, the number of processorsused for each job is chosen by the user, some su�ciently large partition acquired,and the job is run to completion. A few recent systems support preemption, sothat a parallel job can be interrupted and possibly swapped out of memory, but



many installations choose not to use this option due to high associated overheadsand lack of adequate I/O facilities.This section presents six recommendations to improve the performance ofstate-of-the-art schedulers. The recommendations are based on the conclusionsof the investigations, analysis, and simulations described above.A great deal has been learned about how \in theory" multiprogrammed mul-tiprocessor scheduling should be done. As always, it is not easy and sometimesimpossible to put theoretical results into practice, especially in production en-vironments. Note, however, that all of the following suggested approaches havebeen demonstrated to be feasible through prototype implementations and ex-perimentation.Recommendation 1: Provide system support for parallel job preemption. Pre-emption is crucial to obtaining the best performance. However, this should becoordinated across the nodes running the job. One such form of coordinationis gang scheduling, where all the threads run simultaneously on their respectivenodes. Alternatively, rate-equivalent scheduling can be used, meaning that allthreads get to run for the same fraction of the wallclock time, but not necessarilysimultanously. Note that gang scheduling implies rate-equivalent scheduling.Preemption is also a precondition for changing the number and identity ofprocessors assigned to a job during runtime which is desirable to best handleevolving and malleable jobs, but the marginal gain in performance is not sub-stantial. Hence it is justi�ed only if it can be provided with little additional e�ort(as a part of checkpointing procedures, for example).Recommendation 2: Write applications to be moldable and, if it is natural, thento be evolving. Since system loads vary with time, and users generally do notknow when they submit a job what the load conditions will be at the time thejob is activated, it is desirable that jobs be moldable rather than rigid, so thatavailable processors can be fully exploited at light load, but still e�cient use ofprocessors can be assured at heavy load.If jobs are naturally evolving (such as a cyclic fork join structure, with rela-tively long sequential periods), then writing the job as evolving (with annotationsor commands to dynamically acquire and release processors) makes it possible togreatly increase the e�ciency with which the job utilizes the processors assignedto it.Writing jobs to be malleable is much more work, and this is typically justi�edonly for applications that consume a signi�cant portion of a system's capacity,because they are either very large or invoked very frequently.Recommendation 3: When system e�ciency is of utmost importance, then baseprocessor allocations on both job characteristics and the current load on the sys-tem. Jobs make more e�cient use of their assigned processors when they havefewer than when they have more. Hence, as the workload volume increases, it



may be necessary to reduce the number of processors assigned on average toeach job. At light load, processor availability is not an issue, so each job can begiven as many processors as it can use, even if they are not being used at highe�ciency. At heavy load, the multiprocessing overhead merely detracts from theoverall system capacity, so giving jobs a small number of processors (even onein the limit as long as memory requirements don't preclude this extreme possi-bility) is the most appropriate action. By doing this, the throughput capacity ofthe system can be maximized.When speci�c processor allocations are selected by users, they tend to beoverly aggressive or optimistic. The numbers selected by users are typically suit-able for light load conditions, but they lead to unacceptably low processor e�-ciency at heavy load. Consider a case where there are N statistically identicaljobs to run on P processors. Assuming the jobs are moldable, the scheduler hasthe options to either (1) run them one at a time with all P processors, or (2) runthem in pairs with half the processors each. Both the mean and the variance ofthe response times are lower with the latter approach unless [76]:S(P ) > �2� 2N + 2� � S(P=2)This condition seldom holds when either the number of processors or the numberof jobs is moderately large.Since users cannot practically know the load on the system at the time theysubmit a job, it is best if they identify a range of acceptable processor allocations,and then leave the choice within that range to the scheduler. The current work-load volume can be taken into account either by just observing the occupancyof the queues in which jobs await initiation, or by tracking some prediction ofoverall load as it varies in daily or weekly cycles.Recommendation 4: To improve average response times, give priority to jobs thatare most likely to complete soon, using preemption when necessary. In uniproces-sor scheduling, it is known that RR scheduling protects against highly variableservice time distributions by making average response time independent of theservice time distribution (assuming preemption overhead is negligible). Further,if the service time distribution is know to have high variability, then feedback(FB) disciplines can exploit this, and yield lower average response times as thevariability of the service time distribution grows [10].When no knowledge of service times is available and malleability can beexploited, the ideal EQUI discipline, which attempts to assign an equal numberof processors to each job available for execution is optimal. EQUI is analogousto RR in a uniprocessor context in its ability to schedule relatively well evenwith no service time knowledge. If malleability is impractical due to lack ofsystem support or jobs aren't written to exploit it, then some form of preemptivescheduling based on time-slicing, such as gang-scheduling, should be used.In current practice, if queues for jobs with smaller execution times tend tohave higher priority, then this is consistent with the idea of using available service



time knowledge to favor the jobs that are expected to complete most promptly. Ifbetter knowledge of job service times than queue identities is available, then it isbest to try to activate the jobs in order of increasing expected remaining servicetime [63]. If the service times are known to be highly variable, but the servicetimes of individual jobs cannot be predicted in advance, then the discipline thatexecutes the job with least acquired service �rst is best because it emulates thebehavior of least expected remaining work �rst.Recommendation 5: Make use of information about job characteristics that iseither provided directly, or measured, or remembered. Users already provide in-formation about the execution characteristics of their jobs, in the encoded formof a queue identi�er. User supplied estimates cannot be directly believed, but theinformation is generally positively correlated with truth, and that is su�cient tomake better scheduling possible. (A good scheduling policy will penalize userswho intentionally misestimate the characteristics of the jobs they submit.)Assuming malleable jobs, some job characteristics (such as e�ciency) can bemeasured while the job is executing and the system can take appropriate actionwith respect to giving additional processors, or taking some away from the job.Finally, if some historical information is retained, then observed behavior ofprevious jobs with certain characteristics can be used to predict (approximately)the behavior of new jobs with similar characteristics.Recommendation 6: Develop New Models Based on the behavior and shortcom-ings of real machines, new models should capture relevant aspects such as thefollowing:1. di�erent preemption penalty costs associated with local preemption and jobmigration,2. a relation between execution time and allocated processors for moldable,evolving, and malleable jobs,3. prevention of job starvation by guaranteeing a completion time for each jobat the submission time of the job,4. pricing policies that are based on some combination of resource consumptionby the job, and job characteristics that may or may not be known at thetime the job is submitted,5. cyclic load patterns that motivate delaying some large jobs to time periodsof lower overall demand (e.g., \o� hours").4 The PSCHED Standard ProposalTheoretical research like that described in Section 2 tends to focus on algorith-mics and easily measurable metrics, while abstracting away from the details.System administrators, on the other hand, cannot abstract away from real-lifeconcerns. They are also faced with unmeasurable costs and constraints, such asinteroperability (will machines work together?) and software lifetime (how soon



will parts of the system need to be replaced?). Moreover, achieving the maturityand stability required of production software is much harder than building aprototyope. Finally, they need to cater to users and administrators with manydi�erent needs, leading to the creation of rather elaborate systems [4,44].As a result of such concerns, there is much interest in standardizing varioussoftware components. In recent years, message passing libraries were standard-ized through the MPI e�ort. Similarly, the PSCHED proposal aims at stan-dardizing the interactions among various components involved in parallel jobscheduling.4.1 BackgroundDeferred processing of work under the control of a scheduler has been a feature ofmost proprietary operating systems from the earliest days of multi-user systemsin order to maximize utilization of the computer.The arrival of the UNIX system proved to be a dilemma to many hardwareproviders and users because it did not include the sophisticated batch facilitieso�ered by the proprietary systems. This omission was recti�ed in 1986 by NASAAmes Research Center who developed the Network Queuing System (NQS) as aportable Unix application that allows the routing and processing of batch \jobs"in a network. To encourage its usage, the product was later put into the publicdomain.The supercomputing technical committee began as a \Birds Of a Feather"(BOF) at the January 1987 Usenix meeting. There was enough general interestto form a supercomputing attachment to the /usr/group working groups. The/usr/group working groups later turned into the IEEE POSIX standard e�ort.Due to the strong hardware provider and customer acceptance of NQS, it wasdecided to use NQS as the basis for the POSIX Batch Environment amendmentin 1987. Other batch systems considered at the time included CTSS, MDQS,and PROD. None were thought be have both the functionality and acceptabilityof NQS. This e�ort was �nally approved as a formal standard on December 13,1994 as IEEE POSIX 1003.2d. The standard committee decided to postponeaddressing issues such as programmatic interface and resource control. The su-percomputing working group has since been inactive.PBS was developed at NASA Ames Research Center as a second generationbatch queue system that conforms to the IEEE Std. 1003.2d-1994. The projectstarted in June 1993, and was �rst released in June 1994 [35].However, both NQS and PBS were designed to schedule serial jobs, and haveno understanding of the needs of parallel jobs. The only support for parallelismis regarding \processors" as another resource during allocation, on the samestanding as time, memory, or software licenses. To run e�ciently, all parts of aparallel job needed to be scheduled to run at the same time. Without supportfrom the batch queue system, most of the large installation of MPP systems hadreverted to space slicing and an \all jobs run to completion" policy.



4.2 Outline of PschedThe idea of creating a metacenter is the force behind the PSCHED project atNASA Ames Research Center. A metacenter is a computing resource where jobscan be scheduled and run on a variety of machines physically located in di�erentfacilities [34]. This concept ran into several road blocks:{ Some schedulers are tightly integrated with the message passing library:Condor and PVM.{ Almost all schedulers are tightly integrated with the batch queue system.{ Lack of support for parallel jobs.The Numerical Aerospace Simulation facility (NAS), as part of a CooperativeResearch Agreement involving several NASA centers, IBM, Pratt and Whitney,Platform Computing and others, has formed an informal group with the goal ofdeveloping a set of \standard" API calls relating to job and resource managementsystems. The goal of the PSCHED API is to allow a site to write a scheduler thatcould schedule a variety of parallel jobs: MPI-2, PVM, and SMP multi-taskingjobs to run on a collection of di�erent machines.To achieve this goal, we intend to standardize the interfaces between thedi�erent modules: message passing libraries, task manager, resource manager,and scheduler (see Fig. 2). The speci�c roles of these components areTask Manager: An entity that provides task management services such as:spawn a task on a node, local or remote; deliver a signal from one taskto another task within the same parallel application; and interface with aresource management function to provide information about nodes assignedto the set of tasks which make up a parallel application, to obtain additionalresources (nodes), to free resources (nodes) no longer required, and to notifytasks of the need to checkpoint, suspend, and/or migrate.Resource Manager: An entity that provides resource management servicessuch as: monitor the resources available in the system, reserve or allocateresources for tasks, and release or deallocate resources no longer needed bytasks.Scheduler: An entity that schedules jobs. The scheduler is responsible for de-termining which task should be run on the system according to some sitespeci�c policy and the resources available in the system.The PSCHED API is not an e�ort to standardize how any of these mod-ules should be implemented. It is an e�ort to identify the minimal functionalityneeded from each module and then standardize its interface. For example, thescheduler is a user of the interfaces provided by the task manager and the re-source manager. The scheduler waits for scheduling events from the task man-ager.The PSCHED API is divided into two areas:{ A set of calls for use by parallel processing jobs to spawn, control, monitor,and signal tasks under the control or management of the job/resource man-agement system. This set of calls should meet the needs of MPI-II, PVM,and other message passing implementations.
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Job managementFig. 2. Components of the PSCHED environment.{ A set of calls to be used by batch job schedulers. These calls will allowthe development of consistent job/resource schedulers independent of thejob/resource management system used. The calls are intended to provide astandard means of obtaining information about the resources available in theprocessing environment and about the supply of jobs and their requirements.Let us take a look at an example of how a parallel job would spawn a sub-task, adding more nodes to the running job. The job will call the message passinglibrary, for example MPI Spawn in MPI-II. The message passing library will in-terface with the task manager to spawn the new task to add more nodes to theexisting task. The task manager will inform the scheduler of the request. Thescheduler will make a decision based on its scheduling policy. If the policy al-lows the job to expand, the scheduler will request additional resources from theresource manager, then inform the task manager to start the new sub-task andallow the job to proceed.



main(){ tm_handle handle[3];/* connect to 3 different machines */tm_connect(server_1, NULL, &handle[0]);tm_connect(server_2, NULL, &handle[1]);tm_connect(server_3, NULL, &handle[2]);while (1) {/* wait for events from any of the servers */tm_get_event(handle, 3, &which_handle, &event, &job_id, &args);ack = process_event(handle[which_handle], event, job_id, args);/* acknowledge the event */tm_ack_event(handle[which_handle], event, job_id, ack);}}process_event(handle, tm_event, job_id, ...){ switch (tm_event) {PSCHED_EVENT_JOB_ARRIVED:/* call policy routine */scheduler_policy(job_id, &run_this_job, resource_needed);/* if decided to run job, reserve the resources needed* and run the job */if (run_this_job) {rm_reserve(resource_list, &resource);tm_run_job(handle, job_id, resource);}break;PSCHED_EVENT_JOB_EXITED:/* release the reources */if (resource != PSCHED_RESOURCE_NULL)rm_release(resource);/* pick a new job to run */break;PSCHED_EVENT_YIELD:/* job is ready to yield some resource, determine* whether we want to shrink or expand the job.* call the task manager if any action is taken. */break;PSCHED_EVENT_CHECKPOINT:/* a good time to migrate the job if we wanted to */break;PSCHED_EVENT_REQUEUED:/* pick a new job to run */break;Fig. 3. Example skeleton of PSCHED code components.



PSCHED_EVENT_ADD_RESOURCE:/* run policy routines */scheduler_policy(job_id, &run_this_job, additional_resource);if (run_this_job) {rm_reserve(resource_list, &resource);tm_add_resource(handle, job_id, resource);} else {/* tell server we can't fulfill the request* or suspend the run and wait for the resource */}break;PSCHED_EVENT_RELEASE_RESOURCE:rm_release(rm_handle, resource);break;default:return UNKNOWN_EVENT;}return SUCCESS;}scheduler_policy(...){ /* this is what the scheduler writters will concentrate on */} Fig. 3. (cont.)4.3 Implication on the Programming and Scheduling of ParallelJobsObvious bene�ts of a standard like PSCHED include:{ real traces can be used in simulations to develop better algorithms{ new algorithms could be directly applied to running systems{ modularity of very complex pieces of software allows a mix and match of:� batch / task management system� scheduler� communication library (e.g., MPI, PVM)� scheduling simulatorsThe PSCHED API will be 
exible enough to address some of the problemsidenti�ed in Section 3 such as shrinking and expanding jobs, checkpointing andmigrating jobs.Hopefully this set of \standard" interfaces will free researchers from the needto port their work to di�erent systems and let them concentrate on innovativescheduling algorithm and scheduler design. This will also make production ma-chines more readily available for researchers. An example of such a scheduler is



given in Fig. 3. Once written it should be very easily ported to another environ-ment. The tm and rm calls are interfaces to the task manager and the resourcemanager respectively.Areas that need standardization but are not currently addressed by PSCHEDinclude:{ Moving jobs from one batch queue system to another.{ The accounting information kept by the batch queue system.5 Discussion and ConclusionsThe relationship between theory and practice is an interesting one. Sometimestheory is ahead of practice, and suggests novel approaches and solutions thatgreatly enhance the state of the art. Sometimes theory straggles behind, andonly provides belated justi�cation for well known practices. It is not yet clearwhat role it will play in the �eld of parallel job scheduling.The question of how much theory contributes to practice also depends on themetrics used to measure performance and quality. In the �eld of job scheduling,the three most common metrics are throughput, utilization, and response time.Throughput and utilization are actually related to each other: if we assumethat the statistics of the workload are essentially static, then executing morejobs per unit time on average also leads to a higher utilization. This can go onuntil the system saturates. If users are satis�ed with the system, and the systemdoes not saturate, more jobs will be submitted, leading to higher utilizationand throughput. The role of the scheduler is therefore to delay the onset ofsaturation, by reducing fragmentation and assuring e�cient usage of processors[25]. Also, good support for batch jobs can move some of the load to o� hours,further increasing the overall utilization.In practice utilization is a very commonlyused metric, as it is easy to measureand re
ects directly on the degree to which large investments in parallel hardwareare used e�ciently. Throughput �gures are hardly ever used. Reported utilization�gures vary from 50% for the NASA Ames iPSC/860 hypercube [21], througharound 70% for the CTC SP2 [37], 74% for the SDSC Paragon [92] and 80% forthe Touchstone Delta [54], up to more than 90% for the LLNL Cray T3D [20].Utilization �gures in the 80{90% range are now becoming more common, dueto the use of more elaborate batch queueing mechanisms [49,79,92] and gangscheduling [20]. These �gures seem to leave only little room for improvement.However, it should be noted that these �gures only re
ect one factor con-tributing to utilization. The real utilization of the hardware is the product of twofactors: the fraction of PEs allocated to users, and the e�ciency with which thesePEs are used. The �gures above relate to the �rst factor, and depend directlyon the scheduling policies; they show that current systems can allocate nearlyall the resources, with little loss to fragmentation. But the e�ciency with whichthe allocated resources are used depends more on the application being run, andcan be quite low. However, the system can still have an e�ect, because in mostapplications the e�ciency trails o� as processors are added. Thus allocating less



processors under high loads should improve the second factor, and lead to higheroverall utilization [43,68,51]. This is possible with moldable or malleable jobs,but not with rigid ones.The case of the response time metric is more complex, because little di-rect evidence exists. Theory suggests that preemption be used to ensure goodresponse times for small jobs [64], especially since workloads have a high variabil-ity in computational requirements [21]. This comes close on the heels of actualsystems that implement gang scheduling for just this reason [46,32,27,20].Actually two metrics may be used to gauge the responsiveness of a system:the actual response time (or turnaround time, i.e. the time from submittal totermination), or the slowdown (the ratio of the response time on a loaded systemto the response time on a dedicated system). Using actual response times placesmore weight on long jobs, and \doesn't care" if a short job waits a few min-utes, so it may not re
ect the users' notion of responsiveness. Slowdown re
ectsthe rather reasonable notion that responsiveness should be measured againstrequirements, meaning that users should expect their jobs to take time that isproportional to the computation performed. However, for very short jobs, thedenominator becomes very small, leading to a large slowdown, even though theactual response time may be quite short, well within the interactive range. Itmay therefore be best to combine the two metrics. Let T represent the responsetime on the loaded system, Td the response time on a dedicated system, andTh the threshold of interactivity (i.e. the time users are willing to wait). Thecombined metric for responsiveness as percieved by users would then beR = �T=Td if Td > ThT=Th if Td < ThFor long jobs, this is the normal slowdown. For short jobs, this is the slowdownrelative to the interactivity threshold, rather than relative to the very short run-time on a dedicated system. If we use Th as the unit of time, then for short jobsthe expression degenerates to the response time. We suggest the name \boundedslowdown" for this metric, as it is similar to the slowdown metric, but boundedaway from high values for very short jobs.Two possible roles for theory, that have relatively few parallels in practice,are how to use knowledge about speci�c jobs [76], and how to tune algorithmicparameters [93]. In practice, knowledge about jobs is limited to that supplied bythe users, typically in the form of choosing a queue with a certain combinationof resource limits. This approach has two main drawbacks: �rst, it leads to acombinatorical explosion of queues, that are hard to deal with. Second, evenwith very many queues, the resolution in which requirements are expressed isnecessarily very coarse, and user estimates are notoriously inaccurate anyway.Recent more theoretical work shows how data can be acquired automatically bythe system, rather than relying on the users [59,31,12].At the same time that theoretical work is focusing, at least to some de-gree, on practical concerns, practice in the �eld seems to be rather obliviousof this development. One reason is that the larger and more advanced installa-tions have been developing rather elaborate scheduling facilities, which achieve



reasonable results, so the pressure for searching for additional improvements out-side is diminished. Another reason is the overwhelming concern for backwardscompatability, portability, and interoperability, which leads to standards basedon common practices and discourages innovations. It should be hoped, however,that the developed standards will be 
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