
Dynamic Partitioning in Di�erent Distributed-MemoryEnvironmentsNayeem Islam1, Andreas Prodromidis2, Mark S. Squillante11 IBM T. J. Watson Research Center, Yorktown Heights NY 10598, USA2 Columbia University, New York NY 10027, USAAbstract. In this paper we present a detailed analysis of dynamic partitioning in di�erent distributed-memory parallel environments based on experimental and analytical methods. We develop an exper-imental testbed for the IBM SP2 and a network of workstations, and we apply a general analyticmodel of dynamic partitioning. This experimental and analytical framework is then used to explore anumber of fundamental performance issues and tradeo�s concerning dynamic partitioning in di�erentdistributed-memory computing environments. Our results demonstrate and quantify how the perfor-mance bene�ts of dynamic partitioning are heavily dependent upon several system variables, includingworkload characteristics, system architecture, and system load.1 IntroductionParallel computer systems, consisting of numerous tightly- or loosely-coupled nodes, represent an increasinglyimportant class of high-performance computing environments that make it possible to solve large and complexproblems. Fundamental to realizing these performance bene�ts is the design of scheduling policies whichallocate nodes among the parallel jobs submitted for execution in a manner that tends to minimize jobresponse time and maximize system throughput. A number of scheduling strategies have been proposed forsuch parallel environments, each di�ering in the way nodes are shared among the jobs. One particularlyimportant class of scheduling policies is based on space sharing where the nodes are partitioned amongdi�erent parallel jobs.There are three basic types of space-sharing policies. The static partitioning of the nodes into a �xednumber of disjoint sets, each of which are allocated to individual jobs, is a space-sharing strategy that hasoften been employed in a number of commercial systems. This is due in part to its low system overhead andits simplicity from both the system and application viewpoints. The static scheduling approach, however, canlead to relatively low system throughputs and resource utilizations under nonuniform workloads [33, 26, 27,30, 34], which can be common in scienti�c and engineering computing environments. Adaptive partitioningpolicies, where the number of nodes allocated to a job is determined when jobs enter and leave based on thecurrent system state, have also been considered in a number of research studies [21, 38, 16, 26, 27, 32, 7, 30].This approach tends to outperform its static counterparts by adapting partition sizes to the current load. Onthe other hand, the performance bene�ts of adaptive partitioning can be limited due to its inability to adjustscheduling decisions in response to subsequent workload changes. These potential problems are alleviatedunder dynamic partitioning, where the size of the partition allocated to a job can be modi�ed during itsexecution, at the expense of increased overhead [37, 9, 21, 38, 17, 23, 26, 27, 34].The relative runtime costs of a dynamic partitioning policy are heavily dependent upon the parallelarchitecture and application workload. In uniform-access, shared-memory systems, these overheads tend tobe relatively small and thus the bene�ts of dynamic partitioning outweigh its associated costs. A numberof research studies have made this quite clear, showing that dynamic partitioning outperforms all otherspace-sharing strategies in such environments [37, 21, 38, 17, 23]. In more distributed parallel environments,



however, the overheads of a dynamic partitioning policy can be signi�cant due to factors such as data/jobmigration, node preemption/coordination and, in some cases, recon�guration of the application [9, 26, 27, 31].There are several fundamental issues that must be considered in order to e�ectively exploit dynamicpartitioning in distributed computing environments. First, the applications must be capable of executing onvariable numbers of nodes and must be capable of recon�guring the number of nodes on which it executes. Inthis paper we develop a system approach to provide this functionality for an important class of parallel ap-plications. Moreover, our approach provides the system structure to extend this functionality to applicationsbeyond those considered herein.Another important issue concerns the overheads of dynamic partitioning in distributed computing en-vironments, where a better understanding of these fundamental scheduling costs is needed to determinethe manner in which such policies can be e�ectively employed in di�erent distributed-memory systems. Tocomplement and extend previous studies of repartitioning overheads for certain distributed-memory envi-ronments [26, 27, 31], we conduct a detailed measurement-based analysis of dynamic partitioning overheadsin computing environments based on the IBM SP2 and a network of workstations. An experimental testbedis developed on both system architectures, which we use to obtain measurement data for distinct workloadscomposed of an important class of parallel applications. In our analysis we identify two di�erent types ofoverheads: one is due to the system, such as process management, and the other is attributable to applicationrecon�guration.We also use our experimental testbed together with an analytic model to analyze the impact of theseoverheads on the system performance characteristics of dynamic partitioning strategies in various distributed-memory environments. System measurements are used to parameterize, validate and complement the model,whereas the computational e�ciency of the model allows us to examine a large design space. Our detailedanalysis of dynamic partitioning and its associated overheads combine these experimental and analyticalmethods to yield fundamental insights into the performance characteristics of real parallel systems. Suchcoupling of experimental and analytical work is rare, and we believe it has proven to be an e�ective tool forparallel system design and analysis.Our results show that the bene�ts of dynamic partitioning in distributed computing environments dependheavily upon the application workload as well as the recon�guration overhead. We show that dynamicpartitioning provides signi�cant improvements in performance over other forms of space sharing under manyworkloads when the costs of repartitioning are fairly small relative to the workload execution requirements,and our results quantify these considerable performance gains. Under certain workload conditions, however,the costs associated with dynamic partitioning tend to outweigh its bene�ts, particularly at light to moderatesystem loads for the class of parallel applications considered.In Section 2 we describe the scheduling policies considered. Section 3 presents various aspects of theexperimental testbed used in this study, including the system hardware and software architectures, and theparallel application workload. We then briey describe the analytic models used in this study. Sections 5and 6 present some of the results of our experiments and quantitative analysis. Our concluding remarks arepresented in Section 7.2 Scheduling PoliciesWe now de�ne the two main policies considered in this paper: a dynamic equi-partitioning (DEP) schemeand a static partitioning (SP) policy. Throughout this paper, we use P to denote the number of nodes inthe system and we use M to denote the minimum number of nodes allocated to any job (i.e., the nodes areallocated in units of M ). The maximum number of node partitions under each policy is therefore given byN � P=M . Jobs that have not been allocated nodes wait in a �rst-come �rst-served (FCFS) system queue.2.1 Dynamic Equi-PartitioningA DEP policy basically attempts to equally divide the nodes among the jobs in the system, up to a maximumof the �rst N jobs. If a job arrives to the system when i � 1 jobs are being executed, 1 � i � N , then the1



nodes are repartitioned among the i jobs such that each job is allocated (on average) P=i nodes. A jobarrival that �nds i � N jobs in the system is placed in the FCFS system queue to wait until a node partitionbecomes available. When one of the i + 1 jobs in execution departs, 0 � i < N , the system recon�guresthe nodes allocations so that each job receives (on average) P=i nodes. A job departure when i > N simplycauses the job at the head of the system queue to be allocated the available partition, and no repartitioningis performed.We consider a particular form of DEP in which the number of applications repartitioned upon a job arrivalor departure is minimized. To better illustrate our policy, we present in Table 1 the various node allocationchanges that occur in response to these events for an 8-node system with M = 1 (hence, N = P = 8).Initial System State State after arrival event State after departure eventf g f8gf8g f4,4g f gf4,4g f3,3,2g f8gf3,3,2g f2,2,2,2g f4,4gf2,2,2,2g f2,2,2,1,1g f3,3,2gf2,2,2,1,1g f2,2,1,1,1,1g f2,2,2,2gf2,2,1,1,1,1g f2,1,1,1,1,1,1g f2,2,2,1,1gf2,1,1,1,1,1,1g f1,1,1,1,1,1,1,1g f2,2,1,1,1,1gf1,1,1,1,1,1,1,1g f1,1,1,1,1,1,1,1g f2,1,1,1,1,1,1gTable 1. State transitions when applications enter and leave the system. The transitions are for an eight-nodesystem.2.2 Static (Adaptive) PartitioningThe system nodes are statically divided into K partitions each of size S � (N=K)M , where we only considervalues of K that evenly divide N ; i.e., K 2 f1; 2; : : :; N=2; Ng. A job arrival is allocated S nodes if one ofthe K partitions is available, otherwise the job waits in the FCFS system queue until a partition becomesfree. Each parallel job is executed to completion without interruption and all S nodes are reserved by theapplication throughout this duration. Upon a job departure, the available partition is allocated to the jobat the head of the system queue, if any. Since the node partitions cannot be modi�ed, jobs do not incur anyrecon�guration overhead. The only overhead incurred by each job is the cost to set up the job for executionon the S nodes allocated to it.Our decision to consider equal-sized node partitions is motivated by the results of several studies (e.g., [30,22]) showing that adaptive/static strategies in which the system is divided into equal-sized partitions outper-form other adaptive/static policies when job service time requirements are not used in scheduling decisions. Anumber of research studies, under di�erent workload assumptions, have also shown that adaptive partitioningyields steady-state performance comparable to that of the best static partitioning policy for a given systemload [26, 27, 32]. Hence, when this relation holds, the mean job response time under adaptive partitioningis accurately approximated by the static policy that provides the lowest response time for a given load, andthe results of Section 6 are also representative of a comparison between adaptive and dynamic partitioningpolicies.3 Experimental System Platform and ApplicationsIn this section we describe four aspects of our experimental platform: the hardware, the system software, theparallel applications and the workloads studied. Our focus is on distributed-memory systems where there are2



a set of independent nodes that do not share memory. Each node runs independent operating system imagesthat communicate through message passing. The operating system runs a special distributed scheduler (DS)that interacts with applications to perform distributed space-sharing.3.1 System Hardware and Operating System Con�gurationsWe experiment with two di�erent distributed-memory environments, namely a network of workstations(NOW) and the IBM SP2 machine.NOW. A group of workstations connected by a token ring that has a bandwidth of 16 megabits/sec. Theworkstations are Model 980F machines which use 62 MIPS PowerPC processors. These machines run AIX3.2.5.SP2. The IBM SP2 is a distributed-memory multicomputer that is connected by a high-speed switch. Weuse TCP/IP to communicate over the switch to make the port of the software easy. The nodes run 133MIPS PowerPC processors. These machine run AIX 4.1. The applications do not use the fast user-levelcommunications of the switch.Distributed Scheduler Architecture. A parallel application is submitted by a launcher, such as a shell,to a distributed scheduler (DS). The DS allocates a partition for the application or places it in the FCFSsystem queue to wait for an available partition, as described in Section 2. Under dynamic partitioning, thenodes controlled by the DS are divided into multiple, dynamically-created and dynamically-changing non-overlapping partitions, whereas the node partitions are �xed under static partitioning. Each partition iscomprised of a group of nodes, and each application runs in its own dedicated partition until it completes.The DS informs the application of node allocation changes at runtime. The application then recon�guresitself based on the new set of nodes available to it. The DS implements both DEP and SP policies, theperformance characteristics of which are examined in this paper. We refer the interested reader to [14] formore details on the architecture of our distributed scheduler.3.2 Parallel Application StructureMany parallel applications are written such that the number of nodes allocated to them can only be setwhen they start. However, it is desirable for a parallel application (if it runs under a scheduler that supportsdynamic partitioning) to be able to handle, at any time during its execution, fewer or more nodes than it wasinitially allocated. We refer to applications that are able to react to such changes as recon�gurable. Thereare a variety of ways to structure parallel applications to make them recon�gurable. We present one suchapproach.We assume that each application can use all of the nodes allocated to it during its lifetime. We alsoassume that these applications can be decomposed into the structure depicted in Fig. 1. This structure hasbeen variously called bag-of-tasks[1, 10], master-slave parallelism[25] and task-queue model [15, 5].Each application consists of a coordinator process along with a set of worker processes as shown in Fig. 1.When an application starts it spawns a set of worker processes and the logically centralized coordinator. Eachworker process is given a set of tasks to work on. When a worker is �nished with its tasks it sends the resultsback to the coordinator, and waits for more tasks from it. The worker processes may also communicate witheach other.The coordinator is the point of contact between the system and the application. The DS noti�es anapplication of node allocation changes via the coordinator. Under dynamic partitioning, each partition mayshrink or grow with time, and a recon�gurable application must be able to handle such node allocationchanges. For example, the scheduler may notify the coordinator of an application that it has lost a node.It does so by sending a recon�guration message to the coordinator. The coordinator must then work with3
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Fig. 1. Structure of an Adaptive Parallel Applicationthe worker processes to handle the lost node. This requires sending a recon�gure message to each of theworker processes. The worker processes checkpoint their data with the coordinator, and then wait for furtherinstructions from it.3 The worker that resides on the lost node is terminated. The other workers are sentmore work and then they continue their normal processing. The applications we chose (see Section 3.2) arelarge-grained applications for which checkpointing at the coordinator is not a bottleneck.We assume that recon�guration does not involve process migration but only data migration. Under thisscenario when an application loses a node, it must checkpoint its data and gracefully terminate the processrunning on that node. The system then starts the new application's processes on that node.The parallel programming model we have chosen is a popular one, and it is easy to make adaptive. Itis possible to structure a large class of applications in this manner, including Adaptive Quadrature [1] (amethod for performing numerical integration), AtEarth [3] (a simulation of the ight of neutrinos from thesun towards the earth), DNA parallel sequence generation programs [3] and Computational Fluid Dynamicsapplications [26, 27]. Furthermore, many Linda programs are inherently structured in this manner [4, 3].The Applications. We examine the performance of two applications in this paper: Adaptive Quadratureand AtEarth.AtEarth. AtEarth simulates the ight of neutrinos from the sun toward the earth. The simulation consists ofmany trials where each trial simulates a neutrino's ight with given characteristics (e.g, energy and directionof ight). The trials are independent. The coordinator generates tasks, and the workers execute the trialsimulations and then return the results back to the coordinator.Adaptive quadrature. Adaptive Quadrature is an algorithm for numerical integration. It is an approximationalgorithm where the area under the function to be calculated is approximated with a parallelogram. If theapproximation is above a certain threshold the process is recursively re�ned. In the parallel version of the3 An alternative would be to throw away the current task set on the node which is being preempted. We will explorethis alternative in our future work. 4



algorithm the region to be integrated is split into Z parts, where Z is the total number of regions in theproblem. The running time is a function of the desired accuracy of the intergration, the interval over whichthe computation is being performed, and the function(s) to be computed.Recon�guration. When the scheduler changes the size of a partition, the corresponding application (i.e.,its coordinator) is noti�ed of its new partition size through a special recon�guration message, which containsa list with the lost (if the partition is about to shrink) or new (if the application is about to expand) nodes.The application worker processes checkpoint their work with the coordinator, which is now free to choosea totally new parallelization. The coordinator informs the scheduler that it has checkpointed. If a partitionshrinks, the processes on the nodes being reassigned are gracefully terminated. If a partition expands, newworker processes are launched on the additional nodes. The coordinator must reset the communication linkswith all the worker processes, and set up the appropriate data structures so that it can communicate withthe workers and the individual processes can communicate with each other.3.3 WorkloadsCurrent and expected workloads for large-scale parallel computing environments consist of a mixture of ap-plications with very di�erent resource requirements, often resulting in a highly variable workload [26, 27, 13,18, 19]. We therefore use a simple probability distribution to control and vary di�erent mixtures of instancesof the two applications discussed in Section 3.2, where an instance is determined by both the applicationand its input data set. In other words, we model the system workload by probabilistically determining whichinstance we submit on each job arrival.The results presented in Section 6 are based on three of the workloads considered in our study. Theseworkloads were chosen because they are representative of the trends we have observed in our investigationsof di�erent parallel systems. These three instances can be characterized by their execution times: very small,small, medium and large. Table 2 summarizes the di�erent probabilities used for these parallel workloads foreach of the three workloads. As a speci�c example, we present in Fig. 2 the speedup curve of workload 2 inthe NOW environment. Job Size Very Small Small Medium LargeWorkload 1 0.0 0.2339 0.274 0.491Workload 2 0.0 0.66 0.34 0.0Workload 3 1.0 0.0 0.0 0.0Table 2. Three workloads used in the experiments.4 Analytical System ModelsIn this section we summarize an analytic model of the distributed-memory, dynamic partitioning systemdescribed in Section 3, as well as an analytic model of the corresponding parallel system under static/adaptivepartitioning. The technical details of our models and their solutions are beyond the scope of this paper. Werefer the interested reader to [35] for derivations of an exact solution of each model, including expressionsfor performance measures of interest. Additional details on the models can be found in [35, 36].4.1 Dynamic PartitioningWe model a parallel computer system consisting of P identical nodes that are scheduled according to the(basic) DEP policy de�ned in Section 2.1. Recall that the node allocations are recon�gured whenever a job5
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Fig. 2. Speedup of the Applications in Workload 2 on NOW-cluster.arrives to a system with 0 � i < N jobs and whenever a job departs from a system with 1 � i � N jobs. Theexact details of the node allocation decisions made by the scheduler in each case, as well as the overheads ofmaking these decisions and of recon�guring the applications involved, are reected in the model parameterdistributions and the analysis of the corresponding stochastic process [35]. In this manner we can modelvarious types of dynamic partitioning strategies, although our focus in this paper is on DEP.The interarrival times of jobs are modeled as independent and identically distributed (i.i.d.) randomvariables with a phase-type probability distribution A(�) and mean interarrival time 1=�. When the systemis executing i jobs, the service times of each of these jobs are modeled as i.i.d. random variables with aphase-type distribution Bi(�) and mean execution time 1=�i, 1 � i � N . The times required to repartitionthe nodes among the i jobs being executed (either due to a departure when the system contains i+1 jobs oran arrival when the system contains i� 1 jobs) are i.i.d. random variables having a phase-type distributionCi(�) with mean repartitioning overhead 1=i, 1 � i � N . The use of phase-type distributions [28] for ourmodel parameters is motivated in part by their important mathematical properties, which can be exploited toobtain a tractable analytic model while capturing the fundamental aspects of dynamic partitioning. Just asimportant, however, is the fact that any real distribution can in principle be represented arbitrarily close by aphase-type distribution, and a number of algorithms have been developed for �tting phase-type distributionsto empirical data [2, 12, 20]. As our measurements con�rm, this results in an extremely accurate modelinganalysis of dynamic partitioning in real parallel systems.This DEP model is solved for relative system loads bU in the range 0.02 to 0.98 in increments of 0.02.The corresponding mean job response times, TDP(bU ), are then computed from these model solutions.4.2 Static (Adaptive) PartitioningWe also model the above parallel system under the SP policy de�ned in Section 2.2. Recall that the nodesare statically divided into K partitions each of size S � (N=K)M , where we only consider values of K thatevenly divide N .This static system model is solved for each value of K 2 f1; 2; : : : ; N=2; Ng and the corresponding meanresponse times, T SP(K), are computed. The mean job response time under the best SP policy, for a givenrelative load bU , is then given by the minimum of these response times. That is,T SP�(bU ) = min1�K�NfT SP(K)(bU ) g:As previously noted, the value of T SP� is representative of the mean response time under adaptive partitioningin many system environments. 6



5 Overheads Associated with Dynamic Equi-PartitioningIn this section we present some of the results from our experimental testbed on the overheads associatedwith implementing dynamic space-sharing strategies in the NOW and the SP2 environments described inSection 3. There are two types of overheads associated with the dynamic partitioning schemes: those thatare experienced by the system and those that slow down the application. For the applications we haveconsidered, recon�guration overheads are independent of the size of the data sets. To ensure the accuracyof these measurements, each set of experiments were repeated 50 times and we present the average of theseruns.System Overhead. For each new application entering the system, the DS �rst makes sure that a new partitioncan be created as explained in Section 2.1. Once the DS determines that it can create a new partition for anapplication it goes through the following steps:{ Determine which of the nodes (we call them moving nodes) will be assigned to the new partition.{ Send a recon�guration noti�cation only to the applications (i.e., to the appropriate coordinators for eachapplication) that may use the moving nodes. The recon�guration message includes information on howmany and which nodes are to be preempted.{ Wait until it receives from each coordinator an acknowledgement that recon�guration has completed. Atthis point it issues a kill message which gracefully terminates all the application's processes that run onthe moving nodes. (The processes do not exit after a checkpoint; this is discussed in more detail in theparagraph on application overhead). Now, all of these moving nodes are free and ready to be used.{ Update its data structures to reect the changes (e.g., partition sizes, and which nodes belong to whichpartitions).{ Initialize the new data structures with the moving nodes.At this point, the new partition is initialized and ready, so the DS launches the new application to run on it.The DS follows similar steps upon the termination (normal or abnormal) of an application. The di�erenceis that now the DS divides the available nodes among the remaining applications, instead of \squeezing" theapplications to use fewer nodes. Here are the steps taken by the DS:{ Determine which of the remaining partitions (we call them expanding partitions) will be assigned themoving nodes.{ Send a recon�guration noti�cation to each application (i.e., to its coordinator) that runs on an expandingpartition. The recon�guration message includes information on how many and which nodes are added.{ Wait until it receives an acknowledgement from each coordinator that recon�guration has completed.{ Update its data structures to reect the changes (e.g., partition sizes, which nodes belong to whichpartitions).{ Deallocate the data structures associated with the partition that was eliminated.At this point, for each expanding partition, the DS starts executing the application program on the newlyavailable nodes.Application Overhead. A component of the recon�guration overhead actually occurs in the communicationlibrary linked with the application. The break down of these overheads are as follows:{ When an coordinator receives a recon�guration noti�cation (the message contains information on thenew size and set of nodes) it sends a checkpoint message to all of its worker processes.{ Once the workers complete their current phase, they checkpoint and they send an acknowledgement tothe coordinator that they are ready. Then they cut their old connection with the coordinator and theytry to establish a new one and start from the beginning.{ Meanwhile, the coordinator waits to receive all of the acknowledgements. Once this happens, it sends anacknowledgement back to the DS that checkpointing has completed.7



{ Then it starts accepting connection requests but only from the workers of valid nodes (nodes that belongin the partition). A new node that has just joined the partition is obviously considered valid. If a worker ofan invalid node (i.e., one that has been allocated to another partition) tries to reconnect, the coordinatorrefuses the connection.When all connections are reestablished, the coordinator assigns work to its new set of workers and theapplication resumes.5.1 Overheads for Dynamic Equi-PartitioningWe present both the overheads of the system and the total (system plus application) overheads associatedwith DEP. Partitions shrink in size when an application enters the system (if the current number of jobs isless than the maximum number of partitions) and expand when an application exits.In the following we present the overheads of starting with a system with no application, and then measurethe overheads as more and more application enter the system until the number of applications is equal to themaximum number of partitions. We call this the shrinking phase since the partitions keeps shrinking in size.We then reduce the number of applications one by one until there are none left, which we call the expandingphase.The overheads of shrinking partitions as an increasing number of applications enter the system is givenin Fig. 3 for eight nodes, and in Fig. 4 for four nodes. The transitions and the individual partition sizes foreach of the points on the graph are shown in Table 1, which describes the overheads when P = 8 and M = 1.The overheads include those of the system and the application recon�guration. The corresponding overheadsfor shrinking partitions in a 12-node NOW system are provided in Fig. 5.
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Fig. 3. Overheads associated with Shrinking a partition as number of applications is increased. The policy is DEP.The overheads of expanding partitions starting with 8 applications, each executing on a partition of 1node, is shown in Fig. 6. Similarly, the overheads of starting with 4 applications and 4 nodes is given inFig. 7. The corresponding overheads for expanding partitions in a 12-node NOW system are also providedin Fig. 5.From these �gures we observe several trends. First, an expanding event is more expensive than a com-parable shrinking event. For example, the transition f1; 1g ! f2g is more expensive than the transitionf2g ! f1; 1g. The system overheads are the same in both cases, however, in the f1; 1g ! f2g case theapplication overheads for the new partition of f2g are greater than the new partitions f1; 1g in the transitionf2g ! f1; 1g. This is due to the fact that in the former case (expanding) the coordinator reconnects with two8
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Fig. 5. Overheads associated with Shrinking and Expanding with 12 nodes. The policy is DEP.workers, while in the later (shrinking) each worker reconnects with one (di�erent) coordinator. This e�ectis more pronounced as the number of nodes is increased (there is more congestion in the network). Second,the SP2 overheads are lower due to the faster CPU and the fast SP2 interconnect, as expected. The totaloverheads on the SP2 are about 2 to 4 times lower than the comparable overheads on the NOW.4The overheads are greater when few large applications (many nodes per application) are recon�gured.This is expected since creating a new partition while keeping the sizes balanced implicates applications,specially if they are large. When there are many jobs in the system, fewer applications are interruptedand the number of nodes per partition involved in a recon�guration is small. As the number of applicationsapproaches the maximumnumber allowed into the system, the recon�guration cost becomes a �xed overheadas only one partition, of size 1 (the minimum partition size) in our example, is recon�gured.4 On the SP2, we believe many further optimizations are possible particularly from the perspective of communication.9
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Fig. 6. Overheads associated with Expanding partitions as number of applications is decreased from 8 to 1.The policyis DEP.
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Fig. 7. Overheads associated with Expanding partitions as number of applications is decreased from 4 to 1.The policyis DEP.6 System PerformanceIn this section we present some of the results of our detailed analysis of dynamic partitioning in the NOW andSP2 system environments. The measurement data presented in Sections 3 and 5 were used to parametrizethe analytic models of Section 4. Several of the response time estimates predicted by our models werethen compared against corresponding measurements from our experimental testbed. These results showthat our analytic estimates are in excellent agreement with the performance measurements of dynamicpartitioning in both parallel systems executing real scienti�c/engineering workloads, and thus validate ouranalytic models. We note that the model results are computed in an extremely e�cient manner, requiringless than a few seconds to obtain each set of results presented below. This makes it possible to analyzevarious performance characteristics of dynamic partitioning across a large parallel system design space.Based on the insights gained from this analysis, we then use our experimental testbed to analyze additionalperformance characteristics of dynamic space-sharing strategies, including di�erent allocation methods toreduce the impact of recon�guration overheads and highly variable job arrivals. Our overall objective is toe�ectively combine our experimental and analytical approaches to quantitatively evaluate the bene�ts andlimitations of dynamic partitioning in distinct distributed-memory environments.The results in this section are for system workloads consisting of the application mixes described inSection 3.3, together with a probability distribution for the times between job arrivals to the system. While10



most previous parallel scheduling studies have assumed a Poisson arrival process (i.e., exponential interarrivaltimes), recent measurements of real scienti�c and engineering workloads demonstrate that the job interarrivaltimes in such high-performance computing environments tend to be signi�cantly more variable [13, 18, 19].We therefore consider hyperexponential interarrival times that statistically match the workload measure-ments presented in [13, 18, 19], and we compare these results with those obtained under the exponentialinterarrival assumptions of previous work.The characteristics of the di�erent scheduling policies, together with their corresponding overheads, causeeach of the various parallel systems considered in our study to saturate (i.e., the response times becomeunbounded) at di�erent job arrival rates. The best possible service rate, or capacity, for the DEP systemunder a particular workload is bounded above by the value of N�N 5 for that workload, and saturation isguaranteed for all arrival rates � � N�N . Although this capacity N�N is not actually achievable due to theoverheads incurred under DEP, we use this capacity value to de�ne a relative measure of system utilizationas the basis for all of our performance comparisons. The capacity values of the SP2 system are chosen forthis purpose since this environment has lower service times and overheads (hence, higher capacities) thanthe NOW environment under each application workload considered. We therefore use relative system loadto refer to the ratio bU � �=N�N;SP2. The results that follow for each system are all plotted as functionsof the relative system load over the interval (0; 1). We note that the corresponding curves for the NOWenvironment will span a smaller region of this bU interval due to its lower capacities.Mean Response Times. Our �rst set of results considers the performance characteristics of DEP for eachworkload and system environment. In Fig. 8 we plot mean response times for application workload 1 (W1)in 8-node NOW and SP2 system environments under hyperexponential job interarrival times as a function ofrelative system load (labeled W1(Ahyp,Bcv)). For the purpose of comparison, Fig. 8 also includes responsetime results for W1 under Poisson arrival times (labeled W1(Aexp,Bcv)), as well as results for the casewhere the coe�cient of variation6 of the workload service times is doubled (labeled W1(Aexp,B2cv)). Thecorresponding curves for application workload 2 (W2) and workload 3 (W3) are presented in Figs. 9 and 10,respectively.
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Fig. 8. Mean Response Times under DEP, for Workload 1 and P = 85 1=�N is the mean service time, excluding overhead, of a generic job when the system contains at least N jobs.6 The coe�cient of variation is the ratio of the standard deviation to the mean.11
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Fig. 9. Mean Response Times under DEP, for Workload 2 and P = 8
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Fig. 10. Mean Response Times under DEP, for Workload 3 and P = 8We observe that the response times under DEP are consistently worse in the NOW environment thanthose realized in the SP2 environment. This may be as expected due to the larger service times and re-con�guration overheads measured for the NOW environment (see Section 5). We also observe from theseresults that the more realistic hyperexponential interarrival times yield signi�cantly higher response timesunder DEP than those obtained under Poisson arrivals in both system environments. This is due to thefact that, under the more variable hyperexponential distribution, a considerable amount of time is spentrepartitioning applications only to be interrupted before completion by a subsequent arrival, thus causing anew repartitioning without making any progress on behalf of the jobs involved. This suggests that the meanresponse times under DEP in distributed-memory systems may be considerably larger than those predicted12



by previous studies, at least within the context of the systems and workloads considered in this paper. Wefurther observe that the mean response times of DEP tend to also increase under more variable workloadexecution times, although to a considerably smaller degree than under more variable interarrival times atlight to fairly heavy system loads.Each of the above performance characteristics are similarly observed for the DEP system under W2 andW3, as illustrated in Figs. 9 and 10. We note, however, that there is a reduction in the relative performancedi�erences among the curves going from W1 to W2, which is reduced even further going from W2 to W3.This can be explained in part by observing that a larger fraction of the workload is comprised of jobs withsmaller execution times upon moving from W1 to W2 to W3.Relative Response Times. Our next set of results quanti�es the performance bene�ts of DEP with respectto static/adaptive partitioning. Taking the ratio of the mean response time under the best static policyto that achieved by the dynamic policy, we obtain mean response time ratios as a function of bU . Thecorresponding results for W1, W2 and W3 under both parallel system environments are plotted in Figs. 11,12 and 13, respectively. While the mean response time trends observed above were quite similar, here wesee very di�erent performance characteristics in comparison to static/adaptive partitioning for the variousworkloads.
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Fig. 11. Mean Response Time Ratios (T SP�=TDP), for Workload 1 and P = 8For the base W1 execution times, DEP provides poorer response times relative to those obtained underthe static/adaptive policy at light to moderate loads, independent of the interarrival distribution. The largerperformance degradations and the smallest performance improvements are observed for the NOW environ-ment when compared against those for the SP2 system. The overheads of repartitioning the nodes and ofthe allocation decisions of the dynamic scheme tends to outweigh its bene�ts relative to the static/adaptivepolicy under W1 at these system utilizations. This is particularly true at light loads since the overheadsfor recon�guration are greater at these utilizations (see Figs. 3 and 6). These recon�guration overheads andthe aggressive repartitioning decisions degrade the relative performance even though the long run percent-age of recon�gurations is low (see Fig. 14). Moreover, larger relative performance degradations are observedfor the system under Poisson arrivals than under the more variable hyperexponential interarrival times inboth system environments. The relative performance degradations (and bene�ts) for the NOW environmentappear at smaller system loads than those in the SP2 system, and within each of these environments the13
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Fig. 12. Mean Response Time Ratios (T SP�=TDP), for Workload 2 and P = 8
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NOW,  W3(Aexp,B2cv)Fig. 13. Mean Response Time Ratios (T SP�=TDP), for Workload 3 and P = 8relative performance degradations (and bene�ts) for hyperexponential interarrivals appear at lighter loadsthan those under Poisson arrivals.Interestingly, DEP provides the largest performance bene�ts (and no degradation) relative to static/adaptivepartitioning under the more variable W1 execution times. By adjusting scheduling decisions in response tochanges in the highly variable workload, the DEP policy provides more e�cient utilization of the nodes whencompared against the static/adaptive policy, which results in better response time ratios. These relative per-formance bene�ts tend to increase as bU rises from small to moderate values since workload changes are morefrequent and DEP adjusts its node allocations accordingly to achieve superior steady-state performance.As the system load increases, we observe considerable performance bene�ts under DEP relative to sta-tic/adaptive partitioning, with the largest response time ratios appearing in the SP2 system. We also notethat the case of Poisson arrivals yields larger maximum (relative) performance bene�ts than the hyperex-14



ponential interarrival times in both system environments. Once again, by adjusting scheduling decisions inresponse to workload changes, the DEP policy provides a more e�cient utilization of the nodes in comparisonto static/adaptive partitioning for moderate to heavy loads under W1. These relative performance bene�tstend to increase as bU rises, since workload changes are more frequent and DEP adjusts its node allocationsaccordingly to achieve superior steady-state performance. In the limit as the system approaches saturation,the probability that the system repartitions the nodes tends toward 0, i.e., the frequency of recon�gurationsdecreases to 0 as the system spends essentially all of its time with N or more jobs. It therefore follows thatthe DEP system converges toward the static policy with N partitions in the limit as the system approachessaturation.Turning to W2, we observe that DEP provides the best space-sharing performance characteristics andthat these relative bene�ts are even larger than those shown for W1. Here we see that the largest rela-tive improvements in performance are generally obtained for the NOW environment. We again �nd thathyperexponential interarrival assumptions yield smaller maximum (relative) performance bene�ts than thecorresponding Poisson arrival case. The response time ratios tend to increase as bU rises because schedulingdecisions are being adjusted in response to workload changes, resulting in very e�cient utilization of thenodes, and workload changes are more frequent with these increasing system loads. As noted above, thesystem under DEP eventually converges toward the static policy with N partitions in the limit as the systemapproaches saturation.Conversely, the DEP policy under W3 yields signi�cant performance degradations relative to static/adaptivepartitioning across all system utilizations. We further observe that the response time ratios for the case ofPoisson arrivals are worse than those obtained under hyperexponential interarrival times at all but light loadsin both parallel system environments. These results are primarily due to the large repartitioning overheadsrelative to the job service times comprising the workload, where the ratio of execution time to overhead isroughly 6 to 1. It is for exactly these reasons that an adaptive partitioning strategy should be used for jobswith relatively small processing demands [26, 27]. Such information can be successfully given by users [18, 19]provided that countermeasures are taken by the system [8], it can be estimated with performance tools andrun-time systems [11], and/or determined via standard methods such as multi-level feedback queues.We should point out that the scalloped shape of the response time ratio curves for both workloads arethe result of the response time behavior of the best static partitioning policy. Speci�cally, each of the pointswhere the response time ratio reaches a local maxima (within a particular bU region) is due to a change inthe number of partitions employed under the static/adaptive policy. This in turn causes the response timeunder DEP to be compared with a di�erent static partitioning response time curve, which is further fromsaturation than the response time curve for the previous system load.Recon�gurations. To better understand the system performance impact of the overheads of repartitioning,our next set of results considers the long run proportion of time that the system spends recon�guring itsnode allocations, i.e., the steady-state probability pr that the system is executing a recon�guration. Thecorresponding results for W1, W2 and W3 are plotted as a function of bU in Figs. 14, 15 and 16, respectively.We observe a sharp initial increase in pr as the relative load rises, and that this initial increase correspondsto the performance degradation under DEP for W1 and W3. Similarly, we observe that the shape of the prcurves and the loads over which these characteristics are found, both correspond to the performance bene�tsexhibited in the response time ratio curves; e.g., compare Figs. 11 and 12 with Figs. 14 and 15. The NOWenvironment spends a larger percentage of its time repartitioning nodes than the corresponding SP2 systemdue to the larger recon�guration overheads experienced in this environment (see Section 5). Moreover, themaximum values of pr appear at smaller bU in the NOW system than in the SP2 environment. A Poissonarrival process tends to increase pr over that observed under hyperexponential interarrivals, and this trendappears in both system environments. 15
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Fig. 14. Probability of Repartitioning the Nodes in Steady State, for Workload 1 and P = 8
0

0.002

0.004

0.006

0.008

0.01

0.13 0.26 0.39 0.51 0.64 0.77 0.9

Pr
ob

ab
ili

ty
 o

f 
E

xe
cu

tin
g 

a 
R

ec
on

fi
gu

ra
tio

n

Relative System Load

SP2,  W2(Aexp,Bcv)
SP2,  W2(Ahyp,Bcv)

SP2,  W2(Aexp,B2cv)
NOW,  W2(Aexp,Bcv)
NOW,  W2(Ahyp,Bcv)

NOW,  W2(Aexp,B2cv)

Fig. 15. Probability of Repartitioning the Nodes in Steady State, for Workload 2 and P = 87 Conclusions and Future WorkIn this paper we examined the bene�ts and limitations of dynamic partitioning with respect to other space-sharing strategies in di�erent parallel system environments. We developed and used an experimental testbedin computing environments based on networks of workstations and on the IBM SP2 distributed-memorycomputer. We also used an analytic model of dynamic partitioning, which was �tted to measurement dataobtained from our experimental testbed running various parallel applications. The computational e�ciencyof this model allowed us to explore the large parallel system design space.Our results show that the performance bene�ts of dynamic partitioning are heavily dependent upon itsassociated costs, the system load and the workload characteristics. When the recon�guration overhead issmall relative to the processing requirements, the performance bene�ts of dynamic partitioning can be quite16
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Fig. 16. Probability of Repartitioning the Nodes in Steady State, for Workload 3 and P = 8signi�cant for most of the workloads considered. In these cases, the dynamic partitioning policy provides themost e�cient utilization of the nodes among the various space-sharing strategies by adjusting schedulingdecisions in response to workload changes. These performance bene�ts tend to increase with rising tra�cintensities, since workload changes are more frequent and dynamic partitioning adjusts its node allocationsaccordingly to achieve the best steady-state, space-sharing performance. When the recon�guration costs aresu�ciently large, however, this overhead tends to outweigh the bene�ts of dynamic partitioning, particularlyat light to moderate system loads for the workloads studied.Within the context of the parallel systems and application workloads considered in this paper, our resultssuggest that:{ Jobs with small resource requirements should not be dynamically recon�gured in distributed-memoryenvironments. A workload consisting of a majority of such small jobs can su�er from a form of thrashingwhere the system spends a large percentage of its time recon�guring node allocations.{ On the other hand, the measurements from our experimental testbed show that, in the majority ofapplication instances expected for large-scale parallel computing, the repartitioning overheads tend tobe small relative to the execution times of these application instances.{ Dynamic partitioning appears to be viable in a variety of di�erent distributed-memory environments,provided that the applications are capable of executing on variable numbers of nodes and are capable ofrecon�guring the number of nodes on which it executes. Our system approach provides the structure toextend this functionality to applications beyond those considered herein.Furthermore, our results clearly demonstrate that the overheads of dynamic equi-partitioning in distributed-memory environments must be considered by the scheduling algorithms employed in practice, otherwise theserecon�guration costs can in general limit and/or eliminate the potential system performance bene�ts. Wehave been exploring several variants of dynamic partitioning to address these issues. One strategy for de-creasing the overheads associated with dynamic equi-partitioning is to use the folding approach found in [24],which reduces the number recon�gurations performed under the greedy dynamic policy, at the expense ofa less equitable allocation of the nodes among the competing jobs. Another approach consists of using theequi-partitioning method to equally divide the nodes among the jobs in the system whenever a repartitionis performed, while placing a minimum period of time (which can be dynamically adjusted) between whenthe system can repartition its node allocations. In addition to reducing the number of recon�gurations, this17



approach tends to reduce the performance e�ects of job arrival variability by e�ectively smoothing the arrivalprocess [6].There is a fundamental tradeo� between these two dynamic partitioning approaches. Folding providesthe advantage of immediately responding to workload changes, but it reduces the repartitioning overheadby interrupting fewer jobs to yield somewhat less equitable node allocations. Dynamic partitioning withsmoothing, on the other hand, reduces the repartitioning overhead by reacting less quickly to workloadchanges, but it provides the advantage of dividing the system resources equally among the running jobs. Thebest solution to this performance tradeo� depends upon a number of factors, and it is particularly sensitiveto the application workload characteristics and the job arrival process. For long running applications, it maybe just as important or even more important to equitably allocate the nodes among the running jobs as itis to reduces the number recon�gurations performed.Several preliminary experiments with these policies under workload 1 of Section 3.3 have consistentlydemonstrated that dynamic partitioning with smoothing exhibits lower mean response times, as well as asmaller variance in the execution times, than that observed for dynamic equi-partitioning and folding, withequi-partitioning consistently providing better response times than folding. The latter result is in contrastto those of Padhye and Dowdy [29] which show that folding generally outperforms equi-partitioning in adistributed-memory environment under a workload based on scienti�c matrix computation programs. Thedi�erences between the results of these two studies are primarily due to the di�erences in the respectiveworkloads, where the workload used in our experiments consists of applications with larger execution timesthan those studied in [29]. This further highlights the fundamental tradeo� between the two above dynamicpartitioning approaches for reducing the repartitioning overheads in distributed-memory environments. Weare continuing to examine these and related scheduling issues in distributed-memory parallel systems.
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