Managing Checkpoints

for Parallel Programs

Jim Pruyne and Miron Livny

Department of Computer Sciences

University of Wisconsin-Madison
{pruyne, miron}@cs.wisc.edu

Abstract

Checkpointing is a valuable tool for any scheduling sys-
tem to have. With the ability to checkpoint, schedulers
are not locked into a single allocation of resources to
jobs, but instead can stop running jobs, and re-allocate
resources with out sacrificing any completed computa-
tions. Checkpointing techniques are not new, but they
have not been widely available on parallel platforms.
We have implemented CoCheck, a system for check-
pointing message passing parallel programs. Parallel
programs tend to be large in terms of their aggregate
memory utilization, so the size of their checkpoint is
also large. Because of this, checkpoints must be han-
dled carefully to avoid overloading the system when
checkpoints take place. Today’s distributed file systems
do not handle this situation well. We therefore pro-
pose the use of checkpoint servers which are specifically
designed to move checkpoints from the checkpointing
process, across the interconnection network, and on to
stable storage. A scheduling system can utilize numer-
ous checkpoint servers in any configuration in order to
provide good checkpointing performance.

1 Introduction

The ability to checkpoint a running program, whether
it be a sequential or parallel program, is a valuable tool
for a scheduling system. One common use for check-
pointing is to provide fault tolerance. Checkpoint-
ing also allows the scheduler to re-allocate resources
among both running and queued jobs without sacrific-
ing any computations already performed. For exam-
ple, Condor’s [1] ability to checkpoint sequential pro-
grams has allowed it to effectively utilize the idle time
of privately owned workstations for long running jobs.
By checkpointing a program when an owner reclaims
a machine, Condor is able to run programs which take
much longer than any single idle interval at a worksta-

tion.

Parallel scheduling systems may also benefit from
the ability to checkpoint programs in many ways. For
example, most current parallel schedulers require the
user to specify how long a job will run, and the sched-
uler simply kills jobs which do not complete in the
specified time. By killing the job, the entire current
state of the computation is lost, and therefore the re-
source time allocated to the job has been wasted. A
more desirable approach would be to checkpoint the
entire parallel application. The checkpointed program
could then be re-submitted to the system, and com-
putation would continue from the point where the job
was forced to vacate the machine. In this way, the time
already invested in the job will be preserved.

Another use for checkpointing in a parallel sys-
tem is to perform dynamic partitioning which has been
shown [2] to be more effective than static methods
of scheduling parallel programs. In a dynamic par-
titioning scheme, the number of resources allocated to
a job is changed while the job is running based on
changes in load on the overall system. Without the
ability to checkpoint and save the state of running pro-
cesses, it would not be possible to move processes to
perform a dynamic partitioning resource reallocation.
The conditions under which dynamic partitioning is
beneficial depend greatly on the overhead involved in
doing resource re-allocation. When this overhead be-
comes high, the benefits of dynamic partitioning are
lost. It is therefore important to perform checkpoint
and restart operations as quickly as possible.

Techniques for checkpointing of parallel and dis-
tributed programs have been understood for quite
some time. For example, Chandy and Lamport pro-
posed a “distributed snapshot” protocol in 1985 [3].
Thus far, however, implementations of these tech-
niques for real parallel systems have been rare. Build-
ing on the theory and the experience gained doing
checkpointing for single process jobs in Condor, we
have developed a system for checkpointing message



passing parallel programs called CoCheck (for Consis-
tent Checkpointing). CoCheck implements a network
consistency protocol much like Chandy and Lamport’s
distributed snapshot protocol, and utilizes the single
process checkpoint ability of Condor to save the state
of each process in a parallel application.

In practice, checkpointing a parallel program tends
to be a time consuming operation. The exact attribute
which makes parallel programs desirable, their ability
to perform computations which are extremely large in
both computation and memory requirements, makes
them difficult to checkpoint. In particular, a check-
point must by definition include the entire state of the
running program. A parallel program’s state consists
of the state of the interconnection network as well as
the address space of each process. The combined mem-
ory of all of the processes often amounts to a huge
overall state which must some how be moved into sec-
ondary storage. There are two potential bottlenecks
in saving this data: the interconnection network over
which the data must travel, and the secondary storage
devices on which the data will be stored. Because the
scheduling system makes decisions related to check-
pointing, it must determine how and where the check-
points will be stored. To give the scheduler flexibil-
ity in making these decisions, we have implemented a
checkpoint server which performs checkpoint file store
and retrieve operations at the request of the sched-
uler. Using checkpoint servers, the scheduler is able
to precisely direct the movement of checkpoints, and
is not at the mercy of an external mechanism, such
as a distributed file system, in which it cannot impose
policy.

The rest of this paper is organized as follows. The
next section describes the design of CoCheck. Sec-
tion 3 provides discussion of alternatives which led to
the development of the checkpoint server, and how it
may be used by a scheduler. This is followed by some
practical experience with the overall system and some
conclusions and thoughts on future work.

2 CoCheck

CoCheck [4] is a freely available system for creating
checkpoints of parallel programs which communicate
via a Message Passing Environment (MPE). It has
been developed via a collaboration between researchers
at the Technical University of Munich and ourselves.
The implementation available today works with PVM
[5] on workstation clusters. Work is ongoing in Munich
to extend CoCheck to support MPT [6].

We started with a number of important design
goals when developing CoCheck. The first goal of

Application

CoCheck Overlay Library

MPE Library

Checkpointing Library

OS Library

Operating System

Figure 1: Layering of the CoCheck components

CoCheck was to remain portable. That is, although
the first implementation was done on top of PVM, the
concepts used in CoCheck should be applicable to any
MPE. Another important aspect of CoCheck is that
it does not require modifications to the MPE imple-
mentation. This helps with portability both across
different message passing systems, and for maintaining
compatibility with updated releases of a single system.
It also permits us to implement CoCheck on systems
for which source code is not available. Additionally,
we required flexibility in the degree of checkpointing
to be performed. For example, it may be desirable to
create a global checkpoint all processes in a parallel
application, or it may only be necessary to checkpoint
a little as one process to perform a migration. The
degree of checkpointing to be performed is put under
the control of the application or the scheduling system.
Finally, CoCheck must have no residual dependencies
on resources after a checkpoint is complete. This is to
say that it is unacceptable to require continued partic-
ipation in the life of a parallel program by a resource
on which all processes have been checkpointed.

2.1 CoCheck Components

The state of a message passing parallel program at
any given time consists of the state of each process
in the application as well as the state of the commu-
nication network which may be carrying or buffering
messages in transit. To capture this state, and to meet
our design goals, CoCheck has been designed in three
components: an overlay library for the message pass-
ing API, a single process checkpointing library, and
a resource management (RM) process which coordi-
nates the checkpointing protocol. The two libraries
are linked into every application process generating a
service layering as shown in figure 1. External to the
application is a RM process which runs as part of the



scheduling system. By using these three components,
we have been able to meet our design goals, and at the
same time leverage much pre-existing technology.

The overlay library is the key to doing checkpoint-
ing without modification to the underlying MPE. This
library provides a stub for every function defined by
the MPE. These stubs trap all application calls to the
MPE, and perform communication identifier or other
translations which must be made as a result of previous
checkpoints and restarts. In most cases, the stub will
in turn call the original MPE function to get the ac-
tual service performed. The overlay library also imple-
ments the protocol to capture the network state which
is described below.

Single process checkpointing libraries have existed
for quite some time. CoCheck utilizes the checkpoint-
ing library which was developed as part of Condor
[7, 8] which, among others, provides this functional-
ity without any modifications to the operating system
on which it runs. The technique used for performing
single process checkpointing is similar to the message
passing overlay library described above (indeed, the
techniques used in single process checkpointers were an
inspiration for CoCheck’s overlay approach). The state
of a single process includes its memory (the bounds of
its address space), the state of the processor registers,
and any state within the operating system kernel such
as the set of open files and their current seek posi-
tion. Determining the bounds of the address space
and saving the registers of a process are typically easy
to perform. However, the increasing use of techniques
such as dynamically loaded libraries have made ad-
dress space lay-outs more complex making this a more
difficult task. The overlay functions in a checkpointing
library catch calls to the kernel which modify the ker-
nel state of a process (for example, opening a file), and
record this information so that it can be saved in the
checkpoint and restored upon restart. Not all state of a
process can be saved. For example, the parent-child re-
lationship of processes following a fork() system call,
or inter-process communication outside the scope of
the MPE (e.g. pipes or sockets) cannot be retained.
The Condor checkpointing library therefore disallows
these system calls by trapping them and returning an
error.

The final component of CoCheck, the resource
manager process is the coordinator for the entire sys-
tem. The RM process provided with CoCheck is an
extension to the external RM process first designed for
use with PVM [9]. This process receives requests for
checkpointing services, and initiates the CoCheck pro-
tocol between itself and the overlay library of each the
application processes to perform these services. The
standard RM also writes a meta-checkpoint file which

can later be re-read by a new instance of the RM to
provide the information needed to restart the entire
computation. Because PVM allows new resource man-
ager processes to be defined, CoCheck can be used with
any RM process which implements its protocols.

2.2 CoCheck Protocol

The CoCheck protocol (shown in figure 2) is re-
sponsible for ensuring that the entire state of the net-
work is saved during a checkpoint, and to insure that
communication can be resumed following a checkpoint.
The CoCheck protocol begins when the RM deter-
mines that a checkpoint is required. This may be due
to an application request, or because of a change in
the state of a resource or due to a scheduling decision
(such as the end of the time quanta allocated to a job).
The RM begins by sending a signal and a message to
each of the application processes. The combination of
signal and message is required because each process
may be either computing or communicating. The sig-
nal will interrupt a process which is computing causing
it to enter the CoCheck library to participate in the
checkpoint protocol. The overlay library of a process
which is communicating will simply see the checkpoint
request message, and interpret it as a request to begin
checkpointing.

The checkpoint request message sent from the RM
to each process contains two pieces of information. The
first is how this process should participate in the check-
point. The most common alternative is for the process
to checkpoint itself. In this case, the message contains
a World Wide Web style Universal Resource Locator
(URL) which specifies where the checkpoint is to be
written. This may be simply a file, an ftp site, or it
may specify a checkpoint server which will be described
later. When the URL does not specify a local file, the
checkpoint is written directly to the network, and is
never stored on the local disk. Avoiding the local disk
operation allows checkpoints to occur at the maximum
speed the network protocols permit. Instead of specify-
ing a checkpoint destination, the message may tell the
process not to checkpoint at all, or it may request that
the process generate a new, CoCheck specific, URL
from which another process may read its checkpoint.
This last alternative provides a means of performing a
direct process migration without the need to create an
intermediate checkpoint file.

The checkpoint request message sent by the RM
also includes a list of communication identifiers of pro-
cesses which are also checkpointing. The checkpoint-
ing processes sends a ready message to each of these
processes, and then waits for ready messages from all
the other processes. Any other messages which are



Interrupt phase

P1 Send ready

A messages

:

[ Synchronisation phase |

| Checkpoint phase |

A A

1
Broadcast
RM - o

1 1
1 1
:
P2 A"}

Send ready 4 \]

messages

Figure 2: CoCheck’s network cleaning protocol

received while waiting for readys are assumed to be
part of the application’s communication, and will be
buffered in the process’ address space so they become
part of the process’ checkpoint. With the provision
that messages are delivered in order between any two
processes, it can be assumed that the network has been
drained when all of the ready messages are received.
At this point, it is safe for each process to disconnect
from the MPE (if the MPE requires it), and to invoke
the Condor checkpointing library to save its state.

To restart from a CoCheck checkpoint each pro-
cess is provided with a URL from which to read its
individual checkpoint by the RM. Prior to performing
a restart operation, the process connects itself with the
MPE to establish a new communication identifier. It
next performs a single process restart operation while
preserving its new communication id. Following the
restart, each process sends its new communication id
to the RM process. The RM collects all of these ids
from the restarting processes, and sends a mapping of
old ids to new ids to each process. When this is re-
ceived, it is installed in the CoCheck library, and all
future communications will go through this mapping
before passing into and out of the MPE implementa-
tion. In this way, processes are able to continue to
use the original communication ids which were in use
prior to the checkpoint. After the new mapping is
installed, the application processes resume from the
point at which the initial checkpoint notification was
received.

2.3 CoCheck API

CoCheck was designed to be flexible in the number of
processes to be checkpointed and in where the check-
point is to be written. To leverage this flexibility, the

interface to CoCheck must also be flexible. The basic
interface to CoCheck is with the GeneralCkpt () func-
tion. GeneralCkpt() takes arguments for specifying
three groups of processes: those that should be check-
pointed, those that should block while the processes
remain checkpointed in order to maintain a consistent
communication identifier space, and those processes
which should neither checkpoint nor block. This last
group simply insures that the network is clear between
itself and the checkpointing processes before continu-
ing. The complement to the GeneralCkpt () function
is GeneralRestart() which requires only specifying
the first two groups of processes in order to get the
checkpointed ones restarted, and to get the blocking
ones new communication identifier mappings.

The checkpoint and restart functions are asyn-
chronous remote procedure calls against the resource
manager process. As with CARMI [10], they immedi-
ately return an integer request identifier. In this way,
a process requesting a checkpoint need not block while
the CoCheck protocol is running, and while the indi-
vidual checkpoints are being stored. Processes may,
though, include themselves in any of the set of pro-
cesses defined by GeneralCkpt (). When a request is
complete, the RM sends a completion notification mes-
sage to the requesting processes.

Using these two functions as a basis, a variety of
more special case checkpointing functions can be de-
veloped. For example, it is easy to design calls which
checkpoint an entire parallel application or a single
process. With only slight extensions, it has been pos-
sible to provide requests for migrating a single process,
requesting a checkpoint to take place when another
event occurs (such as a privately owned workstation
being revoked), or allowing the user to specify where



checkpoints should be written.

3 Methods of storing Check-
point Files

When a scheduler makes a decision that an application
must be checkpointed, it must also determine how that
checkpoint will be stored. Checkpointing a parallel ap-
plication creates a very large burst of data which must
be stored reliably and as quickly as possible. This
bursty pattern is exactly the set of circumstances un-
der which most communication and storage systems
perform poorly.

The tolerance to latency in performing a check-
point will depend on the environment in which the
parallel application is running. In a situation in which
use of a resource may be revoked (such as for privately
owned workstations), there is a degree of real-time con-
straint in saving the data. Condor, for example has a
user configurable upper bound on the time allowed for
a checkpoint when a workstation is reclaimed. If the
checkpoint is not complete within this interval, Con-
dor kills the job rather than waiting for the checkpoint
to complete. In an environment where resources are
completely under the control of the scheduling system
there may be no hard constraint, but it is still very im-
portant to complete the checkpoint as quickly as pos-
sible in order to free the resources for other jobs. Time
spent checkpointing is time when useful computation
is not taking place.

The simplest, and perhaps most desirable method
of storing a checkpoint of a parallel program is to sim-
ply use an existing distributed file system. Examples of
these include the Network File System (NFS) [11] and
the Andrew File System (AFS) [12]. Using these sys-
tems for storing checkpoints is quite attractive because
it allows them to be stored in the same way as other
files. The problem of where and how data is stored is
handled by the file system. Unfortunately, these sys-
tems were not designed to perform well on operations
which involve one time transfers of large files such as
checkpoints.

NFS has stateless servers which handle file re-
quests a single page at a time. This leads to poor
performance because the file must be moved across the
network via a series of page size requests to the server.
AFS uses a more complex, full file caching scheme in
which all files accessed are moved in their entirety be-
tween the server and client disks. Practice has shown
that AFS is not adequate for parallel systems. For
example, the Cornell Theory Center recommends that
AFS not be used when data transfers become large
[13]. The caching scheme used by AFS is particularly

poor at writing results such as checkpoint files. These
results generally will not be re-used on the node where
they are generated, so caching them locally provides
no future benefit, and in fact may cause other, useful
data to be flushed from the cache. The AFS scheme
also ends up causing two disk writes (one locally and
one on the server) for the entire file. With fast in-
terconnection networks, the latency of disk accesses
becomes a bottleneck. A final difficulty with AFS is
the inflexibility in placing file servers. AFS servers are
considered insecure unless placed in a “locked room”
to which users do not have access. This limits the abil-
ity to place AFS servers such that they will be close
to the processes generating checkpoints.

3.1 Checkpoint Servers

Due of the perceived shortcomings of the existing so-
lutions, we have developed a Checkpoint Server specif-
ically suited for the problem of storing and retriev-
ing checkpoints. The goal of the checkpoint server is
simply to move data between the network and the lo-
cal disk as quickly as possible. It is the scheduler’s
job to determine when a checkpoint should take place,
and what checkpoint server should be used for storing
which checkpoint files. When a checkpoint or restart
is to be performed, the RM process, as the schedulers
representative in the CoCheck protocol, starts by con-
tacting the required servers to request a store or re-
trieve operation. The server responds by generating a
URL on which it will transfer the checkpoint, and forks
a child process to perform the transfer. The URL ser-
vice prefix (e.g. “http:” or “ftp:”) is unique to our
checkpoint server, and is understood by the Condor
checkpointing library (as described previously). This
URL contains an Internet Protocol (IP) address and
port number pair to perform a TCP transfer of the
checkpoint. TCP is used because it is the fastest reli-
able protocol available in our network of workstations
environment. In other environments, other transport
protocols could be used by generating URL’s with dif-
ferent service prefixes, and implementing them in the
URL component of the Condor library. The checkpoint
server uses a child process to perform the transfer to
insure that it will be ready to receive the next service
request.

Like other simple components, checkpoint servers
can be combined to form more complex structures. A
scheduling system can use multiple checkpoint servers
as building blocks to provide good checkpointing per-
formance. In putting the blocks together, one must
consider a number of factors. Perhaps most important
is the topology and characteristics of the underlying
communication network. In a large, fragmented net-



work with high latencies and low bandwidth, check-
point servers should be scattered about to insure that
any checkpointing process has as fast a link as pos-
sible to some checkpoint server. In a smaller, more
tightly connected network, it may not be necessary
to have many checkpoint servers since every potential
checkpointing process will always have a fast path to
a server.

One must also consider the characteristics of the
checkpoint, servers themselves. Particularly when at-
tempting to reduce the total number of checkpoint
servers, it is important to look at issues such as the
bandwidth of the disk. When a fast network delivers
many checkpoints to the same server, the disk will be-
come the bottleneck. Also, the capacity of the disk is
important. A server with a small disk should not be
placed in a location where it will be expected to store
many checkpoints. A scheduling system must under-
stand these sorts of characteristics of its checkpoint
servers, and schedule the checkpoint servers much like
it would schedule compute or other resources.

A final consideration when deciding how to use
checkpoint servers is how frequently checkpoint oper-
ations take place. In an opportunistic system such
as Condor, the return of a single user may cause a
multi-node parallel application to checkpoint. For this
environment, it is worthwhile to allocate significant re-
sources to checkpointing because they will be needed
frequently. In all environments the frequency of check-
point operations is going to be determined by the way
in which the scheduler utilizes checkpointing.

A scheduler may trigger checkpoints periodically
to provide fault tolerance. The degree of checkpoint-
ing in this case is going to depend on the scheduler’s
level of trust for its resources. When resources are re-
liable, the interval between checkpoints may be large,
and there will be little load placed on the checkpoint
servers. When the resources are less reliable, check-
points may be taken more often in order to reduce
the amount of computation lost due to a failure. A
checkpoint may also be invoked based on the prior-
ity of jobs in a queue. There may be a preemption
policy that running jobs will be checkpointed and re-
placed by newly submitted jobs with higher priority.
Checkpoints may also be used to perform re-allocation
of resources among running jobs to implement a dy-
namic partitioning strategy or, for example, to move
processes which communicate frequently close to one
another. In all of these cases, the variety of jobs is go-
ing to influence the frequency of checkpoints and there-
fore the level of checkpoint servicing required. It is
therefore extremely important that the scheduler have
flexibility in the number and placement of checkpoint
servers.

Parallel schedulers also need to take the place-
ment of checkpoint servers into consideration when
they are allocating processes to compute nodes. Pro-
cesses should be spread around the resources such that
no single checkpoint server will be overloaded in case
there is a need to checkpoint. Knowledge of the char-
acteristics of the checkpointing infrastructure should
be used. The scheduler must balance its desire to dis-
tribute checkpoints evenly with the application’s need
for high bandwidth and low latency communication
which generally are achieved by clustering the appli-
cation processes. Applications which do not do inten-
sive communication may be scheduled based on the
expected checkpointing requirements, while communi-
cation intensive applications may be scheduled to re-
duce application communication time at the cost of
higher checkpoint times.

4 Experience with the deploy-
ment of checkpoint servers

As described in the previous section, before deploy-
ing checkpoint servers in our department, we had to
understand the need for checkpointing services as well
as the characteristics of our communication infrastruc-
ture. The Computer Sciences department at the Uni-
versity of Wisconsin has around 200 desktop worksta-
tions most of which are available to the Condor re-
source management system for executing long running
sequential applications. Each of these workstations is
also available to users via CARMI [10] the resource
management and parallel programming interface to
Condor. Condor has always supported checkpointing
of sequential applications, and CoCheck has recently
been integrated with CARMI to provide checkpointing
services to parallel applications. Because checkpoints
in this environment are triggered by owners returning
to their workstations, they occur relatively frequently.
We therefore require a checkpoint server architecture
which can service numerous checkpoints.

The principle limitation in our environment, as
in many other environments, is the available network
bandwidth. Each of our workstations lies on an Eth-
ernet class sub-net. Each Ethernet is connected to one
or two routers which in turn directly connect each sub-
net to three to five other sub-nets as well as an FDDI
backbone. The path between any two workstations,
therefore, is at best at the Ethernet rate of 10 %,
and may require crossing one or two routers. The de-
partment also has AFS available to all of the work-
stations, and the AFS servers are connected directly
to the FDDI ring. We therefore wish to explore the
alternatives in placing checkpoint servers on sub-nets



Checkpoint Route

Time to Checkpoint

Checkpointer and server on same sub-net

Checkpointer and server on separate sub-nets connected to the same router | 64
Checkpointer and server on separate sub-nets with FDDI in between 79
Checkpointer on Ethernet, server directly connected to FDDI 49

46

Table 1: Times, in seconds, to write a 32Mb checkpoint file

as well as sharing the AFS servers which are directly
on the FDDI ring.

Table 1 summarizes the results of experiments to
determine how the network topology affects the time
to write a checkpoint. In each of these experiments,
a 32Mb checkpoint file was generated on a SPARC
workstation running SunOS 4.1.3. The checkpoint files
were received at checkpoint servers running on Dec
Alpha workstations running OSF/1 V2.1. The results
reported are the average of a number of checkpoint
operations. In all cases, the variance in the time to
checkpoint was low. As would be expected, placing
the checkpoint server and checkpointing process on the
same sub-net produced the best results. Placing the
checkpoint server on FDDI performed nearly as well.
In the tests where the checkpoint had to move off of one
sub-net and onto another, the time increased markedly.

From these results, it seems that the most desir-
able method of placing checkpoint servers would be
one per sub-net. In this way, every workstation will
have the fastest available path to a server. There are
two disadvantages to this. First, the number of sub-
nets is large (approximately a dozen containing user’s
workstations), so many resources would have to be es-
tablished as checkpoint servers. Also, although placing
a checkpoint server on each sub-net will improve check-
point times, to gain the same advantage at restart time
would require re-scheduling a job on the same sub-
net as when it last checkpointed. This severely limits
the number of resources available for a restarting job.
We wish to investigate ways to circumvent this prob-
lem by building hierarchies of checkpoint servers. A
small checkpoint server could be placed near to the
resource on which the checkpoint is taking place, but
after the checkpoint is complete, it could be moved to
some larger higher level server from which the restart
will occur. This movement to the higher level server
could take place off-line, when there is no immediate
need for the checkpoint at any particular site.

Placing checkpoint servers directly on the FDDI
ring appears to be nearly as desirable as having a
checkpoint server per sub-net. In our environment,
there are administrative barriers to this, but it appears
that, in general, it would be wise to dedicate some re-
sources on the highest bandwidth portion of a network

150 .
! ---AFS
/- 1Ckpt. Server on Ethernet
/ - - 2 Ckpt. Servers on Ethernet
. / — 1 Ckpt. Server on FDDI
100 | /

—- 2 Ckpt. Serverson FDDI

Timeto Checkpoint (Secs.)
3
1

Size of Checkpoint files (M bytes)

Figure 3: Time to checkpoint 2 processes of various
sizes

to provide good checkpoint performance.

Our second set of tests was intended to determine
if checkpointing performance scales as the number of
checkpointing processes, servers and size of individual
checkpoints is increased. We also wanted to see ex-
actly how well an existing file system, AFS, performs
on these operations. Once again, our tests were limited
by the bandwidth on our network. It is clear that no
single checkpoint can occur faster than the bandwidth
of a single sub-net, so we did not want any two check-
pointing processes to lie on the same sub-net. This
constraint limited us to checkpointing no more than
two processes simultaneously. Figure 3 shows the re-
sults of different checkpoint server configurations and
checkpoint sizes.

In all cases, the time to checkpoint scaled nearly
linearly with the size of the checkpoint files. The most
striking result is how poorly AFS performs for check-
point operations. As mentioned previously, this is due
to the method in which AFS caches files. As a check-
point is being written, it is stored entirely on the local
disk. When the file is closed, it is read off of the disk,
and transfered across the network to the file server
where it is written to the server’s disk. This requires
three disk I/O’s as opposed to one for the checkpoint
server. Nonetheless, it is surprising that AFS required



150

,/'
K4
;= AFS
/" --- 1 Ckpt. Server on Ethernet

@ ,/‘/ - - 2 Ckpt. Servers on Ethernet
g 100 e — 1 Ckpt. Server on FDDI
?%’ v —- 2 Ckpt. Servers on FDDI

4 .
‘B L.
o
2
(] -
EX
=

0 . ,

0 10 ) 30
Size of Checkpoaint files (Mbytes)

Figure 4: Time to restart 2 processes of various sizes

approximately an order of magnitude more time to
produce a checkpoint.

In the checkpoint server cases, the results are what
one might expect by extrapolating from the single
checkpoint, tests. Sending two 32Mb checkpoints to
the same checkpoint server, takes almost exactly twice
as long (90 seconds) as sending one checkpoint to one
server. When sending to two checkpoint servers on
separate sub-nets, we were constrained by our envi-
ronment to go across the FDDI ring. The last of
two checkpoints completed in virtually the same time
as one checkpoint taking a route across FDDI. Send-
ing two checkpoints to one server on FDDI took only
slightly longer (58 seconds) than sending one check-
point onto FDDI (49 seconds). This implies that the
network is still the bottleneck in this operation, and
that the processor and disk are still able to keep up. As
more sub-nets feed the same FDDI connected check-
point server, we would expect the disk to become the
bottleneck. The fact that an additional server on the
FDDI ring does not improve checkpoint performance
further shows that the single server is not yet a bot-
tleneck.

Figure 4 shows results of similar experiments for
restarts. The same configurations of checkpoint servers
and checkpoint sizes were used for the restart tests as
for the checkpoint tests. The results for restarts are
similar to those for checkpoints. Once again, AFS per-
forms poorly, though restarts are significantly better
than checkpoints. Typically, restart times are slightly
higher than checkpoint times. This is due to the fact
that in order to perform a restart, the executable file
for the restarting process must first be moved to the
executing machine. Executables are moved from the
checkpoint server to the local disk of the executing ma-
chine using the same mechanism as checkpoint files.

5 Conclusions and future work

Parallel job schedulers are faced with an increasingly
difficult task because the type of jobs and the types
of resources are becoming more and more diverse.
By providing schedulers with new techniques, such as
checkpointing, we make it possible for more efficient
schedules to be created. With each new technique,
however, comes additional complexity of determining
when and how to use it. For checkpointing, the prob-
lem is determining both when to checkpoint and how
to most efficiently move large checkpoint images.

Today’s methods of storing files on parallel sys-
tems, namely distributed file systems, do not provide
adequate performance for storing checkpoints. These
file systems are also implemented completely outside of
the scheduling system, so the scheduler has very little
means of controlling how they move data. By imple-
menting checkpoint servers, we have given the schedul-
ing system control over where and when data will be
transferred. The scheduler can then treat the check-
point servers like other resources which must be sched-
uled. Checkpoint servers provide the scheduler a great
deal of flexibility in how checkpoints are stored. Tech-
niques such as hierarchical checkpoint servers or strip-
ing a single checkpoint across multiple servers have not
yet been investigated, but may provide higher levels of
performance.

Initial experience with CoCheck has been very
good, and the current work to support MPI with
CoCheck is a good sign of its portability. Further ex-
perience with the checkpoint servers, and how best to
utilize them is needed. Our existing testing environ-
ment is severely limited by the bandwidth of our net-
work. We hope to gain further experience with the
checkpoint servers on hardware which is dedicated to
parallel processing and which contains a faster inter-
connect. Our department’s Cluster Of Workstations
(COW) which consists of forty dual processor SPARC
workstations connected by a Myrinet is a likely tar-
get. The current obstacle to this is porting the Condor
checkpointing library to the Solaris operating system
which runs on these nodes. The simplicity of the check-
point server should allow us to easily tailor it to use
the best available communication protocol as we move
to new hardware.

In addition to checkpoints, users’ data sets must
be distributed among the nodes of a parallel system.
Integrating the distribution of this data into a schedul-
ing system may allow faster start up of jobs. Instead
of jobs waiting for the nodes to be loaded after be-
ing scheduled, the scheduler could load the data us-
ing techniques similar to the checkpoint server. This
would require additional submit time information from



the user specifying what data is needed on which node.
Further integration with parallel I/O systems would
also be desirable.

Acknowledgements

We wish to thank Georg Stellner of the Technical Uni-
versity of Munich for his initial design and collabora-
tion during the development of CoCheck. The prin-
ciple work on the implementation of the Checkpoint
Server was done by Hsu-lin Tsao as part of a class
project for Prof. Marvin Solomon.

References

[1]

[3]

[4]

[5]

M. J. Litzkow, M. Livny, and M. W. Mutka, “Con-
dor: A hunter of idle workstations,” in Proceed-
ings of the 8th International Conference on Dis-
tributed Computing Systems, pp. 104-111, June
1988.

M. Squillante, “On the benefits and limitations
of dynamic partitioning in parallel computer sys-
tems,” in Job Scheduling Strategies for Parallel
Processing (D. G. Feitelson and L. Rudolph, eds.),
vol. 949 of Lecture notes in Compter Science,
Springer-Verlag, 1995.

K. M. Chandy and L. Lamport, “Distributed
snapshots: Determining global states of dis-
tributed systems,” ACM Transactions on Com-
puter Systems, vol. 3, pp. 63-75, Feb. 1985.

G. Stellner and J. Pruyne, “Resource manage-
ment and checkpointing for PVM,” in Proceed-
ings of the 2nd FEuropean Users’ Group Meeting,
pp. 131-136, Sept. 1995.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam, PVM: Parallel
Virtual Machine — A Users’ Guid and Tutorial
for Networked Parallel Computing. Cambridge,
MA.: The MIT Press, 1994.

G. Stellner, “CoCheck: Checkpointing and pro-
cess migration for MPL” in Proceedings of

the International Parallel Processing Symposium,
IEEE, April 1996.

M. J. Litzkow and M. Solomon, “Supporting
checkpointing and process migration outside the
Unix kernel,” in Proceedings of the Winter Useniz
Conference, (San Francisco, CA), 1992.

(8]

[9]

[10]

[11]

[12]

[13]

T. Tannenbaum and M. Litzkow, “The Condor
distributed processing system,” Dr. Dobb’s Jour-
nal, pp. 40-48, February 1995.

J. Pruyne and M. Livny, “Providing resource
management services to parallel applications,” in
Proceedings of the Second Workshop on Envi-
ronments and Tools for Parallel Scientific Com-
puting (J. Dongarra and B. Tourancheau, eds.),
STAM Proceedings Series, pp. 152-161, SIAM,
May 1994.

J. Pruyne and M. Livny, “Parallel processing on
dynamic resources with CARMI,” in Job Schedul-
ing Strategies for Parallel Processing (D. G. Fei-
telson and L. Rudolph, eds.), vol. 949 of Lecture
notes in Compter Science, Springer-Verlag, 1995.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh,
and B. Lyon, “Design and implementation of the
Sun network file system,” in Proceedings of the
Summer Useniz Conference, pp. 119-130, 1985.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham,
and M. J. West, “Scale and performance in a dis-
tributed file system,” ACM Transactions on Com-
puter Systems, vol. 6, pp. 51-81, February 1988.

J. Gerner, “Input/output on the IBM SP2-an
overview.” http://www.tc.cornell.edu/

SmartNodes/Newsletters/I0.series/intro.html.



