
Dynamic versus Adaptive Processor AllocationPolicies for Message Passing Parallel Computers:An Empirical Comparison ?Jitendra Padhye1 and Lawrence Dowdy21 Department of Computer Science, University of Massachusetts at Amherst, ???Amherst, MA 01003.2 Department of Computer Science, Vanderbilt University,Nashville, TN 37235.Abstract. When a job arrives at a space-sharing multiprocessor sys-tem, a decision has to be made regarding the number and the speci�cidentities of the processors to be allocated to it. An adaptive policy mayconsider the state of the system at arrival time but it does not allow pre-emption of any of the running jobs. A dynamic partitioning policy maypreempt one or more of the currently running jobs to accommodate thenew arrival. In this paper performance of dynamic and adaptive policiesis investigated experimentally on a message passing architecture (IntelParagon). The workload model is based on matrix computation applica-tions commonly found on large systems used for scienti�c programming.Results are reported for single and multiclass cases. A sensitivity anal-ysis with respect to workload speedup characteristics is presented. Ourresults show that if the preemption overheads are kept low, dynamicpolices result in noticeable improvement in overall performance of thesystem.1 IntroductionMultiprogramming is a common way of improving performance of large multi-processor systems. Most common parallel applications have sublinear speedupcurves and hence can not take full advantage of all system processors. For aheavily used system it is not uncommon to have several parallel jobs waiting touse the multiprocessor. In such cases, performance can be improved by sharingthe multiprocessor among all or some of the waiting jobs. This can be achievedvia either space sharing [SRSDS94] or time sharing [GTU91].Under space sharing scheduling polices, an incoming job is assigned to a sub-set of the total available processors. Thus, multiple jobs can be active within themultiprocessor at the same time. Space sharing policies can either be dynamicor adaptive. Several issues such as application speedup characteristics, underly-ing multiprocessor architecture, and special requirements of certain application? Supported in part under sub-contract 19X-SL131V administered through the Math-ematical Sciences Section of Oak Ridge National Laboratory.??? This work was done at Vanderbilt University.



workloads are among the factors a�ecting performance of processor allocationstrategies for multiprogramming parallel systems. In this paper, e�ects of some ofthese factors on the performance of dynamic and adaptive space sharing policiesare investigated empirically.Several dynamic and adaptive processor allocation policies have been dis-cussed in the literature [MEB88, TG89, PD89, LV90, DCDP90, ZM90, GTU91,ZB91, MVZ93, SST93, RSDSC94, SEV94, CMV94, MZ94]. Performance analysisof dynamic space sharing scheduling policies has been largely based on simula-tion studies and Markovian analysis of small systems. For a simulation study tobe accurate and realistic, detailed knowledge of various parameters of the sys-tem under consideration is necessary. Also, validation of the simulation modelsis di�cult. Detailed Markovian analysis of complex scheduling policies to verifysimulation models is possible only for small systems (e.g. less than 10 processors)[SRSDS94, DCDP90, MEB88]. For larger systems, simplifying assumptions haveto be made, resulting in a loss of accuracy.Experimental studies on dynamic processor partitioning policies have beendone mainly for shared memory architectures [GTU91, TG89]. In this paper,experimental analysis of dynamic processor partitioning policies for a messagepassing architecture is presented. To this end, two dynamic processor partition-ing policies based on those discussed in [MZ94] and one adaptive policy presentedin [RSDSC94] are implemented on the Intel Paragon. Two workload programsare used to compare behavior of the implemented scheduling policies. One isa synthetic workload program designed to emulate various speedup curves andother characteristics of common scienti�c applications. The 
exibility of the syn-thetic workload allows easy emulation of a wide variety of load conditions forcomparing the scheduling policies. The other workload program is based on aparallel, preemptible, distributed memory version of a matrix conjugate gradi-ent program. This program is representative of typical scienti�c workloads andhas been used for similar purposes in the past [BMSD95]. Our results show thatif the preemption overheads are kept low, dynamic polices result in noticeableimprovement in the performance of the system. This result is not surprisingtheoretically, however, experimental validation studies have been lacking. Thisstudy is an e�ort to �ll that gap.The rest of the paper is organized as follows. Section 2 describes the dynamicand adaptive scheduling policies and the two workload programs used for thisstudy. A brief description of the Intel Paragon architecture is also presented. Theresults of the study are presented in Section 3. Section 4 presents the conclusionsand directions for future work.2 Policies and WorkloadsThis section brie
y describes the three scheduling policies studied in this paper,the two workload programs used for comparisons, and the architecture of the In-tel Paragon. Due to space constraints, this section provides only a brief overviewof the actual implementation. More details may be found in [P96].



2.1 The Intel ParagonThe Intel Paragon supercomputer consists of several nodes connected in a meshcon�guration. The computer used for this study has 66 nodes connected in a11x6 matrix. Several nodes are dedicated to special tasks such as disk and net-work control. Each node consists of two Intel i860 processors sharing 16 MB ofmemory. One of the processors runs the application program while the otheracts as a communication co-processor. To route messages between the nodes, awormhole routing protocol is used. The operating system conforms to OSF/1standards. Although the machine is capable of supporting MIMD (or MPMD)computing model, most applications use the SPMD model for computing. Theworkloads for this study use the SPMD model. A detailed description of theParagon architecture may be found in [INT93].2.2 The Adaptive Scheduling PolicyThe adaptive scheduling policy chosen for this study is the Robust Adaptive(RA) scheduling policy described in [RSDSC94]. This policy has been shown tohave better performance than several other non-preemptive scheduling policies.The RA scheme actually represents a suite of scheduling policies rather than asingle scheduling algorithm. The version chosen here is a representative one andhas been used in subsequent studies [SRSDS94]. The main feature of the RApolicy is that it adapts to load changes over a period of time. Two identical jobsmay be allocated di�erent sized partitions, depending upon the system statewhen each job arrives. When a new job arrives in the system, it is placed atthe end of a queue of jobs awaiting service. The scheduler calculates a \target"partition size using the following formula:max�1; �Total number of processors in the systemNumber of jobs waiting in the queue ��The scheduler does not schedule any jobs until at least \target" number ofprocessors are free. It then starts allocating \target" number of processors toeach job in the queue. If the processors can be allocated, then the job is startedimmediately. The target is not recomputed during this time. When no more jobscan be scheduled, either due to an empty queue or due to a lack of su�cient freeprocessors, the scheduler stops scheduling new jobs and recomputes a new target.The target recalculation allows RA to adapt to changes in the load condition. Ahigher load results in a longer queue, which results in a smaller target which inturn means that more jobs are scheduled.2.3 Dynamic Partitioning PoliciesDynamic partitioning policies can interrupt currently executing jobs in order toredistribute processors among the jobs because of job arrivals and/or departures.Thus, dynamic scheduling policies can quickly adapt to transient changes in theworkload 
ow. The two dynamic processor partitioning policies considered in



this study are based on policies discussed in [MZ94]. Implementing preemptionon a message passing architecture is a non-trivial task. The steps taken to ensure\safe" preemption of jobs while keeping the preemption overhead low, are brie
ydescribed in Section 2.4.Equipartitioning. This policy tries to equally allocate the available processorsamong all jobs that are present in the system. On each new arrival or departure,all the currently executing jobs are preempted. The new partition size for eachjob is calculated using the following formula:max�1;�Total number of processors in the systemNumber of ready jobs ��The number of ready jobs includes the new arrivals and the jobs that havebeen preempted. Since at least one processor has to be allocated to each job, itmay not be possible to restart all the ready jobs. However, the scheduler alwaysrestarts all the preempted jobs.The policy su�ers from two major disadvantages. First, a job can be pre-empted several times 4 under this policy. Even when individual preemptions arenot very costly, the total cost can be prohibitive. Secondly, this policy su�ersfrom synchronization delays. Since some of the currently running jobs may �nishduring the process of repartitioning, 5 the scheduler has to wait until all the pro-cessors in the partition are released before calculating the new partition size foreach job. A job that has been preempted is forced to wait until all the remainingrunning jobs free their partitions. This synchronization delay may be a sourceof signi�cant overhead.Folding. This policy preempts at most one of the currently running jobs asa result of an arrival or a departure. Hence, the policy does not su�er fromexcessive synchronization delays. At each new arrival, the scheduler checks tosee if there are free processors. If there are free processors in the system, the newjob is started on all of them. No preemptions take place in this case. If thereare no free processors then the scheduler checks the size of largest partitioncurrently allocated to a job. If this size is greater than 1, then the job runningon the largest partition is preempted and half of the processors are given to theincoming job. This is called folding. If there are multiple candidates for foldingthen the implementation can select any one of them. The implementation usedfor this study preempts the most recently arrived job in the event of such a tie.At any time, if the system has any idle processors, and no jobs are waiting inthe ready queue, then the job executing on the smallest partition is preemptedand the idle processors are merged with the job's old partition and the job isrestarted on the new partition thus formed. This is called unfolding. If there4 Theoretically, once per every subsequent job arrival and job departure.5 These are the jobs that �nish after the scheduler has sent out preemption requests.The scheduler will not restart these jobs.



are several candidates for unfolding, the implementation may choose any one ofthem. The implementation used for this study unfolds the most recently arrivedjob in the system.2.4 Minimizing the Cost of PreemptionA parallel job may not be preempted \safely" 6 at any arbitrary time duringits execution. This may happen due to several reasons (e.g. the job might beexecuting a piece of non-reentrant code). At other times, it might be safe topreempt the job, but the cost of preemption might be high. This may happenwhen the job is in the middle of a distributed computation and preemptionrequires realignment of data. It is di�cult for the scheduler to determine whenit is easy (i.e. safe as well as cheap) to preempt a job. Hence, this implementationrequires that all the jobs have certain break points, where it is safe to preemptthe job and the preemption overheads can be kept low. A job responds to apreemption request by the scheduler only when it is at a breakpoint.The processor allocation routines of all the dynamic schedulers implementedfor this study observe the subset restriction to minimize any data redistributionoverhead that the job might incur as a result of preemption. The subset restric-tion is de�ned as follows. If P1 and P2 represent the sets of processors in twosuccessive partitions allotted to a job then:P1 \ P2 = P1 if jP1j � jP2j= P2 otherwiseThis restriction helps to minimize the data transfers required during redistribu-tion. In addition, the routine tries to allocate contiguous partitions. The pre-emption process is carried out in four steps.1. The scheduler sends preempt requests to all the jobs it wishes to preempt.Whenever each job reaches its next breakpoint, it informs the scheduler thatit is ready to be preempted.2. Once the scheduler receives such replies from all the jobs to whom suchrequests are sent7, it calculates the new processor allocations. All the jobsthat will be preempted are informed of their new partitions.3. Depending on the size of the new partition, the job executes one of thefollowing two steps.(a) If the size of the new partition is smaller than the size of the previouspartition, then the job is termed as LOSER. A LOSER job determinesthe subset of its old partition that forms the new partition. The data isredistributed so that all the application data is stored on the processorsin this subset.(b) If the size of the new partition is larger than the old one, then thejob is termed a WINNER. A WINNER job has to wait until the extraprocessors are allocated to it to do its data redistribution.6 In this context, safety essentially implies ensuring correctness.7 Or, if the job terminates.



4. Once the data redistribution is �nished, the jobs release their processorsand the scheduler restarts the jobs on their new partition after it �nishesits internal bookkeeping operations. After the restart, the WINNER jobsredistribute their data and start execution. The LOSER jobs, on the otherhand, having already �nished their data redistribution, resume executionimmediately.The entire preemption sequence is implemented as a series of calls to a set oflibrary routines. These routines are independent of the nature of the applicationprogram and the scheduling policy.2.5 Workload DescriptionThis section describes the two workloads used for the experimental study. The�rst is a synthetic workload, designed to have enough 
exibility to emulate var-ious speedup curves. Number of computations, amount of communication andpreemption overheads are all easily adjustable. The second workload is based onthe Conjugate Gradient method for matrices. The program is a representativeexample of the scienti�c workload and has been used for similar purposes inother studies [BMSD95]. 8The Synthetic Workload. The synthetic workload is designed to be 
exibleenough to generate various speedup curves by varying workload parameters. Theworkload is capable of spawning as many tasks as the number of allocated pro-cessors. When the workload is started on a given partition, the lowest numberednode in the partition is selected as the co-ordinator. The workload operates inphases. Each phase consists of three subphases, namely, the broadcast communi-cation subphase, the compute subphase, and the collect communication subphase.In the broadcast communication subphase, the co-ordinator broadcasts a mes-sage to each node in the partition. This message contains initialization param-eters for that phase and other problem related data. In the compute subphase,each node in the partition does a certain amount of computation. There is nocommunication among the nodes during this subphase. During the collect com-munication subphase, each node in the partition sends back a message to theco-ordinator node. This message contains partial results and other synchroniza-tion data. At the end of each phase the nodes undergo a barrier synchronization.After the barrier synchronization, the job is in a safe state for preemption. Atthis point the co-ordinator checks to see if a preemption request has arrived fromthe scheduler. If such a request is present, the preemption sequence is executedand the job preempts. Otherwise, the next phase of the communicate-compute-communicate cycle is started. The amount of computation and communicationduring each subphase can be speci�ed individually for each phase. The amount8 Other models of large, parallel, scienti�c workloads and arrival processes exist, andit will be interesting to study the e�ectiveness of dynamic partitioning policies forvarious workload models.



of data redistribution to be done in the event of preemption can also be speci-�ed. Changing the amount of computation or communication done in each phaseyields workloads with di�erent speedup curves. The preemption cost can be var-ied by changing the data redistribution required in the event of preemption orby changing the number or the length of the phases. Note that the cost of apreemption is re
ected in the waiting time of the jobs that are waiting in thearrival queue and synchronization delay for the jobs that have already beenpreempted. The speedup curves generated by the synthetic workload having 50phases appear in Figure 1. For each curve, the number of total computationsdone per phase is indicated in the legend. For all curves the message size duringbroadcast as well as in the collect communication phase is 32 bytes.
0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

33000
66000

132000
264000

No. of Processors

Sp
ee

du
p 

Fa
ct

or

Fig. 1. Speedup Curves for the Synthetic WorkloadConjugate GradientWorkload. The program implements the conjugate gra-dient method for matrices. The task graph of the program is similar to many sci-enti�c and engineering applications found on large multiprocessor systems. Moredetails about the program can be found in [BMSD95]. The program executes aspeci�ed number of iterations or until a user speci�ed accuracy is achieved. Fortest purposes, the accuracy testing feature is disabled and the program contin-ues for a speci�ed number of iterations. During each iteration several distributedcomputations are carried out, requiring signi�cant communication among proces-sors belonging to the job. At the end of each iteration, all the processors undergobarrier synchronization. After the synchronization, the job is in a safe state tobe preempted and the co-ordinator (lowest numbered processor) checks for pre-emption request. Data redistribution involves redistributing data contained in�ve di�erent arrays or matrices. Thus, the preemption overhead involved can behigh. The speedup curves for the CG workload are shown in the Figure 2. The



0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

300x300
400x400
500x500
600x600

No. of Processors

Sp
ee

du
p 

Fa
ct

orFig. 2. Speedup Curves for the Conjugate Gradient Workloaddi�erent speedup curves are generated by using di�erent matrix sizes. For eachcurve, the legend indicates the number of rows and columns of the matrix usedas the data set for the program. Each CG program performs 250 iterations onthe data matrix.3 ResultsThis section is organized as follows. In Section 3.1, the performance of theEquipartitioning policy is compared against that of the Folding policy. In Section3.2, sensitivity analysis results of the relative performance of RA and Foldingpolicies are presented. Factors considered include constant versus exponentialdemand, speedup curves, and multiclass workloads. In Section 3.3, the perfor-mance of the RA and the Folding policies is compared on a larger multiprocessorto show that the results are scalable. For all policies, the smallest possible par-tition size is one processor. For the dynamic policies, the number of times a jobmay be preempted is bounded only by the number of \safe" preemption pointsin the job. Experimental results indicate that the performance of the restrictedversion of the dynamic scheduling policies (where the number of preemptions ofa job and/or the minimum partition size are bounded by anything other thanthe base limits described above) depends strongly on the speedup characteristicsof the workload. Hence only the comparisons between the base versions of thepolicies are presented.3.1 Equipartitioning versus FoldingFigure 3 compares the performance of the Equipartitioning and the Foldingscheduling policies. The workload used is the CG program with a 500x500 ma-trix. Each preemption requires redistribution of approximately 2 megabytes ofdata. The speedup curve of the program is shown in Figure 2. The interarrival



times are exponentially distributed, while the workload demand is constant,(i.e. each program in the workload stream is identical to all others). It may beseen that the Folding policy exhibits a better response time than the Equipar-titioning policy at all arrival rates, and the di�erence between them increaseswith increasing arrival rates. Folding allocates more processors to each job thanEquipartitioning at all arrival rates. Thus, jobs have lower execution times underFolding. In addition, the average number of preemptions per job is higher underEquipartitioning than under Folding. Also, Equipartitioning su�ers from highersynchronization delays. These factors result in increased waiting time (and henceincreased response times) for jobs under Equipartitioning. Folding continues tosigni�cantly outperform Equipartitioning for various speedup curves and work-load mixes. Hence, the remaining results in this section compare only RA versusFolding.3.2 RA versus FoldingConstant versus Exponential Workload Demands. The synthetic work-load is used to compare the performance of the policies under constant andexponential workload demands, instead of the CG program, since it is easierto vary the demand imposed by the synthetic workload on the multiprocessorby varying the number of computations done in each phase. Figure 4 comparesthe performance of the RA and the Folding scheduling policies using the syn-thetic workload. The workload performs 66000 
oating point multiplicationsper phase. When preempted, 0.5 megabytes of data require redistribution. Thespeedup curve of the workload is shown in Figure 1. The interarrival times areexponentially distributed, while the workload demand is constant.It can be seen that the Folding gives a better response time than RA at allarrival rates. The maximum di�erence in the response times is approximately17%, achieved at higher arrival rates. The better performance of the Foldingpolicy can be attributed to the reduction in the waiting time of the jobs underFolding. The Folding policy schedules a newly arrived job as soon as it can pre-empt one of the running jobs. If there are idle processors, then the arriving jobdoes not have to wait at all. RA makes a newly arrived job wait until it canallocate a partition of current target size 9. Except at very low arrival rates, thetarget partition size usually can not be allocated until at least one of the cur-rently executing jobs �nishes execution. Thus the jobs experience higher waitingtime under RA. Folding is able to allocate more processors to each job than RAat higher arrival rates. However, job execution times are higher under Foldingthan under RA. This is due to preemption overheads the jobs experience underFolding. This can be seen from two graphs in Figure 4: 1) when execution timeis plotted as a function of average number of processors per job and 2) whenexecution time is plotted as a function of the arrival rate. The maximum in-crease in the execution time is approximately 17%. It should also be noted that9 In other words, Folding is work-conservative, while RA is not.



W
ai

t T
im

e 
(s

ec
on

ds
)

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3

Equipartitioning
Folding

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3

Equipartitioning
Folding

0

50

100

150

200

250

300

0 0.05 0.1 0.15 0.2 0.25 0.3

Equipartitioning
Folding

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2 0.25 0.3

Equipartitioning
Folding

5

10

15

20

25

30

35

40

45

50

55

0 2 4 6 8 10 12 14

Equipartitioning
Folding

5

10

15

20

25

30

35

40

45

50

55

0 0.05 0.1 0.15 0.2 0.25 0.3

Equipartitioning
Folding

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)
Pr

oc
es

so
rs

Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Avg. Waiting Time Avg. Preemptions per Job

Execution Time as function of Avg. No. of ProcesoorsAvg. Processors per Job

Avg. Response Time Avg. Execution Time

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Pr
ee

m
pt

io
nsFig. 3. Equipartitioning versus Foldingthese preemption overheads are the result of a relatively small number of pre-emptions. On average, fewer than 1.5 preemptions per job occur at any arrivalrate. It is important to note that the preemption overheads also depends uponthe sizes of partitions before and after the preemptions. These sizes determinehow many processors will participate in the preemption and, hence, a�ects thedata redistribution overhead.Figure 5 compares the performance of the RA and the Folding schedulingpolicies when the workload demand is exponentially distributed. The syntheticworkload program is used for this comparison as well. All the workload param-eters are the same as in the previous comparisons, except that the workloaddemand is exponentially distributed. It is noted that the improvement in the



response time (maximum 25%) is better than the improvement (maximum 17%)achieved when the workload demand was constant. Due to its dynamic nature,Folding is able to handle the variations in the workload demand better than RA.
Pr

ee
m

pt
io

ns

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6

RA
Folding

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6

RA
Folding

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4 0.5 0.6

RA
Folding

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6

Folding

2

4

6

8

10

12

14

16

18

2 4 6 8 10 12 14

RA
Folding

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5 0.6

RA
Folding

Avg. Waiting Time Avg. Preemptions per Job

Execution Time as function of Avg. No. of ProcesoorsAvg. Processors per Job

Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Avg. Response Time Avg. Execution Time

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)
Pr

oc
es

so
rs

W
ai

t T
im

e 
(s

ec
on

ds
)

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Fig. 4. RA versus Folding: Synthetic Workload with Constant DemandPerformance under Di�erent Speedup Curves. Figure 6 compares theperformance of the RA and the Folding policies when scheduling a CG workloadwith a 300x300 matrix. When preempted, approximately 0.72 megabytes of datarequire redistribution. The speedup curve of the workload is shown in Figure 2.The interarrival times are exponentially distributed, while the workload demandis constant.



0.2 0.3 0.4 0.5 0.60 0.1 0.2 0.3 0.4 0.5 0.600.1

Avg. Preemptions per Job

0

2

4

6

8

10

12

14

16

RA
Folding

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6

RA
Folding

2

4

6

8

10

12

14

16

18

20

22

0 0.1 0.2 0.3 0.4 0.5 0.6

RA
Folding

0

5

10

15

20

25

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Folding

0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6

RA
Folding

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)
Pr

oc
es

so
rs

W
ai

t T
im

e 
(s

ec
on

ds
)

Pr
ee

m
pt

io
ns

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

0 2 4 6 8 10 12 14 160 0.1 0.2 0.3 0.4 0.5 0.6

Arrival Rate (jobs/second)Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Avg. Response Time Avg. Execution Time

Avg. Processors per Job Execution Time as function of Avg. No. of Procesoors

Avg. Waiting TimeFig. 5. RA versus Folding: Synthetic Workload with Exponential DemandOnce again, the Folding policy exhibits a better response time than RA for allarrival rates. The maximum improvement in the response time is approximately19%. As in the case of synthetic workload, the execution time is better underRA policy than under Folding for all arrival rates. The maximum di�erence isapproximately 20%. The average number of preemptions per job is small at bothlower as well as higher arrival rates, while it peaks in the middle of the range.At lower arrival rates, an executing job is less likely to be preempted during itsexecution, since new jobs arrive at a slower rate. At higher arrival rates, severalof the currently executing jobs are likely to have partitions consisting of singleprocessors, and these can not be preempted for further folding. Thus, the averagenumber of preemptions goes down at both higher and lower arrival rates.Figure 7 shows the performance of the RA and the Folding policies whenscheduling a CG workload with a 500x500 matrix. All other parameters are



identical to the 300x300 case, except that a preemption requires redistributionof approximately 2 megabytes. The speedup curve is shown in Figure 2. It isseen from these results that as speedup curve becomes 
atter (i.e. a 300x300matrix as opposed to a 500x500 matrix), the improvement in the waiting time(and hence the response time) under Folding as compared to RA becomes morepronounced.
Avg. Response Time

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RA
Folding

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RA
Folding

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RA
Folding

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

RA
Folding

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14

RA
Folding

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Folding

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)
Pr

oc
es

so
rs

W
ai

t T
im

e 
(s

ec
on

ds
)

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Pr
ee

m
pt

io
ns

Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Avg. Waiting Time Avg. Preemptions per Job

Execution Time as function of Avg. No. of ProcesoorsAvg. Processors per Job

Avg. Execution Time

Fig. 6. RA versus Folding: Conjugate Gradient Workload with a 300x300 MatrixPerformance under Multiclass Workloads. Figure 8 compares the perfor-mance of the RA and the Folding policies when scheduling a two-class workload.Each class constitutes approximately 50% of the total workload. The �rst class(class A) consists of a CG program with a matrix size of 300x300, while the



Pr
ee

m
pt

io
ns

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2 0.25 0.3

RA
Folding

0

2

4

6

8

10

12

14

16

18

0 0.05 0.1 0.15 0.2 0.25 0.3

RA
Folding

0

10

20

30

40

50

60

70

0 0.05 0.1 0.15 0.2 0.25 0.3

RA
Folding

5

10

15

20

25

30

35

40

45

0 0.05 0.1 0.15 0.2 0.25 0.3

RA
Folding

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16

RA
Folding

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 0.05 0.1 0.15 0.2 0.25 0.3

Folding

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Arrival Rate (jobs/second)Arrival Rate (jobs/second)

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Avg. Waiting Time Avg. Preemptions per Job

Execution Time as function of Avg. No. of ProcesoorsAvg. Processors per Job

Avg. Execution TimeAvg. Response Time

W
ai

t T
im

e 
(s

ec
on

ds
)

Pr
oc

es
so

rs
R

es
po

ns
e 

T
im

e 
(s

ec
on

ds
)

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Fig. 7. RA versus Folding: Conjugate Gradient Workload with a 500x500 Matrixsecond class (class B) has a matrix size of 500x500. Folding performs betterthan RA while scheduling a multiclass workload. Being a dynamic policy, Fold-ing can adapt to transient changes in the workload 
ow better than RA. Thisbehavior, as seen previously, is also observed when the workload demands are ex-ponentially distributed rather than being constant. The maximum improvementin the response time is approximately 19%, achieved at relatively high arrivalrates. Figure 9 compares the performance of the two policies when 20% of theprograms are from class A while 80% come from class B. Since the workload nowhas less diversity, the di�erence between the performance of the two policies isnarrowed. Speci�cally, the maximum improvement in the response time underFolding is approximately 9%, as opposed to 19% in the previous case.



Avg. Execution Time

0

20

40

60

80

100

120

140

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

RA
Folding

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

RA
Folding

0

10

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

RA
Folding

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Folding

0

5

10

15

20

25

30

35

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

RA
Folding

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14

RA
Folding

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Arrival Rate (jobs/second)Arrival Rate (jobs/second)

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Avg. Waiting Time Avg. Preemptions per Job

Execution Time as function of Avg. No. of ProcesoorsAvg. Processors per Job

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)
Pr

oc
es

so
rs

W
ai

t T
im

e 
(s

ec
on

ds
)

Pr
ee

m
pt

io
ns

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Avg. Response Time

Fig. 8. RA versus Folding: Multiclass Workload 13.3 Comparison under Higher Numbers of ProcessorsThe general behavior observed in the previous sections remains consistent asthe number of processors in the multiprocessor increases. Figure 10 presents acomparison of the RA and the Folding policies with 500x500 CG workload. Theworkload demand is constant while the interarrival times have a negative expo-nential distribution. All the other parameters are the same as in the previousanalysis (e.g. Section 3.2.2). It can be seen that better response times are ob-tained under Folding than under RA for most arrival rates. As the number ofprocessors in a multiprocessor increases, good workload speedup characteristicsare necessary to take advantage of dynamic scheduling provided under Folding.It is possible that under Folding for a job to be unfolded to run on the entire



Avg. Processors per Job

0

20

40

60

80

100

120

140

160

180

200

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

RA
Folding

0

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

RA
Folding

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14

RA
Folding

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Folding

5

10

15

20

25

30

35

40

45

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

RA
Folding

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)
Pr

oc
es

so
rs

W
ai

t T
im

e 
(s

ec
on

ds
)

Pr
ee

m
pt

io
ns

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

0

2

4

6

8

10

12

14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

RA
Folding

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Arrival Rate (jobs/second)Arrival Rate (jobs/second)

Arrival Rate (jobs/second)Arrival Rate (jobs/second)

Avg. Response Time Avg. Execution Time

Execution Time as function of Avg. No. of Procesoors

Avg. Preemptions per JobAvg. Waiting Time

Fig. 9. RA versus Folding: Multiclass Workload 2multiprocessor. If the job has poor speedup characteristics, or if the job hasnegative speedup (possible when allocated a very large number of processors),unfolding may prove detrimental to the overall performance.4 ConclusionsThis paper presents an experimental comparison between an adaptive schedul-ing policy (RA) and a dynamic scheduling policy (Folding). Both policies areimplemented on a parallel computer with a message passing architecture. Anopen system model of the workload 
ow is implemented. The observed responsetime is the primary metric used for comparison. The results indicate that it ispossible to achieve improved average response time using the dynamic Folding



Avg. Response Time

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

RA
Folding

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

RA
Folding

0

10

20

30

40

50

60

70

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

RA
Folding

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Folding

0

5

10

15

20

25

30

35

40

45

50

55

0 5 10 15 20 25

RA
Folding

0

5

10

15

20

25

30

35

40

45

50

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

RA
Folding

R
es

po
ns

e 
T

im
e 

(s
ec

on
ds

)
Pr

oc
es

so
rs

W
ai

t T
im

e 
(s

ec
on

ds
)

Pr
ee

m
pt

io
ns

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Arrival Rate (jobs/second)

Avg. Waiting Time Avg. Preemptions per Job

Execution Time as function of Avg. No. of ProcesoorsAvg. Processors per Job

Avg. Execution Time

Fig. 10. RA versus Folding: 32 Processorspolicy instead of an adaptive policy in many workload environments. In addition,the following conclusions can be drawn from the observed results:{ In most cases, the improvement in the response time is a direct result of thereduction in the time a job spends waiting in the ready queue.{ As jobs become less scalable, the advantages of using a dynamic schedulingpolicy like Folding become more apparent. The Folding policy is able todynamically preempt processors from a currently executing job (where theyare not providing any signi�cant improvement in the execution time) andallocate them to a new job to take advantage of the e�cient use of a fewprocessors allocated to a newly arrived job. The adaptive policy may requirethe new arrivals to wait until at least one of the executing jobs completes.



{ As the workload 
ow becomes more random (e.g. exponential demand asopposed to constant), Folding performs better than RA. The dynamic natureof the Folding policy allows it to adapt more quickly to transient changescommon under exponentially distributed workload demands. The same istrue in case of a multiclass workload.{ The overhead incurred by a workload while executing under a dynamic policy(e.g, Folding) can be relatively high. Careful implementation of the workload-scheduler interface and implementation of a conservative processor allocationpolicy can help reduce this overhead.{ Although dynamic policies can improve performance, excessive use of pre-emptions to reallocate processors can prove detrimental.It is somewhat interesting to note that Folding and RA exhibit similar overallperformance, typically within 10-15% of each other. The overall conclusion isthat that a dynamic policy like Folding should be used to schedule jobs ona multiprocessor if the workload speedup characteristics are non-linear or ifthe demand is not constant (i.e, either exponentially distributed or multi-classworkload) and if repartitioning overhead is low. An adaptive policy like RAshould be used if the workload demand is constant, the workload is single-class,and has good speedup characteristics. An example is shown in Figure 11. Theworkload used for this comparison is similar to the synthetic workload describedin Section 2, except that it has 15 phases instead of 250. This lowers the executiontime relative to the scheduling overhead. In this case, RA outperforms Folding.It may also be possible for Equipartitioning to perform better than Foldingunder certain circumstances. Some pertinent results are presented in [IPS96].Mary Vernon has suggested [V96] that on parallel systems of the future, the jobarrival rates would be very low (30 jobs/hour) and at such low arrival rates,Folding and Equipartitioning may have similar performance.Areas for future study include validating the results on a larger multiproces-sor and comparing the policies under various distributions of arrival rates andworkload demands. The experiments can be repeated on other machines usingdi�erent processor interconnection networks and/or di�erent message routingalgorithms. The data from these experiments can be used to create better ana-lytical and simulation models.5 AcknowledgmentsEvgenia Smirni, Emilia Rosti, Manish Madhukar and J�urgen Brehm providedinvaluable help and suggestions throughout this study. We also wish to thankthe sta� members of the Center for Computational Sciences at the Oak RidgeNational Labs for the use of the Intel Paragon. We also thank the referees fortheir helpful comments.



Arrival Rate (jobs/second)

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2

RA
Folding

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2

RA
Folding

0

5

10

15

20

25

30

0 0.5 1 1.5 2

RA
Folding

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2

RA
Folding

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

RA
Folding

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Folding

Pr
oc

es
so

rs
R

es
po

ns
e 

T
im

e 
(s

ec
on

ds
)

W
ai

t T
im

e 
(s

ec
on

ds
)

Pr
ee

m
pt

io
ns

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)
E

xe
cu

tio
n 

T
im

e 
(s

ec
on

ds
)

Avg. Processors per Job Execution Time as function of Avg. No. of Procesoors

Avg. Preemptions per JobAvg. Waiting Time

Avg. Execution TimeAvg. Response Time

Arrival Rate (jobs/second) Arrival Rate (jobs/second)

Arrival Rate (jobs/second)Arrival Rate (jobs/second)

Arrival Rate (jobs/second)Fig. 11. RA versus Folding: Synthetic Workload with 15 Phases, 66000 Computationsper PhaseReferences[BMSD95] J. Brehm, M. Madhukar, E. Smirni, L. W. Dowdy, \PerPreT - A per-formance prediction tool for massively parallel systems," Int. Conf. onModeling Techniques and Tools for Computer Performance Evaluation,September 1995.[CMV94] S.-H. Chiang, R.K. Mansharamani, M.K. Vernon, \Use of applicationcharacteristics and limited preemption for run-to-completion parallelprocessor scheduling policies," Proc. ACM SIGMETRICS, 1994, pp. 33-44.[DCDP90] K. Dussa, B.M. Carlson, L.W. Dowdy, K.-H. Park, \Dynamic partition-ing in a transputer environment," Proc. ACM SIGMETRICS, 1990, pp.203-213.



[GTU91] A. Gupta, A. Tucker, S. Urushibara, \The impact of operating systemscheduling policies and synchronization methods on the performance ofparallel applications," Proc. ACM SIGMETRICS, 1991, pp. 120-132.[INT93] Intel Corporation, Paragon OSF/1 User's Guide, 1993.[IPS96] N. Islam, A. Prodormidis and M. Squillante, \Dynamic Partitioning inDi�erent Distributed-Memory Environments," In this volume.[LV90] S.T. Leutenegger, M.K. Vernon, \The performance of multiprogrammedmultiprocessor scheduling policies," Proc. ACM SIGMETRICS, 1990,pp. 226-236.[MEB88] S. Majumdar, D.L. Eager, R.B. Bunt, \Scheduling in multiprogrammedparallel systems," Proc. ACM SIGMETRICS, 1988, pp. 104-113.[MVZ93] C. McCann, R. Vaswani, J. Zahorjan, \A dynamic processor alloca-tion policy for multiprogrammed shared memory multiprocessors," ACMTransactions on Computer Systems, Vol 11(2), February 1993, pp. 146-178.[MZ94] C. McCann, J. Zahorjan, \Processor allocation policies for message-passing parallel computers," Proc. ACM SIGMETRICS, 1994, pp. 19-32.[P96] J. Padhye, \Preemptive versus non-preemptive processor allocation poli-cies: an empirical comparison", Technical Report, Department of Com-puter Science, Vanderbilt University, 1996.[PD89] K.-H. Park, L.W. Dowdy, \Dynamic partitioning of multiprocessor sys-tems," International Journal of Parallel Programming, Vol 18(2), 1989,pp. 91-120.[RSDSC94] E. Rosti, E. Smirni, L.W. Dowdy, G. Serazzi, B.M. Carlson, \Robustpartitioning policies for multiprocessor systems," Performance Evalua-tion, Vol 19(2-3), March 1994, pp. 141-165.[SEV94] K.C. Sevcik, \Application scheduling and processor allocation in mul-tiprogrammed multiprocessors," Performance Evaluation, Vol 19(2-3),March 1994, pp. 107-140.[SRSDS94] E. Smirni, E. Rosti, G. Serazzi, L. W. Dowdy, K. C. Sevcik \Performancegains from leaving idle processors in multiprocessor systems" Proc. In-ternational Conference on Parallel Processing, 1995.[SST93] S.K. Setia, M.S. Squillante, S.K. Tripathi, \Processor scheduling in mul-tiprogrammed, distributed memory parallel computers," Proc. ACMSIGMETRICS, 1993, pp. 158-170.[TG89] A. Tucker, A. Gupta, \Process control and scheduling issues for multi-programmed shared-memory multiprocessors," Proc. of the 12th ACMSymposium on Operating Systems Principles, 1989, pp. 159-166.[V96] Mary Vernon, Personal Communication.[ZB91] S. Zhou, T. Brecht, \Processor pool-based scheduling for large-scaleNUMA multiprocessors," Proc. ACM SIGMETRICS, 1991, pp. 133-142.[ZM90] J. Zahorjan, C. McCann, \Processor scheduling in shared memory mul-tiprocessors," Proc. ACM SIGMETRICS, 1990, pp. 214-225.This article was processed using the LaTEX macro package with LLNCS style


