
Abstract

Lightweight threads have become a common abstraction in
the field of programming languages and operating systems.
This paper examines the performance implications of locality
information usage in thread scheduling algorithms for scal-
able shared-memory multiprocessors. The elements of a dis-
tributed scheduler using all available locality information as
well as experimental measurements are presented.
Most shared-memory multiprocessors use multiple stages of
caches to hide latency. Data structures and policies of a
scheduling architecture have to reflect the various levels of
the memory hierarchy in order to achieve high data locality.
Per-processor data structures avoid lock contention and help
to reduce memory traffic. While CPU utilization of processes
still determines scheduling decisions of contemporary sche-
dulers, we propose novel scheduling policies based on cache
miss rates and information about synchronization. All data
gathered at runtime are transformed into affinity values inside
a metric space, so that threads migrate near to their (sub)op-
timal operation points defined by location and timing of exe-
cution. The distribution of data structures and the usage of lo-
cality information characterizes the proposed memory-con-
scious scheduling architecture. A prototype implementation
shows that a locality-conscious scheduler outperforms cen-
tralized and distributed approaches ignoring locality infor-
mation.

Keywords: affinity scheduling, cache-miss information,
NUMA architectures, operating systems.

1 Introduction

Cache-coherent multiprocessors withnon uniform memory
access (NUMA  architectures) have become quite attractive as
compute servers for parallel applications in the field of scien-
tific computing. They combine scalability and the shared-
memory programming model, relieving the application de-

signer of data distribution and coherency maintenance. But
cache locality, load balancing and scheduling are still of cru-
cial importance.

Large caches used in scalable shared-memory architectures
can avoid high memory access time only if data is referenced
within the address scope of the cache. Consequently, locality
is the key issue in multiprocessor performance. One goal of
software development is a high degree of locality from the
system up to the application level. Even if application design-
ers develop code with high locality, the impact of caches is re-
duced when scheduling policies ignore locality information.
Disregarding locality, the scheduler will initiate switches into
uncached process contexts. The consequences are cache and
TLB misses for the processor in question and cache line inval-
idations in caches of other processors.

NUMA architectures like KSR or Convex SPP already pro-
vide locality information gathered by special processor mon-
itors or by the cache coherence hardware. The latest processor
generations - e.g. HPPA 8000, MIPS R10000 or Ultra SPARC
- include a monitoring unit. A processor monitor can count
events like read/write cache misses and processor stall cycles
due to load and store operations.
Locality information about each process/thread, such as the
duration of the last active period, the cache miss rate, the pro-
cessor stall time, and the processor of last execution, can be
used to calculate an affinity value. Furthermore, cooperating
threads can be identified by synchronization events and collo-
cated at the same processor, whereas a trade-off between col-
location and load balance has to be provided.

The parallelism expressed by “UNIX-like” heavy-weight pro-
cesses and shared-memory segments is coarse-grained and
too inefficient for general purpose parallel programming, be-
cause all operations on processes like creation, deletion and
context switching invoke complex kernel activities and imply
costs associated with cache and TLB misses due to address
space changes.
Contemporary operating systems (like SUN’s Solaris or
MACH) offer middle-weight kernel-level threads decoupling
address space and execution entities. Multiple kernel threads
mapped to multiple processors can speed up a parallel appli-
cation. But kernel threads only offer a middle-grained pro-
gramming model, because thread management implies expen-
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sive protected system calls. The potential benefit of using lo-
cality information increases with the frequency of scheduling
decisions, because the scheduler is the instance evaluating lo-
cality information. Consequently, the benefit of using locality
information in the kernel will be limited by the low frequency
of scheduling decisions.

By moving thread management and synchronization to the
user level, the cost of thread management operations can be
drastically reduced to one order of magnitude more than a pro-
cedure call [1]. Some advantages of user-level threads are:

– All scheduling operations belonging to a single applica-
tion are handled inside the same address space. Cache
and TLB misses are reduced to a minimum.

– The scheduling algorithm and its interface can be de-
signed with respect to the needs of a specific application,
thus offering the optimum in performance and function-
ality. For example, preemptive or priority-based schedul-
ing of threads can be omitted to achieve low thread man-
agement overhead, if a lean scheduler is sufficient for an
application.

– Data structures for processes and threads are deeply root-
ed in most kernels. Only the user level offers the neces-
sary flexibility in adapting data structures to the degree of
parallelism inherent in an application ranging from sev-
eral to thousands of threads.

In general, light-weight user-level threads, managed by a run-
time library, are executed by kernel threads, which again are
mapped on the available physical processors by the kernel. Ef-
ficient user-level threads are predestined for fine-grained par-
allel applications. User-level schedulers make frequent con-
text switches affordable and therefore draw most profit from
the use of locality information if the lifetime of cachelines ex-
ceeds scheduling cycles.

Problems with this two-level scheduling arise from the inter-
ference of scheduling policies on different levels of control
without any coordination or communication. A loss of paral-
lelism and the occurrence of a deadlock situation is possible
due to blocking system calls invoked by user-level threads.
Solutions to these problems are discussed in [11].

In this paper we propose a non-preemptive user-level threads
package with an application interface to trigger prefetch oper-
ations to hide memory latencies based on scheduling deci-
sions of the runtime system. We outline several scheduling
policies using locality information and present results from a
prototype implementation on a Convex SPP 1000/XA. This
machine can be characterized as a cache-coherent NUMA
multiprocessor.

The rest of the paper is organized as follows. Section 2 de-
scribes the architecture of theErlangenLi ghtweightThread
Environment (ELiTE ), a scheduling architecture for cache-

coherent NUMA multiprocessors developed and implement-
ed at the University of Erlangen. Several affinity policies are
evaluated in Section 3. Finally, we conclude in Section 4.

2 Erlangen Lightweight Thread Environment
(ELiTE)

In NUMA architectures with their discrepancy between com-
puting and communication performance, memory-conscious
scheduling is essential to minimize the total completion time
of an application by reducing inter-processor communication.
Cache affinity scheduling for bus-based multiprocessors has
been investigated [17][22] in detail because cache architec-
tures become more and more dominant. The decisions within
this type of scheduling base on CPU utilization and informa-
tion about the processor where a specific thread was most re-
cently executed. State timing information from each process
is additionally be used e.g. in SGI’s IRIX operating system
[3]. Our approach to memory-conscious scheduling goes be-
yond the use of information about timing and execution loca-
tion by using cache miss information for each level of the
memory hierarchy.

Most thread schedulers attempt to optimize load balance
while reducing the costs for thread management including
queue locking. This strategy is reasonable for bus-based
shared-memory architectures with uniform memory access.
The most valuable resource of these architectures is the com-
puting power of the processor and the bandwidth of the bus
system. Thus, these scheduling policies focus on a high pro-
cessor utilization while reducing bus contention [1].
The focus of thread scheduling has to move when we look at
scalable shared-memory architectures with non-uniform
memory access. Modern superscalar RISC-based processors
are able to perform multiple operations per clock cycle while
simultaneously performing a load/store operation to the pro-
cessor cache. A multiprocessor system can only take advan-
tage of this immense computing power if the processors can
be supplied with data in time. The bandwidth of interconnec-
tion networks is no longer a bottleneck for today’s scalable
parallel processors (e.g. the Scalable Coherent Interface (SCI)
of the Convex SPP has a bandwidth of 2.8 GBytes/s). But
switches as well as affordable dynamic memory cause a laten-
cy of about a hundred nanoseconds, while processor cycles
need only a few nanoseconds. The consequence of this dis-
crepancy is that scheduling policies for NUMA architectures
have to satisfy three essential design goals:

(1) Distributed Scheduling: Data structures of the sche-
duler (run queues, synchronization objects and pools
for reusable memory regions) are distributed. There
are no global structures with the potential risk of con-
tention.



(2) Locality Scheduling:Threads are assigned to the pro-
cessor which is close to the data accessed by the
thread. This policy aims to reduce processor waiting
time due to cache misses. Fairness among threads of
the same application is not necessary, as each optimal-
ly used processor cycle within an application helps to
increase throughput.

(3) Latency Hiding: Prefetch operations cause overlap-
ping of computation and communication.

As contemporary threads packages, developed for use on
shared-memory multiprocessors with a modest number of
processors, have design goals which cannot be applied to scal-
able NUMA multiprocessors with a high number of proces-
sors, novel scheduling architectures have to be designed. Af-
ter presenting the architecture of the Convex SPP, a cache-co-
herent NUMA multiprocessor, we describe the architecture
and implementation details of the ELiTE runtime system.

2.1 Architecture of the CONVEX SPP

The Convex Exemplar Architecture [7] implemented in the
Convex SPP multiprocessor is a representative of cache-co-
herent NUMA architectures. A symmetric multiprocessor
called hypernode is the building block of the SPP architecture.

Multiple hypernodes share a low-latency interconnect respon-
sible for memory-address-based cache coherency. Each hy-
pernode consists of two to eight HPPA 7100 processors, each
having 1 MB direct mapped instruction and data cache with a
cache line size of 32 bytes. The processors on a single hyper-
node can access up to two GBytes of main memory over a
non-blocking crossbar switch. The memory in remote hyper-
nodes can be accessed via the interconnect. To reduce network
traffic, part of the memory is configured as a network cache
with 64-byte cachelines. Load/store operations step through
various stages depending on the locality of the referenced
memory region (see figure 2.1).

There are non-blocking prefetch operations to concurrently
fetch data regions from a remote node into the local network
cache. These operations can be used to overlap computation
and network traffic in order to hide latency.

Performance-relevant events can be recorded by a perfor-
mance monitor attached to each CPU. The performance and
event monitor registers cache misses satisfied by the local or
a remote hypernode and the time the processor waits for a
cache miss to be served. For high resolution time stamps, sev-
eral timers with various resolutions are available. There is also
a system-wide clock with a precision of 1µs.

Fig. 2.1 Stages required to access various levels of
the memory hierarchy
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The operating system is a MACH 3.0 microkernel with a HP/
UX-compatible Unix server on top. It provides the system call
interface from Hewlett-Packard’s Unix and an additional sys-
tem interface to create and control kernel threads.

2.2 Scheduling Architecture of ELiTE

The overhead associated with lightweight processes goes be-
yond the cost of thread management, because of memory
transfers between the various levels of the memory hierarchy.
We present a scheduling architecture outlined in [5], refined
and implemented in [18].

The following architectural features characterize the ELiTE
runtime system:

– Division of thread control block (TCB) and stack alloca-
tion (see figure 2.2):
Each processor manages its own pool of free TCBs①
and stacks③. If a new thread is created, the creating pro-
cessor allocates and initializes a free TCB. After initial-
ization the TCB is enqueued in a startqueue②. A proces-
sor with an empty runqueue④ fetches a TCB from a
startqueue and can run the thread after allocating and ini-

tializing a stack. By separating TCB and stack allocation,
memory objects of a thread, which have to be modified,
will be allocated from memory pools managed and
touched by the modifying processor. The consequence is
a high cache reusage and a low cache miss rate.

– Pool and startqueue hierarchy correspond to memory hi-
erarchy (see figure 2.2):
The number of startqueue entries is limited on the first
level (processor level) and the second level (node level).
If an overflow occurs, the TCB becomes enqueued in the
next level. The consequence is a high degree of locality
with an implicit load distribution.
When the stack- and TCB-pools of the first level (proces-
sor level) are empty, new memory objects will be
enqueued from the second level. Likewise, memory ob-
jects will be moved from the first level to the second level
when an overflow occurs. If a pool on the second level is
empty, new memory will be allocated from global mem-
ory. Therefore, global pools are not useful. The conse-
quence of this strategy is high reusage of local memory
while keeping memory allocations to a minimum.
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– Local runqueues with load balancing:
Each processor manages its own priority runqueue (see
figure 2.2④). The priority of a thread depends on its af-
finity. The scheduler prefers threads with high affinity. A
processor with an empty runqueue, finding no threads in
the startqueues, scans the runqueues of the processors in
the same node and finally the runqueues of all other pro-
cessors for runable processes. The advantages of local
runqueues are high cache reusage, low data cache inval-
idation and minimal contention for queue locks.

– Local deathrow with local clean-up stack:
When a thread exits, its context is stored in the deathrow
(see figure 2.2⑤) of the processor. The processor execut-
ing the join() reads the exit status of the joined thread and
pushes an entry on the clean-up stack (see figure 2.2⑥)
of the processor, which executed the exit(). The proces-
sors periodically scan their local clean-up stacks and re-
move the contexts of joined threads from the deathrow
and push memory objects (stacks and TCBs) into the lo-
cal memory pools. Because processors executing a join
never modify the deathrow and memory pools, cache in-
validations can be avoided and the memory locality will
be preserved. Cache misses are reduced to a minimum,
because the push onto the clean-up stack concerns only a
single cacheline.

We measured the number of threads a single thread can fork
and join ifn CPUs can start and run the created threads. We
compared an approach with central pools and another with
distributed pools (see figure 2.3). The results show that the

fork-join-rate of the centralized approach drops when using 4-
8 processors due to lock contention and dramatically drops
when using more than 8 processors (more than one hyper-
node) due to allocation of stacks not cached on the local node.

The distributed approach does not scale because of the limited
fork rate of the single forking thread. But there is no severe
performance degradation, because all stacks are allocated
from local pools with encached memory. Furthermore, lock-
ing of central structures (pools and queues) and remote mem-
ory access can be reduced to a minimum by the mechanisms
of local deathrow and clean-up stack.

– Distributed synchronization objects with local wake-up
stack:
Unlike common UNIX sleep queues with hashed entries
[13], the ELiTE runtime system binds blocked threads to
synchronization objects (see figure 2.4②). If a process
becomes unblocked, a reference to its TCB will be
pushed on the wake-up stack (see figure 2.4③). Likewise
the deathrow management, the processors scan their lo-
cal wake-up stacks periodically and enqueue unblocked
threads in the local runqueue (see figure 2.4①).

2.3 Implementation Details

2.3.1 Fast context switch

A fast context switch free of race conditions is the basis of
most synchronization mechanisms inside a runtime system.
Context switching is delicate for race conditions on multipro-
cessor systems, because one processor could resume an
enqueued thread while its stack is not yet completely frozen
by the processor of its last run. To implement context switch-
ing, we have investigated two models:

– Scheduler Threads: During a switch, control is returned
to a scheduler thread local to each processor. The sche-
duler thread enqueues a thread from the run queue and
performs an additional switch to it. Races cannot occur
because the freezing of a thread is performed on the stack
of the scheduler. However, this simple and secure switch-
ing model is very time consuming, as two context
switches are necessary per thread switch.

– Preswitch: After saving the state of the old thread, the
stack of the new thread is used to enqueue the TCB of the
old thread without the danger of a race condition. This
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mechanism assumes that the next thread is known and
existent before the switch occurs and that the next thread
already owns a stack, which makes lazy stack allocation
difficult.

As switching efficiency is essential for a fast runtime system,
preswitching is used in ELiTE. Based on the QuickThreads
package of the University of Washington [9], which provides
the preswitch model for various processor architectures, we
have ported QuickThreads to the HPPA-RISC processor ar-
chitecture. On a CONVEX SPP using this type of processor,
the following times for a context switch can be reported:

The proportion for a context switch with thread control blocks
in the three levels of the memory hierarchy is 153/1122/1805
= 1/7/12. These are almost exactly the proportions expected to
result from a memory latency of 1/50/200 cycles and 32/(64)
Bytes (network-) cache lines. Most of the time is spent saving
and restoring the callee-saves registers. The consequence is
that switching can only be optimized by reducing the number
of registers to be saved. These are the callee-saves registers,
regulated by the calling conventions (e.g. by the HP PA-RISC
calling conventions). As context saving and restoring for most
contemporary RISC processors (an exception is the SUN
SPARC processor with its register windows) is a sequence of
machine instructions and not part of the instruction set, a
change in the calling conventions could make context switch-
ing much more efficient by increasing the caller-saves regis-
ters and reducing the callee-saves registers.

2.3.2 Fast synchronization

Lim and Agarwal [14] have investigated waiting algorithms
for synchronization in large-scale multiprocessors. With in-
creasing CPU numbers, the type of synchronization has a sig-
nificant influence on the performance of fine-grained parallel
applications. The proposed two-phase waiting algorithm com-
bines the advantage of polling and signalling. A thread blocks
after a fixed polling interval. The polling threshold depends on
the overhead of blocking. The results in [14] are relevant for
us, because the timing behavior of the MIT Alewife multipro-
cessors bears great resemblance to RISC-based scalable archi-
tectures like Convex SPP or KSR1/2.

In the ELiTE runtime system we use two-phase locking with
a fixed number of spin cycles.
We measure the clock cycles a lock is held, and calculate the
average duration (in clock cycles) of the last 8 acquirements
of each specific lock.

If the average of lock-holding cycles exceeds a proposed value
(default is 50% of the cycles for a context switch), we block
at once. Otherwise we spin the default number of cycles given
in the startup. To reduce memory accesses while spinning we
use exponential backoff. For details refer to [18].
We have measured the peak performance for synchronization
by starting 4096 micro-threads (8 kBytes stack and no
workload) doing nothing but synchronizing. The total amount
of memory is about 4096*8192 KBytes = 32 MBytes.
With central queues we see a severe performance loss due to
lock contention and data cache corruption as a consequence of
non local memory accesses (see figure 2.5)

Using a distributed approach, the time for a synchronization
depends on the time to save/restore the stacks into the proces-
sor/network-caches and to access the synchronization objects.
We reach the peak performance of about 100000 synchroniza-
tions/second per processor (1-8 processors in figure 2.5), if all
data can be held in the processor caches. If the stacks can be
stored in the processor caches, but the synchronization objects
have to be touched in part from multiple nodes, the synchro-
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nization performance deteriorates to about 50000 synchroni-
zations/second per processor (32 processors in figure 2.5). If
the stacks do not fit into the processor-caches (16 processors),
they are stored in the network caches (= local memory). This
effect reduces the performance to about 40000 synchroniza-
tions/second per processor.

The scheduling approach presented in this paper considers the
locality behavior of individual threads at runtime. This ap-
proach is possible if the hardware provides information about
cache misses. An additional optimization is possible, if we
look at the interaction of threads on the same memory regions,
by comparing their working set. In [16] TLB information is
used to find cooperating processes on kernel level. For fast in-
teraction a user-level readable TLB would be necessary, ac-
cessible as fast as the processor cache and with a fine resolu-
tion in the range of 1 kByte. This could be a feature of new
processor generations. The knowledge of synchronization
events is an alternative way to identify cooperating threads.
This approach will be discussed in section 3.3.

2.3.3 Queue Structures

The decisions of a memory-conscious scheduler depend on
the affinity of the threads to a specific memory region, e.g.
cache or node local memory. Consequently, threads have to be
enqueued according to their affinity. Several data structures
for priority queues exist [10], where Fibonacci heaps and re-
laxed heaps [8] need only O(log#threads) operations for the
time-critical ‘find_and_remove_maximum’-operation, which
is necessary to identify and extract the processes with maxi-
mum locality from the priority queue. But heap-structures are
not suitable for runqueues, because heaps can not be parti-
tioned fast enough in the case of load imbalance.
Priority queues implemented as binary trees make fast de- and
enqueueing possible and can be divided very easily into parti-
tions with entries of high or low locality.

2.3.4 Kernel Interface

User-level runtime systems use kernel threads as virtual pro-
cessors, assuming an equivalence of physical and virtual pro-
cessor. This assumption does not hold, because events like
page faults, I/O and system calls block the virtual processors.
The equivalence of physical and virtual processors can be
achieved by notification of the user-level threads package,
which can thus react adequately.
Scheduler Activations, proposed in [2], use kernel threads to
upcall the runtime system. This strategy suffers from the fact
that a free processor is needed to run the kernel thread upcal-
ling the user level. But there is no free processor in the case of
a request for suspension of a virtual processor. The conse-
quence is an expensive context switch on kernel level causing
TLB misses and data cache corruption.
In [12] and [22] communication mechanisms between the ker-
nel and a user-level thread library are proposed to reduce the

performance losses when threads block in the kernel or are
preempted in critical sections. The kernel and the threads
package communicate using shared memory whenever possi-
ble to avoid the need for synchronization interaction. Software
interrupts signal to the thread package whenever a scheduling
decision may be required. For example, polling of shared
memory in a safe suspension point is used to instruct the run-
time system to suspend a thread, while signalling is used to in-
form the runtime system that a thread can be resumed or a new
kernel thread can be created. Signalling is used to prevent
idling of a processor while information exchange over shared
memory is used whenever quick response to events is not so
important.
A strategy offering fast response to blocking events is pro-
posed in [11] and is used in ELiTE. The runtime system parks
spare kernel threads in the kernel. In the case of a blocking
call, the kernel deblocks a parked thread to maintain a fixed
number of running kernel threads. When the blocking request
is resolved, the kernel informs the runtime system of the de-
blocking via a shared page or shared-memory segment. If this
deblocked user-level thread is selected for execution, the cor-
responding kernel thread initiates a system call to park in ker-
nel again and to release the blocked kernel thread. The system
is in the same state as before the blocking call.

2.3.5 Application Interface

Contemporary NUMA architectures like Convex SPP or
KSR1/2 have non-blocking prefetch operations in their in-
struction set to concurrently fetch data regions from a remote
node into the local network cache, overlapping computation
and network traffic and thus hiding latency. If thread-specific
data can be stored in a single block, a pointer to this block and
its length can be stored in the thread control block. If there is
an interface to the scheduler, a currently running thread can
ask the runtime system to prefetch the data of the thread which
will run in the near future. This idea was motivated by imple-
mentations of adaptive numerical methods [4][15], where
thousands of threads, each corresponding to a point of an
adaptive grid, resume the threads representing the grid points
in the neighborhood after calculating the local grid point be-
fore they suspend themselves. This numerical method, called
active threads strategycan only run with high efficiency on
NUMA architectures if all thread-specific data is resident in
the cache before the context switch occurs.

3 Affinity Scheduling

The performance of a computer is considerably influenced by
the fast supply of data to the available processing units. Only
if the data essential for operation is cached in fast memory can
the processor work without latency and contention. Affinity
scheduling tries to prefer processes with a high amount of
cached data in order to increase throughput.



Besides information about processor number and time behav-
ior, we use information about data locality in our scheduling
architecture. Locality information about each process/thread
like the cache miss rate, the processor stall time, and the pro-
cessor of last execution can be used to calculate an affinity val-
ue. A prerequisite is a computer architecture providing infor-
mation about cache misses and CPU latencies due to memory
access. Contemporary architectures like Convex SPP and
KSR1/2 provide this information, future processor architec-
tures like HPPA 8000, MIPS R10000 or Ultra SPARC will
gather this information on chip. This information is usually
only used for off-line profiling. But why should we ignore in-
formation for optimizing the behavior of multithreaded appli-
cations at runtime?

In the next subsections we describe several affinity strategies
and the prospect of the proposed technique.

3.1 Scheduling Strategies

We have designed and implemented a user-level runtime sys-
tem, offering the possibility to easily import new affinity strat-
egies. The strategies examined are listed in the table below:

• Using virtual time stamps, each thread is assigned a se-
quence number after its run. This strategy does not need
cache miss information, and can be used on every type of
hardware. Threads with the highest time stamp given by
the same processor will be preferred. If a fast global time
source with high resolution is included in the hardware,
more precise timing strategies can be used [3].

• The Minimum Misses strategy compares the number of
cache misses during the last run. The thread with the low-
est number of cache misses is preferred. This strategy fa-
vors threads that block frequently, since they have shorter
runs and few cache misses.

• The reload transient model [19] is more complex, but of-
fers some potential. We refer to the working set of a thread
that is present in the cache as its footprint in the cache. The
reload transient is defined as the cost to establish the foot-
print of a thread after restarting it. We use a Markov model
to calculate the footprint of each thread. In the state tran-
sition diagram in figure 3.1. each nodeV represents a state
with v valid cache lines of a thread residing in the cache.

Our direct mapped cache consists ofN cache lines.

The probability to increment the number of valid cache
lines as a consequence of a cache miss during the run of a
thread is . The probability that a cache miss hits
a valid cache line is . We can generate the transition
probability matrix and calculate theM-step transition
probability matrix for each node V, describing the proba-
bility for a thread to have a certain number of valid cache
lines in the cache afterM cache misses happened.
Equivalently, we can calculate the transition probability
matrix for a blocked thread. The number of resident cache
lines is decremented with a certain probability for each
cache miss caused by the intermediate run of an other
thread .
Using these probabilities we calculate the expected foot-
print sizeF after each run. The size of the footprint de-
pends on the number of cache linesv still valid at startup
and the number of cache missescmwhich occurred during
this run .
We can also compute the expected number of linesV still
valid depending on the footprintf of a specific thread and
the number of cache missesom caused by other threads

.
Basis of our cache affinity calculation is the expected foot-
print sizeF of a thread in its last run and the expected num-
ber of valid cache linesV before its potential run. The re-
load transient is defined as the expected number of cache
misses  when rebuilding the working
set of a rescheduled thread. Our scheduling policy selects
the thread with minimal reload transient. A characteristic
of our apporach is that the order among runable threads re-
mains the same even if the scheduler enqueues new run-
able threads. Consequently the reload transient has only to
be determined, when a thread is deblocked and enqueued.
By pre-computing expected reload transients for a set of
footprints and a set of different cache miss numbers the
priority calculation of the scheduler can be reduced to a
simple table lookup [18].

3.2 Interpretation of Measurements

We have implemented and tested the proposed strategies as
part of the ELiTE architecture on a Convex SPP 1000/XA in
a range from 1 to 32 processors. The test environment in-
cludes synthetic tests with artificial workloads as well as real-
world numerical kernels like gauss elimination, LU-decom-

Scheduling strategy Basis of decision Policy

No Affinity Processor location LIFO

Virtual Time Sequence numbers Most recently run

Minimum Misses Cache misses Thread with minimal
# of cache misses

Reload Transient Cache misses Minimal reload transient
based on a Markov chain
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position and adaptive solvers on irregular grids[15][4]. All
measurements show that a fine-grained parallelization does
not inherently imply low performance. On the contrary, a fine-
grained numerical efficient algorithm outperforms most con-
ventional methods, because fine-gained parallelism implies a
high data locality in most cases. This locality can be used by
a sophisticated scheduler to achieve good overall performance
even if we register some overhead for complex strategies. But
the impact of scheduling in a fine-grained environment affects
performance much more than with a coarse-grained approach.
The runtime of a fine-grained LU-decomposition can vary by
a factor of ten, depending on the scheduling architecture.
With a synthetic workload of 1024 threads, each snooping
through a working set of 64 kBytes between synchronizations,
we can get a good impression of affinity strategies (see figure
3.2.1). We measure how many synchronizations can be exe-
cuted in one second with different numbers of processors.
This example resembles parallel numerical applications with
regular execution order like iterative solvers on block-struc-
tured grids.
Applications with irregular execution order make high de-
mands on the scheduling policy. We measure the number of
smoothing operations per second on an unstructured grid exe-
cuted by a full-adaptive iterative solver [15]. To demonstrate
the influence of the scheduling strategy on the application per-
formance, we compare the smoothing rate of the proposed af-
finity strategies with theNo Affinity strategy. A relative
smoothing performance of 2 means, that the adaptive solver
executes twice the number of smoothing operation under the
affinity scheduler compared to an execution under theNo Af-
finity scheduler (see figure 3.2.2)

• No Affinity will be outperformed in general by all strate-
gies using locality information

• The simpleMinimal Misses strategy performs quite well
in cases with homogeneous execution behaviour. As this
strategy favors threads that block frequently, anomalous
behavior is possible if some threads aquire locks during
the polling interval whereas other threads block.

• TheVirtual time approach only uses timing behavior and
the processor number of the last run. It never shows anom-
alous behavior and performs very efficiently with moder-
ate processor numbers (1-16 processors) because it offers
the minimal overhead compared to the other strategies. It
should be the policy of choice for UMA architectures not
offering cache miss information (see [3])

• TheReload Transient strategy shows the best performance
in multinode architectures with non-uniform memory ac-
cess. The overhead of gathering cache miss information
and computing the expected working sets is only justified
when memory latency really strikes. This is the case on all
contemporary and future scalable parallel processors like
Convex SPP, KSR 1/2, SUN Ultra MPP, Sequent NUMA-
Q and multiprocessors coupled with SCI-Hardware (SCI =
Scalable Coherent Interface).

The hardware of the Convex SPP 1000 used for our imple-
mentation cannot distinguish between processor- and net-
work-cache misses, but these two types of cache miss differ
by a factor of 4 in their penalty. Coming SPP generations offer
information about both types of cache fault, which permits a
much better calculation of the working set and will clearly
outperform all other proposed affinity techniques.
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3.3 Towards Optimal Affinity Scheduling

Scheduling policies should use all available information to
calculate the best possible process mapping. For optimal pro-
cess scheduling, knowledge about synchronizing threads is
necessary. Cooperating threads can be identified by synchro-
nization events and collocated at the same processor, whereas
a compromise between collocation and load balance has to be
made. To decide an ideal point defined by the location and
timing of execution, we define gravitational and repulsive
forces between threads by the frequency and extent of infor-
mation sharing.
The forces influence affinity in a metric space, so that threads
migrate near to their (sub)optimal operation point. This affin-
ity model resembles the computational field model for migrat-
ing objects proposed in [20].
A threadA running on processor X with a great cache affinity
exerts a gravitational force on threadB running on processor
Y with just a small cache affinity. ThreadA exerts the force by
increasing the affinity of threadB to processorX each timeA
synchronizes withB. The value used for increasing the affinity
depends on the size of the memory region shared by the two
threads (see figure 3.3). In the ELiTE runtime system we use
the number of cache misses occurring during the modification
of the shared-memory region as the basis of the affinity adjust-
ment.
Cooperating threads with a high compute load and rare syn-
chronization events exert repulsive forces on each other (see
figure 3.3). Threads showing this behavior can be recognized

by a high number of cache misses and a long time-frame be-
tween blocking events. If these threads run on the same pro-
cessor, they decrease the affinity of their synchronization part-
ner. Threads with a low affinity can be caught by an idle pro-
cessor.

Threads with low affinity sharing a memory region which is
large relative to the private working set exert aggregative forc-
es on each other (see figure 3.3). Before unblocking, the affin-
ity values of a synchronization partner will be modified such
that the partner will run up on the same processor as the un-
blocking thread. The aggregative force is influenced by the
number of cache misses on shared and thread-private memory
regions.
The proposed strategy has the potential to come closer to the
optimum operation point of all threads concerning location
and timing of execution. By introducing gravitational and ag-
gregative forces, the number of cache misses of cooperating
threads can be reduced, while compute-intensive threads with
low synchronization rate exerting repulsive forces can be dis-
tributed very easily.
The fact that the hardware of the Convex SPP 1000 cannot dis-
tinguish between processor- and network-cache misses, to-
gether with the high costs for reading the cache miss counters
(costs of one read are equivalent to a user-level context
switch), means that there are no publishable results of our im-
plementation. Coming processor generations with fast read-
able on-chip miss counters will allow reasonable measure-
ments using this promising scheduling strategy.

threadA running
on processorX

threadB running
on processorYgravitational force

shared memory

repulsive force

aggregative force Fig. 3.3 Attracting and distracting threads



4 Summary and Conclusions

Algorithmic optimizations of the application and scheduling
mechanisms for the management of parallelism determine the
overall throughput. The applications designer cannot be re-
lieved of algorithmic considerations concerning memory lo-
cality, but he can take advantage of a scheduling strategy
which makes a fine-grained architecture-independent pro-
gramming style possible thanks to its efficient memory-con-
scious thread management.
As maximum throughput is the goal of our efforts, we have
presented the architecture of the Erlangen Lightweight Thread
Environment (ELiTE). The focus of this scheduling architec-
ture lies on the reduction of cache misses. Distributed data
structures like those proposed in the ELiTE architecture are an
absolute necessity. Scheduling strategies using locality infor-
mation improve cache locality and therefore throughput.
Strategies based on Markov chains offer the best process reor-
dering in scalable architectures with non-uniform memory ac-
cess despite their algorithmic overhead.
The trade-off between scheduling overhead and performance
gain due to better locality will favor complex strategies using
cache miss information particularly in architectures with high
memory latency and large caches. Consequently, the proposed
scheduling techniques can be used from the desktop to the su-
percomputer. Further research will be dedicated to novel strat-
egies using all available locality information.
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