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Abstract. In this paper we present a detailed analysis of dynamic partitioning in different distributed-
memory parallel environments based on experimental and analytical methods. We develop an exper-
imental testbed for the IBM SP2 and a network of workstations, and we apply a general analytic
model of dynamic partitioning. This experimental and analytical framework is then used to explore a
number of fundamental performance issues and tradeoffs concerning dynamic partitioning in different
distributed-memory computing environments. Qur results demonstrate and quantify how the perfor-
mance benefits of dynamic partitioning are heavily dependent upon several system variables, including
workload characteristics, system architecture, and system load.

1 Introduction

Parallel computer systems, consisting of numerous tightly- or loosely-coupled nodes, represent an increasingly
important class of high-performance computing environments that make it possible to solve large and complex
problems. Fundamental to realizing these performance benefits is the design of scheduling policies which
allocate nodes among the parallel jobs submitted for execution in a manner that tends to minimize job
response time and maximize system throughput. A number of scheduling strategies have been proposed for
such parallel environments, each differing in the way nodes are shared among the jobs. One particularly
important class of scheduling policies is based on space sharing where the nodes are partitioned among
different parallel jobs.

There are three basic types of space-sharing policies. The static partitioning of the nodes into a fixed
number of disjoint sets, each of which are allocated to individual jobs, is a space-sharing strategy that has
often been employed in a number of commercial systems. This is due in part to its low system overhead and
its simplicity from both the system and application viewpoints. The static scheduling approach, however, can
lead to relatively low system throughputs and resource utilizations under nonuniform workloads [33, 26, 27,
30, 34], which can be common in scientific and engineering computing environments. Adaptive partitioning
policies, where the number of nodes allocated to a job is determined when jobs enter and leave based on the
current system state, have also been considered in a number of research studies [21, 38, 16, 26, 27, 32, 7, 30].
This approach tends to outperform its static counterparts by adapting partition sizes to the current load. On
the other hand, the performance benefits of adaptive partitioning can be limited due to its inability to adjust
scheduling decisions in response to subsequent workload changes. These potential problems are alleviated
under dynamic partitioning, where the size of the partition allocated to a job can be modified during its
execution, at the expense of increased overhead [37, 9, 21, 38, 17, 23, 26, 27, 34].

The relative runtime costs of a dynamic partitioning policy are heavily dependent upon the parallel
architecture and application workload. In uniform-access, shared-memory systems, these overheads tend to
be relatively small and thus the benefits of dynamic partitioning outweigh its associated costs. A number
of research studies have made this quite clear, showing that dynamic partitioning outperforms all other
space-sharing strategies in such environments [37, 21, 38, 17, 23]. In more distributed parallel environments,



however, the overheads of a dynamic partitioning policy can be significant due to factors such as data/job
migration, node preemption/coordination and, in some cases, reconfiguration of the application [9, 26, 27, 31].

There are several fundamental issues that must be considered in order to effectively exploit dynamic
partitioning in distributed computing environments. First, the applications must be capable of executing on
variable numbers of nodes and must be capable of reconfiguring the number of nodes on which it executes. In
this paper we develop a system approach to provide this functionality for an important class of parallel ap-
plications. Moreover, our approach provides the system structure to extend this functionality to applications
beyond those considered herein.

Another important issue concerns the overheads of dynamic partitioning in distributed computing en-
vironments, where a better understanding of these fundamental scheduling costs is needed to determine
the manner in which such policies can be effectively employed in different distributed-memory systems. To
complement and extend previous studies of repartitioning overheads for certain distributed-memory envi-
ronments [26, 27, 31], we conduct a detailed measurement-based analysis of dynamic partitioning overheads
in computing environments based on the IBM SP2 and a network of workstations. An experimental testbed
is developed on both system architectures, which we use to obtain measurement data for distinct workloads
composed of an important class of parallel applications. In our analysis we identify two different types of
overheads: one is due to the system, such as process management, and the other is attributable to application
reconfiguration.

We also use our experimental testbed together with an analytic model to analyze the impact of these
overheads on the system performance characteristics of dynamic partitioning strategies in various distributed-
memory environments. System measurements are used to parameterize, validate and complement the model,
whereas the computational efficiency of the model allows us to examine a large design space. Our detailed
analysis of dynamic partitioning and its associated overheads combine these experimental and analytical
methods to yield fundamental insights into the performance characteristics of real parallel systems. Such
coupling of experimental and analytical work is rare, and we believe it has proven to be an effective tool for
parallel system design and analysis.

Our results show that the benefits of dynamic partitioning in distributed computing environments depend
heavily upon the application workload as well as the reconfiguration overhead. We show that dynamic
partitioning provides significant improvements in performance over other forms of space sharing under many
workloads when the costs of repartitioning are fairly small relative to the workload execution requirements,
and our results quantify these considerable performance gains. Under certain workload conditions, however,
the costs associated with dynamic partitioning tend to outweigh its benefits, particularly at light to moderate
system loads for the class of parallel applications considered.

In Section 2 we describe the scheduling policies considered. Section 3 presents various aspects of the
experimental testbed used in this study, including the system hardware and software architectures, and the
parallel application workload. We then briefly describe the analytic models used in this study. Sections b
and 6 present some of the results of our experiments and quantitative analysis. Our concluding remarks are
presented in Section 7.

2 Scheduling Policies

We now define the two main policies considered in this paper: a dynamic equi-partitioning (DEP) scheme
and a static partitioning (SP) policy. Throughout this paper, we use P to denote the number of nodes in
the system and we use M to denote the minimum number of nodes allocated to any job (i.e., the nodes are
allocated in units of M). The maximum number of node partitions under each policy is therefore given by
N = P/M. Jobs that have not been allocated nodes wait in a first-come first-served (FCFS) system queue.

2.1 Dynamic Equi-Partitioning

A DEP policy basically attempts to equally divide the nodes among the jobs in the system, up to a maximum
of the first N jobs. If a job arrives to the system when ¢ — 1 jobs are being executed, 1 < < N, then the



nodes are repartitioned among the ¢ jobs such that each job is allocated (on average) P/: nodes. A job
arrival that finds ¢ > N jobs in the system is placed in the FCFS system queue to wait until a node partition
becomes available. When one of the i + 1 jobs in execution departs, 0 < ¢ < N, the system reconfigures
the nodes allocations so that each job receives (on average) P/i nodes. A job departure when ¢ > N simply
causes the job at the head of the system queue to be allocated the available partition, and no repartitioning
is performed.

We consider a particular form of DEP in which the number of applications repartitioned upon a job arrival
or departure is minimized. To better illustrate our policy, we present in Table 1 the various node allocation
changes that occur in response to these events for an 8-node system with M = 1 (hence, N = P = 8).

Initial System State|State after arrival event|State after departure event
{} {8}
{8} {4,4} {}
{4,4} {3,3,2} {8}

{3,3,2} {2,2,2,2} {44}
{2,2,2,2} {2,2,2,1,1} {3,3,2}
{2,2,2,1,1} {2,2,1,1,1,1} {2,2,2,2}
{2,2,1,1,1,1} {2,1,1,1,1,1,1} {2,2,2,1,1}
{2,1,1,1,1,1,1} {1,1,1,1,1,1,1,1} {2,2,1,1,1,1}
{1,11,1,1,1,1 - {1,1,1,1,1,1,1,1} {2,1,1,1,1,1,1}

Table 1. State transitions when applications enter and leave the system. The transitions are for an eight-node
system.

2.2 Static (Adaptive) Partitioning

The system nodes are statically divided into K partitions each of size S = (N/K) M, where we only consider
values of K that evenly divide N; i.e., K € {1,2,...,N/2, N}. A job arrival is allocated S nodes if one of
the K partitions is available, otherwise the job waits in the FCFS system queue until a partition becomes
free. Each parallel job is executed to completion without interruption and all S nodes are reserved by the
application throughout this duration. Upon a job departure, the available partition is allocated to the job
at the head of the system queue, if any. Since the node partitions cannot be modified, jobs do not incur any
reconfiguration overhead. The only overhead incurred by each job is the cost to set up the job for execution
on the § nodes allocated to it.

Our decision to consider equal-sized node partitions is motivated by the results of several studies (e.g., [30,
22]) showing that adaptive/static strategies in which the system is divided into equal-sized partitions outper-
form other adaptive/static policies when job service time requirements are not used in scheduling decisions. A
number of research studies, under different workload assumptions, have also shown that adaptive partitioning
yields steady-state performance comparable to that of the best static partitioning policy for a given system
load [26, 27, 32]. Hence, when this relation holds, the mean job response time under adaptive partitioning
1s accurately approximated by the static policy that provides the lowest response time for a given load, and
the results of Section 6 are also representative of a comparison between adaptive and dynamic partitioning
policies.

3 Experimental System Platform and Applications

In this section we describe four aspects of our experimental platform: the hardware, the system software, the
parallel applications and the workloads studied. Our focus is on distributed-memory systems where there are



a set of independent nodes that do not share memory. Each node runs independent operating system images
that communicate through message passing. The operating system runs a special distributed scheduler (DS)
that interacts with applications to perform distributed space-sharing.

3.1 System Hardware and Operating System Configurations

We experiment with two different distributed-memory environments, namely a network of workstations

(NOW) and the IBM SP2 machine.

NOW. A group of workstations connected by a token ring that has a bandwidth of 16 megabits/sec. The
workstations are Model 980F machines which use 62 MIPS PowerPC processors. These machines run AIX
3.2.5.

SP2. The IBM SP2 is a distributed-memory multicomputer that is connected by a high-speed switch. We
use TCP/IP to communicate over the switch to make the port of the software easy. The nodes run 133
MIPS PowerPC processors. These machine run AIX 4.1. The applications do not use the fast user-level
communications of the switch.

Distributed Scheduler Architecture. A parallel application is submitted by a launcher, such as a shell,
to a distributed scheduler (DS). The DS allocates a partition for the application or places it in the FCFS
system queue to wait for an available partition, as described in Section 2. Under dynamic partitioning, the
nodes controlled by the DS are divided into multiple, dynamically-created and dynamically-changing non-
overlapping partitions, whereas the node partitions are fixed under static partitioning. Each partition is
comprised of a group of nodes, and each application runs in its own dedicated partition until it completes.
The DS informs the application of node allocation changes at runtime. The application then reconfigures
itself based on the new set of nodes available to it. The DS implements both DEP and SP policies, the
performance characteristics of which are examined in this paper. We refer the interested reader to [14] for
more details on the architecture of our distributed scheduler.

3.2 Parallel Application Structure

Many parallel applications are written such that the number of nodes allocated to them can only be set
when they start. However, it is desirable for a parallel application (if it runs under a scheduler that supports
dynamic partitioning) to be able to handle, at any time during its execution, fewer or more nodes than it was
initially allocated. We refer to applications that are able to react to such changes as reconfigurable. There
are a variety of ways to structure parallel applications to make them reconfigurable. We present one such
approach.

We assume that each application can use all of the nodes allocated to it during its lifetime. We also
assume that these applications can be decomposed into the structure depicted in Fig. 1. This structure has
been variously called bag-of-tasks[1, 10], master-slave parallelism[25] and task-queue model [15, 5].

Each application consists of a coordinator process along with a set of worker processes as shown in Fig. 1.
When an application starts it spawns a set of worker processes and the logically centralized coordinator. Each
worker process is given a set of tasks to work on. When a worker is finished with its tasks it sends the results
back to the coordinator, and waits for more tasks from it. The worker processes may also communicate with
each other.

The coordinator is the point of contact between the system and the application. The DS notifies an
application of node allocation changes via the coordinator. Under dynamic partitioning, each partition may
shrink or grow with time, and a reconfigurable application must be able to handle such node allocation
changes. For example, the scheduler may notify the coordinator of an application that it has lost a node.
It does so by sending a reconfiguration message to the coordinator. The coordinator must then work with



Coordinator

Fig. 1. Structure of an Adaptive Parallel Application

the worker processes to handle the lost node. This requires sending a reconfigure message to each of the
worker processes. The worker processes checkpoint their data with the coordinator, and then wait for further
instructions from it.®> The worker that resides on the lost node is terminated. The other workers are sent
more work and then they continue their normal processing. The applications we chose (see Section 3.2) are
large-grained applications for which checkpointing at the coordinator is not a bottleneck.

We assume that reconfiguration does not involve process migration but only data migration. Under this
scenario when an application loses a node, it must checkpoint its data and gracefully terminate the process
running on that node. The system then starts the new application’s processes on that node.

The parallel programming model we have chosen is a popular one, and it is easy to make adaptive. It
is possible to structure a large class of applications in this manner, including Adaptive Quadrature [1] (a
method for performing numerical integration), AtEarth [3] (a simulation of the flight of neutrinos from the
sun towards the earth), DNA parallel sequence generation programs [3] and Computational Fluid Dynamics
applications [26, 27]. Furthermore, many Linda programs are inherently structured in this manner [4, 3.

The Applications. We examine the performance of two applications in this paper: Adaptive Quadrature

and AtEarth.

AtEarth. AtEarth simulates the flight of neutrinos from the sun toward the earth. The simulation consists of
many trials where each trial simulates a neutrino’s flight with given characteristics (e.g, energy and direction
of flight). The trials are independent. The coordinator generates tasks, and the workers execute the trial
simulations and then return the results back to the coordinator.

Adaptive quadrature. Adaptive Quadrature is an algorithm for numerical integration. It is an approximation
algorithm where the area under the function to be calculated is approximated with a parallelogram. If the
approximation is above a certain threshold the process is recursively refined. In the parallel version of the

3 An alternative would be to throw away the current task set on the node which is being preempted. We will explore
this alternative in our future work.



algorithm the region to be integrated is split into Z parts, where Z is the total number of regions in the
problem. The running time is a function of the desired accuracy of the intergration, the interval over which
the computation is being performed, and the function(s) to be computed.

Reconfiguration. When the scheduler changes the size of a partition, the corresponding application (i.e.,
its coordinator) is notified of its new partition size through a special reconfiguration message, which contains
a list with the lost (if the partition is about to shrink) or new (if the application is about to expand) nodes.

The application worker processes checkpoint their work with the coordinator, which is now free to choose
a totally new parallelization. The coordinator informs the scheduler that it has checkpointed. If a partition
shrinks, the processes on the nodes being reassigned are gracefully terminated. If a partition expands, new
worker processes are launched on the additional nodes. The coordinator must reset the communication links
with all the worker processes, and set up the appropriate data structures so that it can communicate with
the workers and the individual processes can communicate with each other.

3.3 Workloads

Current and expected workloads for large-scale parallel computing environments consist of a mixture of ap-
plications with very different resource requirements, often resulting in a highly variable workload [26, 27, 13,
18, 19]. We therefore use a simple probability distribution to control and vary different mixtures of instances
of the two applications discussed in Section 3.2, where an instance is determined by both the application
and its input data set. In other words, we model the system workload by probabilistically determining which
instance we submit on each job arrival.

The results presented in Section 6 are based on three of the workloads considered in our study. These
workloads were chosen because they are representative of the trends we have observed in our investigations
of different parallel systems. These three instances can be characterized by their execution times: very small,
small, medium and large. Table 2 summarizes the different probabilities used for these parallel workloads for
each of the three workloads. As a specific example, we present in Fig. 2 the speedup curve of workload 2 in
the NOW environment.

Job Size  |Very Small|Small |Medium |Large
Workload 1(0.0 0.2339(0.274 0.491
Workload 2(0.0 0.66 [0.34 0.0
Workload 3|1.0 0.0 0.0 0.0

Table 2. Three workloads used in the experiments.

4 Analytical System Models

In this section we summarize an analytic model of the distributed-memory, dynamic partitioning system
described in Section 3, as well as an analytic model of the corresponding parallel system under static/adaptive
partitioning. The technical details of our models and their solutions are beyond the scope of this paper. We
refer the interested reader to [35] for derivations of an exact solution of each model, including expressions
for performance measures of interest. Additional details on the models can be found in [35, 36].

4.1 Dynamic Partitioning

We model a parallel computer system consisting of P identical nodes that are scheduled according to the
(basic) DEP policy defined in Section 2.1. Recall that the node allocations are reconfigured whenever a job
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Fig. 2. Speedup of the Applications in Workload 2 on NOW-cluster.

arrives to a system with 0 < i < N jobs and whenever a job departs from a system with 1 < : < N jobs. The
exact details of the node allocation decisions made by the scheduler in each case, as well as the overheads of
making these decisions and of reconfiguring the applications involved, are reflected in the model parameter
distributions and the analysis of the corresponding stochastic process [35]. In this manner we can model
various types of dynamic partitioning strategies, although our focus in this paper is on DEP.

The interarrival times of jobs are modeled as independent and identically distributed (i.i.d.) random
variables with a phase-type probability distribution .A(-) and mean interarrival time 1/A. When the system
1s executing ¢ jobs, the service times of each of these jobs are modeled as i.i.d. random variables with a
phase-type distribution B;(-) and mean execution time 1/u;, 1 < ¢ < N. The times required to repartition
the nodes among the ¢ jobs being executed (either due to a departure when the system contains i+ 1 jobs or
an arrival when the system contains ¢ — 1 jobs) are i.i.d. random variables having a phase-type distribution
C;(-) with mean repartitioning overhead 1/v;, 1 < ¢ < N. The use of phase-type distributions [28] for our
model parameters is motivated in part by their important mathematical properties, which can be exploited to
obtain a tractable analytic model while capturing the fundamental aspects of dynamic partitioning. Just as
important, however, is the fact that any real distribution can in principle be represented arbitrarily close by a
phase-type distribution, and a number of algorithms have been developed for fitting phase-type distributions
to empirical data [2, 12, 20]. As our measurements confirm, this results in an extremely accurate modeling
analysis of dynamic partitioning in real parallel systems.

This DEP model is solved for relative system loads U in the range 0.02 to 0.98 in increments of 0.02.
The corresponding mean job response times, TDp(ﬁ), are then computed from these model solutions.

4.2 Static (Adaptive) Partitioning

We also model the above parallel system under the SP policy defined in Section 2.2. Recall that the nodes
are statically divided into K partitions each of size S = (N/K) M, where we only consider values of K that
evenly divide N.

This static system model is solved for each value of K € {1,2,...,N/2, N} and the corresponding mean
response times, T'spky, are computed. The mean job response time under the best SP policy, for a given
relative load U, is then given by the minimum of these response times. That is,

Teer(T) = min {Teruo(T) .
se+(U) 151{121\,{ seao(U) }
As previously noted, the value of Tsp« is representative of the mean response time under adaptive partitioning
in many system environments.



5 Overheads Associated with Dynamic Equi-Partitioning

In this section we present some of the results from our experimental testbed on the overheads associated
with implementing dynamic space-sharing strategies in the NOW and the SP2 environments described in
Section 3. There are two types of overheads associated with the dynamic partitioning schemes: those that
are experienced by the system and those that slow down the application. For the applications we have
considered, reconfiguration overheads are independent of the size of the data sets. To ensure the accuracy
of these measurements, each set of experiments were repeated 50 times and we present the average of these
runs.

System QOverhead. For each new application entering the system, the DS first makes sure that a new partition
can be created as explained in Section 2.1. Once the DS determines that it can create a new partition for an
application it goes through the following steps:

— Determine which of the nodes (we call them moving nodes) will be assigned to the new partition.

— Send a reconfiguration notification only to the applications (i.e., to the appropriate coordinators for each
application) that may use the moving nodes. The reconfiguration message includes information on how
many and which nodes are to be preempted.

— Wait until it receives from each coordinator an acknowledgement that reconfiguration has completed. At
this point it issues a kill message which gracefully terminates all the application’s processes that run on
the moving nodes. (The processes do not exit after a checkpoint; this is discussed in more detail in the
paragraph on application overhead). Now, all of these moving nodes are free and ready to be used.

— Update its data structures to reflect the changes (e.g., partition sizes, and which nodes belong to which
partitions).

— Initialize the new data structures with the moving nodes.

At this point, the new partition is initialized and ready, so the DS launches the new application to run on it.

The DS follows similar steps upon the termination (normal or abnormal) of an application. The difference
1s that now the DS divides the available nodes among the remaining applications, instead of “squeezing” the
applications to use fewer nodes. Here are the steps taken by the DS:

— Determine which of the remaining partitions (we call them expanding partitions) will be assigned the
moving nodes.

— Send a reconfiguration notification to each application (i.e., to its coordinator) that runs on an expanding
partition. The reconfiguration message includes information on how many and which nodes are added.

— Wait until it receives an acknowledgement from each coordinator that reconfiguration has completed.

— Update its data structures to reflect the changes (e.g., partition sizes, which nodes belong to which
partitions).

— Deallocate the data structures associated with the partition that was eliminated.

At this point, for each expanding partition, the DS starts executing the application program on the newly
available nodes.

Application Overhead. A component of the reconfiguration overhead actually occurs in the communication
library linked with the application. The break down of these overheads are as follows:

— When an coordinator receives a reconfiguration notification (the message contains information on the
new size and set of nodes) it sends a checkpoint message to all of its worker processes.

— Once the workers complete their current phase, they checkpoint and they send an acknowledgement to
the coordinator that they are ready. Then they cut their old connection with the coordinator and they
try to establish a new one and start from the beginning.

— Meanwhile, the coordinator waits to receive all of the acknowledgements. Once this happens, it sends an
acknowledgement back to the DS that checkpointing has completed.



— Then it starts accepting connection requests but only from the workers of valid nodes (nodes that belong
in the partition). A new node that has just joined the partition is obviously considered valid. If a worker of
an invalid node (i.e., one that has been allocated to another partition) tries to reconnect, the coordinator
refuses the connection.

When all connections are reestablished, the coordinator assigns work to its new set of workers and the
application resumes.

5.1 Overheads for Dynamic Equi-Partitioning

We present both the overheads of the system and the total (system plus application) overheads associated
with DEP. Partitions shrink in size when an application enters the system (if the current number of jobs is
less than the maximum number of partitions) and expand when an application exits.

In the following we present the overheads of starting with a system with no application, and then measure
the overheads as more and more application enter the system until the number of applications is equal to the
maximum number of partitions. We call this the shrinking phase since the partitions keeps shrinking in size.
We then reduce the number of applications one by one until there are none left, which we call the expanding
phase.

The overheads of shrinking partitions as an increasing number of applications enter the system is given
in Fig. 3 for eight nodes, and in Fig. 4 for four nodes. The transitions and the individual partition sizes for
each of the points on the graph are shown in Table 1, which describes the overheads when P = 8 and M = 1.
The overheads include those of the system and the application reconfiguration. The corresponding overheads
for shrinking partitions in a 12-node NOW system are provided in Fig. 5.
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Fig. 3. Overheads associated with Shrinking a partition as number of applications is increased. The policy is DEP.

The overheads of expanding partitions starting with 8 applications, each executing on a partition of 1
node, is shown in Fig. 6. Similarly, the overheads of starting with 4 applications and 4 nodes is given in
Fig. 7. The corresponding overheads for expanding partitions in a 12-node NOW system are also provided
in Fig. 5.

From these figures we observe several trends. First, an expanding event is more expensive than a com-
parable shrinking event. For example, the transition {1,1} — {2} is more expensive than the transition
{2} — {1,1}. The system overheads are the same in both cases, however, in the {1,1} — {2} case the
application overheads for the new partition of {2} are greater than the new partitions {1, 1} in the transition
{2} — {1,1}. This is due to the fact that in the former case (expanding) the coordinator reconnects with two
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Fig. 5. Overheads associated with Shrinking and Expanding with 12 nodes. The policy is DEP.

workers, while in the later (shrinking) each worker reconnects with one (different) coordinator. This effect
is more pronounced as the number of nodes is increased (there is more congestion in the network). Second,
the SP2 overheads are lower due to the faster CPU and the fast SP2 interconnect, as expected. The total
overheads on the SP2 are about 2 to 4 times lower than the comparable overheads on the NOW.*

The overheads are greater when few large applications (many nodes per application) are reconfigured.
This is expected since creating a new partition while keeping the sizes balanced implicates applications,
specially if they are large. When there are many jobs in the system, fewer applications are interrupted
and the number of nodes per partition involved in a reconfiguration is small. As the number of applications
approaches the maximum number allowed into the system, the reconfiguration cost becomes a fixed overhead
as only one partition, of size 1 (the minimum partition size) in our example, is reconfigured.

£ On the SP2, we believe many further optimizations are possible particularly from the perspective of communication.
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6 System Performance

In this section we present some of the results of our detailed analysis of dynamic partitioning in the NOW and
SP2 system environments. The measurement data presented in Sections 3 and b were used to parametrize
the analytic models of Section 4. Several of the response time estimates predicted by our models were
then compared against corresponding measurements from our experimental testbed. These results show
that our analytic estimates are in excellent agreement with the performance measurements of dynamic
partitioning in both parallel systems executing real scientific/engineering workloads, and thus validate our
analytic models. We note that the model results are computed in an extremely efficient manner, requiring
less than a few seconds to obtain each set of results presented below. This makes it possible to analyze
various performance characteristics of dynamic partitioning across a large parallel system design space.
Based on the insights gained from this analysis, we then use our experimental testbed to analyze additional
performance characteristics of dynamic space-sharing strategies, including different allocation methods to
reduce the impact of reconfiguration overheads and highly variable job arrivals. Our overall objective is to
effectively combine our experimental and analytical approaches to quantitatively evaluate the benefits and
limitations of dynamic partitioning in distinct distributed-memory environments.

The results in this section are for system workloads consisting of the application mixes described in
Section 3.3, together with a probability distribution for the times between job arrivals to the system. While

10



most previous parallel scheduling studies have assumed a Poisson arrival process (i.e., exponential interarrival
times), recent measurements of real scientific and engineering workloads demonstrate that the job interarrival
times in such high-performance computing environments tend to be significantly more variable [13, 18, 19].
We therefore consider hyperexponential interarrival times that statistically match the workload measure-
ments presented in [13, 18, 19], and we compare these results with those obtained under the exponential
interarrival assumptions of previous work.

The characteristics of the different scheduling policies, together with their corresponding overheads, cause
each of the various parallel systems considered in our study to saturate (i.e., the response times become
unbounded) at different job arrival rates. The best possible service rate, or capacity, for the DEP system
under a particular workload is bounded above by the value of Nuy® for that workload, and saturation is
guaranteed for all arrival rates A > Npup. Although this capacity N uy is not actually achievable due to the
overheads incurred under DEP, we use this capacity value to define a relative measure of system utilization
as the basis for all of our performance comparisons. The capacity values of the SP2 system are chosen for
this purpose since this environment has lower service times and overheads (hence, higher capacities) than
the NOW environment under each application workload considered. We therefore use relative system load
to refer to the ratio U = A/Npun, sp2. The results that follow for each system are all plotted as functions
of the relative system load over the interval (0,1). We note that the corresponding curves for the NOW

environment will span a smaller region of this T interval due to its lower capacities.

Mean Response Times. Our first set of results considers the performance characteristics of DEP for each
workload and system environment. In Fig. 8 we plot mean response times for application workload 1 (W1)
in 8-node NOW and SP2 system environments under hyperexponential job interarrival times as a function of
relative system load (labeled W1(Ahyp,Bcv)). For the purpose of comparison, Fig. 8 also includes response
time results for W1 under Poisson arrival times (labeled W1(Aexp,Bcv)), as well as results for the case
where the coefficient of variation® of the workload service times is doubled (labeled W1(Aexp,B2cv)). The
corresponding curves for application workload 2 (W2) and workload 3 (W3) are presented in Figs. 9 and 10,
respectively.
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Fig. 8. Mean Response Times under DEP, for Workload 1 and P =8

® 1/pn is the mean service time, excluding overhead, of a generic job when the system contains at least N jobs.
® The coefficient of variation is the ratio of the standard deviation to the mean.
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Fig.9. Mean Response Times under DEP, for Workload 2 and P = 8
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Fig.10. Mean Response Times under DEP, for Workload 3 and P = 8

We observe that the response times under DEP are consistently worse in the NOW environment than
those realized in the SP2 environment. This may be as expected due to the larger service times and re-
configuration overheads measured for the NOW environment (see Section 5). We also observe from these
results that the more realistic hyperexponential interarrival times yield significantly higher response times
under DEP than those obtained under Poisson arrivals in both system environments. This is due to the
fact that, under the more variable hyperexponential distribution, a considerable amount of time is spent
repartitioning applications only to be interrupted before completion by a subsequent arrival, thus causing a
new repartitioning without making any progress on behalf of the jobs involved. This suggests that the mean
response times under DEP in distributed-memory systems may be considerably larger than those predicted
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by previous studies, at least within the context of the systems and workloads considered in this paper. We
further observe that the mean response times of DEP tend to also increase under more variable workload
execution times, although to a considerably smaller degree than under more variable interarrival times at
light to fairly heavy system loads.

Each of the above performance characteristics are similarly observed for the DEP system under W2 and
W3, as illustrated in Figs. 9 and 10. We note, however, that there is a reduction in the relative performance
differences among the curves going from W1 to W2, which is reduced even further going from W2 to W3.
This can be explained in part by observing that a larger fraction of the workload is comprised of jobs with
smaller execution times upon moving from W1 to W2 to W3.

Relative Response Times. Our next set of results quantifies the performance benefits of DEP with respect
to static/adaptive partitioning. Taking the ratio of the mean response time under the best static policy
to that achieved by the dynamic policy, we obtain mean response time ratios as a function of . The
corresponding results for W1, W2 and W3 under both parallel system environments are plotted in Figs. 11,
12 and 13, respectively. While the mean response time trends observed above were quite similar, here we
see very different performance characteristics in comparison to static/adaptive partitioning for the various
workloads.

T T T T T T T
SP2, W1(Aexp,Bev) — A
18 SP2, W1(Ahyp,Bov) ---- !N E
SP2, W1(Aexp,B2cv) —-— N \
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NOW, W1(Ahyp,Bev) - o \
NOW, W1(Aexp,B2cv) ---- SRPAN N
16 |- !

Mean Response Time Ratio ( T(SP*) / T(DP) )

0.14 0.28 0.42 0.56 0.69 0.83 0.97
Relative System Load

Fig. 11. Mean Response Time Ratios (Tsp+ /Tor), for Workload 1 and P =8

For the base W1 execution times, DEP provides poorer response times relative to those obtained under
the static/adaptive policy at light to moderate loads, independent of the interarrival distribution. The larger
performance degradations and the smallest performance improvements are observed for the NOW environ-
ment when compared against those for the SP2 system. The overheads of repartitioning the nodes and of
the allocation decisions of the dynamic scheme tends to outweigh its benefits relative to the static/adaptive
policy under W1 at these system utilizations. This is particularly true at light loads since the overheads
for reconfiguration are greater at these utilizations (see Figs. 3 and 6). These reconfiguration overheads and
the aggressive repartitioning decisions degrade the relative performance even though the long run percent-
age of reconfigurations is low (see Fig. 14). Moreover, larger relative performance degradations are observed
for the system under Poisson arrivals than under the more variable hyperexponential interarrival times in
both system environments. The relative performance degradations (and benefits) for the NOW environment
appear at smaller system loads than those in the SP2 system, and within each of these environments the
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Fig. 12. Mean Response Time Ratios (Tspx /Tor), for Workload 2 and P = 8
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Fig. 13. Mean Response Time Ratios (Tsp+ /Toe), for Workload 3 and P =8

relative performance degradations (and benefits) for hyperexponential interarrivals appear at lighter loads
than those under Poisson arrivals.

Interestingly, DEP provides the largest performance benefits (and no degradation) relative to static/adaptive
partitioning under the more variable W1 execution times. By adjusting scheduling decisions in response to
changes in the highly variable workload, the DEP policy provides more efficient utilization of the nodes when
compared against the static/adaptive policy, which results in better response time ratios. These relative per-
formance benefits tend to increase as U/ rises from small to moderate values since workload changes are more
frequent and DEP adjusts its node allocations accordingly to achieve superior steady-state performance.

As the system load increases, we observe considerable performance benefits under DEP relative to sta-
tic/adaptive partitioning, with the largest response time ratios appearing in the SP2 system. We also note
that the case of Poisson arrivals yields larger maximum (relative) performance benefits than the hyperex-
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ponential interarrival times in both system environments. Once again, by adjusting scheduling decisions in
response to workload changes, the DEP policy provides a more efficient utilization of the nodes in comparison
to static/adaptive partitioning for moderate to heavy loads under W1. These relative performance benefits
tend to increase as U rises, since workload changes are more frequent and DEP adjusts its node allocations
accordingly to achieve superior steady-state performance. In the limit as the system approaches saturation,
the probability that the system repartitions the nodes tends toward 0, i.e., the frequency of reconfigurations
decreases to 0 as the system spends essentially all of its time with N or more jobs. It therefore follows that
the DEP system converges toward the static policy with N partitions in the limit as the system approaches
saturation.

Turning to W2, we observe that DEP provides the best space-sharing performance characteristics and
that these relative benefits are even larger than those shown for W1. Here we see that the largest rela-
tive improvements in performance are generally obtained for the NOW environment. We again find that
hyperexponential interarrival assumptions yield smaller maximum (relative) performance benefits than the
corresponding Poisson arrival case. The response time ratios tend to increase as T rises because scheduling
decisions are being adjusted in response to workload changes, resulting in very efficient utilization of the
nodes, and workload changes are more frequent with these increasing system loads. As noted above, the
system under DEP eventually converges toward the static policy with N partitions in the limit as the system
approaches saturation.

Conversely, the DEP policy under W3 yields significant performance degradations relative to static/adaptive
partitioning across all system utilizations. We further observe that the response time ratios for the case of
Poisson arrivals are worse than those obtained under hyperexponential interarrival times at all but light loads
in both parallel system environments. These results are primarily due to the large repartitioning overheads
relative to the job service times comprising the workload, where the ratio of execution time to overhead is
roughly 6 to 1. It is for exactly these reasons that an adaptive partitioning strategy should be used for jobs
with relatively small processing demands [26, 27]. Such information can be successfully given by users [18, 19]
provided that countermeasures are taken by the system [8], it can be estimated with performance tools and
run-time systems [11], and/or determined via standard methods such as multi-level feedback queues.

We should point out that the scalloped shape of the response time ratio curves for both workloads are
the result of the response time behavior of the best static partitioning policy. Specifically, each of the points
where the response time ratio reaches a local maxima (within a particular i region) is due to a change in
the number of partitions employed under the static/adaptive policy. This in turn causes the response time
under DEP to be compared with a different static partitioning response time curve, which is further from
saturation than the response time curve for the previous system load.

Reconfigurations. To better understand the system performance impact of the overheads of repartitioning,
our next set of results considers the long run proportion of time that the system spends reconfiguring its
node allocations, i.e., the steady-state probability p,. that the system is executing a reconfiguration. The
corresponding results for W1, W2 and W3 are plotted as a function of Uin Figs. 14, 15 and 16, respectively.
We observe a sharp initial increase in p, as the relative load rises, and that this initial increase corresponds
to the performance degradation under DEP for W1 and W3. Similarly, we observe that the shape of the p,
curves and the loads over which these characteristics are found, both correspond to the performance benefits
exhibited in the response time ratio curves; e.g., compare Figs. 11 and 12 with Figs. 14 and 15. The NOW
environment spends a larger percentage of its time repartitioning nodes than the corresponding SP2 system
due to the larger reconfiguration overheads experienced in this environment (see Section 5). Moreover, the
maximum values of p, appear at smaller U in the NOW system than in the SP2 environment. A Poisson
arrival process tends to increase p, over that observed under hyperexponential interarrivals, and this trend
appears in both system environments.
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Fig. 14. Probability of Repartitioning the Nodes in Steady State, for Workload 1 and P = 8

0.01 - SP2, W2(Aexp,Bev) — o TS B
SP2, W2(Ahyp,Bev) ---- e AN
SP2, W2(Aexp,B2cv) —-— y N,
NOW, W2(Aexp,Bev) ----

NOW, W2(Ahyp,Bcv) -,

0.008 |- NOW, W2(Aexp,B2cv) ---

Probability of Executing a Reconfiguration

0.006
0.004
0.002
0 1 1 1 1 1 1 1
0.13 0.26 0.39 0.51 0.64 0.77 0.9
Relative System Load

Fig. 15. Probability of Repartitioning the Nodes in Steady State, for Workload 2 and P = 8

7 Conclusions and Future Work

In this paper we examined the benefits and limitations of dynamic partitioning with respect to other space-
sharing strategies in different parallel system environments. We developed and used an experimental testbed
in computing environments based on networks of workstations and on the IBM SP2 distributed-memory
computer. We also used an analytic model of dynamic partitioning, which was fitted to measurement data
obtained from our experimental testbed running various parallel applications. The computational efficiency
of this model allowed us to explore the large parallel system design space.

Our results show that the performance benefits of dynamic partitioning are heavily dependent upon its
assoclated costs, the system load and the workload characteristics. When the reconfiguration overhead is
small relative to the processing requirements, the performance benefits of dynamic partitioning can be quite
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Fig. 16. Probability of Repartitioning the Nodes in Steady State, for Workload 3 and P = 8

significant for most of the workloads considered. In these cases, the dynamic partitioning policy provides the
most efficient utilization of the nodes among the various space-sharing strategies by adjusting scheduling
decisions in response to workload changes. These performance benefits tend to increase with rising traffic
intensities, since workload changes are more frequent and dynamic partitioning adjusts its node allocations
accordingly to achieve the best steady-state, space-sharing performance. When the reconfiguration costs are
sufficiently large, however, this overhead tends to outweigh the benefits of dynamic partitioning, particularly
at light to moderate system loads for the workloads studied.

Within the context of the parallel systems and application workloads considered in this paper, our results
suggest that:

— Jobs with small resource requirements should not be dynamically reconfigured in distributed-memory
environments. A workload consisting of a majority of such small jobs can suffer from a form of thrashing
where the system spends a large percentage of its time reconfiguring node allocations.

— On the other hand, the measurements from our experimental testbed show that, in the majority of
application instances expected for large-scale parallel computing, the repartitioning overheads tend to
be small relative to the execution times of these application instances.

— Dynamic partitioning appears to be viable in a variety of different distributed-memory environments,
provided that the applications are capable of executing on variable numbers of nodes and are capable of
reconfiguring the number of nodes on which it executes. Qur system approach provides the structure to
extend this functionality to applications beyond those considered herein.

Furthermore, our results clearly demonstrate that the overheads of dynamic equi-partitioning in distributed-
memory environments must be considered by the scheduling algorithms employed in practice, otherwise these
reconfiguration costs can in general limit and/or eliminate the potential system performance benefits. We
have been exploring several variants of dynamic partitioning to address these issues. One strategy for de-
creasing the overheads associated with dynamic equi-partitioning is to use the folding approach found in [24],
which reduces the number reconfigurations performed under the greedy dynamic policy, at the expense of
a less equitable allocation of the nodes among the competing jobs. Another approach consists of using the
equi-partitioning method to equally divide the nodes among the jobs in the system whenever a repartition
is performed, while placing a minimum period of time (which can be dynamically adjusted) between when
the system can repartition its node allocations. In addition to reducing the number of reconfigurations, this
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approach tends to reduce the performance effects of job arrival variability by effectively smoothing the arrival
process [6].

There is a fundamental tradeoff between these two dynamic partitioning approaches. Folding provides
the advantage of immediately responding to workload changes, but it reduces the repartitioning overhead
by interrupting fewer jobs to yield somewhat less equitable node allocations. Dynamic partitioning with
smoothing, on the other hand, reduces the repartitioning overhead by reacting less quickly to workload
changes, but it provides the advantage of dividing the system resources equally among the running jobs. The
best solution to this performance tradeoff depends upon a number of factors, and it is particularly sensitive
to the application workload characteristics and the job arrival process. For long running applications, it may
be just as important or even more important to equitably allocate the nodes among the running jobs as it
1s to reduces the number reconfigurations performed.

Several preliminary experiments with these policies under workload 1 of Section 3.3 have consistently
demonstrated that dynamic partitioning with smoothing exhibits lower mean response times, as well as a
smaller variance in the execution times, than that observed for dynamic equi-partitioning and folding, with
equi-partitioning consistently providing better response times than folding. The latter result is in contrast
to those of Padhye and Dowdy [29] which show that folding generally outperforms equi-partitioning in a
distributed-memory environment under a workload based on scientific matrix computation programs. The
differences between the results of these two studies are primarily due to the differences in the respective
workloads, where the workload used in our experiments consists of applications with larger execution times
than those studied in [29]. This further highlights the fundamental tradeoff between the two above dynamic
partitioning approaches for reducing the repartitioning overheads in distributed-memory environments. We
are continuing to examine these and related scheduling issues in distributed-memory parallel systems.
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