
Abstract.

The EASY - LoadLeveler API Project

Joseph Skovira, Waiman Chan, Honbo Zhou

David Lifka

1 Introduction

2 Background of EASY and LoadLeveler

International Business Machines

Cornell Theory Center

With the increasing use of distributed memory massively par-
allel machines (MPPs) such as the IBM SP, the need for improved par-
allel job scheduling tools has sparked many recent developments. IBM's
LoadLeveler is being used at the Cornell Theory Center, but problems
exist with the current scheduling algorithm applied to the job mix on the
512-node SP. In order to address Cornell's di�culties, Joseph Skovira
began to consider enhancements to LoadLeveler. At about the same time,
David Lifka, developer of the EASY parallel job scheduler, began work-
ing at CTC. With Waiman Chan and Honbo Zhou of IBM LoadLeveler
development, we have developed a LoadLeveler API that allows external
schedulers like EASY to control the starting and stopping of jobs through
LoadLeveler.

The EASY-LoadLeveler collaboration is interesting for several reasons. First,
both EASY and LoadLeveler bene�t. By interfacing to LoadLeveler, the EASY
algorithm can more readily be expanded to heterogeneous MPPs using informa-
tion already maintained by LoadLeveler. LoadLeveler bene�ts because parallel
job scheduling can be externalized where it can then be easily customized for
requirements at di�erent sites. Second, both LoadLeveler and EASY have been
proven on MPPs { both codes scale and have a measure of stability because
of their maturity. Finally, this work introduces a new model for job schedul-
ing. In e�ect, the task is segmented into administration and scheduling. In our
case, LoadLeveler handles the administration (e.g., the job queue) information
regarding node resources of the machine, status of jobs running throughout the
machine, and information about the machine node status. EASY takes care of
the job scheduling, that is, when a particular job should run and on which nodes
it should run. Since the interface is externalized to a small number of calls, and
since EASY is written in Perl, changes to the scheduling algorithm or policy
can be quickly made at di�erent sites without a�ecting the compiled code of
LoadLeveler.

EASY was originally developed at Argonne National Laboratory for use on Ar-
gonne's 128-node SP system. As required by many sites, Argonne had parallel



3 Combining EASY and LoadLeveler

job scheduling requirements not met by any commercial or research project then
available (including LoadLeveler). The EASY algorithmwas developed with sev-
eral fundamental principles in mind. First, the job queue would be ordered by
submission time { jobs would be considered for execution in the order they were
submitted. If the �rst job in the queue could be scheduled to run on available
nodes, it would be executed. If the next job in the queue could not run because
enough nodes were not available, it would wait until enough nodes became free
in order to run. This leads to the second principle: the scheduling algorithm is
deterministic. Jobs in the queue are never delayed from running by jobs sub-
mitted to the queue after them. Finally, while a job is waiting for resources to
free, smaller jobs further down the queue can be run as long as they complete
before the waiting job is scheduled to run. In this way, jobs can be back�lled
onto available nodes in order to make better use of machine resources. EASY is
currently used by many MPP sites throughout the world and is known for its
e�cient scheduling, simplicity, and robustness. One note is that EASY schedules
homogeneous nodes of an MPP. A mechanism in the algorithm to deterministi-
cally schedule special resources is currently under development.

Referring to the de�nition in [1], Loadleveler is a distributed, network-based, job
scheduling program. LoadLeveler is a modi�ed version of Condor that is sold
by IBM. Condor was originally designed to schedule clusters of workstations.
LoadLeveler was built on this base as a scheduler for MPP's, in particular, the
IBM SP. LoadLeveler will locate, allocate, and deliver resources from across a
network while attempting to maintain a balanced load, fair scheduling, and an
optimal use of resources. The goal of LoadLeveler is to make better use of ex-
isting resources by using idle compute nodes and to optimize batch throughput.
LoadLeveler is also used by many SP sites worldwide and is a product fully sup-
ported by IBM. However, the code is written in C and changes to its function
(including parallel job scheduling) require redesign and re-release of the product
by IBM.

Although EASY is a standalone scheduling system that is proven to work on ex-
isting MPP systems, there are several reasons to integrate EASY with LoadLeveler
instead of just enhancing EASY. First, LoadLeveler contains much more con-
�guration information regarding the machine than EASY records, especially re-
garding di�erences between the nodes of a machine. The machine information
is updated using the SP resource manager so that system changes are quickly
reected in the LoadLeveler data. Because these records and distribution mech-
anisms have proven reliable in LoadLeveler, we decided to take advantage of
them in order to enhance EASY. Future versions of EASY will make use of this
information to perform exact resource matching.



Another advantage occurs because LoadLeveler maintains daemons at every SP
node. These Startd daemons are used to start user tasks at a particular node
of the machine. Because these daemons are in place, starting and stopping jobs
by the EASY scheduler occurs much faster than with standalone EASY, which
uses rsh. This eliminates some amount of startup and shutdown overhead.

Using the new system, it becomes much simpler to switch between LoadLeveler
and EASY scheduling. In fact, future modi�cations might include the capability
to partition a single machine into pools of nodes which are scheduled using 2 (or
more) di�erent algorithms. This might prove useful as a way to take advantage
of di�erent algorithms strengths depending on the parallel job mix.

At the start of this e�ort, we considered which scheduling algorithm to interface
with LoadLeveler, and the choice of EASY was a clear one. EASY is currently
one of the most popular schedulers available for parallel jobs that provides de-
terministic queuing combined with straightforward interface features and simple
administration. Also, being written in Perl, the algorithm is simple to under-
stand and modify (both in terms of scheduling and policy). Both EASY and
LoadLeveler are supported; LoadLeveler as an IBM product and EASY as a pub-
lic domain code maintained by David Lifka. To cap the decision, the LoadLeveler
group realizes the worth of the EASY algorithm, and David Lifka understands
the information from LoadLeveler that can be used to enhance the EASY algo-
rithm for resource scheduling.

A �nal choice to make was whether to include the EASY algorithm within
LoadLeveler or to provide an interface for use with a modi�ed version of the
EASY code. The choice of an API was clear for several reasons. Including the
EASY algorithm within LoadLeveler would require a rewrite from Perl to C,
which would add time to the projected deployment of this solution. In fact, in-
clusion as C code proves more damaging due to the more static nature of the
result. In order to change the scheduling algorithm, there would have to be a
release of the LoadLeveler product. Even then, the scheduling algorithm would
be static for all sites. By using an API, changes can be both prototyped and
deployed quickly. In addition, di�erent sites can implement di�erent scheduling
solutions tailored to their individual job mixes { a very powerful aspect of this
solution. In fact, the API allows the EASY code to be totally replaced by an
algorithm entirely designed by another SP administrator. As long as the API
calling formats are followed, any scheduling algorithm can be implemented. The
API may also be used to develop system administration tools an example of
which is the service policy currently implemented by EASY. Using an external
tool, nodes could be taken out of service quickly without restarting and recon-
�guring LoadLeveler. Because the schedule API provides information about the
nodes and the jobs, any recon�guration of these data structures is possible by
an external tool.



Load Leveler
Easy

Scheduler
Scheduling

API

Retrieve Job Queue

Start a Job

Cancel a Job

Retrieve Node Status

Load Leveler with API Conversion Routines plus Easy

Figure 1 - Job partitioning and interface calls

ll get job:

ll get node:

ll start job:

ll cancel job:

4 The Application Programming Interface between

LoadLeveler and EASY

From the outset, we intended the API to be as straightforward as possible. Our
�rst version was intended to provide the minimum functionality necessary to
interface the EASY scheduler. As we learn more about the functioning of ex-
ternal scheduling algorithms, the interface will be appropriately expanded. The
current interface consists of 4 calls. These calls are illustrated in �gure 1, which
also includes an illustration of job division between LoadLeveler and EASY. In
�gure 1, note that there were 3 tasks required to interface LoadLeveler with
EASY. The �rst was to enhance LoadLeveler to provide the appropriate calls to
be used by EASY. Next, the standalone EASY code was modi�ed to interface
with the new API functions. Finally, an interface layer was developed to convert
the information returned in the LoadLeveler C structures into data as required
by the EASY code, written in Perl. The following functions are provided by
LoadLeveler to support external scheduling using the EASY scheduler:

Retrieve the job queue - This call returns the contents
of the LoadLeveler job queue. All jobs currently in the
queue, including those running and waiting to run, are
returned by this call.
Retrieve the node status - The status of all SP2 nodes in
the system is returned by this call.
Start a job - EASY uses this call to begin the execution
of a previously queued parallel job. Once EASY has
determined that a job is to be started, it issues this
call to LoadLeveler, along with a speci�c set of
nodes on which to start the parallel job.
Cancel a job - EASY issues this command to cancel a job
when the execution time has exceeded a limit which the
user has set.

Figure 2 shows how EASY would make use of the provided calls to examine
the current job queue and machine status, decide which job to schedule, then
start a job. At Cornell, this new version is being tested, maintaining the exist-
ing LoadLeveler interfaces for the users (which include job submission and job



Load Leveler Easy

Using the Job Queue and Node
Status, Easy determines which 
parallel job to start next.

Start Job X on a specific
set of SP2 nodes.

Node Status

Request the Job Queue

Job Queue

Request the Node Status

Load Leveler starts
Job X on the set of
nodes defined by Easy.

Node Status

Job Queue

5 Performance and Scalability

Figure 2 - Starting a job across the Interface

command �les). In addition, this new version will provide a wall-clock run-time
variable in LoadLeveler, which EASY requires, and EASY commands for exam-
ining the operation of the job scheduling system. EASY tools like spq, spusage,
and xspusage will become available for the Cornell users.

During our initial testing, we have started to collect performance statistics for
the LL-EASY code. Figures 3 and 4 shows the results obtained from submitting
1000 jobs to an 8 node SP2 system using LL-EASY. Figure 3 shows the time
it takes to start jobs from the FIFO queue. These jobs were not back�lled into
available resources but, rather, started once they arrived at the top of the queue.
The startup time axis represents the total startup time beginning with the sched-
uler requesting job information from LoadLeveler, deciding which job to start,
calling LoadLeveler to start the job, and completing with the job actually being
dispatched by LoadLeveler to the appropriate nodes. The longest time recorded
was 13 seconds for job 31, the average was approximately 5 seconds. Note that
the time decreases as the job queue is consumed (as expected). The discontinu-
ities in the graph are caused by a lock on a resource �le maintained by EASY
which is asynchronously accessed by multiple daemons. We are developing a �x
to solve this issue, but, even with this e�ect, jobs start very quickly. There is



0

3

6

9

12

15

1000 750 500 250 1

S
ec

on
ds

Number of Jobs in the Queue

0

2

4

6

8

10

12

1000 750 500 250 1

S
ec

on
ds

Number of Jobs in the Queue

Figure 3 - FIFO Jobs

Figure 4 - Back�lled Jobs

very little overhead in transferring even a large job queue from LL to EASY.
Note also that rapid startup of the jobs is further enabled by the existence of
the LL daemons at each of the nodes.

Figure 4 also shows job number versus submission time, but in this case, the
jobs started were back�lled. These jobs were started as the result of a search
of the queue to attempt to �ll vacant resources while waiting to start the top
job in the queue. Note again that the worst case time is 12 seconds for job 220
and that the average is approximately 5 seconds. Also note that the number of
back�lled jobs reduces near the end of the test, also as expected. This occurs
because the smaller, shorter running jobs are used early to �ll the holes in the
schedule. As time passes, there are fewer of these small jobs which can be used
to �ll available nodes, consequently, fewer jobs are back�lled later in time. This
e�ect disappears with an in�nite queue (the equivalent of many users!) since
smaller jobs are always available to use the idle nodes. Again, the discontinuity
of the data is partly due to accessing the resource �le shared by the daemons.
However, some of the spike amplitude in the back�ll data is due to searching
deep into the queue to �nd a job to back�ll (note the spike for job 730). Although
the search is quickly performed, it is not done for the FIFO jobs of �gure 3, so
later spikes in the back�ll data of �gure 4 tend to be larger than those of �gure
3. Nonetheless, the time to start back�ll jobs is also very short.

So far, performance data for the algorithm is excellent. The short startup times
indicate that the combined LL and EASY algorithms operate e�ciently and can



A

6 Future Plans

References

This article was processed using the LTEX macro package with LLNCS style

A Comparison of Queueing, Cluster and Distributed
Computing Systems

Users Guide to
the Argonne SP Scheduling System

The ANL/IBM SP Scheduling System

Requirements of the Cornell Theory Center for Resource Management and
Process Scheduling

dispatch jobs even for a large queue in under 13 seconds per job, worst case, and
under 5 seconds per job, on average. With this low overhead, utilization of the
machine is not hindered by the scheduling algorithm.

We plan to incorporate deterministic scheduling of heterogeneous resources in
the EASY scheduling algorithm by Spring 1996. This will include enhancements
to the LoadLeveler API so that resource information can be passed to the sched-
uler. We also plan to incorporate dynamic process allocation in such a way that
does not break the determinism of the EASY algorithm. EASY keeps track of
the number of nodes that are available and that will not be required for the jobs
waiting in the queue. If a parallel job needs additional resources during a run, a
mechanism will be provided for the job to ask EASY for access to these nodes.
We plan to build this capability in by late 1996.

1 Kaplan, J., Nelson, M.,
. NASA TM 109025 (Revision 1) - 1, NASA Langly Re-

search Center, (1994)

2 Lifka, D., Henderson, M.,and Rayl, K.,ANL/MCS-TM-201,
, Mathematics and Computer Science Di-

vision, Argonne National Laboratory, Argonne, IL (1995)

3 Lifka, D., , Mathematics and Com-
puter Science Division, Argonne National Laboratory, Argonne, IL (1995)

4 Rosenkrantz, M., Schneider, D., Leibensperger, R., Shore, M., Zollweg, J.,

, Cornell Theory Center, Ithaca NY (1995)


