
Workload Evolution on the Cornell TheoryCenter IBM SP2Steven HotovyCornell Theory CenterIthaca, NY 14853shotovy@tc.cornell.eduAbstract. The Cornell Theory Center (CTC) put a 512-node IBM SP2system into production in early 1995, and extended traces of batch jobsbegan to be collected in June of that year. An analysis of the workloadshows that it has not only grown, but that its characteristics have changedover time. In particular, job duration increased with time, indicative ofan expanding production workload. In addition, there was increasing useof parallelism.As the load has increased and larger jobs have become more frequent,the batch management software (IBM's LoadLeveler) has had di�cultyin scheduling the requested resources. New policies were established toimprove the situation.This paper will pro�le how the workload has changed over time and givean in-depth look at the maturing workload. It will examine how frequentlycertain resources are requested and analyze user submittal patterns. It willalso describe the policies that were implemented to improve the schedulingsituation and their e�ect on the workload.1 Introduction1.1 BackgroundThere is a great deal of interest in workload characterization for parallel systems.Developers of job scheduling policies have a keen interest in the pro�les of real parallelworkloads as opposed to the synthetic data with which they often work. Managersof parallel systems wish to understand the workload so that they can make informeddecisions about policy and procedures.Parallel workloads are more challenging to characterize than their serial counter-parts, if for no other reason than the multiplicity of processors. Some parallel systems,like the IBM SP2 at the Cornell Theory Center, contain a wide variety of di�erentresources { memory per node, special software on �xed nodes, nodes devoted to I/O,etc. Such systems o�er particular challenges for workload characterization.Another complicating factor for parallel systems is that they are typically di�cultto program, which means that program development and debugging activities willplay a larger role than for serial systems. A mature workload, dominated by largeproduction jobs, will take more time to develop on parallel systems. And even a matureworkload may continue changing as users, after gaining con�dence in system reliabilityand stability, attempt more ambitious simulations involving more processors runningfor longer periods of time.



To date, however, there has been very little published on actual parallel workloads.One obvious reason is that, until recently, parallel computers were used principallyfor research and development, not production. Nonetheless, some interesting researchin workload characterization has been done. Cypher and co-workers [2] studied thememory, communication, computing and I/O resource requirements and utilizationpatterns of a number of scienti�c codes on distributed memory machines. In the JointNSF-NASA Initiative on Evaluation (JNNIE) project [6], �ve NASA centers and thefour NSF Supercomputer Centers identi�ed 22 key applications and ran parallel ver-sions of these programs on a diverse set of parallel machines. These applications involvekey disciplines supported by these agencies, but are not meant to represent a typicalworkload. The most complete study of a production parallel workload was that done byFeitelson and Nitzberg [3]. They analyzed NQS trace records over the fourth quarterof 1993 for the 128-processor iPSC/860 at NASA Ames. In an earlier paper [7], theCornell Theory Center (CTC) identi�ed six classes of future key applications, and es-timated the amount of resources these types of jobs would likely consume. These datarepresented an anticipated load, not the current workload, however. In a subsequentpaper [4], the CTC analyzed the early workload on the SP2. As the SP2 has matured,this early workload has grown and changed considerably, so a more complete analysisof the maturing workload is called for.This study highlights the evolution of the batch workload on the CTC IBM SP2 overan 8-month period. It expands on previous studies in that the workload is not viewed asa static entity, but one with several phases, each of which should be treated separately.The later, production-oriented phase is analyzed in more detail, providing informationthat will be useful to developers of job scheduling and resource management strategies.This paper also examines the e�ect of policies on workload behavior, a subjectwhich has received scant attention. Changes to policy were motivated by the factthat resource utilization for the later workload was being limited by ine�ciencies inthe resource management software. This paper discusses the motivation behind thesepolicy decisions, and the e�ect they had on workload characteristics.1.2 The SP2 SystemThe Cornell Theory Center IBM SP2 system [1] contains 512 nodes with an aggregatepeak speed of 137 G
ops and a combined physical memory of 79 GBytes. The system,which was made available for production use in early 1995, is heterogeneous in that itcontains a mixture of wide nodes and thin nodes. On the CTC SP2, wide nodes havebeen con�gured with 4 times the data cache and 4 times the data bandwidth betweencache and memory compared to thin nodes. The nodes also vary in the amount ofphysical memory attached, from 128 MB up to 2048 MB.The 512 processors themselves are segregated by the services they provide. The bulkof the processors, 430 in number, are devoted to running batch jobs. The remainderare used for interactive use, I/O gateways, special projects, and system testing.The pool of batch nodes consist of both wide and thin nodes, and come in a varietyof memory sizes. Table 1 details the node type/memory combinations.The SP2 is also equipped with a High-Performance Switch, which directs datacommunication among the nodes. This switch runs under two protocols: the standardIP protocol (HPS-IP), and a more e�cient one which resides in user space (HPS-USER).Each node has 2GB of disk capacity. None of this storage is used for permanent�les, however. Rather, this storage is used for swap space, caching of permanent �les,



Node Type 128 256 512 1024 2048Thin 352 30 0 0 0Wide 0 22 21 4 1Total 352 52 21 4 1Percent 81.9 12.1 4.9 0.9 0.2Table 1. Con�guration of Batch Partition by Physical Memory (in MB) and NodeTypeand temporary space for users. Permanent data are stored on external AFS �le serversor on the NSL Unitree mass storage system.Management of the batch system was provided by LoadLeveler [8], IBM's job man-agement software. A fuller discussion of the LoadLeveler environment follows.1.3 LoadLeveler ConsiderationsLoadLeveler provides a number of keywords to assist in the scheduling and executionof jobs. The most important ones from the standpoint of workload characterizationare:{ Batch queue name{ The minimum number of processors required{ The maximum number of processors that can be used{ The switch protocol (USER or IP) to be used for parallel jobs{ The amount of memory requested{ The node type (THIN or WIDE){ Mass storage (Yes or No){ Node-locked software (ABAQUS or FIDAP)LoadLeveler allows for dynamic de�nition of batch queues. Our initial de�nition ofqueues, all based on a maximum execution (wall-clock) time for a job, were:{ 15-minute{ 3-hour{ 6-hour{ 12-hour{ 18-hourWithin a given queue, there are no inherent limits to other resources, such asthe number of processors, which the user may request. LoadLeveler will automaticallycancel jobs that exceed the wall-clock limit for the queue, however. The LoadLevelerjob scheduler is given control of assigning nodes from the entire pool of 430 processors.All queues draw from this same pool.LoadLeveler employs space-sharing in the allocation of parallel jobs, i.e., once anode is assigned to a particular job, it is not available for further work until the jobis completed. The scheduler uses a least heavily loaded algorithm to select candidatenodes. LoadLeveler imposes no limit on the number of jobs that may be queued in agiven queue. LoadLeveler also employs an aging algorithm that increases the priorityof jobs which have been waiting longer to receive service.



1.4 Initial PoliciesThe CTC established several initial policies which had an e�ect on batch performance.To equalize access to the SP2, the Center originally established a maximum of 2 jobs peruser that could be executing simultaneously (although there was no limit per user forthe number of jobs waiting in the batch queues). This limit was subsequently modi�edseveral times in response to a changing workload, as will be discussed below.Another policy was that all batch queues, except for the 15-minute one, will be giventhe same initial priority. The 15-minute queue was assigned a higher initial prioritybecause it is intended for program development and debugging where turnaround timeis more critical.2 An Overview of the Changing WorkloadAt the most general level, the workload can be characterized both by the number ofjobs and by the amount of wall-clock time accumulated by those jobs. To quantify thelatter, it is convenient to de�ne the term User Node Time, which is the sum of thewall-clock times used by the job on each participating processor.Daily LoadLeveler logs from June 18, 1995 through March 2, 1996 (except for theweeks of September 3, September 10 and December 3) were used in the analyses of thissection. There was no data for the 2 weeks in September because of a problem with thedata collection mechanism; data for the week of December 3 is not meaningful becausemuch of the SP2 was dedicated to I-WAY work for Supercomputer '95.2.1 Weekly Workload AveragesFigure 1 depicts the developing workload at this general level on a week-by-week ba-sis. One clear trend is the consistently increasing use of the machine as measured byUser Node Time through the beginning of October. Through October and November,however, the User Node Time oscillates between 40,000 and 50,000 node-hours perweek despite that fact that maximum capacity is about 70,000 node-hours. The peakof 50,000 corresponds to 70 percent of capacity and the average of about 42,000 node-hours over these 2 months is only 60 percent. One can also observe a slow decline inUser Node Time in 1996. This is caused by the fact that some of the nodes previouslyassigned to servicing batch jobs were taken away for special projects.The number of jobs exhibits a di�erent behavior, though. It varies between 2,000and 3,000 jobs through mid-October, but then begins to decline, despite the fact thatthe User Node Time remains at its peak. At the end of 1995, the number of jobs settlesdown to about 1,000 per week, a factor of 3 decrease from the high in late August.1996 shows a slight increase to about 1500 jobs weekly.Figure 1 leads one to suspect that:{ The workload pro�le began to change in September and continues to change;{ The consistent, relatively low average utilization of about 60 percent may be dueless to the the workload itself than to shortcomings in the system's ability to servicethe workload.



Fig. 1. Weekly Workload.

Fig. 2. Median Job Duration and Processors Requested.2.2 The Changing Workload HypothesisFigure 2 lends credence to the �rst hypothesis. The solid line represents the medianjob duration weighted by User Node Time. A median value of 11 hours for the weekof June 25th means that half the User Node Time comes from jobs which run in 11hours or more. This value dropped throughout the summer months to a low of 6 hoursin mid-August, at which point it began a steady increase to about 15 hours late in1995. This is an increase of 250 percent over a 3 month period and re
ects a rapidmaturation in the workload from a code development/modest production environmentto one dominated by large production jobs.Figure 2 also shows the median number of processors requested weighted by UserNode Time. In most cases, the median value is 32 processors, primarily because 32-wayjobs account for about 30 percent of the total User Node Time in a given week. Yeton several occasions, the median value reached 50 and then 60 processors. This showsthat not only are jobs running longer, they tend to be using more processors on theaverage. Taken with the average job duration data, this explains why the number of



Fig. 3. Average Weekly Backlog.jobs dropped from nearly 3,000 in August to 1,000 later in 1995 while the aggregatenode-hours nearly doubled over the same period.2.3 The System Limitation HypothesisOne indication that system response, not the inherent workload, is the limiting factorwould be a consistent backlog of jobs waiting to be serviced. Figure 3 displays theweekly average backlog, both by job and by processors requested. The backlog graduallyincreased through mid-September, at which point it rapidly accelerated, reaching apeak of 80 jobs and over 2000 processors late in 1995. After declining in Decemberduring the holidays, the backlog started a steady increase in 1996. While this was onlya weekly average, it does suggest that instances where there were no jobs queued torun occurred very infrequently.Figure 4, which shows wait time information, adds more support for the hypothesis.Through the middle of September, the average wait times for both the 15-minute queueand the production queues (all the rest) were relatively low. For both, the median waittimes were signi�cantly lower than the mean, typically less than 1 minute. During thisperiod, one could characterize the wait time distribution as one highly skewed towardvery short wait times, with a few exceptions which lasted a very long time (at times,more than a day).For the next month, wait times 
uctuated, never going beyond 200 minutes. Frommid-October to mid-November, however, the wait times grew enormously to over 800minutes. Wait times for the 15-minute queue settled down through the rest of thereporting period, while for the production queues it maintained a level of around 400minutes.There is one other notable change in the wait time data. From late October on,the median wait times for the production queues can be as much as 50 percent ofthe mean. This suggests a wait time distribution very di�erent from the earlier one{ a much larger percentage of people are faced with long wait times. This is furtherevidence that the system is unable to deliver more than 50,000 node-hours per weekfor the existing workload.



Fig. 4. Average and Median Wait Times.2.4 Notes on Further Wait Time AnalysisThe wait time data should be viewed with some care. Scarce resources { large numbersof processors, the single mass storage node, etc. { will have an e�ect on wait times.The CTC policies regarding the maximum number of simultaneously executing jobsand initial job priorities also in
uence wait times. LoadLeveler itself can cause certainjobs to wait a very long time { hence the disparity between median and mean waittimes in the �rst half of the reporting period. In addition, user behavior can be afactor. For example, during periods of long turnaround times, a few users would submitLoadLeveler jobs and then immediately place them in Hold status. While the jobs werein Hold status (and increasing in priority because of aging), users would prepare theirinput �les. When the �les were ready, they would release the job, which would thenget quick service because of its high priority. This action will create an arti�cially highwait time for the job.3 Characterization of the Maturing WorkloadAs was mentioned above, the workload began to change in September from a codedevelopment/modest production environment to one featuring more substantial pro-duction jobs. In this section, we will analyze the workload for the time period fromSeptember 17th through December 2 in more detail, highlighting its heterogeneousnature.3.1 Requests for General ResourcesTable 2 describes the demand for the varying resources. Only 2.4 percent of the jobsrequested the single mass storage node, but these jobs constitute 7 percent of the user-node hours. Thus larger jobs, which tend to generate larger amounts of I/O, make useof the mass storage feature. Wide nodes are requested by roughly 1 of every 8 jobs.This is a surprisingly high number, and probably re
ects those applications for whichCPU performance is enhanced by the larger data cache and greater cache-memory



bandwidth of the wide nodes. These jobs account for less than 5 percent of the usernode time, however. Since there are fewer than 50 wide nodes, such jobs by necessitywill be serial or modestly parallel. Hence they will generate less User Node Time thanthe typical job. In fact, only 35 percent of the User Node Time for wide nodes comefrom parallel jobs. No. Pct. No. Pct.Resource Jobs Jobs UNH UNHMass Storage 427 2.4 32284 7.0Wide Nodes 2303 12.8 24409 4.7Node-locked S/W 80 0.5 4 0.00-128MB Mem 15099 84.1 441175 95.8129-256MB Mem 1987 11.1 16220 3.5257-512MB Mem 652 3.6 2296 0.5513-1024MB Mem 100 0.6 314 0.071025-2048MB Mem 109 0.6 654 0.14Table 2. Requests for Resources for Maturing Workload3.2 Requests for MemoryThe breakdown of memory requested is very illuminating. About 85 percent of the jobs,consuming over 95 percent of the user-node hours, requested 128MB of memory or less.There is corresponding less demand for nodes with larger amounts of main memory. Itshould be noted that memory requested re
ects demand for resources, not necessarilywhat type of nodes were actually used for a particular job. LoadLeveler will try to usenodes with 128MB of memory to service a smaller job, but should there an insu�cientnumber of 128MB nodes available, it will engage nodes with more memory.One of our concerns is whether the varying resources of the SP2 are adequateto the demands of the workload. In this light, it is helpful to compare the usage ofnodes by memory in Table 2 with the con�guration in Table 1. One can see that the128MB nodes are relatively over-requested since they account for about 82 percentof the nodes available but nearly 96 percent of the user-node hours. The single 2GBnode is requested proportionally to its contribution of user-node hours. The remainingnodes, however, are de�nitely under-requested. One reason for this is the relativelysmall number of large nodes, which discourages signi�cant parallel use of them. Infact, parallel jobs requesting more than 128MB of memory account for a miniscule 0.3percent of all parallel User Node Time.3.3 Requests for ProcessorsAnother critical resource is su�cient nodes for parallelism. Figures 5 and 6 displaythe demand for particular numbers of processors. Several items stand out. One is thatserial jobs constitute a non-negligible portion of the workload. In fact, over half thesubmitted jobs are serial, although they account for only 8.6 percent of the user-nodehours. These serial jobs are, for the most part, legacy applications from the IBM



Fig. 5. Number of Jobs by Number of Processors Requested.

Fig. 6. User Node Time by Number of Processors Requested.ES/9000 which was taken out of operation last year. Third-party applications, notablycomputational chemistry, also contribute to the serial load.Another striking feature is the amount of work done by jobs requesting a numberof nodes that are a power of 2, especially 32-way jobs. Power-of-2 jobs constitute about55 percent of the User Node Time, 31 percent of which is due to 32-way jobs alone. Itis not clear why power-of-2 jobs should be so prevalent { the SP2 does not place anyrestrictions on the number of nodes that can be requested, and its 
at topology doesnot cause degraded performance for certain node combinations that other topologies(hypercube, 2-D mesh, etc.) do. It may be that the users want portability with otherparallel systems which do have limitations; it may also be that powers of 2 naturally�t with the phenomenon being modeled.3.4 Job Duration Pro�lesThe correlation of job duration with the number of processors requested is a matter ofsome interest to job schedulers. Figure 7 plots the average job duration as a function



Fig. 7. Job Duration by Number of Processors Requested.

Fig. 8. Job Duration (binned) by Number of Processors Requested.of number of processors requested. The shape is very erratic and correlations, if any,are di�cult to perceive.One problem with this presentation of data is that it is not weighted by the numberof jobs requesting a given number of processors. As was mentioned above, over halfthe jobs for the CTC maturing workload are serial. One can compensate for this bycreating bins with equal numbers of jobs, in order of increasing numbers of processors.The results for 15 bins is shown in Figure 8.The �rst 7 bins are for serial jobs only. The data was processed in chronologicalorder, so these bins re
ect temporal changes in the average jobs duration of serial jobsfrom mid-September through early December. It is clear that after a brief drop-o� inlate Septmber to a low value of about 3 hours, the mean job duration increased steadilyto its high of over 5 hours at the end of the period.The next set of bins, from 2-4 processors through 8-16 processors, shows a steadydecline in job durations. One suspects that jobs in this range are indicative of programdevelopment and debugging, with correspondingly lower run times. The last set of binsshows an increase in job durations with a leveling o� for the very largest jobs. Jobs in



Fig. 9. Frequency of User Submit Sequence Lengths.this range represent production use of the machine and account for the vast majorityof cycles.3.5 User Job Submittal SequencesAnother important measure of the workload is the degree to which users submit se-quences of similar jobs. In our case, we de�ne 3 di�erent classes of "similar" jobs for agiven user:1. Same number of processors requested2. Same number of processors requested and same batch script3. Same number of processors requested and same LoadLeveler queueThe results appear in Figure 9. As one would expect, the least restrictive de�nitionof similar jobs (de�nition 1) exhibits the fewest short sequences and the most longsequences. De�nition 3 shows only a slight di�erence from the least restrictive, whilethe requirement that there be the same batch script generates far more sequences oflength 1 and consistently fewer for sequences 5 or greater.The most striking aspect of the data, however, is the virtually linear decrease upto sequences of about 50 in length, regardless of de�nition. Since the plots are log-log,it suggests a Zipf's distribution. Based on linear regression for the �rst 50 datapoints,the coe�cient for the Zipf's distributions for each of the three user sequence de�nitionswas -1.85, -2.1 and -2.0 respectively.4 Policy and ProceduresThroughout most of the reporting period, CTC policies remained as they were in thebeginning. One modi�cation was made early { to encourage use of the machine whilethe load was still relatively modest, the limitation of 2 simultaneously running jobs peruser was raised to 4 in August.



4.1 New Batch ClassAs the wait times started their dramatic increase in early November, the CTC con-sidered several policy changes. Two were implemented. On November 20, a new batchclass for short-running jobs was created. This queue imposed a limit of a 15-minuterun-time and a maximum of 8 processors that could be requested, and 8 thin nodes werereserved for this queue. The purpose of this queue was to provide faster turn-aroundfor small program development and debugging jobs. The e�ect was pronounced. Themean wait time dropped from 965 minutes for the single 15-minute queue the previousweek to an average of 280 minutes for both queues the following week. The medianwait time dropped even more dramatically, from 147 minutes the previous week to 16minutes the next. And from that time forward, wait times for the 15-minute queueshave remained relatively low.This decrease in wait time is due in large part to the new batch class. During the 2weeks immediately following the activation of the new batch class, there were 367 jobsin the standard 15-minute queue with an average wait time of 309.4 minutes. As for thenew class, there were 262 jobs submitted with an average wait time of 17.9 minutes, afactor of 17 less than for the standard queue. Thus these smaller jobs received muchbetter service than if they had to contend with larger jobs in the standard queue.4.2 Reduction in Number of Simultaneously Running JobsWith the increase in demand for the SP2 and resulting contention for resources, therewas a concern about equitable access to the machine. Thus it was decided to review thepolicy of a maximum of 4 simultaneously running jobs. An analysis of the data for thetwo weeks of maximum backlog (November 5 through November 18) showed that over10,000 node-hours, or 12.4 percent of the total volume, came from jobs whose usersalready had at least 2 other jobs running at the same time . This number was deemedexcessive, so on November 26 the number of simultaneously running jobs for a givenuser was reduced from 4 back down to 2.4.3 Future DirectionsIne�ciencies in the current LoadLeveler job scheduler are a major cause for the longwait times and relatively low ceiling of 50,000 node-hours. To improve this situation,the CTC is planning to incorporate the EASY scheduler [5] into its environment. Thisscheduler o�ers several advantages:{ It requires much less overhead to acquire nodes{ It is deterministic and can thus inform users when their job will run{ As the workload progresses, it will update the time when jobs will run, shorteningthe time to execution if possible{ It has the ability to back�ll with smaller jobsWork is underway to interface EASY with the LoadLeveler API, thus minimizingthe impact on our users. At �rst, EASY will be given a portion of the nodes to managejobs which require no special resources. However, as EASY is enhanced to provide fullresource management, it will replace the LoadLeveler job scheduler completely.



5 ConclusionsDuring the period of time when batch trace records have been analyzed, the workloadon the CTC IBM SP2 has undergone a signi�cant change. Through mid-September, itcan be characterized as one featuring program development and debugging with a cer-tain amount of modest production work. From that time onward, however, productioncomputing has become more prominent. The median job duration, weighted by node-hours generated, increased from 6 hours in July to a peak of 15 hours in November.The median number of processors used also increased.The workload data shows an upper bound of about 50,000 user-node hours con-sumed per week, despite the theoretical maximum of over 70,000. An examination ofaverage weekly backlog data shows an increase from 250 nodes in early October to over2000 in early December. During that same period, average wait times for the 15-minutequeue rose from less than 50 minutes to about 900 minutes. All this is evidence thatthe upper bound is driven by system limitations in servicing the workload, not in theworkload itself.During the period of maturing workload (mid-September through early December),we observed that the 128MB nodes are most heavily requested in proportion to theirnumbers. The single 2GB node is also well used, but the remaining nodes are relativelyunder-requested. We also observed a sizable serial workload, primarily a legacy from aprior IBM mainframe.A look at job duration pro�les showed that jobs requesting 2-16 processors hadrelatively shorter run times than those requesting more processors. This is likely dueto the fact that these smaller jobs re
ect program development, whereas jobs with moreprocessors are doing production work. User submittal patterns were examined, and itwas found that the frequency of similar job submittals followed a Zipf's distribution.The paper detailed several policy changes made in response to the changing work-load and backlog of work to be done. Adding a new 15-minute queue for small paralleljobs had a dramatic, positive e�ect on the wait times. There was also a discussion ofplans to incorporate the Argonne EASY scheduler into the CTC environment, withthe hopes that this will increase the throughput of the machine.References1. T. Agerwala, J.L. Martin, J.H. Mirza, D.C. Sadler, D.M. Dias and M. Snir, \SP2System Architecture". IBM Systems Journal, Vol. 34, No. 2, 1995.2. R. Cypher, A. Ho, S. Konstantinidou and P. Messina. \Architectural Requirementsof Parallel Scienti�c Applications with Explicit Communication". In Proceedings ofthe 20th Annual International Symposium on Computer Architecture, May, 1993.p. 2-13.3. D.G. Feitelson and B. Nitzberg. \Job Characteristics of a Production ParallelScienti�c Workload on the NASA Ames iPSC/860". IPPS'95 Workshop on JobScheduling Strategies for Parallel Processing, April, 1995.4. S.G. Hotovy, D.J. Schneider and T. O'Donnell. \Analysis of the Early Workloadon the Cornell Theory Center IBM SP2". In Proceedings of ACM SIGMETRICSConference, 1996 (to appear).5. D.A. Lifka. \The ANL/IBM SP Scheduling System". IPPS'95 Workshop on JobScheduling Strategies for Parallel Processing, April, 1995.



6. W. Pfei�er, S. Hotovy, N.A. Nystrom, D. Rudy, T. Sterling and M. Straka. JNNIE:The Joint NSF-NASA Initiative on Evaluation. San Diego Supercomputer CenterTechnical Report GA-A22123, July, 1995.7. M.E. Rosenkrantz, D.J. Schneider, R. Leibensberger, M. Shore and J. Zollweg. \Re-quirements of the Cornell Theory Center for Resource Management and ProcessScheduling". IPPS'95 Workshop on Job Scheduling Strategies for Parallel Process-ing, April, 1995.8. IBM LoadLeveler Administration Guide, IBM Document Number SH26-7220-02,October, 1994.

This article was processed using the LATEX macro package with LLNCS style


