Dynamic versus Adaptive Processor Allocation
Policies for Message Passing Parallel Computers:
An Empirical Comparison *

Jitendra Padhye! and Lawrence Dowdy?

! Department of Computer Science, University of Massachusetts at Amherst, ***
Amherst, MA 01003.
2 Department of Computer Science, Vanderbilt University,

Nashville, TN 37235.

Abstract. When a job arrives at a space-sharing multiprocessor sys-
tem, a decision has to be made regarding the number and the specific
identities of the processors to be allocated to it. An adaptive policy may
consider the state of the system at arrival time but it does not allow pre-
emption of any of the running jobs. A dynamic partitioning policy may
preempt one or more of the currently running jobs to accommodate the
new arrival. In this paper performance of dynamic and adaptive policies
is investigated experimentally on a message passing architecture (Intel
Paragon). The workload model is based on matrix computation applica-
tions commonly found on large systems used for scientific programming.
Results are reported for single and multiclass cases. A sensitivity anal-
ysis with respect to workload speedup characteristics is presented. Our
results show that if the preemption overheads are kept low, dynamic
polices result in noticeable improvement in overall performance of the
system.

1 Introduction

Multiprogramming is a common way of improving performance of large multi-
processor systems. Most common parallel applications have sublinear speedup
curves and hence can not take full advantage of all system processors. For a
heavily used system it is not uncommon to have several parallel jobs waiting to
use the multiprocessor. In such cases, performance can be improved by sharing
the multiprocessor among all or some of the waiting jobs. This can be achieved
via either space sharing [SRSDS94] or time sharing [GTU91].

Under space sharing scheduling polices, an incoming job is assigned to a sub-
set of the total available processors. Thus, multiple jobs can be active within the
multiprocessor at the same time. Space sharing policies can either be dynamic
or adaptive. Several issues such as application speedup characteristics, underly-
ing multiprocessor architecture, and special requirements of certain application

* Supported in part under sub-contract 19X-SL131V administered through the Math-
ematical Sciences Section of Oak Ridge National Laboratory.
*** This work was done at Vanderbilt University.

workloads are among the factors affecting performance of processor allocation
strategies for multiprogramming parallel systems. In this paper, effects of some of
these factors on the performance of dynamic and adaptive space sharing policies
are investigated empirically.

Several dynamic and adaptive processor allocation policies have been dis-
cussed in the literature [MEB88, TG89, PD89, LV90, DCDP90, ZM90, GTU91,
ZB91, MVZ93, SST93, RSDSC94, SEV94, CMV94, MZ94]. Performance analysis
of dynamic space sharing scheduling policies has been largely based on simula-
tion studies and Markovian analysis of small systems. For a simulation study to
be accurate and realistic, detailed knowledge of various parameters of the sys-
tem under consideration is necessary. Also, validation of the simulation models
is difficult. Detailed Markovian analysis of complex scheduling policies to verify
simulation models is possible only for small systems (e.g. less than 10 processors)
[SRSDS94, DCDP90, MEB88]. For larger systems, simplifying assumptions have
to be made, resulting in a loss of accuracy.

Experimental studies on dynamic processor partitioning policies have been
done mainly for shared memory architectures [GTU91, TG89]. In this paper,
experimental analysis of dynamic processor partitioning policies for a message
passing architecture is presented. To this end, two dynamic processor partition-
ing policies based on those discussed in [MZ94] and one adaptive policy presented
in [RSDSC94] are implemented on the Intel Paragon. Two workload programs
are used to compare behavior of the implemented scheduling policies. One is
a synthetic workload program designed to emulate various speedup curves and
other characteristics of common scientific applications. The flexibility of the syn-
thetic workload allows easy emulation of a wide variety of load conditions for
comparing the scheduling policies. The other workload program is based on a
parallel, preemptible, distributed memory version of a matrix conjugate gradi-
ent program. This program is representative of typical scientific workloads and
has been used for similar purposes in the past [BMSD95]. Our results show that
if the preemption overheads are kept low, dynamic polices result in noticeable
improvement in the performance of the system. This result is not surprising
theoretically, however, experimental validation studies have been lacking. This
study is an effort to fill that gap.

The rest of the paper is organized as follows. Section 2 describes the dynamic
and adaptive scheduling policies and the two workload programs used for this
study. A brief description of the Intel Paragon architecture is also presented. The
results of the study are presented in Section 3. Section 4 presents the conclusions
and directions for future work.

2 Policies and Workloads

This section briefly describes the three scheduling policies studied in this paper,
the two workload programs used for comparisons, and the architecture of the In-
tel Paragon. Due to space constraints, this section provides only a brief overview
of the actual implementation. More details may be found in [P96].

2.1 The Intel Paragon

The Intel Paragon supercomputer consists of several nodes connected in a mesh
configuration. The computer used for this study has 66 nodes connected in a
11x6 matrix. Several nodes are dedicated to special tasks such as disk and net-
work control. Each node consists of two Intel 1860 processors sharing 16 MB of
memory. One of the processors runs the application program while the other
acts as a communication co-processor. To route messages between the nodes, a
wormhole routing protocol is used. The operating system conforms to OSF/1
standards. Although the machine is capable of supporting MIMD (or MPMD)
computing model, most applications use the SPMD model for computing. The
workloads for this study use the SPMD model. A detailed description of the
Paragon architecture may be found in [INT93].

2.2 The Adaptive Scheduling Policy

The adaptive scheduling policy chosen for this study is the Robust Adaptive
(RA) scheduling policy described in [RSDSC94]. This policy has been shown to
have better performance than several other non-preemptive scheduling policies.
The RA scheme actually represents a suite of scheduling policies rather than a
single scheduling algorithm. The version chosen here is a representative one and
has been used in subsequent studies [SRSDS94]. The main feature of the RA
policy is that it adapts to load changes over a period of time. Two identical jobs
may be allocated different sized partitions, depending upon the system state
when each job arrives. When a new job arrives in the system, it is placed at
the end of a queue of jobs awaiting service. The scheduler calculates a “target”
partition size using the following formula:

Total number of processors in the system
maz
! Number of jobs waiting in the queue

The scheduler does not schedule any jobs until at least “target” number of
processors are free. It then starts allocating “target” number of processors to
each job in the queue. If the processors can be allocated, then the job is started
immediately. The target is not recomputed during this time. When no more jobs
can be scheduled, either due to an empty queue or due to a lack of sufficient free
processors, the scheduler stops scheduling new jobs and recomputes a new target.
The target recalculation allows RA to adapt to changes in the load condition. A
higher load results in a longer queue, which results in a smaller target which in
turn means that more jobs are scheduled.

2.3 Dynamic Partitioning Policies

Dynamic partitioning policies can interrupt currently executing jobs in order to
redistribute processors among the jobs because of job arrivals and/or departures.
Thus, dynamic scheduling policies can quickly adapt to transient changes in the
workload flow. The two dynamic processor partitioning policies considered in

this study are based on policies discussed in [MZ94]. Implementing preemption
on a message passing architecture is a non-trivial task. The steps taken to ensure
“safe” preemption of jobs while keeping the preemption overhead low, are briefly
described in Section 2.4.

Equipartitioning. This policy tries to equally allocate the available processors
among all jobs that are present in the system. On each new arrival or departure,
all the currently executing jobs are preempted. The new partition size for each
Jjob is calculated using the following formula:

1 Total number of processors in the system
maz
' Number of ready jobs

The number of ready jobs includes the new arrivals and the jobs that have
been preempted. Since at least one processor has to be allocated to each job, it
may not be possible to restart all the ready jobs. However, the scheduler always
restarts all the preempted jobs.

The policy suffers from two major disadvantages. First, a job can be pre-
empted several times * under this policy. Even when individual preemptions are
not very costly, the total cost can be prohibitive. Secondly, this policy suffers
from synchronization delays. Since some of the currently running jobs may finish
during the process of repartitioning, 5 the scheduler has to wait until all the pro-
cessors in the partition are released before calculating the new partition size for
each job. A job that has been preempted is forced to wait until all the remaining
running jobs free their partitions. This synchronization delay may be a source
of significant overhead.

Folding. This policy preempts at most one of the currently running jobs as
a result of an arrival or a departure. Hence, the policy does not suffer from
excessive synchronization delays. At each new arrival, the scheduler checks to
see if there are free processors. If there are free processors in the system, the new
job is started on all of them. No preemptions take place in this case. If there
are no free processors then the scheduler checks the size of largest partition
currently allocated to a job. If this size is greater than 1, then the job running
on the largest partition is preempted and half of the processors are given to the
incoming job. This is called folding. If there are multiple candidates for folding
then the implementation can select any one of them. The implementation used
for this study preempts the most recently arrived job in the event of such a tie.
At any time, if the system has any idle processors, and no jobs are waiting in
the ready queue, then the job executing on the smallest partition is preempted
and the idle processors are merged with the job’s old partition and the job is
restarted on the new partition thus formed. This is called unfolding. If there

* Theoretically, once per every subsequent job arrival and job departure.
5 These are the jobs that finish after the scheduler has sent out preemption requests.
The scheduler will not restart these jobs.

are several candidates for unfolding, the implementation may choose any one of
them. The implementation used for this study unfolds the most recently arrived
job in the system.

2.4 Minimizing the Cost of Preemption

” 6 at any arbitrary time during

A parallel job may not be preempted “safely
its execution. This may happen due to several reasons (e.g. the job might be
executing a piece of non-reentrant code). At other times, it might be safe to
preempt the job, but the cost of preemption might be high. This may happen
when the job is in the middle of a distributed computation and preemption
requires realignment of data. It is difficult for the scheduler to determine when
it is easy (i.e. safe as well as cheap) to preempt a job. Hence, this implementation
requires that all the jobs have certain bregck points, where it is safe to preempt
the job and the preemption overheads can be kept low. A job responds to a
preemption request by the scheduler only when it is at a breakpoint.

The processor allocation routines of all the dynamic schedulers implemented
for this study observe the subset restriction to minimize any data redistribution
overhead that the job might incur as a result of preemption. The subset restric-
tion is defined as follows. If P; and P, represent the sets of processors in two
successive partitions allotted to a job then:

PiNPy=Pif |Py| < |Ps]
= P, otherwise

This restriction helps to minimize the data transfers required during redistribu-
tion. In addition, the routine tries to allocate contiguous partitions. The pre-
emption process is carried out in four steps.

1. The scheduler sends preempt requests to all the jobs it wishes to preempt.
Whenever each job reaches its next breakpoint, it informs the scheduler that
it is ready to be preempted.

2. Once the scheduler receives such replies from all the jobs to whom such
requests are sent”, it calculates the new processor allocations. All the jobs
that will be preempted are informed of their new partitions.

3. Depending on the size of the new partition, the job executes one of the
following two steps.

(a) If the size of the new partition is smaller than the size of the previous
partition, then the job is termed as LOSER. A LOSER job determines
the subset of its old partition that forms the new partition. The data is
redistributed so that all the application data is stored on the processors
in this subset.

(b) If the size of the new partition is larger than the old one, then the
job is termed a WINNER. A WINNER job has to wait until the extra
processors are allocated to it to do its data redistribution.

® In this context, safety essentially implies ensuring correctness.
7 Or, if the job terminates.

4. Once the data redistribution is finished, the jobs release their processors
and the scheduler restarts the jobs on their new partition after it finishes
its internal bookkeeping operations. After the restart, the WINNER jobs
redistribute their data and start execution. The LOSER jobs, on the other
hand, having already finished their data redistribution, resume execution
immediately.

The entire preemption sequence is implemented as a series of calls to a set of
library routines. These routines are independent of the nature of the application
program and the scheduling policy.

2.5 Workload Description

This section describes the two workloads used for the experimental study. The
first is a synthetic workload, designed to have enough flexibility to emulate var-
ious speedup curves. Number of computations, amount of communication and
preemption overheads are all easily adjustable. The second workload is based on
the Conjugate Gradient method for matrices. The program is a representative
example of the scientific workload and has been used for similar purposes in
other studies [BMSD95]. &

The Synthetic Workload. The synthetic workload is designed to be flexible
enough to generate various speedup curves by varying workload parameters. The
workload is capable of spawning as many tasks as the number of allocated pro-
cessors. When the workload is started on a given partition, the lowest numbered
node in the partition is selected as the co-ordinator. The workload operates in
phases. Each phase consists of three subphases, namely, the broadcast communi-
cation subphase, the compute subphase, and the collect communication subphase.
In the broadcast communication subphase, the co-ordinator broadcasts a mes-
sage to each node in the partition. This message contains initialization param-
eters for that phase and other problem related data. In the compute subphase,
each node in the partition does a certain amount of computation. There is no
communication among the nodes during this subphase. During the collect com-
munication subphase, each node in the partition sends back a message to the
co-ordinator node. This message contains partial results and other synchroniza-
tion data. At the end of each phase the nodes undergo a barrier synchronization.
After the barrier synchronization, the job is in a safe state for preemption. At
this point the co-ordinator checks to see if a preemption request has arrived from
the scheduler. If such a request is present, the preemption sequence is executed
and the job preempts. Otherwise, the next phase of the communicate-compute-
communicate cycle is started. The amount of computation and communication
during each subphase can be specified individually for each phase. The amount

8 Other models of large, parallel, scientific workloads and arrival processes exist, and
it will be interesting to study the effectiveness of dynamic partitioning policies for
various workload models.

of data redistribution to be done in the event of preemption can also be speci-
fied. Changing the amount of computation or communication done in each phase
yields workloads with different speedup curves. The preemption cost can be var-
ied by changing the data redistribution required in the event of preemption or
by changing the number or the length of the phases. Note that the cost of a
preemption is reflected in the waiting time of the jobs that are waiting in the
arrival queue and synchronization delay for the jobs that have already been
preempted. The speedup curves generated by the synthetic workload having 50
phases appear in Figure 1. For each curve, the number of total computations
done per phase is indicated in the legend. For all curves the message size during
broadcast as well as in the collect communication phase is 32 bytes.

=
o

=
i
T

i
N
T

=
o
T

[«
T

Speedup Factor

o
T

0 I I I I I I I
0 2 4 6 8 10 12 14 16

No. of Processors

Fig. 1. Speedup Curves for the Synthetic Workload

Conjugate Gradient Workload. The program implements the conjugate gra-
dient method for matrices. The task graph of the program is similar to many sci-
entific and engineering applications found on large multiprocessor systems. More
details about the program can be found in [BMSD95]. The program executes a
specified number of iterations or until a user specified accuracy is achieved. For
test purposes, the accuracy testing feature is disabled and the program contin-
ues for a specified number of iterations. During each iteration several distributed
computations are carried out, requiring significant communication among proces-
sors belonging to the job. At the end of each iteration, all the processors undergo
barrier synchronization. After the synchronization, the job is in a safe state to
be preempted and the co-ordinator (lowest numbered processor) checks for pre-
emption request. Data redistribution involves redistributing data contained in
five different arrays or matrices. Thus, the preemption overhead involved can be
high. The speedup curves for the CG workload are shown in the Figure 2. The

16

300x300 <-—

fyan 400x400 ----
500x500 +* -

600x600 - -

Speedup Factor
2]
T

0 I I I I I I I
0 2 4 6 8 10 12 14 16

No. of Processors

Fig. 2. Speedup Curves for the Conjugate Gradient Workload

different speedup curves are generated by using different matrix sizes. For each
curve, the legend indicates the number of rows and columns of the matrix used
as the data set for the program. Each CG program performs 250 iterations on
the data matrix.

3 Results

This section is organized as follows. In Section 3.1, the performance of the
Equipartitioning policy is compared against that of the Folding policy. In Section
3.2, sensitivity analysis results of the relative performance of RA and Folding
policies are presented. Factors considered include constant versus exponential
demand, speedup curves, and multiclass workloads. In Section 3.3, the perfor-
mance of the RA and the Folding policies is compared on a larger multiprocessor
to show that the results are scalable. For all policies, the smallest possible par-
tition size is one processor. For the dynamic policies, the number of times a job
may be preempted is bounded only by the number of “safe” preemption points
in the job. Experimental results indicate that the performance of the restricted
version of the dynamic scheduling policies (where the number of preemptions of
a job and/or the minimum partition size are bounded by anything other than
the base limits described above) depends strongly on the speedup characteristics
of the workload. Hence only the comparisons between the base versions of the
policies are presented.

3.1 Equipartitioning versus Folding

Figure 3 compares the performance of the Equipartitioning and the Folding
scheduling policies. The workload used is the CG program with a 500x500 ma-
trix. Each preemption requires redistribution of approximately 2 megabytes of
data. The speedup curve of the program is shown in Figure 2. The interarrival

times are exponentially distributed, while the workload demand is constant,
(i.e. each program in the workload stream is identical to all others). It may be
seen that the Folding policy exhibits a better response time than the Equipar-
titioning policy at all arrival rates, and the difference between them increases
with increasing arrival rates. Folding allocates more processors to each job than
Equipartitioning at all arrival rates. Thus, jobs have lower execution times under
Folding. In addition, the average number of preemptions per job is higher under
Equipartitioning than under Folding. Also, Equipartitioning suffers from higher
synchronization delays. These factors result in increased waiting time (and hence
increased response times) for jobs under Equipartitioning. Folding continues to
significantly outperform Equipartitioning for various speedup curves and work-
load mixes. Hence, the remaining results in this section compare only RA versus
Folding.

3.2 RA versus Folding

Constant versus Exponential Workload Demands. The synthetic work-
load is used to compare the performance of the policies under constant and
exponential workload demands, instead of the CG program, since it is easier
to vary the demand imposed by the synthetic workload on the multiprocessor
by varying the number of computations done in each phase. Figure 4 compares
the performance of the RA and the Folding scheduling policies using the syn-
thetic workload. The workload performs 66000 floating point multiplications
per phase. When preempted, 0.5 megabytes of data require redistribution. The
speedup curve of the workload is shown in Figure 1. The interarrival times are
exponentially distributed, while the workload demand is constant.

It can be seen that the Folding gives a better response time than RA at all
arrival rates. The maximum difference in the response times is approximately
17%, achieved at higher arrival rates. The better performance of the Folding
policy can be attributed to the reduction in the waiting time of the jobs under
Folding. The Folding policy schedules a newly arrived job as soon as it can pre-
empt one of the running jobs. If there are idle processors, then the arriving job
does not have to wait at all. RA makes a newly arrived job wait until it can
allocate a partition of current target size °. Except at very low arrival rates, the
target partition size usually can not be allocated until at least one of the cur-
rently executing jobs finishes execution. Thus the jobs experience higher waiting
time under RA. Folding is able to allocate more processors to each job than RA
at higher arrival rates. However, job execution times are higher under Folding
than under RA. This is due to preemption overheads the jobs experience under
Folding. This can be seen from two graphs in Figure 4: 1) when execution time
is plotted as a function of average number of processors per job and 2) when
execution time is plotted as a function of the arrival rate. The maximum in-
crease in the execution time is approximately 17%. It should also be noted that

® In other words, Folding is work-conservative, while RA is not.

0 Avg. Response Time 5 : Avg. EX@Cl‘ﬂI on T\me‘ :
T T T T
Equipartitioning — 50 - Equmamptggmg b
Folding -~
300 i
o))
B 0 i é a0+ 4
g 8 B 4
5 20 i 2
£ IS 30 i
5 10r B s - i
8]
2 =
20 4
% 100 (- i 3
2 o 15F i
sor 7 10 i
0 i T 1 . 5 + i . . .
0 005 01 0_3]5 o 0. cﬁ 025 03 0 005 01 015 02 025 03
Artival Raté {jobs/secon Arrival Rate (jobs/second)

Avg. Processors per Job Execution Time as function of Avg. No. of Procesoors
T T T T T T T T T

14 T T 55
Equipartitioning <— Equipartitioning <—
P Fc\dmg - 50 - P Fc\dmg -
Ty
g ° il
10 B ; a0 i
2 gl i < e 7
é E 01 b
L il =
g * 5 > B
b 4 § 20 B
&g sk i
Pin |
10 B
0 I I I I I 5 I I I I I ‘\ -
0 005 01 015 02 025 03 0 2 4 6 8 10 12 14
Arrival Rate (jobs/second) Arrival Rate (jobs/second)
Avg. Waiting Time Avg. Preemptions per Job
300 T T T T 16 T T T
Equipartitioning <—
Folding -~ 14 Equipartitioning <— T
250 - A Folding -
& 12 7
B o0 | i
e o 1 ,
8 5
o 150 - B g 8 B
@
E]
£ & 6f B
& 100 B
= 4t B
50 - i
Pin . i
o 4 " L o i | I I I
0 005 01 015 02 025 03 0 005 01 015 02 025 03
Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Fig. 3. Equipartitioning versus Folding

these preemption overheads are the result of a relatively small number of pre-
emptions. On average, fewer than 1.5 preemptions per job occur at any arrival
rate. It is important to note that the preemption overheads also depends upon
the sizes of partitions before and after the preemptions. These sizes determine
how many processors will participate in the preemption and, hence, affects the
data redistribution overhead.

Figure 5 compares the performance of the RA and the Folding scheduling
policies when the workload demand is exponentially distributed. The synthetic
workload program is used for this comparison as well. All the workload param-
eters are the same as in the previous comparisons, except that the workload
demand is exponentially distributed. It is noted that the improvement in the

response time (maximum 25%) is better than the improvement (maximum 17%)
achieved when the workload demand was constant. Due to its dynamic nature,
Folding is able to handle the variations in the workload demand better than RA.

Avg. Response Time Avg. Execution Time
T T T T T T

25 T 18 T
RA <— RA <—
Folding -~ 16 Folding -~
. 20r i .
8 g ar
5 :
8 s 1 B
@
g £ wof
= L=
g - 1 & 8-
: ;
6
C st 4 i
al
o I I I I I 5 I | I I
0 01 02 0.3 04 05 06 0 01 02 03 04 05 06
Ariival Rate (jobs/second) Arrival Rate (jobs/second)
1 Avg. Processors per Job 18 Execution Time as function of Avg. No. of Procesoors
T T T T T T T T
RA <— . RA <—
Folding -~ 16 F Folding - 4
2 g .
Q)
B 1 B
w 10 g Bl i
7 o
8- E 10 B
£ <
6F 2 °r 1
8
g e 1
4l
ab i
5 I I I I I 2 I I I I |
0 01 02 0. 0. 05 06 2 4 6 8 10 12 14
Arrival Rate Sobs/seconé) Arrival Rate (jobs/second)
s Avg. Waiting Time s Avg. Preemptions per Job
T T T T T T T T
RA <—
s Folding -~ 14| Folding *— i
S 13F S
@ 6|
£) h
g sf 2
(=]
5 g1 1
E 4 %
F 2 ir b
£ 3L
S 09 i
2r 08l B
1F 07l i
0 I 06 I I I I I
0 01 02 03 04 05 06 0 01 02 03 04 05 06
Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Fig. 4. RA versus Folding: Synthetic Workload with Constant Demand

Performance under Different Speedup Curves. Figure 6 compares the
performance of the RA and the Folding policies when scheduling a CG workload
with a 300x300 matrix. When preempted, approximately 0.72 megabytes of data
require redistribution. The speedup curve of the workload is shown in Figure 2.
The interarrival times are exponentially distributed, while the workload demand
is constant.

Avg. Response Time Avg. Execution Time
T T T T T T

30 T 2 T
RA ~— RA <—
Folding -~ 20 - Folding -
2 2r] & 18F b
e 8
. 2 L d
g ol] g 16
5 & B
@
E 15 S E 12 g
- =
g 10 g i
L g g Gl i
i g
sk i a o eF 4
Al i
0 I I I I I 2 ¢ | I I
0 01 02 0. 4 05 06 0 01 .0 .03 04 05 06
Arrival Rate Uo%s/secondg Arrlvé Rate (jobs/second)
16 ‘Avg. P'DC&?OG per JU? .) Execution Time as function of Avg. No. of Procesoors
oA o 5 T T T T T T T
14l Folding - |
12 5 2 i
2 |
g 10
4 @) B b
S st 2
: £
6 5 10 1
5
ar 3
a sk g
s
0 L L L L L
0 01 02 3 04 05 06 0% o1 02 03 n 05 06
Arrival Ra!e?jobs/secund) . AN Rae(jobs/secondg'
R Avg. Waiting Time 14 Avg. Preemptions per Job
T T T T T T T T
8 131
S 121
8 0 11f
2
8 6 S 1}
] g
é’ 5F % 09
£ ar X o8
E‘E L 07+
= 06
s
05
i 04
0 L n + I 03 I I I I I
0 01 ;1 05 06 0 201 4 026 [o:¢] 1004 12 0514 a6

02 .3 0
Arrival Rale?jobs/secund Arrival Rate (jobs/second)

Fig. 5. RA versus Folding: Synthetic Workload with Exponential Demand

Once again, the Folding policy exhibits a better response time than RA for all
arrival rates. The maximum improvement in the response time is approximately
19%. As in the case of synthetic workload, the execution time is better under
RA policy than under Folding for all arrival rates. The maximum difference is
approximately 20%. The average number of preemptions per job is small at both
lower as well as higher arrival rates, while it peaks in the middle of the range.
At lower arrival rates, an executing job is less likely to be preempted during its
execution, since new jobs arrive at a slower rate. At higher arrival rates, several
of the currently executing jobs are likely to have partitions consisting of single
processors, and these can not be preempted for further folding. Thus, the average
number of preemptions goes down at both higher and lower arrival rates.

Figure 7 shows the performance of the RA and the Folding policies when
scheduling a CG workload with a 500x500 matrix. All other parameters are

identical to the 300x300 case, except that a preemption requires redistribution
of approximately 2 megabytes. The speedup curve is shown in Figure 2. It is
seen from these results that as speedup curve becomes flatter (i.e. a 300x300
matrix as opposed to a 500x500 matrix), the improvement in the waiting time
(and hence the response time) under Folding as compared to RA becomes more

pronounced.

Avg. Response Time
T T T T

RA +—
45 Folding -~

Response Time (seconds)
8
T

0 L L L L L L L L
0 01 02 03 04 05 06 07 08 09

Arrival Rate (jobs/second)

Avg. Processors per Job
T T T T

RA <—
Folding -~ |

Processors

0 L L L L L L L L
0 01 02 03 04 05 06 07 08 09

Arrival Rate (jobs/second)

Avg. Waiting Time
T T T T

RA <—
Folding -~

20 -

Wait Time (seconds)
&
T

I | 4 i L
0 01 02 03 04 05 06 0.7 08 09
Arrival Rate (jobs/second)

Execution Time (seconds)

Execution Time (seconds)

Preemptions

18
16

14

08
06
04
02

Avg. Execution Time
T T T

RA <—
Folding -~

. .
01 02 03 04 05 06 0.7 08 09
Arrival Rate (jobs/second)

Execution Time as function of Avg. No. of Procesoors
T T T T T T

RA <—
Folding -~ |

2 4 6 8 10 12 14
Arrival Rate (jobs/second)

Avg. Preemptions per Job
T T T T

T T
Folding +—

. .
01 02 03 04 05 06 0.7 08 09
Arrival Rate (jobs/second)

Fig. 6. RA versus Folding: Conjugate Gradient Workload with a 300x300 Matrix

Performance under Multiclass Workloads. Figure 8 compares the perfor-
mance of the RA and the Folding policies when scheduling a two-class workload.
Each class constitutes approximately 50% of the total workload. The first class
(class A) consists of a CG program with a matrix size of 300x300, while the

Avg. Response Time Avg. Execution Time
T T T T T

70 T 5 T
RA =— RA ~—
6ol Folding -~ 20 Folding -/
o @ L 4
2 s é %
5 B wof :
2wt 8
o
g g i) 1
E ol £ .
8 § 20 B
2 S
8 2o Ei .
7 3 15t 4
o [}
10 0k - 4
0 Il Il Il Il Il 5 ¢ Il Il Il
0 0.05 01, 015 0.2 025 03 0 0.05 0.1 0,15 02 0.25 03
Arrival Rate (jobs/second) Arrival Rate (jobs/second)
1 Avg. Processors per Job % Execution Time as function of Avg. No. of Procesoors
T T T T T T T T T T T
RA <— RA ~—
14+ Folding -+~ 4 45 - Folding -~~~ 4
2F g “r 1
g - 4
w0 4
4 T 30 b
B é
E s q
g oo s
5 20 q
4 o st 1
2 10l 4
0 5
0 0.05 01 015 02 0.25 03 0 2 4 6 8 10 12 14 16
Arrival Rate (jobs/second) Arrival Rate (jobs/second)
Avg. Waiting Time Avg. Preemptions per Job
18 T T T T 15 T T T
RA ~—
16 Folding - L4 Roding = 7
ur E 13r
z 12
B 12r q @
8 & 11
§ w0 4 2
o ir
E 8f j B
[& 09F
g °F) 08
= L0 i
4 o7t
2 4 06 -
o | . i . s
0 0.05 01 015 0.2 0.25 03 0 0.05 01 015 0.2 0.25 03
Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Fig. 7. RA versus Folding: Conjugate Gradient Workload with a 500x500 Matrix

second class (class B) has a matrix size of 500x500. Folding performs better
than RA while scheduling a multiclass workload. Being a dynamic policy, Fold-
ing can adapt to transient changes in the workload flow better than RA. This
behavior, as seen previously, is also observed when the workload demands are ex-
ponentially distributed rather than being constant. The maximum improvement
in the response time is approximately 19%, achieved at relatively high arrival
rates. Figure 9 compares the performance of the two policies when 20% of the
programs are from class A while 80% come from class B. Since the workload now
has less diversity, the difference between the performance of the two policies is
narrowed. Specifically, the maximum improvement in the response time under
Folding is approximately 9%, as opposed to 19% in the previous case.

Avg. Re Ti
10 v‘g esp‘onse 1me

Avg. Execution Time
T T T

T R/L L 35 T
L Folding -~ RA <
120 0l Folding /" |
3
g 100 (- g x5l 4
é/ 80 - g 20 i
= Q
Eoefr £
E 5| i
2 z
. (=]
% 20 £ o} |
@ 8
20t 5 sL 1
% 0‘05 01 0‘15 0‘2 0‘25 0‘3 0‘35 0‘4 0‘45 05 0 : ' ; ' ; ' ; y y
. g Arri ¢ 8 g g 0 005 01 015 02 025 03 035 04 045 05
Artival Rate (jobs/second) Arrival Rate Uobsfmcond%
M Avg. Processors per Job - Execution Time as function of Avg. No. of Procesoors
T T T T T T T T T T T T T
RA =— RA ~—
wl Folding -~ | . Folding -~ |
10 g 25 1
Q
£ sf 8wl
]
g g
<} 6 F o151
& <
S
41 5 1w
8
ol
2 51
0 I I I I I I I I I 0 I I I I I I
0 005 01 015 02 025 03 035 04 045 05 0 2 4 6 8 10 12 14
Arrival Rate (jobs/second) Arrival Rate (jobs/second)
Avg. Waiting Time Avg. Preemptions per Job
90 T T T T T 16 T T T T T T
RA =— Folding <—
80 [Folding -~ 14+ 4
_or) 12
T ol , o
: £t
50 B g
> § 08
£ 4 7 &
= 06
20 i 04
10 - - 02
I 4 g 1 I 0 I I I I I I I I I
0 005 01 015 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Fig. 8. RA versus Folding: Multiclass Workload 1

3.3 Comparison under Higher Numbers of Processors

The general behavior observed in the previous sections remains consistent as
the number of processors in the multiprocessor increases. Figure 10 presents a
comparison of the RA and the Folding policies with 500x500 CG workload. The
workload demand is constant while the interarrival times have a negative expo-
nential distribution. All the other parameters are the same as in the previous
analysis (e.g. Section 3.2.2). It can be seen that better response times are ob-
tained under Folding than under RA for most arrival rates. As the number of
processors in a multiprocessor increases, good workload speedup characteristics
are necessary to take advantage of dynamic scheduling provided under Folding.
It is possible that under Folding for a job to be unfolded to run on the entire

Avg. Response Time Avg. Execution Time
T T T

200 T 45 T T T T
RA ~—
180 - Folding - 40+ -
. 160 q
8 a B[1
S 10 B 8
g L 4
g 120 | B g ¥
Iy g
£ 100 - B E 251 B
= =
Q 8- B § ol i
5 E]
S e B 3
@' a 15 B
@ 4f 4
20F 4 10 - 4
o . b ¢ . . . 5 . I i
0 005 0(25 03 035 04 0 005 01 035 04
'Secon(

0.1 0.15 0.2 0.15 02 025 03
Arriva Rate (jobs/: Arrival Rate (jobs/second)

Avg_ Procrs per “Job Ex‘ecunon T‘ime as fur‘mion of A‘vg. No. o‘f Procmo(‘Jrs

14 T 50
RA =— RA -—
L Folding -~ | a5 Folding -~
12
a0 - i
10
_ 35 i
8 g
o 8F 5 30- 4
8
6 2 5 i
£
20 B
T o 5
g 151 B
2r 8 ok 4
0 5 i~
0 005 01 015 02 025 03 035 0.4 0 2 4 6] 10 12 14
Arrival Rate (jobs/second) Arriva Raleaobs/second)
Avg. Waiting Time Avg. Preemptions per Job
160 T T T T 16 T T T T
RA =— Folding +—
140 - Folding - 14+ B
g w0 ok
2
g 100 - g 1f
e g
g s § o8l
P x
® 60 06 -
s
- 04
20r 02
0 . . 0
0 005 01 03 035 04 0 005 01 015 02 025 03 035 04

0.15 02 0.25
Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Fig. 9. RA versus Folding: Multiclass Workload 2

multiprocessor. If the job has poor speedup characteristics, or if the job has
negative speedup (possible when allocated a very large number of processors),
unfolding may prove detrimental to the overall performance.

4 Conclusions

This paper presents an experimental comparison between an adaptive schedul-
ing policy (RA) and a dynamic scheduling policy (Folding). Both policies are
implemented on a parallel computer with a message passing architecture. An
open system model of the workload flow is implemented. The observed response
time is the primary metric used for comparison. The results indicate that it is
possible to achieve improved average response time using the dynamic Folding

Avg. Response Time
T T

Avg. Execution Time
T T

140 T o 55 T
M L RA -— |
ok Folding 50 Folding -
> a5 -
@)
B 100 & MF 4
8 -l]
% o g
2 8 o1 1
Eooe0 g =1 A
8 £
S E o0 q
=] a0 I
§ 2 1sf ,
8 10r q
20
il
5k 4
0 . 0 I I I I I I
0 01 0 01 02 03 04 05 06 07
Arrival Rate (jobs/second)
2 Avg. Processors per Job = Execution Time as function of Avg. No. of Procesoors
T T T T T T T T T
RA =— sl RA < |
Folding -~ Folding -~
0k 45 q
§ 4aF B
Q L 4
o 1 3 35
g 30 q
8 g =r]
T or 5 20t b
g sp ,
51 & wof 4
5L 4
0 0
0 01 02 .03 .04 5 06 07 0 5 10 15 20 2
Arriva Rate QO%ysecondg Arrival Rate (jobs/second)
. Avg. Waiting Time) Avg. Preemptions per Job
T T T T T T T T
RA — Folding ~+—
70 - Folding -~ 18 9
16
_ 60
§ 14
5 S0 L
g é 12
T OF g 1
o
E 8
E ol £ osp
4 06
= 20
04
10 02
0 . ! . . 0
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07
Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Fig. 10. RA versus Folding: 32 Processors

policy instead of an adaptive policy in many workload environments. In addition,
the following conclusions can be drawn from the observed results:

— In most cases, the improvement in the response time is a direct result of the
reduction in the time a job spends waiting in the ready queue.

— As jobs become less scalable, the advantages of using a dynamic scheduling
policy like Folding become more apparent. The Folding policy is able to
dynamically preempt processors from a currently executing job (where they
are not providing any significant improvement in the execution time) and
allocate them to a new job to take advantage of the efficient use of a few
processors allocated to a newly arrived job. The adaptive policy may require
the new arrivals to wait until at least one of the executing jobs completes.

— As the workload flow becomes more random (e.g. exponential demand as
opposed to constant), Folding performs better than RA. The dynamic nature
of the Folding policy allows it to adapt more quickly to transient changes
common under exponentially distributed workload demands. The same is
true in case of a multiclass workload.

— The overhead incurred by a workload while executing under a dynamic policy
(e.g, Folding) can be relatively high. Careful implementation of the workload-
scheduler interface and implementation of a conservative processor allocation
policy can help reduce this overhead.

— Although dynamic policies can improve performance, excessive use of pre-
emptions to reallocate processors can prove detrimental.

It is somewhat interesting to note that Folding and RA exhibit similar overall
performance, typically within 10-15% of each other. The overall conclusion is
that that a dynamic policy like Folding should be used to schedule jobs on
a multiprocessor if the workload speedup characteristics are non-linear or if
the demand is not constant (i.e, either exponentially distributed or multi-class
workload) and if repartitioning overhead is low. An adaptive policy like RA
should be used if the workload demand is constant, the workload is single-class,
and has good speedup characteristics. An example is shown in Figure 11. The
workload used for this comparison is similar to the synthetic workload described
in Section 2, except that it has 15 phases instead of 250. This lowers the execution
time relative to the scheduling overhead. In this case, RA outperforms Folding.
It may also be possible for Equipartitioning to perform better than Folding
under certain circumstances. Some pertinent results are presented in [IPS96].
Mary Vernon has suggested [V96] that on parallel systems of the future, the job
arrival rates would be very low (30 jobs/hour) and at such low arrival rates,
Folding and Equipartitioning may have similar performance.

Areas for future study include validating the results on a larger multiproces-
sor and comparing the policies under various distributions of arrival rates and
workload demands. The experiments can be repeated on other machines using
different processor interconnection networks and/or different message routing
algorithms. The data from these experiments can be used to create better ana-
Iytical and simulation models.

5 Acknowledgments

Evgenia Smirni, Emilia Rosti, Manish Madhukar and Jiirgen Brehm provided
invaluable help and suggestions throughout this study. We also wish to thank
the staff members of the Center for Computational Sciences at the Oak Ridge
National Labs for the use of the Intel Paragon. We also thank the referees for
their helpful comments.

Avg. Response Time
T T

Response Time (seconds)
5 5 8 8 8 & &
e e B a

o
T

RA +—
Folding -~ -

1 15
Arrival Rate (jobs/second)

Avg. Processors per Job
T T

14 T
RA o—
»h Folding |
10 B
)
s]
6L i
[
4l i
2k i
0
0 05 1 15 2
Arrival Rate (jobs/second)
Avg. Waiting Time
30 T T T
RA o—
Folding --
25 A
o
°
8
g 2 B
]
E 151 4
=
k]
2 w0r
5
0 . " -
0 05 15 2

1
Arrival Rate (jobs/second)

Execution Time (seconds) Execution Time (seconds)

Preemptions

Avg. Execution Time
T T

RA. =
Folding ---- |

05 1 15
Arrival Rate (jobs/second)

Execution Time as function of Avg. No. of Procesoors
T T T T T T

RA ~—
Folding ---- |

4 6 8 10 12 14
Arrival Rate (jobs/second)

Avg. Preemptions per Job
T T

T
Folding +— |

05 1 15
Arrival Rate (jobs/second)

Fig. 11. RA versus Folding: Synthetic Workload with 15 Phases, 66000 Computations

J. Brehm, M. Madhukar, E. Smirni, L. W. Dowdy, “PerPreT - A per-
formance prediction tool for massively parallel systems,” Int. Conf. on
Modeling Techniques and Tools for Computer Performance Evaluation,

S.-H. Chiang, R.K. Mansharamani, M.K. Vernon, “Use of application
characteristics and limited preemption for run-to-completion parallel

processor scheduling policies,” Proc. ACM SIGMETRICS, 1994, pp. 33-

per Phase
References
[BMSD95]
September 1995.
[CMV94]
44.
[DCDPI0]

K. Dussa, B.M. Carlson, L.W. Dowdy, K.-H. Park, “Dynamic partition-
ing in a transputer environment,” Proc. ACM SIGMETRICS, 1990, pp.

203-213.

[GTU91]

[INT93]

[IPS96]

[LV90]

[MEBSS]

[MVZ93]

[MZ94]

[P96]

[PD89)]

[RSDSC94]

[SEV94]

[SRSDS94]

[SST93]

[TG89]

[Vos]

[ZB91]

[ZM90]

A. Gupta, A. Tucker, S. Urushibara, “The impact of operating system
scheduling policies and synchronization methods on the performance of
parallel applications,” Proc. ACM SIGMETRICS, 1991, pp. 120-132.
Intel Corporation, Paragon OSF /1 User’s Guide, 1993.

N. Islam, A. Prodormidis and M. Squillante, “Dynamic Partitioning in
Different Distributed-Memory Environments,” In this volume.

S.T. Leutenegger, M.K. Vernon, “The performance of multiprogrammed
multiprocessor scheduling policies,” Proc. ACM SIGMETRICS, 1990,
pp. 226-236.

S. Majumdar, D.L. Eager, R.B. Bunt, “Scheduling in multiprogrammed
parallel systems,” Proc. ACM SIGMETRICS, 1988, pp. 104-113.

C. McCann, R. Vaswani, J. Zahorjan, “A dynamic processor alloca-
tion policy for multiprogrammed shared memory multiprocessors,” ACM
Transactions on Computer Systems, Vol 11(2), February 1993, pp. 146-
178.

C. McCann, J. Zahorjan, “Processor allocation policies for message-
passing parallel computers,” Proc. ACM SIGMETRICS, 1994, pp. 19-32.
J. Padhye, “Preemptive versus non-preemptive processor allocation poli-
cies: an empirical comparison”, Technical Report, Department of Com-
puter Science, Vanderbilt University, 1996.

K.-H. Park, L.W. Dowdy, “Dynamic partitioning of multiprocessor sys-
tems,” International Journal of Parallel Programming, Vol 18(2), 1989,
pp. 91-120.

E. Rosti, E. Smirni, L.W. Dowdy, G. Serazzi, B.M. Carlson, “Robust
partitioning policies for multiprocessor systems,” Performance Evalua-
tion, Vol 19(2-3), March 1994, pp. 141-165.

K.C. Sevcik, “Application scheduling and processor allocation in mul-
tiprogrammed multiprocessors,” Performance Evaluation, Vol 19(2-3),
March 1994, pp. 107-140.

E. Smirni, E. Rosti, G. Serazzi, L. W. Dowdy, K. C. Sevcik “Performance
gains from leaving idle processors in multiprocessor systems” Proc. In-
ternational Conference on Parallel Processing, 1995.

S.K. Setia, M.S. Squillante, S.K. Tripathi, “Processor scheduling in mul-
tiprogrammed, distributed memory parallel computers,” Proc. ACM
SIGMETRICS, 1993, pp. 158-170.

A. Tucker, A. Gupta, “Process control and scheduling issues for multi-
programmed shared-memory multiprocessors,” Proc. of the 12th ACM
Symposium on Operating Systems Principles, 1989, pp. 159-166.

Mary Vernon, Personal Communication.

S. Zhou, T. Brecht, “Processor pool-based scheduling for large-scale
NUMA multiprocessors,” Proc. ACM SIGMETRICS, 1991, pp. 133-142.
J. Zahorjan, C. McCann, “Processor scheduling in shared memory mul-

tiprocessors,” Proc. ACM SIGMETRICS, 1990, pp. 214-225.

This article was processed using the IANTRX macro package with LLNCS style

