
Implementation of Gang-Scheduling on Workstation Cluster

Atsushi Hori, Hiroshi Tezuka, Yutaka Ishikawa,

Noriyuki Soda

y

, Hiroki Konaka, Munenori Maeda

Tsukuba Research Center

Real World Computing Partnership

Tsukuba Mitsui Building 16F, 1-6-1 Takezono

Tsukuba-shi, Ibaraki 305, JAPAN

TEL:+81-298-53-1661, FAX:+81-298-53-1652

y Software Research Associates, Inc.

E-mail:fhori,tezuka,ishikawa,soda,konaka,m-maedag@trc.rwcp.or.jp

URL:http://www.rwcp.or.jp/people/mpslab/score/scored/scored.html

Abstract

The goal of this paper is to determine how e�-

ciently we can implement an adequate parallel pro-

gramming environment on a workstation cluster with-

out modifying the existing operating system. We have

implemented a runtime environment for parallel pro-

grams and gang-scheduling on a workstation cluster.

In this paper, we report the techniques used to imple-

ment gang-scheduling on a workstation cluster and the

problems we faced. The most important technique is

\network preemption" and a unique feature of our ap-

proach is that the gang-scheduling is also written in

a parallel language. Our evaluation shows that gang-

scheduling on workstation clusters can be practical.

1 Introduction

Workstation clusters are gathering attentions to an

alternative of parallel machines [1, 2, 13]. If a work-

station cluster can be made to imitate a parallel ma-

chine, then it would be a cost-e�ective and familiar-

to-use parallel execution environment. To prove this,

we have implemented a parallel program execution en-

vironment on a workstation cluster.

The goal of this paper is to determine how e�-

ciently we can implement an adequate parallel pro-

gramming environment on a workstation cluster with-

out modifying the existing operating system. We have

implemented an e�cient runtime environment for par-

allel programs and gang-scheduling on a workstation

cluster.

Gang-scheduling is known to be e�cient for job

scheduling parallel programs [10, 4, 2]. However, it is

not obvious how e�cient it will be when implemented

on workstation cluster.

In this paper, we report on techniques to imple-

ment gang-scheduling on a workstation cluster and

problems we faced. The most important technique

is \network preemption" and a unique feature of our

approach is that the gang-scheduling is also written in

a parallel language.

2 Assumptions and Terminology

Parallel Process

A \parallel process" is a set of processes that are ex-

ecution entities of an SPMD program. When parallel

processes are switched, all parallel processes are as-

sumed to be scheduled simultaneously (gang-scheduled).

Workstation Cluster

A workstation cluster is a set of workstations con-

nected by a high-speed network. Here, the workstation

cluster is a computation server for parallel (and se-

quential) programs. If a user requests n processors to

run a parallel program, the system provides at least n

processors out of N processors in the cluster (n � N).

We assume that every workstation in the cluster is

Myrinet Switch

Host Machines
Sun Sparc Station 20 (75MHz)

Software Version
Sun OS 4.1.4

Myrinet Switch

Figure 1: Myrinet and SS20 Cluster

dedicated for use as a computation server. And we

assume that none of the workstations are available for

use as a personal computer.

This usage model is almost the same as the Proces-

sor Pool Model[14], except that our model can provide

a \virtual parallel machine." The workstation cluster

can be multiplexed in processor space and/or time to

serve as a virtual parallel machine.

The current con�guration of our workstation clus-

ter is shown in Figure 1. Nine SS20s are connected by

a Myrinet [3], a gigabit class high speed LAN. All the

evaluations in this paper are measured on this work-

station cluster.

Processor

In this paper, we assume all workstations have exactly

one processor. This assumption simpli�es the model

used for explanation, and this is true of the worksta-

tion cluster we used.

3 SCore-D

SCore-D is a parallel process. Figure 2 shows the

process structure on a workstation cluster with SCore-

D. One of the SCore-D daemon processes is a dedi-

cated server that is the entry point (connection host)

from user programs. This process is called the \Server

Process." The rest of the processes are called \SCore-

D Processes."

Here, it is assumed that user programs are linked

with an appropriate runtime library. When the user

program is invoked on the user's local workstation,

the runtime tries to make a TCP connection with the

SCore-D server. The process running on the user's

Legend Process Front End Process TCP/IP Stream

Score-D Parallel Process
SCore-D
Process

SCore-D
Process

SCore-D
Server

User
Process

User
Process

User
Process

User
Process

User
Process

User
Process

User
FEP 1

User
FEP 2

User
FEP N

User Parallel Process 1

User Parallel Process 2

User Parallel Process N

Workstation Cluster

User Workstation

Workstation Workstation Workstation

User Workstation

Figure 2: Process Structure of SCore-D

workstation is called the \Front End Process (FEP)."

When the connection is accepted, the runtime passes

information on the user's program to the SCore-D

server, and the server passes the information to the

rest of the SCore-D processes. Then SCore-D spawns

(fork and exec, in UNIX) the user processes, and the

user processes now become a parallel process. When

spawned, each SCore-D process make a TCP connec-

tion with the FEP. This TCP stream becomes the

standard output of the user parallel process, and the

FEP passes the streamed data to its standard output.

Due to the limitation of the current version, one of

the workstations in the cluster is a dedicated SCore-D

server.

The user parallel process can be stopped, run, and

killed, when the SCore-D processes send, SIGSTOP,

SIGCONT, and SIGKILL signals respectively to the child

processes. SCore-D processes can also detect an ab-

normal end in user process. Using the signal func-

tions of UNIX, SCore-D can schedule user parallel pro-

cesses.

From the user's view point, it looks as if the invoked

user program spawns itself onto the workstations in

the cluster. Further, when the FEP is suspended, re-

sumed or killed by the user, the corresponding user

parallel process is suspended, resumed or killed. Thus

the FEP and spawned parallel process look seamless.

3.1 MPC

++

The SCore-D program is written in MPC

++

. The

user parallel programs running under SCore-D are as-

sumed to be written in MPC

++

. Since SCore-D itself

is a parallel program, it is natural to write in a multi-

threaded parallel programming language.

MPC

++

is a multithreaded parallel language based

on C++[7, 9]. MPC

++

provides a SPMD parallel pro-

gramming model and threads of control to extract the

full power of parallel machines or workstation clusters.

One of the most unique features of MPC

++

is meta-

level programming which enables users to extend its

language features [6, 8].

The MPC

++

compiler consists of a front-end proces-

sor and a back-end processor. The front-end can also

generate C++ source code and the generated C++

code can be compiled with GNU g++ compiler. The

MPC

++

language features and the meta-programming

results are thus compiled and will run on most com-

puters.

3.2 MPC

++

runtime library

The evaluated programs described in this paper are

compiled with the MPC

++

front-end processor and GNU

g++ compiler. The compiled codes are linked with

MPC

++

runtime library. The library is designed to

have low overhead and to support the functions re-

quired by MPC

++

programs.

There are two kinds of runtime library for MPC

++

program. One is stand-alone and the other is as-

sumed to run under SCore-D. The stand-alone version

forks processes using the UNIX rsh command. We

also implemented two ways to wait for incoming mes-

sages from remote processors, block-wait and busy-

wait. The MPC

++

process is blocked when there is no

current message using block-wait. The MPC

++

process

continues spinning around until a remote message(s)

arrive(s) by busy-wait. SCore-D uses the block-wait

runtime library, while user parallel processes use busy-

wait runtime library. To do so, the overhead to block

user process can be avoided, and user processes can

get more CPU time.

When a thread suspends and waits at synchroniza-

tion point, its execution stack should be kept in the

thread model of MPC

++

. This is a normal thread

model and setjmp and longjmp subroutines are used

to implement thread context switching. It is known

that longjmp takes longer time on the processor with

register windows than the other kind of processors.

We have succeeded to fasten longjmp several times

faster, writing our own setjmp and longjmp subrou-

tine in an assembler for SPARCstations.

The other key technique used in the MPC

++

runtime

library is our own Myrinet driver software, described

in the next subsection. With the Myrinet software

driver and the fast thread implementation, the MPC

++

runtime library realizes a very e�cient multi-threaded

programing environment.

3.3 PM Communication library

The Myrinet LAN interface board has a dedicated

processor, called LANai. LANai software is also pro-

vided by Myricom, Inc. Their focus is, however, on

achieving high bandwidth. The latency from the user

level Myrinet LAN is only a few times faster than

UDP with 10 base-T. This is not surprising as they

are targeting users using Myrinet as an alternative to

Ethernet.

FM[11] achieved 22 � sec in one-way latency with

the same Myrinet, using their own LANai program.

We have also developed our own LANai program and

driver program, called PM. PM achieved 24 � sec in

one-way latency. Both FM and PM implement the

communication layer at user-level, and use neither sys-

tem calls nor interrupts. In the order of micro-seconds,

the overheads incurred by system calls or interrupts

are prohibitive.

PM can support a multi-process environment, while

FM cannot. PM has several communication channels

1

. A channel consists of two FIFO bu�ers for receiv-

ing and sending messages. Since these channels are

memory-mapped, copying messages is avoided. These

channels can be used to implement priority in message

sending and receiving, or to realize a multi-process en-

vironment. In SCore-D, SCore-D processes use one

channel, and the user processes use the other chan-

nel(s). If those channels are memory-mapped in each

user address space, then the inter-process protection

can be guaranteed.

For
ow-control, an Ack message is sent back to the

sender when the receiving is succeeded. If the receive

bu�er is full, PM sends back a Nack message. At the

sender, when the Ack message is received, PM just

frees the sending message area of memory. Thus this

ow control mechanism does not result in doubling the

latency.

Due to the multi-channel support and the
ow con-

trol, the PM performance is slightly degraded com-

pared with FM. However, these are the keys to devel-

oping a multi-process environment, as described in the

next subsection.

3.4 Support for gang scheduling

To support a multi-process environment, it is not

enough to have multiple channels. Even if there were

1

Currently three channels are implemented in PM.

Server Process

Score-D Processes

User Processes (old)

FREEZE

SIGSTOP SIGCHLD

FROZEN

SAVE

STOPPED

RESTORE

RESTORED

RUN

RUNNING

SIGCONT

User Processes (new)

Figure 3: Parallel Process Switching

a su�cient number of channels, and the number of

channels limits the number of simultaneously running

processes, one should guarantee that there is no mes-

sage in all those channels involved in the process in

the network, when the channel is reused. Otherwise a

message being sent in a parallel process may be lost

and another parallel process may receive the message

instead. This results in confusion.

If a message protocol layer exists in the operat-

ing system kernel, then this situation can be avoided.

However, if all the message protocol layers are im-

plemented at user level, it is very important to have

fast inter-processor communication, and therefore we

need a mechanism to detect when the messages for a

parallel process in a network are
ushed. If this is

possible, then parallel processes can be preemptable,

time-sharing of parallel processes can be implemented,

and fast user-level communication is achieved at the

same time.

To implement this requirement, we apply the Ack

based protocol of PM to guarantee the non-existence

of a message for a process in the network. It is nec-

essary to sense the state in which PM (and LANai)

receives all the Ack or Nack messages corresponding to

the sending messages. We call this the \steady state."

Further, PM provides the other functions to save and

restore the channel context.

However, we must still guarantee that no message

comes while or after the channel context is being saved.

Unless loss of message or an inconsistent channel sta-

tus would result. Figure 3 shows the procedure to

switch processes in gang-scheduling which guarantee

this. This procedure exactly mirrors the SCore-D pro-

cess. We assume that the SCore-D server process has

the control of process scheduling.

1. The server process decides to switch processes,

and tells all SCore-D processes to stop currently

running user processes (FREEZEmessage in Fig-

ure 3).

2. Each SCore-D process sends SIGSTOP!$ and knows

that the user process has stopped when it re-

ceives the SIGCHLD signal. Then SCore-D pro-

cesses wait until the user's PM channel is in the

steady state.

3. The server process is informed each processor

is now in the steady state (FROZEN message).

The server process waits until it receives a FROZEN

message from each of the processors involved

in user processes. This �nally guarantees that

there are no messages from user processes in the

network.

4. After this guarantee, the server process tells all

SCore-D processes to save the channel context

(SAVE message).

5. Each SCore-D process saves its channel context.

Completion of saving is reported to the server

process (STOPPED message).

6. The server process waits for all STOPPED mes-

sages, to con�rm that all user processes have

been stopped. Then server process tells user pro-

cesses to restore the context of the next process

to run with the RESTORE message.

7. Each SCore-D process restores the channel con-

text, and reports to the server process when done

(RESTORED message).

8. When the server process has received all RE-

STORED messages, the server tells all SCore-D

processes to run the new user processes (RUN

message).

9. The SCore-D process sends a SIGCONT signal,

and reports to the server process (RUNNING

message).

10. The server process now knows that all new user

processes are running.

The above procedure can be thought of as \network

preemption." We have already proposed that this

network preemption can be used not only for gang-

scheduling, but also to detect an idle or terminated

status in a parallel process, checkpointing, or global

GC[5].

1 int pe;

2 int dist() {

3 return(pe = (pe + 1) % NPE);

4 }

5 int fibonacci(int n) {

6 if(n < 2) return(n);

7 else

8 return(fibonacci(n-1)@[dist()] +

9 fibonacci(n-2)@[dist()]);

10 }

11 void fib(int n, int loop) {

12 int i;

13 for(i=0; i<loop; i++)

14 fib(n);

15 }

Figure 4: Example of MPC

++

program

1 void rt(int hop_count) {

2 if(hop_count == 0) exit(0);

3 rt(hop_count - 1)@()[next_pe()];

4 }

Figure 5: Round-Trip program

4 Evaluation

Figures 4 and 5 are the MPC

++

programs used to

evaluate the SCore-D scheduling. Figure 4 is a �-

bonacci program to calculate the nth number in the �-

bonacci series. In this program, two threads are forked

in a thread recursively (lines 8 and 9). The @ symbol

at the end of the function call and the expression in

square brackets indicates synchronous remote function

call of the function on the processor speci�ed by the

expression.

The �rst thread to calculate the n � 1th term in

the �bonacci series is forked and waits for its answer.

Then the second thread to calculate the n� 2th term

is forked and waits again. Finally the answers return

to their parent thread. Those threads are distributed

simply in a round-robin fashion. The fib() function

is the top level function to be used in the evaluation.

It simply iterates to calculate the �bonacci term for

the number of times speci�ed in the loop argument.

Figure 5 is the other MPC

++

program used in the

evaluation. In this program, threads are forked to

the next processor sequentially. A thread forks an-

other thread to the next processor and terminates. In

the notation of thread invocation in this program, the

function is forked asynchronously way (line 3). For

more details, refer [6, 8, 9].

We chose those two evaluation programs because

they are positioned on opposite sides in the execution

pattern. The �bonacci program forks a number of

threads almost explosively. In the round-trip program,

however, there is no more than one running thread and

Table 1: Execution time of evaluation programs [sec:]

Number of processors

1 2 4 8

�b(15,1000) 15.47 77.7 105.1 121.5

rt(1000000) 4.09 34.55 35.56 34.94

Table 2: Network preemption time [10

�3

sec:]

Bu�er Time

Receive Send Save Restore

empty empty 0.13 0.11

empty full 1.88 1.40

full empty 3.39 1.95

full full 5.15 3.22

no more than one message during the execution of the

program.

4.1 MPC

++

runtime performance

Table 1 shows the execution time for each evalu-

ation program on our workstation cluster. For the

�bonacci program, the larger the number of proces-

sors, the longer the execution time. This is because

the granularity of the thread is too �ne. In this pa-

per, however, the communication and thread invoca-

tion pattern is the focus, not the speed. Supposedly,

the execution time of a round-trip program is almost

constant, independent of the number of processors.

From the execution time of the round-trip program

we can estimate the overhead for MPC

++

runtime. It

takes about 4 �sec. to fork a local thread. For a

remote thread, it takes about 35 �sec. including 24

� sec. one way latency at the PM level. With the

�bonacci program, we found that our MPC

++

runtime

is about 17 times faster than implementing the thread

using LWP provided with the SunOS.

Table 2 shows the time to save or restore the net-

work context at the PM level. In this table, bu�er

\empty" means that there is no message in the bu�er,

and \full" means that the bu�er is almost full. A full

receive bu�er contains 2,730 messages in 32 KBytes.

A full send bu�er contains 511 messages in 12 KBytes.

As expected, the time to save or restore depends on

the amount of messages in the bu�ers. In this table,

context saving takes more time. This is because read-

ing from the S-Bus memory space is slower than the

writing to the S-Bus memory space.

Table 3: Elapsed Time Ratio under SCore-D

SCore-D/ Number of processors

stand-alone 1 2 4 8

�b(15,1000) 1.00 0.99 1.01 1.01

rt(1000000) 1.00 1.01 0.97 1.00

Time Quantum : In�nite

0

10

20

30

40

S
lo

w
 d

ow
n

[%
]

0.2 0.4 0.6 0.8 1

Time quantum [sec.]

8 PEs

1 PE

2 PEs

4 PEs

Figure 6: Gang-scheduling Overhead : �b()

Table 3 shows a comparison of elapsed time between

the program linked with stand-alone runtime and the

program running under SCore-D linked with SCore-D

runtime. In this table, the time quantum of gang-

scheduling is in�nite. Since there is no reason for a

slow-down in program execution under SCore-D, the

speeds of the evaluation programs are the same.

4.2 Gang-scheduling performance

Figures 6 and 7 show the slow-down curves due to

the gang-scheduling overhead on each evaluation pro-

gram. The time quantum is varied between 200, 300,

500, and 1,000 msec. In each time quantum, the num-

ber of processors is also varied between 1, 2, 4 and

8.

The slow-down due to the scheduling overhead can

be calculated as,

T

Elapsed

=

T

Quantum

T

Quantum

� T

Overhead

T

Process

0

10

20

30

40

S
lo

w
 d

ow
n

[%
]

0.2 0.4 0.6 0.8 1

Time quantum [sec.]

8 PEs

1 PE

2 PEs

4 PEs

Figure 7: Gang-scheduling Overhead : rt()

Table 4: Gang-scheduling Overhead [10

�3

sec:]

Number of processors

Program TQ 1 2 4 8

�b(15,1000) 200 2.6 13.9 33.1 46.6

300 2.3 14.7 31.5 45.5

500 2.3 14.7 31.5 45.5

1000 1.6 16.1 29.9 35.1

rt(1000000) 200 3.0 15.3 27.0 41.6

300 1.9 15.2 25.6 41.5

500 2.5 19.5 28.8 41.0

1000 0.2 15.8 25.8 34.5

where T

Elapsed

is the elapsed time, T

Quantum

is the

time quantum, T

Overhead

is the scheduling overhead,

and T

Process

is the processing time. Figure 8 shows

the slow-down curves calculated with this formula,

and the scheduling overhead times calculated from the

evaluation results are shown in Table 4.

The possible reasons for scheduling overhead are, i)

SCore-D overhead, ii) re�lling the cache (
ushed out

by SCore-D), iii) saving and restoring the network con-

text (network preemption), and iv) process switching

at the UNIX level. The SCore-D overhead includes

the costs of broadcasts and synchronizations. Thus

the scheduling overhead can depends on the number

of processors involved. The cost of network preemp-

tion depends on the number of messages and the total

0

10

20

30

40

S
lo

w
 d

ow
n

[%
]

0.2 0.4 0.6 0.8 1
Time quantum [sec.]

0.03

0.005

0.04

0.05

Theoretical
Overhead

0.02

0.01

Figure 8: Gang-scheduling Overhead [10

�3

sec:]

message size, as shown in Table 2. As with the round-

trip program and any program with one processor, the

overhead from network preemption can be neglected.

As shown in Figures 6 and 7, and also in Table

4, the scheduling overhead depends on the number of

processors. According to our investigation, most of

the overhead comes from the delay of SIGSTOP sig-

nal. Curiously the SIGSTOP signal to suspend other

processes is delayed, and the delay time varies up

to 50 msec. This phenomenon can not be found in

the IRIX System V.4 (SiliconGraphics) or FreeBSD

2.0.0. We suppose that the SunOS (version 4.1.4) in-

tentionally delays delivery of SIGSTOP signal until the

end of the time quantum. Since the server process

should wait for all process to stop, the time to stop

a running parallel process is depending on the num-

ber of processors involved, and costly. Furthermore,

the variance in SIGSTOP delivery creates \coschedul-

ing skew"[2]. Both of these can be severe problems

when implementing gang-scheduling on a workstation

cluster.

4.3 Voluntary gang scheduling

To avoid the delay in signal delivery, we imple-

mented another version of gang-scheduling. The run-

time library of user processes yields by itself when the

time quantum ends. We call this version \voluntary

gang-scheduling." Table 5 shows the overhead calcu-

lated in the same way as for Table 4. The overhead is

reduced roughly three times or more at 8 processors.

Table 5: Voluntary Gang-scheduling Overhead

[10

�3

sec:]

Number of processors

Program TQ 1 2 4 8

�b(15,1000) 200 3.4 6.4 13.4 15.3

300 2.7 4.5 13.2 14.3

500 2.7 6.7 11.0 11.7

1000 3.7 5.0 13.3 11.0

rt(1000000) 200 2.8 5.2 11.6 11.9

300 2.3 5.6 11.7 11.2

500 2.3 7.3 8.7 10.5

1000 4.1 8.6 12.2 8.8

And the dependence on the overhead with the number

of processors is weakened. When the time quantum is

one second, the slow-down due to the scheduling over-

head is less than 1.4 %.

5 Concluding Remarks

SCore-D and the MPC

++

runtime contribute to an

e�cient parallel program execution environment. The

gang-scheduling of SCore-D realizes multi-user, multi-

parallel-process environment. To implement e�cient

and practical gang-scheduling, we developed \network

preemption."

It can be very di�cult to estimate and guarantee

the maximum time in a large network, considering

the e�ect of hot-spots [12]. This situation becomes a

severe problem in implementing real-time scheduling.

We have already proposed an architectural support for

gang-scheduling, called \Drain"[5]. The Drain mech-

anism can guarantee the maximum time to reach the

steady state.

We found that the signal delivery of the SunOS can

be an obstacle when implementing gang-scheduling.

However it can be avoided with the voluntary gang-

scheduling. With network preemption and the volun-

tary gang-scheduling, we believe that gang-scheduling

on a workstation cluster can be made su�ciently prac-

tical and scalable.

The target of SCore-D is very similar to that of

GLUnix [1, 2]. In [2], some simulated results of gang-

scheduling on a workstation cluster are shown. How-

ever, this paper is the �rst report on implementing

gang-scheduling on a worksation cluster as far as we

know.

The other unique feature of SCore-D is that SCore-

D itself is written in MPC

++

, a multi-threaded pro-

gramming language. All the functions described in

this paper have been implemented in only 1,600 lines

of code.

SCore-D will support global resource management

including parallel I/O. We intend to move on larger

workstation cluster, and we will continue to investi-

gate the implementation of gang-scheduling.

References

[1] Thomas E. Anderson, David E. Culler, David A.

Patterson, et al. A Case for NOW (Networks of

Workstations). IEEE Micro, 15(1):54{64, Febru-

ary 1995.

[2] Remzi H. Arpaci, Andrea C. Dusseau, Amin M.

Vahdat, Lok T. Liu, Thomas E. Anderson, and

David A. Patterson. The Interaction of Paral-

lel and Sequential Workloads on a Network of

Workstations. UC Berekeley Technical Report

CS-94-838, Computer Science Division, Univer-

sity of California, Berekeley, 1994.

[3] Nanette J. Boden, Danny Cohen, Robert E.

Felderman, Alan E. Kulawik, Charles L. Seitz,

Jakov N. Seizovic, and Wen-King Su. Myrinet:

A Gigabit-per-Second Local Area Network. IEEE

Micro, 15(1):29{36, February 1995.

[4] Dror G. Feitelson and Larry Rudolph. Dis-

tributed Hierarchical Control for Parallel Pro-

cessing. COMPUTER, 23(5):65{77, May 1990.

[5] Atsushi Hori, Takashi Yokota, Yutaka Ishikawa,

Shuichi Sakai, Hiroki Konaka, Munenori Maeda,

Takashi Tomokiyo, J�org Nolte, Hiroshi Matsuoka,

Kazuaki Okamoto, and Hideo Hirono. Time

Space Sharing Scheduling and Architectural Sup-

port. In D. G. Feitelson and L. Rudolph, editors,

Job Scheduling Strategies for Parallel Processing,

volume 949 of Lecture Notes in Computer Sci-

ence, pages 92{105. Springer-Verlag, April 1995.

[6] Yutaka Ishikawa. MPC++: Massively Paral-

lel, Message Passing, Meta-Level Programming

C++. In Parallel Object Oriented Methods and

Application'94, 1994.

[7] Yutaka Ishikawa. The MPC++ Programming

Language V1.0 Speci�cation with Commentary

Document Version 0.1. Technical Report TR{

94014, RWC, June 1994.

[8] Yutaka Ishikawa. Meta-Level Architecture for

Extendable C++. Technical Report TR{94024,

RWC, January 1995.

[9] Yutaka Ishikawa, Atsushi Hori, Hiroshi Tezuka,

Motohiko Matsuda, Hiroki Konaka, Munenori

Maeda, Takashi Tomokiyo, and J�org Nolte.

MPC++. In Gregory V. Wilson and Paul Lu,

editors, Parallel Programming Using C++. MIT

Press, 1996.

[10] John K. Ousterhout. Scheduling Techniques for

Concurrent Systems. In Proceedings of Third In-

ternational Conference on Distributed Computing

Systems, pages 22{30, 1982.

[11] Scott Pakin, Mario Lauria, and Andrew Chien.

High Performance Messaging on Workstations:

Illinoi Fast Messages (FM) for Myrinet. In Su-

percomputing'95, December 1995.

[12] Gregory F. P�ster and V. Alan Norton. "Hot

Spot" Contention and Combining in Multistage

Interconnection Networks. IEEE Transactions on

Computers, pages 943{948, October 1985.

[13] Jim Pruyne and Miron Livny. Parallel Processing

on Dynamic Resources with CARMI. In D. G.

Feitelson and L. Rudolph, editors, Job Scheduling

Strategies for Parallel Processing, volume 949 of

Lecture Notes in Computer Science, pages 259{

278. Springer-Verlag, April 1995.

[14] Andrew S. Tanenbaum. Modern Operating Sys-

tems. Prentice-Hall, 1992.

