
Proc. IPPS Workshop on Job Scheduling Strategies for Parallel Processing, LNCS, No. 1162, pp 65-88, 1996

Architecture-Independent Request-Scheduling

with Tight Waiting-Time Estimations
�

J�orn Gehring, Friedhelm Ramme

Paderborn Center for Parallel Computing

University of Paderborn

F�urstenallee 11, 33102 Paderborn

e-mail: [joern j ram]@uni-paderborn.de

Abstract

In the course of the last few years, the user's inter-

action with parallel computer-systems has changed. A

continuous growth in the number of interactive HPC-

applications can be observed. When considering par-

titionable MPP-systems with exclusive usage of the

physically separated regions, issues like the average

waiting-time become more dominant for the users than

the total system-throughput.

In this paper, we focus on the problem of scheduling

an arbitrary mixture of resource-requests for batch and

interactive applications in an architecture-independent

manner. To help users plan their daily work tight

waiting-time estimations are indispensable. How-

ever, the resulting scheduling problem interferes with

the problem of mapping requests onto certain MPP-

architectures to reduce their internal fragmentations.

We will show that this conict can be alleviated

by a distributed prover-veri�er methodology. At

�rst, we will introduce the distributed resource-

management software CCS with its architecture-

independent scheduling method. The message-based

approach presented is used to verify the pre-calculated

schedules with help of the system-dependent mapping

instances. Simulations with the accounting data of

our center have shown that tight waiting-time estima-

tions can be made while the architecture-independent

scheduling approach is still preserved. We will show

that by using this methodology the mean error of

the predicted waiting-time can be reduced by 76%.

�This work was partly supported by the German "Minis-

terium f�ur Wissenschaft und Forschung" and the research co-

operation NRW-Metacomputing. Further grants were provided

by the "Stifterverband f�ur die Deutsche Wissenschaft."

Finally, we will discuss the impact of such a dis-

tributed resource-management system on the meta-

computing challenge.

1 Introduction

As parallel systems become more commonly used,
there is a growing awareness for the need of a resource
management software. Such software is indispensable
for MPP-systems where jobs can be isolated from each
other, giving each the �ction of a dedicated (virtual)
machine, and where accounting functions should be
carried out. When talking about problems related
to the resource management task one should bear in
mind some important observations:

� Reliable parallel computer systems exist and var-
ious industrial codes have been ported [4].

� In parallel high-performance computing, inter-
active applications with 'an engineer in the
loop' demand reasonable computing performance,
short response-times, and a seamless runtime-
environment. Traditional batch programs will be
replaced more and more by this type of interac-
tive applications.

� Signi�cant progress was made in the Wide-Area
Network technology. Bandwidth and latency
were improved by some orders of magnitude that
make advanced metacomputer applications possi-
ble [18].

One should also notice that currently more than a
dozen operating-systems, runtime-kernels, or message-
passing libraries are in use. The user's requirements
are of an extremely wide range [7]. While analyzing
the accounting data of our center, we found that the

1

requested resources range from a single MPP-node to
complete systems that were occupied for some min-
utes or up to some days. In the pro�le, no signi�cant
pattern could be identi�ed.
Having made this observation, we concluded that
any approach to the resource management prob-
lem should be highly independent of the sys-
tem architectures to be managed, and at the
same time it should be independent of the
programming-environments currently preferred by
MPP-users. Both conditions are indispensable to
turn the idea of a virtual machine-room into practice
[1, 14, 18].

In order to solve the request-scheduling problem for
such an environment (see 3.1), one has to think about
new methodologies that meet the demands of ser-
vice providers as well as those of interactively working
users. Not only the resources of an MPP-system de-
mand an adequate scheduling mechanism, each MPP-
user has to schedule his own time-constraints. Dur-
ing the past, this topic was frequently underestimated
[7]. Indeed, the inability to run a program when de-
sired sometimes causes signi�cant user frustration, es-
pecially during the development-stage.
A possible solution would be to tell a user the esti-
mated waiting-time after a resource-request is submit-
ted. If this estimation is tight, a user can plan his work
much more e�ciently. On the other hand, if the es-
timation is too weak, it may occur that a user goes
to lunch while his request is ful�lled. When he re-
turns, the time is expired, the resources are released,
and the bill has been made. The frustration will be
even greater and the MPP-systems become labeled as
being not usable in daily work.
The best estimation of the waiting-time can be made
when the request-scheduler considers the constraints
of all other users as well as all properties of the MPP-
architecture in question and all details adopted from
the system-con�guration and its surrounding environ-
ment. The e�ort to develop such a scheduler will be
tremendous. The resulting software-module will be
very complex and highly dependent on architecture
and installation. The expected life-time of such a soft-
ware will be comparably short.

In this paper we will present an architecture-
independent request-scheduling method and study the
resulting waiting-time estimation problem. We will
start with a short description of the management
model (Sec. 2.1) and its realization by the Comput-
ing Center Software CCS (Sec. 2.2). The basic al-
gorithms used for the request-scheduling task are in-
troduced in Section (3). In Section (4.1), we study

the waiting-time estimations when using autonomous
scheduling algorithms. A veri�cation protocol is pre-
sented in Section (4.2). In Section (4.3) it is shown
that the interference between the request-scheduling
problem and mapping problem can be exploited to
get tight waiting-time estimations while keeping the
request-scheduler independent of the system architec-
ture. The simulation runs were performed with the
accounting data gathered at our center. The paper
will �nish with a prospect for the upcomming meta-
computer challenge.

2 A Comprehensive Approach

The Paderborn Center for Parallel Computing,
PC2, is equipped with a number of partitionable and
freely con�gurable MPP-systems. The largest ma-
chine is a partitionable GCel from Parsytec with 1024
T 805 nodes. The most powerful machine currently is
a partitionable GCPP with 128 MPC601 processors.
The systems of the PC2 are used by more than 250
people in about 80 di�erent projects. More than 50%
of the users are working outside Paderborn. Users
from all over Germany have access to the PC2 by the
research-net (WIN) at 34Mbps. Especially for small
and medium sized enterprises, fast modem- and ISDN-
connections are provided.
Being one of the Europort benchmark sites, several in-
dustrial codes have been ported to these machines [4],
with users from seven European nations have been
working remotely at the PC2.

This user-community, combined with unsuited
system-software, has been the background for the
large Computing Center Software project1 at the PC2.
Right from the beginning, CCS was not directed to a
single machine. The aim was to make various types of
MPP-systems transparently, and thus more e�ciently
usable than before. A comprehensive management
model was developed which was implemented as a dis-
tributed software system. The subject of the CCS
framework is the resource management task-force. On
the one hand, CCS is a research package to study dif-
ferent optimization topics, on the other it is a produc-
tion environment serving our whole machinery.

2.1 The Model

There is more to building up a virtual machine-
room than just linking the HPC-systems by a fast
interconnection network. It is a seamless environ-
ment that provides transparent access to various
system architectures, it supports di�erent runtime

1The URL of the CCS home-page is:

http://www.uni-paderborn.de/pcpc/ccs

2

 Runtime
Environment

Runtime Control

Task−Mapping

Data−Migration Load−Balancing

Job−Control
MPI , PVM , HPF , . . .

Parallel Programming Environments

Distributed Resource Management

Request − Scheduling
System−Partitioning
 and Configuring

User and Project
 AdministrationAuthorization

Administration

(CCS)

 Resource
Management

Request−Partitioning,
High−level Mapping

Accounting,
 Monitoring

Homogeneous Access System

ApplicationsParallel − Programs

. . . User−Interface

Figure 1: A comprehensive metacomputer management model

environments, uncountable user demands and also all
the necessary administrative requirements. Taking
this comprehensive view, four research domains can
be identi�ed which can be treated more or less in-
dependently (Fig. 1). While the CCS focus is on the
resource management, a complementary project is ini-
tiated to improve the runtime environment [9].
In this paper we will study the interference between
the architecture-independent request-scheduling task
and the impact resulting from partitioning con�g-
urable MPP-systems.

The request-scheduling problem: When dealing
with this problem, the utmost abstraction level can
be assumed. Only the number of requested processors
and an estimation of the occupation-time is taken into
account. When the time is expired the resources are
released. No assumptions are made about the facilities
of the operating-system or the runtime-environment.
Furthermore, we abstract from all constraints added
by the architectures. Thus, the task is to determine a
well-suited order of the hardware-requests to

� improve the overall utilization,
� reduce the average waiting-time,

� support interactive and batch applications simul-
taneously,

� support a priority mechanism while fairness has
to be guaranteed,

� provide a high-level mechanism to decide if a
resource-request can currently not be con�gured
due to system internal fragmentations or whether
this request can never be ful�lled by any machine
under control. This decision should be made
without knowledge of the architecture nor of the
detailed system-con�guration.

Another user-demand, not considered yet, is to sup-
port guaranteed reservations.

The architecture dependent mapping problem:

This problem reects the fact that most MPP-systems
in public operation are variable- (or at least �xed-)
partitionable. Thus, before a parallel program can be
activated, a suited partition must be determined and
the system must be con�gured accordingly. The shape
of the partition might be subject of further optimiza-
tions. The goal of the mapping process is to reduce
the internal fragmentation while ful�lling all of the
architecture dependent constraints, (e.g.: each parti-

3

tion must have at least one I/O-link for host-access).
An Intel iPSC, for example, must be partitioned into
hypercubes of smaller dimensions, a Cray T3D into
3D-subcubes, a Parsytec GCel (GCPP) into rectangu-
lar subgrids. Such a subgrid must consist of so called
atomic units. Due to hardware-internal restrictions,
an atomic unit of a GCel is a 4x4 grid while an atomic
unit of a GCPP is a 2x2 grid. While a GCel has some
I/O-links into the inner area of its 2D-architecture,
a GCPP can only be accessed from its outer border.
Links and processor-nodes are dedicated to exclusive
usage. With freely con�gurable MPP-architectures,
completely di�erent criteria come into question [8]. As
there is (generally) no knowledge about the resource-
requests of the future, further burdens are placed to
the mapping decision.

2.2 The CCS Framework

The approach developed by PC2 to tackle the
resource management problem led to a distributed
management-software running in the Unix environ-
ment in front of the HPC-systems. Its underlying
multi-agent model was implemented as a system of
communicating Unix daemons.

On the one hand, this gives the user the view of
a virtual machine-room while on the other it o�ers
various possibilities to optimize the selection of best
suited machines, to improve the architecture depen-
dent request mapping, and to optimize some of the
conicting scheduling goals. As a basic understand-
ing of the distributed management model is necessary
for this paper, a short description of CCS is given in
the following. A detailed discussion of the software-
package is presented in [16].

The essential daemons of CCS are depicted in
Fig. 2. The common user interface to CCS is the so
called Mastershell. It o�ers a limited environment
for creating Virtual Hardware Environments and run-
ning applications in interactive or batch mode. When
a Mastershell comes up, a connection to the Port-

Manager Daemon (PM-D) is established and data
identifying the user (e.g. uid, hostname) are trans-
ferred. The PM-D uses this information to initiate
a �rst authorization by asking the Database Daemon

(DB-D). If the authorization failed, the user session
is aborted immediately. Otherwise, the user has the
whole command language of the Mastershell at his
disposal. Currently, a replacement for the Master-
shell is under construction. This new interface will
turn the user's view into that of a client-server model.
The multi-agent model of CCS, however, remains un-
touched. There are also discussions to develop a user-
interface based on Java [2] to exploit the new internet

facilities.

As an example, let us assume that a user requests
a virtual hardware environment consisting of a num-
ber of processors in a certain con�guration and ex-
clusive usage for one hour. When such a request is
ordered from the Mastershell the PM-D checks the
user's limitations �rst, i.e. the number and kind of re-
sources maximally allowed for the requesting user or
project. If the request validation is successful, it is sent
to the Queue-Manager Daemon (QM-D). The QM-D
consists of a waiting-room and a request-scheduling
module (Fig. 3). If the scheduler of the QM-D decides
that a certain request should be ful�lled, this request
is sent to the PM-D to be con�gured. In cooperation
with the selected Machine-Manager Daemons (MM-
Ds) the PM-D creates the requested hardware envi-
ronment and supervises the corresponding time limits.
For authorization and accounting purposes the PM-D
consults the DB-D. This daemon can be linked with
two public interfaces, one for user management and
the other for request accounting. In this way it is
possible to connect commercial database systems or
to adapt home-made software packages. When the
requested resources are available, the user will be al-
lowed to start an arbitrary application using nearly
any type of runtime-environments.

Additionally, the PM-D provides logging facilities and
preserves an operator interface for administering the
virtual machine-room. Furthermore, the PM-D per-
forms the request synchronization task and is respon-
sible for the high-level request mapping. The MM-Ds
perform the architecture dependent request mapping
and the online system-con�guration. If the MPP-
architecture is exible enough, various heuristics can
be applied to reduce the internal fragmentation. An
MM-D is the only architecture dependent part of the
CCS-software. Thus, integrating a new system fam-
ily can simply be done by re-implementing the corre-
sponding MM-D. The QM-D is responsible for solving
the request-scheduling problem in an architecture in-
dependent manner. A possible solution of this prob-
lem is outlined in Section (3).

This functional distribution of services gives CCS the
power and exibility to support a wide range of MPP-
architectures [14].

The main features of CCS are the following:

� Uncoupled user- and system-views.
� Transparent access to MPP-systems with di�er-
ent architectures.

4

Authorization Accounting

DB − D

PM−D

MS

MS

OS

QM − D

SC 320

MM−D

WSC

MM−D

MM−D

GCel 1024

Figure 2: The essential CCS daemons

� Arbitrary mixture of interactive and batch appli-
cations within the virtual machine-room.

� Optimized request-scheduling.
� Dynamic partitioning of MPP-systems in order to
reduce their internal fragmentations.

� Central authorization, accounting and charging
facilities.

� Highly independent of the runtime-environment
and the HPC architectures.

� Support for unstable WAN-connections. (Even if
a dial-up line breaks down, a parallel application
(batch or interactive) will continue running. A
user can reconnect his 'old' application by log-
ging in again and typing only two commands.)

The distributed method described turned out to be
very exible. However, doing request-scheduling with-
out knowledge of the later mapping-decision leads to
weak waiting-time estimations and thus unpleasant
user-reactions. How this problem can be alleviated
without sacri�cing the architecture-independent ap-
proach is shown in (4.2).

3 Architecture-Independent Request-

Scheduling

As all MPP-systems of the PC2 are at least vari-
ably partitionable, there is no doubt that in the whole
context request-scheduling plays a major role. Simi-
lar to Intel's iPSC and Paragon, or Cray's T3D, the
Parsytec GC-systems are partitioned into disjoint sets
of processors. Afterwards, a parallel job is executed
in the physically separated regions of the systems.

Thus, each parallel program comes along with an (ex-
plicit) request for hardware resources. Furthermore,
the maximum duration for which an application is al-
lowed to occupy its resources is given.
These requests are equal for batch and interactive ap-
plications. In addition, the interactive one needs a
(virtual) terminal for keyboard input and screen out-
put. Both types of applications are strongly competi-
tive. While for batch applications the overall through-
put is the �rst priority, users working interactively
count the minutes until their hardware-requests are
ful�lled. As a user is already satis�ed when he can
start working, issues like the total system throughput
or the average response-time are less valuable. As the
completion-time is subject to change, especially in in-
teractive user-sessions, the average waiting-time seems
to be much more important.

3.1 The Scheduling Model

Hundreds of papers have been written about job
scheduling in parallel systems (see [6]). However, there
is a large discrepancy between what is studied and
what can be applied in practise. This discrepancy is
even greater to what is delivered by the MPP-vendors.
Thus, more sophisticated methods were developed by
supercomputing centers serving large MPP systems to
a broad user community. For example, an NQS based
scheduler for the Intel Paragon was developed by the
San Diego Supercomputer Center [20]. A more ex-
ible approach was developed by the Cornell Theory
Center to schedule their 512node IBM SP [17].
In this section we will now motivate a request-
scheduling system which alleviates some of the dif-

5

�culties mentioned. This method has already proved
successful in daily operation. A more detailed descrip-
tion is presented in [15].

The scheduling model we are using for the simula-
tion purpose is very close to the constraints described
in the previous sections. We assume that the virtual
machine-room consists of a number of MPP-systems
with similar characteristics. Each is composed of pro-
cessing nodes of a certain type and a number of user
entries. All resource-requests are dedicated to exclu-
sive usage and are limited by the time a virtual hard-
ware environment can be occupied by the application
program.
The resulting request-scheduling problem can now be
conceived as an n-dimensional bin-packing problem.
One dimension corresponds to the continuous time
ow and (n-1) -dimensions are representing general
system characteristics (e.g. the number of processors
of a certain type or the number of user-entries). As
a high-level decision mechanism must be provided at
the QM-D to determine whether a request can ever be
ful�lled, we are restricted to level-oriented schedul-
ing algorithms (see [15]). If the �rst request at a
scheduling-point (which corresponds to a new packing-
level) is rejected by the MM-Ds, it can never be ful-
�lled and thus must be removed. To keep the model
manageable, only the expected occupation-time and
the number of requested processors are considered.
All other (architecture-dependent) properties are on
the mapping-modules of the MM-Ds. Since the sched-
uler has the view of ideal MPP-systems it may happen
that single machines are over-booked. Thus, an MM-
D will reject one or more requests, because they can
not be con�gured any more. Now, it is up to the pro-
tocol between the QM-D and the MM-D to solve this
conict.

While doing this, four aims have to be consid-
ered: A priority mechanismmust be provided, fairness
must be guaranteed, the average waiting-timemust be
small, and the total utilization high. It is up to the
scheduler to optimize the latter two. Handling priori-
ties is mainly a question of the waiting-room organiza-
tion. Fairness in this context means that no resource-
request should pend forever. Furthermore, it must be
possible to give an estimation of the waiting-time for
each pending request. This topic interferes with both
the waiting-room and the scheduling-module. Thus,
both parts are integrated into the QM-D, whereby the
algorithms of the scheduler can be switched by an op-
erator or automatically, as it is done by the Implicit
Voting System IVS (3.3). The basic structure of the
QM-D is shown in Fig. 3.

information
allocation

Queue − Manager

WAITING − ROOM

SCHEDULER

. . .

request
selection

queuing
information

VIRTUAL HW−ENVIRONMENT

Output stream of
 HW requests

Input stream of
 HW requests

Figure 3: Structure of the QM-D

The waiting-room is organized in n priority-queues.
If the scheduler runs out of work a �nite set of pend-
ing requests is extracted from the waiting-room. The
number of requests to be extracted from each queue

(Ex(pi) :=
l
N(pi) � E(pi)

Em

m
) depends on the extraction-

order assigned to each queue by the administrator
(E(pi)) and its current �lling-degree (N (pi)). It is
relative to the �lling-degree of other priority-classes
(Em = max f1;maxfE(pi) j N (pi) 6= 0; 0 � i � ngg).
Using this formula, fairness is guaranteed for the
priority-queues of the waiting-room. If fairness can
be guaranteed by the scheduler as well (that means
even if the scheduler has to handle temporarily re-
jected requests, non of those requests can be shifted
forever), the whole system will behave fairly. If the
scheduling algorithm used behaves deterministically,
if no new requests of higher priority overtake others in
the meantime, if the estimated occupation-times are
accurate, and if there is an ideal hardware environ-
ment, then we can directly calculate the waiting-time
for each request.

However, practise looks somewhat di�erent. Thus,
we can only estimate the expected waiting-times. The
problem of overtaking within the waiting-room can not
be avoided because we have an online system with-
out knowledge of the future. The time-limit given
with each resource-request can be treated as an up-
per bound. But it may happen that an interactively
working user will release his resources earlier than

6

promised. If now the management software keeps that
partition idle, the time estimations are still valid. We
prefer to use this free resources again, which however
can result in shorter waiting-times than previously
told. Thus, the error-values of the predicted waiting-
time (see 4.1 and 4.2) will become negative. In practise
this can be alleviated up to a certain degree by also
accounting for reserved but unused resources. During
the simulations this situation does not occur, as we
are using the accounting data of our center as input
sequence.
Thus, in our scheduling model we consider a real hard-
ware environment, not known in detail, a waiting-
room within which new requests with higher prior-
ity can overtake others, together with a deterministic
scheduling algorithm.

3.2 Basic Scheduling Primitives

Having introduced the combined priority and queu-
ing scheme, we now concentrate on optimization as-
pects. Due to the proposed structure, we can use the
advantage that the number of requests extracted from
the waiting-room is always �nite. First of all, let us
assume that the MPP-systems in question are not sat-
urated, that there are pending requests, and that the
old schedule is done. In this case, most or all of the
requests of the subset can be con�gured immediately.
There is no need for sophisticated computations. Pass-
ing on the requests is the best we can do. Thus, from
the user's view the whole QM-D should behave trans-
parently. This mode is simply called the First-Come-
First-Serve (FCFS) mode of the scheduler.

From now on, we deal with the case where the
MPP-systems are saturated up to a certain degree,
there are pending requests, the old schedule is done,
and a �nite set of pending requests was extracted from
the waiting-room. Furthermore, we assume that this
set is ordered by the corresponding upper bound of
time each hardware request is allowed to occupy its
resources. We will refer to this ordered set by the
term request-list (RL). Each level of a bin-packing al-
gorithm indicates a situation where at a point of time
the whole system is empty. This is the case with all
vertical lines on the time-axis and if these lines do not
cross any rectangle (Fig. 5 { 6). Such a level is called
a scheduling-point. If the �rst (requeued) request can
not be con�gured at a scheduling point, it will never
be ful�lled at all and must be removed. By spread-
ing scheduling points into each schedule we can han-
dle temporarily rejected requests resulting from a real
hardware environment. At each scheduling-point, at
least one decision can be made. Thus the scheduler
behaves fairly, too.

The First-Fit-Decreasing-Height (FFDH) algorithm
[3] computes a sequence of scheduling levels by work-
ing through the RL in non-increasing order. All rect-
angles are placed with their left side resting at one of
the scheduling points. The �rst level is simply the bot-
tom of the bin. At any point of the packing sequence,
the next rectangle to be packed is placed on the top of
the lowest level on which it will �t, justi�ed to its left
border. If none of the current levels will accommodate
this rectangle, a new level is created.

To illustrate the behavior of the basic scheduling
primitives, we will use the following example. This ex-
ample is chosen as a wild mixture, ranging from large
and short-running to small and long-running requests.
Thus, it corresponds to the observed user behavior.
Let i denote the request-number as it is inserted into

i 1 2 3 4 5 6 7 8 9 10
ni 6.25 100 6.25 100 12.5 50 12.5 50 25 25
ti 25 50 10 5 20 40 20 10 15 30

Figure 4: Sample request sequence

the waiting-room and ni (ti) being the corresponding
percentage of the processors (number of time-units) re-
quested. Ordering the requests by the non-increasing
time results in RL = (2; 6; 10; 1; 5; 7;9;3; 8; 4): Apply-
ing the FFDH-algorithm to the example of Fig. 4 re-
sults in the schedule shown in Fig. 5 with a total sys-
tem utilization of

UTLFFDH (RL) =

PN

i=1 ni � ti

FFDH(RL)
=

9843:75

115
= 85:6%

and an average waiting-time of

AWTFFDH (RL) =
1

N
�

NX
i=1

4(i) =
1

10
�630 = 63.0m;

with 4(i) denoting the absolute waiting-time of re-
quest i; and N the length of RL.

If there are two contradictory criteria to be opti-
mized (UTL vs. AWT), it is quite often a good idea
to turn things around. Thus, the request list was con-
sidered in non-decreasing order. As this modi�ed algo-
rithm increases the height of the bin, it is called First-
Fit-Increasing-Height (FFIH) algorithm [15]. Apply-
ing the FFIH algorithm to the modi�ed list results in
packing short rectangles close to the bottom of the
bin, and broad rectangles at relatively high x-values.
Thus, we get

UTLFFIH (RL) =
9843:75

115
= 85:6%

7

Figure 5: FFDH packing

and

AWTFFIH (RL) =
1

10
� 185 = 18:5m:

The resulting schedule is shown in Fig.6.

Figure 6: FFIH packing

All algorithms presented so far can be improved
without violating the scheduling-point condition. At
�rst, we consider the FFDH algorithm. Assume that
we are working through the RL in non-increasing or-
der and that we are computing a location within the
bin to place an arbitrary request. Now we abolish the
condition that each rectangle must be placed conclu-
sive to the leftmost scheduling point. We allow an
arbitrary placement on top of an already placed re-
quest without exceeding the scheduling point at the
right side, determined by the request which is placed
at the lowest y-value. An example of applying this
modi�ed algorithm, now called FFDH?, is shown in
Fig. 7. This results in

UTLFFDH? (RL) = 89:49%

and
AWTFFDH? (RL) = 60:5m:

Figure 7: FFDH? packing

By applying the same idea to FFIH, (called FFIH?),
we can now allow short-running requests to be en-
queued dynamically. When preferring these requests
to �ll the gaps without violating the scheduling points,
the average waiting-time and the overall utilization
is improved simultaneously. This idea scales to the
FCFS algorithm, too. If a new resource request

Figure 8: FCFS? packing

has been enqueued into the waiting-room, it is �rst
checked if this request �ts into a gap of the FCFS-
schedule. In this case, the request to be planned is al-
lowed to skip all pending requests within the waiting-
room. This modi�cation is called FCFS?. An example
of applying the FCFS? algorithm results in

UTLFCFS? (RL) = 82:03%

and

AWTFCFS? (RL) = 27:0m

(see Fig. 8). However, note that the FCFS? algorithm
violates the scheduling-point condition. Thus, when
using this algorithm directly, fairness can not be guar-
anteed anymore.

8

IVS()

BEGIN LOOP

CASE

(the MPP-systems are not saturated)

DO switch to the FCFS?-mode and con�gure immediately OD ; BREAK

IF (most of the relevant requests were submitted for batch jobs)

DO switch to the FFDH? algorithm to improve the overall system utilization OD ; BREAK

IF (most of the relevant requests submitted are for interactive usage)

DO switch to the FFIH? algorithm to reduce the average waiting time OD; BREAK

END LOOP

Figure 9: Outline of the Implicit Voting System

3.3 The Implicit Voting System

Commonly used scheduling and queuing systems
are in general very static. Queues are dedicated to
physical parts of the machinery or schedulers rely
on time sharing operating-systems running on the re-
sources to be scheduled. Switching between batch and
interactive modes is done at a �xed time every day.
These custom solutions provide speci�c capabilities at
best, but are not suitable to solve the problem we
address. Due to the reasons discussed above, we de-
rive that the users themselves (i.e. the most relevant
resource requests of the users) should vote dynami-
cally on the characteristics of their favored resource
scheduling method. However, they should not vote
explicitly. Thus an Implicit Voting System (IVS) was
developed to schedule the MPP-systems of a virtual
machine-room [15].

The main pre-condition to build such a system is
that the set of the requests in question and their main
properties can be determined easily and in advance.
Using the approach presented, this condition is ful-
�lled by the scheduling model of (3.1) and the request-
list RL. Thus, the basic scheduling algorithms can be
dynamically turned by the current mixture of the re-
quests to tradeo� utilization versus response-time.
An outline of IVS is given in Fig. 9. Using the account-
ing data gathered at the PC2, IVS was compared to
the original FFDH algorithm in [15]. It was shown
that using IVS, the system utilization could be im-
proved up to 30%, relatively to the FFDH scheduling.
Simultaneously, the average waiting time could be re-
duced by 9%.

We now focus on the methodology to get tight
waiting-time estimations. Doing this, we are not �xed

on a certain scheduling algorithm, as long as the con-
straints discussed above are satis�ed.

4 Estimating the Expected Waiting-

Time

Supercomputers usually show a very high degree
of utilization. On machines without time-sharing
support, some resource requests may not be ful�lled
at once, but have to wait until the required hard-
ware / software is available. Our experience has shown
that these waiting-times can last from tens of minutes
up to several hours on normal working-days. Since
computing time on a supercomputer is very expen-
sive, the availability of results from batch jobs or the
start of an interactive parallel program are important
events to the user. This is why users have to plan
their day at least partially according to the estimated
waiting-times of their resource requests, what makes
these estimations a very critical parameter.

Unfortunately, there are several reasons why a
scheduler can not predict the waiting-time exactly.
First, the users' estimations about the expected ex-
ecution times of their applications are not precise.
As a scheduler has to rely on this information with-
out any possibility of veri�cation, we will assume for
the rest of this paper that these estimations are cor-
rect. This is admissible, because users usually have
to pay for their reserved time and are therefore en-
couraged to minimize the gap between their estima-
tions and the actual execution time. Another rea-
son for estimated waiting-times being inexact is the
existence of di�erent priorities. New requests can
overtake others within the priority-queues and thus
can be con�gured before requests for which a time

9

prediction was already made. As the previously es-
timated waiting-time in this case is too short, the
resulting error-values are positive (Fig. 10). Finally,
an architecture-independent scheduling algorithm has
di�culties in �nding tight waiting-time estimations
due to its limited knowledge of the underlying hard-
ware. The schedule as it is planned by the sched-
uler may not be valid because of hardware-dependent
constraints like limited numbers of I/O-nodes or re-
stricted partition shapes, which further increases the
error-values.

In the following, we will show how a scheduler can
overcome most of these problems in order to provide
the user with waiting-time estimations as tight as pos-
sible.

4.1 Using autonomous scheduling algo-
rithms

An autonomous scheduler is a scheduler that sends
a request to be con�gured to the target machine with-
out any knowledge whether they can be ful�lled or
not. If, for example, the machine currently has a high
internal fragmentation or all I/O-nodes are in use by
other applications, the MM-D will have to reject the
new request. Afterwards the QM-D has to requeue the
rejected request until enough resources are available.
If fairness is to be guaranteed, this request will have to
be shifted to the next scheduling-point. The time-span
for the pending requests within the scheduler (Fig. 3)
gets lengthened and the overall throughput gets re-
duced. Fig.10 depicts the normalized error-values of
the waiting-time estimations that were calculated at
the time a request enters the waiting-room. Fig. 11
shows these error-values for estimations made at the
time a request enters the scheduler of Fig. 3.

0

20

40

60

80

100

0 100 200 300 400 500

w
ai

tin
g-

tim
e

es
t.-

er
ro

r
 [u

ni
ts

]

request number

"wait_err_wr_norm.dat"

Figure 10: Estimation errors when entering the
waiting-room (without verify-protocol)

0

20

40

60

80

100

0 100 200 300 400 500

w
ai

tin
g-

tim
e

es
t.-

er
ro

r
 [u

ni
ts

]

request number

"wait_err_sch_norm.dat"

Figure 11: Estimation errors when entering the sched-
uler (without verify-protocol)

Calculating the expected waiting-time for requests
already scheduled is straight forward. To determine
the waiting-time for a request which is still in the
waiting-room (the priority-queues), the system is vir-
tually frozen and the waiting-room is successively
cleared, using the formula in (3.1). Each portion ex-
tracted is virtually scheduled afterwards, using the
IVS (3.3). Thus, we can also estimate the waiting-time
for pending requests which are still in the waiting-
room. It is obvious that errors resulting from reorder-
ing already scheduled requests have the largest impact
on the �rst waiting-time estimation made (Fig. 10),
which is also the most important one for the users.
By analyzing the simulation runs for the autonomous
scheduling mode, we can see that the error-values
resulting from the �rst 150 requests vary strongly
(Fig. 10). Afterwards, the curve stabilizes at a rel-
atively high level. The errors occurring inside the
scheduler are of a much lower level. This is due to the
fact that there are much more resource requests to be
considered from within the waiting-room than from
within the scheduler. Note that we have started our
simulation with an empty system. Thus, for the �rst
20 requests nearly no wrong estimations were made.

4.2 Using a veri�cation protocol

In order to overcome the problems of autonomous
scheduling algorithms while still being hardware-
independent, we introduce a veri�cation protocol be-
tween the QM-D and the MM-Ds. The QM-D sends
the preplanned schedule to the corresponding MM-D.
Afterwards, the MM-D veri�es whether this schedule
can be con�gured in the given order on the given hard-
ware or not. In case of conicts, the MM-D reports
the a�ected requests back to the QM-D and makes

10

a suggestion, for solving the conicts. The scheduler
can then reorganize its schedule according to these
suggestions and send it back to the MM-D in order
to be veri�ed again. These steps will be iterated until
there are no more conicts within the current sched-
ule. In this way, the predicted waiting-times become
deterministic for each set of requests that has been
taken out of the waiting-room and inserted into the
scheduling-module (Fig. 3). Fig. 12 depicts the basic

extract

Scheduler

Machine-Manager

Waiting-Room

verify

Hardware-
Interface

Abstract

Scheduler
High-Level

Figure 12: Scheduling single MPP-systems

structure of this veri�cation protocol as it is currently
implemented in CCS. Note that the protocol between
the scheduler and the hardware-interface supports the
mapping process of the MM-D as well as the schedul-
ing decisions of the QM-D. Since the QM-D sends a
complete set of requests to the MM-D for veri�cation
purposes, the mapping module of an MM-D can opti-
mize the request placement according to this limited
knowledge of the future. On the other hand, the QM-
D can improve its abstract request-schedule by the
hardware-related suggestions received from the MM-
D. Thus both, the mapping and the scheduling unit can
bene�t from this additional knowledge.

Furthermore, the schedule is deterministic for those
resource requests which have left the waiting-room.
Therefore, it is possible to extract the next block of ap-
plications from the waiting-roomwhen the preplanned
time drops below a certain threshold. Of course, the
newly extracted block must not be mixed with the
applications that have already entered the scheduler.
Otherwise, fairness could no longer be guaranteed. It
should be noted that the priority mechanism may be
weakened, if this threshold is very high. On the other
hand, this gives the administrator a good mechanism
to adjust the behavior of the management system ac-
cording to his needs.

Fig.13 depicts the normalized error-curve of the
waiting-time estimations. The measurements were
made when the requests were entering the waiting-
room and the veri�cation protocol was used. Compar-
ing this diagramwith Fig. 10, we can see that there are
still some high deviations but most predictions were
fairly accurate. Requests that leave the waiting-room
and enter the scheduler can now rely on their predicted
con�guration-times. Thus, the waiting-time estima-
tions made for veri�ed resource requests are absolutely
tight.

0

20

40

60

80

100

0 100 200 300 400

w
ai

tin
g-

tim
e

es
t.-

er
ro

r
 [u

ni
ts

]

request number

"wait_err_wr_norm.dat"

Figure 13: Estimation errors when entering the
waiting-room (with verify-protocol)

In practise, it is very important that this protocol
enables CCS to manage reservations, too. Daily use
has shown that users frequently want to reserve parts
of a dedicated machine for a �xed time. Maybe they
want to do a presentation or maybe there is a dead-
line to be met. The handshake between QM-D and
MM-D allows the scheduler to use the remaining parts
of the machine and be still able to guarantee that the
reservation can be ful�lled at the desired time. CCS
contains a graphical tool to display the veri�ed part
of the schedule. This tool enables the users to �nd
out when their requests will be con�gured and if there
are free slots in the current schedule. This encour-
ages the users to submit requests that will �t into free
slots of the schedule and thereby to increase the over-
all throughput.
Another important property is that the schedul-
ing/mapping/ verifying activities do not result in ad-
ditional runtime-overhead for application programs.
Only the startup-time of an application may increase
by a few seconds. This is because the CCS software is
running somewhere in front of the MPP-systems to be
managed and not on the compute-nodes themselves.

11

4.3 Results

Sections (4.1) and (4.2) have shown that the user
can more heavily rely on waiting-time estimations, if
the high-level scheduler performs a veri�cation hand-
shake with the hardware interface. Thus, the next
step is to �nd out exactly how much better the pre-
dictions will be if the extended scheduler is used. In
order to do this, there are two parameters to be ex-
amined. The �rst is the frequency of signi�cant errors
and the second is the average di�erence between the
predicted and real con�guration times. Therefore, we
have analyzed the behavior of both schedulers with
simulation series of more than 500 resource requests
each. The frequencies of the di�erent error-classes are
depicted in Fig. 14 and Fig. 15.

0 20 40 60 80 100

fr
eq

ue
nc

y

waiting-time est.-error [units]

"distr_wait_err.dat"

Figure 14: Error distribution (without verify-
protocol)

0 20 40 60 80 100

fr
eq

ue
nc

y

waiting-time est.-error [units]

"distr_wait_err.dat"

Figure 15: Error distribution (with verify-protocol)

Without the veri�cation protocol, most of the dif-
ferences are located around 35% of the maximum er-
ror. In contrast, the extended scheduler has nearly

the same maximum error but is able to place most of
its predictions within a range of 10% of the maximum
error. Thus, there are only few signi�cant errors if the
extended scheduler is used.
There are two reasons for estimation-errors to occur,
even if the veri�cation protocol is applied. The �rst
one is because we have to schedule an online system.
Thus, new enqueued requests with a higher priority
can overtake others and therefore interfere with the
predictions already made.
The second one is because only the calculated schedule
for the requests inside the scheduler (Fig. 3) is veri�ed.
Schedules resulting from cleaning the virtually frozen
waiting-room, in order to estimate the waiting-time
just after request-submission are treated as within the
autonomous scheduling mode (see 4.1). Therefore,
the predictions made get worse with increasing ratio
between the number of pending requests within the
waiting-room and those which are already inside the
scheduler. Of course one could verify the schedules for
all requests in the whole system at any time. In that
case, however, we have to pay for the tighter time-
values by a signi�cantly increased computation time
for the veri�cation task. The compromise we have cho-
sen by only verifying the schedule for requests which
are already inside the scheduler can be adapted to the
administrator's needs by simply changing the extrac-
tion order E(pi) for the priority-queues (see 3.1).

In the further evaluation of the veri�cation method-
ology, we have calculated the average di�erence be-
tween predicted and real con�guration times. Again,
we used a sample of more than 500 requests for
both schedulers. For users working interactively the
waiting-time estimations become of particular inter-
est, when a request is submitted. Therefore, we have
examined the data presented in Fig. 10 and Fig. 13.
The normalized mean error-values

EV =
100

N �Emax

�

NX
i=1

j tconfigured(i) � testimated(i) j

with

Emax = maxf j tconfigured(i) � testimated(i) j ; 1� i�Ng

for all requests were determined and compared. Us-
ing the autonomous scheduling approach, a value of
EV = 34:923 was calculated. This was decreased to
EV = 6:428 by the veri�cation protocol. Thus, we
were able to reduce the uncertainty by 76% while still
maintaining the hardware independence of the algo-
rithm.

12

verify

Synchronizer
Partitioner /

verify Machine-Manager

Machine-Managerverify

Machine-Manager

verifyWaiting-Room

High-Level Scheduler Abstract Hardware-Interface

Schedulerextract

Figure 16: Scheduler layout for a metacomputer

5 Towards the Metacomputer Chal-

lenge

Metacomputing in its ideal form involves spreading
a single application across several HPC systems, allow-
ing a heterogeneous collection of computers to work in
concert on a single problem [10, 18]. However, inter-
mediate steps in metacomputer evolution, e.g. using a
number of di�erent MPP-systems of a distributed vir-
tual machine-room to achieve a global load-alliance,
seem to be more realistic for most applications [12].
Activities are already in process to determine whether
such ideas can be transferred into practise and how
that might work [1, 5, 13, 19].

Building a metacomputer is probably one of the
greatest challenges to computer scientists. The re-
quired hardware has been available for several years,
but we are still far away from a really working meta-
computer. In the course of the last years, the WAN
technology has made rapid progress. Encouraging
global �le systems (e.g. AFS, DFS) are emerging.
Thus, some important preconditions are ful�lled to
establish a general purpose metacomputer. What is
needed now is a resource-management layer which can
be scaled to these new challenges. By comparing the
requirements for such an environment to those of a
monolithic HPC system, several additional problems
have to be solved. For example, synchronized schedul-
ing and mapping methods using the heterogeneous
and architectural possibilities have to be developed.
Suitable methods to divide an abstract user-request
into subrequests and to select the best suited systems
from a virtual machine-room afterwards, while taking
the WAN performance into account, are required [9].
Typical applications for a heterogeneous machine-pool
will need to have each of their modules running on the
best suited computer-system. Some modules may re-
quire a vector computer and others may perform best
on an SMP machine. A metacomputer scheduler re-
ceiving such a request must be able to guarantee that

all these modules will be running at the same time.
This must of course not decrease the overall through-
put to intolerable values.

The CCS approach presented o�ers a simple and
user-friendly interface to the MPP-resources of a ser-
vice provider. Due to the high-level view of the phys-
ical resources, a framework was drawn up to establish
a virtual machine-room locally, thus giving a similar
shape to various HPC sides.
Fig. 16 shows how the layout of the CCS-scheduler can
be extended to meet some of the additional require-
ments.
The high-level scheduler remains the same as in the
single computer case depicted in Fig.12. The abstract
hardware interface now consists of several di�erent
MM-Ds, one for each system in the virtual machine-
room. The scheduler indirectly communicates with
these MM-Ds via a new module which performs the
partitioning and synchronizing task. When the sched-
uler receives a request that consists of several subre-
quests that can { or perhaps even must { be executed
on di�erent machines, it is sent to the partitioner just
like any other request. The partitioner notices that
all subrequests have to be ful�lled synchronously. It
chooses the best-suited machines and sends the subre-
quests to these machines for veri�cation. The required
multi-agent structure is very similar to the structure
depicted in Fig. 2, if the partitioning and synchroniz-
ing task is assigned to the PM-D, too. The protocol
used now is similar to the one between the high-level
scheduler and the abstract hardware-interface. The
MM-Ds report to the partitioner that the request can
be ful�lled or make a suggestion when this will be pos-
sible.

The partitioner iterates these steps until it has found
the right machines and a suitable time-slot for the syn-
chronous requests. Then, it reports to the scheduler
that the schedule is valid or it presents the alterna-
tive suggestion. The scheduler itself can later use this
additional information as described in (4.2).

13

Despite the topics purely related to scheduling,
there are other important requirements a resource
management system has to meet in order to be suit-
able for a metacomputing environment. For exam-
ple, there have to be well de�ned access points for
third party products. A metacomputer built from
supercomputers of many di�erent vendors must have
its own vendor-independent runtime and development
tools like debuggers, performance analyzers or load-
balancers. Therefore, it is vitally important that
the management system provides standardized access
points for these tools. However, it takes knowledge
about the requirements of these tools to establish the
interfaces in a useful way. Thus, computer scientist
working on di�erent areas of research have to combine
their knowledge in order to build a metacomputer. We
think that the design of CCS is a good focal point for
these activities.

Acknowledgment

We would like to thank everybody involved in the
CCS project. Especially Christian Hellmann for im-
plementing the scheduling strategies and for running
the simulations. Finally, we thank the anonymous ref-
erees for their helpful comments that improved the
presentation.

References

[1] A. Bachem, B. Monien, F. Ramme : Der For-

schungsverbund NRW-Metacomputing "Verteiltes

H�ochstleistungsrechnen", Technical Report,
Paderborn, 1996

[2] M. Campione, K. Walrath : The Java Lan-

guage Tutorial: Object-Oriented Programming

for the Internet, ISBN 0-201-63454-6, expected
July 1996

[3] E.G. Co�man, M.R. Garey, D.S. Johnson,
R.E. Tarjan : Performance bounds for level-

oriented two-dimensional packing algorithms,

SIAM J.Comput., Vol. 9, No. 4, pp. 808-826, Nov.
1980

[4] A. Colbrook, M. Lemke, H. Mierendor�, K.
St�uben, C.A. Thole, O. Thomas : EUROPORT

{ ESPRIT European Porting Projects, Int. Conf.
on High-Performance Computing and Network-
ing, Proc. of the HPCN Europe, Springer-Verlag
1994, LNCS No. 796, Vol. I, pp. 46-54

[5] E=MC2 Consortium c/o R.McConnell : The

European Meta Computer Utilizing Integrated

Broadband Communications (E=MC 2) Project,

Int. Conf. on High-Performance Computing and
Networking, Proc. of the HPCN Europe, LNCS,
Springer-Verlag 1995 pp. 54-59

[6] D.G. Feitelson : A Survey of Scheduling in Mul-

tiprogrammed Parallel Systems, Research Report
RC19790 (87657), IBM T.J. Watson Research
Center, Oct. 1994

[7] D.G. Feitelson, L. Rudolph : Toward Conver-

gence in Job Schedulers for Parallel Supercom-

puters, In IPPS'96 Workshop on Job Scheduling
Strategies for Parallel Processing, April 1996

[8] R. Funke, R. L�uling, B. Monien, F. L�ucking, H.
Blanke-Bohne : An optimized recon�gurable ar-

chitecture for Transputer networks, Proc. of 25th
Hawaii Int. Conf. on System Sciences (HICSS 92),
Vol. 1, pp. 237-245

[9] J. Gehring, A. Reinefeld : MARS { A Frame-

work for Minimizing the Job Execution Time

in a Metacomputing Environment, To appear in
spring issue of FGCS 1996

[10] A.S. Grimshaw, J.B. Weissman, E.A. West, E.C.
Loyot : Metasystems: An Approach Combin-

ing Parallel Processing and Heterogeneous Dis-

tributed Computing Systems, Journal of Parallel
and Distributed Computing, Vol. 21, 1994, pp.
257-270

[11] R.L. Henderson : Job Scheduling Under the

Portable Batch System, IPPS Workshop on Job
Scheduling Strategies for Parallel Processing,
D.G. Feitelson and L. Rudolph (eds), Springer-
Verlag 1995, LNCS No. 949, pp. 279-294

[12] A.A. Khokhar, V.K. Prasanna, M.E. Shaaban,
Cho-Li Wang : Heterogeneous Computing: Chal-
lenges and Oportunities, IEEE Computer, Vol.
26, No. 6, 1993, pp. 18-27

[13] Reagan Moore : NSF MetaCenter: A White Pa-

per, San Diego Supercomputing Center, 1995

[14] F. Ramme : Building a Virtual Machine-Room {

a Focal Point in Metacomputing, Future Genera-
tion Computer Systems (FGCS), Elsevier Science
B.V., Aug. 1995, Special Issue on HPCN, Vol. 11,
pp. 477-489

14

[15] F.Ramme, K.Kremer : Scheduling a Metacom-

puter by an Implicit Voting System, 3rd IEEE Int.
Symposium on High-Performance Distributed
Computing, San Francisco, 1994, pp. 106-113

[16] F. Ramme, T. R�omke, K. Kremer : A Dis-

tributed Computing Center Software for the Ef-

�cient Use of Parallel Computer Systems, Int.
Conf. on High-Performance Computing and Net-
working, Proc. of the HPCN Europe, Springer-
Verlag 1994, LNCS No. 797, Vol. II, pp. 129-136

[17] J. Skovira, W. Chan, H. Zhou, D. Lifka : The

EASY { LoadLeveler API Project, In IPPS'96
Workshop on Job Scheduling Strategies for Par-
allel Processing, April 1996

[18] L. Smarr Ch.E. Catlett : Metacomputing, Com-
munications of the ACM, Vol. 35, No. 6, June
1992, pp. 45-52

[19] HIPERCON { High-Performance Computing

Network {, W. Zimmer (ed.), Eine Analyse zum
Aufbau und Betrieb eines H�ochstleistungs-
rechnerverbundnetzes in der Bundesrepublik
Deutschland, GMD-First, Berlin 1995, im Auf-
trag des BMBF

[20] M. Wan, R. Moore, G. Kremenek, K. Steube
: A Batch Scheduler for the Intel Paragon with

a Non-contiguous Node Allocation Algorithm, In
IPPS'96 Workshop on Job Scheduling Strategies
for Parallel Processing, April 1996

15

