Dynamic vs. Static Quantum-Based
Parallel Processor Allocation *

Su-Hui Chiang and Mary K. Vernon
suhui@cs.wisc. edu vernon@cs.wisc. edu

Computer Sciences Department
University of Wisconsin
Madison, WI 53706 USA

Abstract. This paper improves upon previous synthetic workload models
and compares the performance of dynamic spatial equipartitioning (EQS)
and the semi-static quantum-based FB-PWS processor allocation defined
in [23], under synthetic workloads that have not previously been consid-
ered. These new workloads include realistic repartitioning overheads and
job characteristics that are consistent with system measurement, antic-
ipated trends, and experience. The overall conclusion from the results
is that the EQS policy is generally superior to the FB-PWS policy even
under realistic repartitioning overheads. We find cases where the EQS sys-
tem saturates earlier than the FB-PWS system, and vice versa. This leads
to the definition of a modified EQS policy, called EQS-PWS, which has
performance equal to or better than EQS and FB-PWS for all workloads
examined in this paper.

1 Introduction

In static quantum-based parallel processor allocation policies, each job is con-
figured for a static number of processors and timesharing is used to share the
processors among the jobs. Ousterhout’s coscheduling policies [21] are exam-
ples of this class of policies. Semi-static quantum-based policies allow limited
changes in processor allocations as system load changes. Such policies greatly
reduce the frequency of job reconfiguration (which can involve significant data
repartitioning overheads) as compared with dynamic policies such as the spatial
equipartitioning (EQS) policy.

In a recent paper [23] Parsons and Sevcik have proposed a new semi-static
quantum-based parallel processor allocation policy, FB-PWS, that has the fol-
lowing characteristics:

load-adaptability: the number of processors allocated to a newly arriving
job decreases as the number of jobs in the system increases,

processor working set (pws): as load increases, the allocation for a newly
arriving job is proportional to it’s pws measure [9], where pws is the num-

*This research was partially supported by the National Science Foundation under grants
CCR-9024144, CDA-9024618, and GER-9550429.

ber of processors that permit the job to run at approximately the knee of
its execution-time vs efficiency profile [15]!,

Multilevel-Feedback (FB): in each quantum, priority is given to the jobs
that have so far received least service,

infrequent repartitioning: In each quantum, at most one job runs on a
smaller number processors than it’s initial allocation (and those processors
would otherwise be idle).

They also define another semi-static quantum-based policy called FB-ASP that
is similar to FB-PWS but does not use the pws measure.

Parsons and Sevcik show that, under particular workloads with job charac-
teristics that have been observed in practice, the FB-PWS policy is competitive
with EQS even when repartitioning is assumed to have zero cost. This is an
impressive result since FB-PWS commits to a processor allocation at job arrival
time. Previous static allocation policies have generally not been competitive
with dynamic policies such as EQS under zero repartitioning cost [13, 29, 19, 4].
They also show that FB-PWS and FB-ASP can substantially outperform EQS
under an ad hoc model of repartitioning costs that is intended to illustrate the
possible impact of repartitioning overheads on relative policy performance.

In this paper, we further investigate the relative performance of EQS and FB-
PWS. First, we examine how idealized EQS and FB-PWS compare for synthetic
workloads that are not considered in [23], but that are designed to represent
parallel workloads encountered in practice. An improved approach to represent-
ing application speedup characteristics is developed as part of this effort (see
section 3). Second, we assess whether specific features of the FB-PWS policy
might be incorporated in the EQS policy to improve performance. In particular,
we consider a specific use of the pws measure to modify the processor alloca-
tions computed by the EQS policy, leading to a new policy called EQS-PWS.
Finally, we consider how processor repartitioning might be handled in a practical
implementation of EQS or EQS-PWS. We compare the EQS, EQS-PWS, and
FB-PWS policies under workload models and repartitioning overheads that are
based on recent system measurements ([8, 6, 7, 1, 10]) extrapolated to future
production parallel systems.

We are primarily interested in evaluating relative policy performance for
daytime workloads, and thus the principal measure of interest is mean job
turnaround time. We note that results in the previous literature suggest that the
EQS and FB policies provide good performance for small (“interactive”) jobs.
For example, the EQS policy like the processor sharing policy for uniprocessor
systems, has the key property that expected response time is proportional to
the job’s service requirement. This property is called “fairness” in [12]. We also
note that the FB-PWS policy has reduced potential for starvation of large jobs as
compared with the FB policy for uniprocessor systems, due to it’s load-adaptive
space-sharing property. Further investigation of these and other more detailed
measures is left for future work.

ISpecifically, pws is the minimum number of processors that maximizes the ratio of speedup,
S(n), to the cost function n/S(n).

The synthetic workloads that are used to evaluate the processor allocation
policies in this paper are based on measured characteristics of parallel workloads,
but do not include memory and I/O resource requirements. In fact, neither the
FB-PWS nor the EQS policy can be directly applied to real workloads in which
memory or I/O requirements are significant. For example, in the case of memory
requirements, each policy must be modified to ensure that jobs are allocated
enough memory to execute reasonably efficiently, resulting in reduced space-
sharing and greater time-sharing of the processing power. The degree to which
the performance of each policy will change depends on the specific memory
requirements in a workload of interest. The goal of the policy evaluations in
the absence of memory and I/O requirements is to provide a baseline of policy
performance comparisons, as well as some understanding of the relative policy
strengths and weaknesses that may usefully guide the design and evaluation of
more complex high performance policies for real workloads.

The remainder of this paper is organized as follows. Section 2 provides
definitions of the FB-PWS, FB-ASP, and EQS policies. Section 3 defines our
system assumptions and synthetic workload models, including a revised method
for modeling application speedups. Section 4 provides the policy comparisons
for both the idealized case (where repartitioning cost is assumed to be zero)
and for repartitioning overheads that are estimated from system measurement.
Section 5 contains the conclusions of this work.

2 Policy Definitions

The FB-PWS, FB-ASP, and EQS policies considered initially in this paper are
each defined below.

2.1 FB-PWS and FB-ASP

The FB-PWS policy is proposed and clearly defined in [23]. The brief definition
is repeated here for the sake of reader convenience.
An arriving job, j, is configured for the following partition size:

min { N; min(pws;, P) x P
7S + min(pws;, P) ’

where N; is the job’s maximum parallelism, pws; is the processor working set
measure for the job (defined in section 1), S is the sum of the processor allo-
cations for all jobs currently in the system, and P is the number of processors
in the system. At the start of each time slice, jobs are examined in order of
least acquired processing time, where acquired processing time is the number
of processor-seconds so far allocated to the job. Each job in turn is scheduled
to run on the number of processors it is configured for, until there are fewer
processors left than any of the remaining jobs’ configurations. In this case the
scheduler runs the highest priority unscheduled job on the remaining processors.

i e—— ———
£ 16t
o h
c 8 pws=128 ——)
5 | pws=64 -) 1
> 4 pws=16 - -
s 2 pws=4 o 1
o pws=1 -—-

1 ‘ ‘ . ‘

1 4 16 64 256 1024

Figure 1: Configured partition size vs. S for FB-PWS
N; > P; P =128

Thus, only the last job scheduled for execution in each quantum may run on a
different number of processors than its initial configuration.

The FB-ASP policy is identical to the FB-PWS policy, except that an ar-
riving job is configured for min(N;, P/J) processors, where J is the number of
jobs in the system including the new arrival.

Note that processor allocations decrease as system load (S) increases. For
the FB-PWS policy, Figure 1 illustrates the relationship between allocation size
and S for several values of pws;, assuming P = 128 and N; > P for each job
j. Note that the allocations approach being proportional to pws as S increases,
and the allocations are generous unless pws is small and S is large. Even when
S is quite large (e.g., greater than 128), the allocation for a newly arriving job
with pws = P is still a significant fraction of P. This allows efficient jobs with
long service times to execute on a reasonable number of processors after shorter
jobs have departed.

2.2 EQS

The spatial equipartitioning policy, EQS, was initially proposed by Tucker and
Gupta in [27] and has been evaluated and/or refined in many subsequent studies
(e.g., [13, 18, 16]). When a job arrival or departure occurs, the processors are
dynamically reallocated so that each job has an equal fraction of the processors
unless a job has smaller maximum parallelism than the equipartition value. In
the latter case, each such job is allocated a number of processors equal to its
maximum parallelism, and the equipartition value is recursively computed for the
remaining processors and jobs. The precise processor allocations may differ from
the equipartition value by small adjustments to avoid non-integer allocations. In
this paper, we adjust up for jobs that have less acquired processing time, and
adjust down for jobs that have more acquired processing time.

Note that for the EQS policy as defined above, repartitioning can occur
quite frequently. In section 4 we examine the impact of realistic repartitioning

overheads and we consider a “practical implementation” of the EQS policy in
which full repartitioning only occurs once every 500 seconds.

3 Model Definition

In this section we define the system and synthetic workloads that will be simu-
lated to evaluate scheduling policies in section 4. To date, traces of production
parallel workloads do not include job speedup functions, which are needed to
evaluate the EQS and FB-PWS policies. Thus, we formulate a synthetic work-
load model that mimics the variation in job parallelism and service demands in
the traces, and can represent a variety of speedup behaviors that are observed
in practice.

3.1 System Assumptions

The system is assumed to contain P processing nodes, each functionally and
performance-equivalent with respect to applications in the workload. Communi-
cation costs are represented in the synthetic workload model; otherwise, details
of the interconnection network and memory system are left unspecified.

We assume that jobs are capable of adapting to changes in the number
of processors that are allocated to them. Adaptive programming techniques
and runtime support for program restructuring are active areas of research and
appear to be feasible for both shared memory and message passing systems
(e.g., [27, 20, 6]). Although job reconfiguration can involve substantial cost,
particularly if massive data movement is required, the results in [6, 11] show
that the benefit of better processor scheduling can outweigh the associated cost.
This key issue is explored further for EQS and FB-PWS in section 4.

We assume that the system knows the maximum number of processing nodes
that each job can make productive use of, either because this information is spec-
ified when the job is submitted or because the system is capable of determining
this information at runtime using methods such as the self-tuning approach re-
cently proposed by Nguyen et. al. [20]. Similarly, for the FB-PWS policy (or
the EQS-PWS policy yet to be defined), we assume that the system is capa-
ble of knowing the pws measure for each job, perhaps from runtime estimation
techniques similar to those described in [20].

In the remainder of the paper we assume the set of processing nodes are
dedicated to servicing a parallel workload. One might also imagine that the
nodes are a set of currently idle nodes in a non-dedicated network of workstations
(NOW) that is available for serving large (parallel) jobs. Such a system requires
an effective policy for recruiting idle nodes as well as efficient mechanisms for
migrating the processes of parallel jobs away from nodes that are preempted
by a higher priority user [2, 30, 1]. Although we do not consider the impact of
node interruptions nor particular policy customizations that might be needed, we
consider synthetic workloads and repartitioning overheads that are relevant to
such environments. Repartitioning overheads are discussed further in section 4.

3.2 Synthetic Workload Model

Job arrivals occur at rate A\, and are modeled as a Poisson process except in
one set of experiments where we investigate whether higher variability in inter-
arrival times changes the impact of repartitioning overhead on relative policy
performance.

The set of characteristics that define each job are:

W; - the work (total cpu service requirement) that the job must perform,
Nj; - the maximum number of nodes that the job can productively use,

and a yet-to-be-specified set of parameters that correspond to the communica-
tion and other execution overheads in a particular model of job speedup. These
job characteristics are discussed below. Section 3.2.1 develops a model of job
execution overheads suitable for the goals of this study. We then describe the
characterization of job parallelism (section 3.2.2), job service requirement (sec-
tion 3.2.3), and correlation among the various model parameters (section 3.2.4).
The workload model is summarized in section 3.2.5.

3.2.1 Job Execution Overheads

One possible functional form for job execution time, proposed in [26], is defined
as follows:
W
L) = pakng, 621, @p>0, 1)

where

- n is the number of processors allocated to the job,

- ¢ is an inflation factor that models load imbalance in the computation,

- « represents fixed overheads such as per-processor initialization, and

- [represents communication overhead, which increases with n.
The speedup function, %, for the above execution time function is:

2

1
Sj(n):m, ¢217 aaﬂzoa (2)
»tw W
and the point at which this speedup function is maximized, Mj, is:

Wié
00 if 6=0.

The parameters of equation (1) correspond to overheads that are observed in
practice, and the equation has been shown to match well with measured speedup
functions if ¢, a, and B are adjusted to yield best fit [28]. Below we propose
a few modifications to the equation that improve its intuitive appeal and are
needed for our study. We then point out some important characteristics of the
revised speedup function.

To derive the new speedup function, we first observe that one minor defi-
ciency in equation (1) is that load imbalance and communication overhead costs
are incurred even for n = 1. Another minor deficiency is that ¢, the inflation
factor that represents total idle time due to load imbalance, is independent of n,
whereas in practice load imbalance generally increases as n increases. We further
observe that for any given job it is equally valid to define a new communication
overhead parameter, 3', such that 8 = §'W;. That is, for the given job, the
communication overhead is expressed as a fraction of W;; of course, this fraction
may vary among different jobs. With these motivations in mind, we make the
following small modifications to equation (1):

Ti(n) = DO |y (n - 1)8'W;,
a>0, 0<¢,4<L. (4)

Note that the above linear increase in load imbalance with n may overestimate
the increases that are typically observed in real workloads. However, with suit-
able controls and/or conservative estimates for ¢', defined later in this paper,
the simple linear dependence is adequate for the present purposes.

As will be discussed further in section 3.2.2, equation (2) cannot repre-
sent particular workloads of interest because the speedup depends directly on
W;. We fix this problem in the speedup function corresponding to equation (4)
by assuming the fixed overhead, a, is negligible.? We justify this approxima-
tion as follows. First, typically only the jobs with small processing requirement,
have non-negligible fixed overhead, and these jobs tend to account for negligible
amounts of total processor usage in parallel systems [8]. Second, the approxima-
tion will be imperceptible even for these jobs if the other parallelism overheads
are non-negligible. Finally, due to the assumed linear increase in load imbalance
with n in equation (4), a has approximately the same impact on the shape of the
speedup function as does ¢'. For these reasons, the approximation that a = 0
shouldn’t affect the policy comparisons in this paper. Making this change in
equation (4), yields the following speedup function:

S;(n) = %+("_n1)¢}+(n—1)ﬁ”
Oé:O, Og(blaﬁlsla (5)

that has the following maximum, Mj:

=] E EA>0 (6)
! 00 if ' = 0.
The revised speedup function has two parameters: ¢ and 3. The impact

of varying ¢' and 3’ on the shape of the speedup curve is shown in Figures 2(a)
and (b), respectively. For each curve, the value of pws is shown, as is M = M;

2In this case, the speedup could still be correlated with W; if we specify a correlation
between any of the execution overhead parameters and Wj, as discussed in section 3.2.4.

100 100

phi'=0.1% beta’=0.001%
phi=1% — beta’=0.01% ——
L phi'=2% ----- | L beta=0.05% ----]
80 phi=30 80 PPeta=0.1%
phi'=4% beta’=1%
L pws - x | | pws x |
S 60 avg @ S 60 avg @
3 3 M o
s a
o 40 r 4 @ 40 | 4
P B o P
I — 1 200 et 1
A :
il 1=}
0 0 : i L
0 20 40 60 80 100 0 20 40 60 80 100
number of processors number of processors
r__ - I
(a) B =0 (M = o) (b) ¢ =0

Figure 2: Curves generated by the modified speedup function (equation 5)

if M} < P (see figure 2(b). Note that the increase in speedup between n = pws
and n = min(M}, P) is small. This is the motivation for allocating processors in
proportion to pws at high load, as in the FB-PWS policy. Also note that the new
speedup function is capable of representing a variety of curves that match those
that are observed in practice, similar to the speedup function in equation (2).

If execution efficiency on N; processors, S;(N;)/Nj, is equal to ¢, it is
straightforward to show from equation (5) that

1
(N; =)¢/ + N;(N; ~ 1) = — 1. (7)
We will use the above equation to define particular overhead characteristics in
the experiments in section 4.3.
Finally, we consider an alternate speedup model [5, 16], that has been used
widely in studies of scheduling policy performance [13, 17, 4, 20]:

5i(my = 020 ®

We note that this function is a special case of equation (5) in which 3’ = 0 and

1
/

$ = 1+6 9)
Thus, the curves in Figure 2(a) are also examples of the speedup function in
equation (8). Furthermore, pws = § for this speedup function; thus several of the
curves are labeled with the determining parameter ¢. Since efficiency increases as
¢ increases, we will find it convenient to produce a positive correlation between
efficiency and W; in some of the synthetic workloads by setting 8' = 0 and
specifying a distribution for § that is positively correlated with W;. For § > P
(ie., ¢ < PL_H), note that the efficiency on n < P processors is greater than or
equal to 50%, as shown in equation (8) and illustrated in Figure 2(a).

0.3 0.3
—~ e = =
o 02 w= 0 02
Qo Q
k=X ISR
- =
o]
c c
o o1 S o1
= =
(5] Q
o o
L L [_
0.0 0.0
0 20 40 60 80 100 0 20 40 60 80 100
job parallelism job parallelism

(a) Speedup Function of Equation (2) (b) Speedup Function of Equation (5)
W; ~ Hyperexp, (1000, Cyw), @' ~ Uniform(0, 1%),
$=1.3, a=25, =25 B' ~ Uniform(0,0.1%)

Figure 3: Distributions of N; = M; (P=100)

3.2.2 Job Parallelism

One approach to generating a synthetic workload [23] is to specify the distribu-
tions of the parameters that characterize the job speedups, and then to let job
parallelism, N;, be equal to the point at which the speedup function is maxi-
mized, M;. This can be done using either the speedup function in equation (2)
or equation (5). Below we discuss the disadvantages of this approach and then
define the approach and distributions of IV; that will be used in our policy per-
formance comparisons.

One drawback of setting N; = Mj is that the complex relationship between
M; and the parameters of the speedup function may lead to an unanticipated or
undesirable distribution of job parallelism. For example, Figures 3(a) and (b),
give the distributions of N; = M; for the speedup functions in equation (2)
and equation (5), respectively. In each case, the speedup parameters are set
at particular (reasonable) values. In Figure 3(a), M; depends directly on W;
(see equation (3)); thus the hyperexponential distribution of W;, or any other
realistic distributions of W;, leads to a skewed distribution toward very low job
parallelism. This distribution or the distribution in Figure 3(b) may not be the
desired parallelism distribution for the synthetic workload.

The approach of setting N; = M; also limits the types of correlations that
can be specified among work, parallelism, and execution efficiency. For example,
one cannot model both high correlation between work and job parallelism (as
observed in [8]) but weak correlation between work and efficiency. This may
be desirable because, for example, both small program development runs of
highly efficient parallel codes, as well as large jobs with moderate communication
overheads may be expected in a parallel system of interest.

We solve these problems by taking a different approach. First, we explicitly
specify the distribution of job parallelism. Next, we explicitly specify the dis-
tributions of W;, ¢', and §', and possibly correlations among these parameters,

subject only to the following constraint:

1 _ !

gt (10)
J

This constraint guarantees N; < M; for the speedup function in equation (5).3

Note that if 8/ = 0 then equation (10) is trivially satisfied due to the practical

restriction that 0 < ¢’ < 1.

The distributions of job parallelism that will be used to compare policy per-
formance are illustrated in Figure 4. These distributions are motivated by the
variation in job parallelism reported for daytime user jobs on the iPSC/860 ma-
chine at NASA Ames [8], and also on the SP/2 machine at the Cornell Theory
Center [10]. The distributions in Figure 4 were generated from a parameter-
ized bounded geometric distribution of job parallelism that is adapted from prior
work [13, 17] and has the following four parameters:

Npae - the maximum value for job parallelism,
Py;,... - the probability that an arriving job has parallelism equal to Npqz,

p - the parameter of the bounded geometric distribution of parallelism for
all other jobs, and

N* < Npae - the value of parallelism whose probability will increase by the
probability for parallelism greater than N, .. in the geometric distribution.

An arriving job has parallelism N,,,, with probability Py, .. Otherwise, the
parallelism of the job is chosen from a geometric distribution with parameter p.
If the selected parallelism is larger than N,,4., the job is assigned parallelism
N*.

One rationale for the bounded geometric distribution is that one can expect
a significant number of highly parallel jobs; i.e., all of the production jobs that
can run fairly efficiently on as many processors or nearly as many processors as
are available in the system. Another rationale is that there is another class of
jobs made up of program-development runs and codes that cannot run efficiently
on P or close to P processors. In this class of jobs, one can perhaps expect the
probability to decrease as the parallelism increases. We note that one discrep-
ancy between this model and the data in [8] is that parallelism equal to two
has lower probability in the measured system than suggested by the bounded
geometric. This type of discrepancy shouldn’t have great impact on the relative
policy performance comparisons in this paper. Finally, the parameter N* is in-
cluded to model the preferred parallelism equal to 32 in the measured iPSC/860
and SP/2 workloads [8, 10].

3Note that the restriction N; < M; assumes that either users are sophisticated enough not
to request more than M; processors (because the job execution time will be longer), or self-
tuning [20] is used to achieve same result. Allowing M; > N; assumes that users sometimes
configure their jobs to run on at most N; < M; processors, for convenience or because the
speedup model doesn’t accurately reflect a sharp decline in the actual speedup function beyond

N;.

50 50

40 40
£ 30 £ 30
k=3 k=3
ks) ks)
§ 2 § 20
bt bt
<] <]
(TR (TR
10 | 10 ‘ | I
0 I I 1 I 0 I I 11
Job Size (N) Job Size (N)
(a) Distribution 1 (N ~ 13) (b) Distribution 2 (N ~ 15)
_ _ *_ _ _ *_
Py, ..=0.05, p=0.4, N*=1 Py, ..=0.01, p=0.28, N*=32
50 50
40 40
£ 30 £ 30
k=3 k=3
ks) ks)
§ 2 § 20
5 5
]]
(TR (TR
10 I 10 ‘ | |
0 I | n - 0 I I I I

16 32 64 128 32 64 128

Job Size (N) Job Size (N)
(c) Distribution 3 (N ~ 17) (d) Distribution 4 (N ~ 27)
Py,,..=0.1, p=0.5, N*=128 Px,...=0.1, p=0.28, N*=64

Figure 4: Example Bounded-Geometric Distributions for Job Parallelism
Naz = 128

3.2.3 Job Service Requirement

In some workloads, we model job service requirement, W;, by a two-stage hy-
perexponential distribution with mean W and coefficient of variation, Cy,. We
use the notation W; ~ Hyperexp, (W, Cw) to denote this distribution.

For most experiments, mean job service requirement will be proportional to
either job parallelism or the square of job parallelism. Let N represent mean job
parallelism and W represent the overall mean job service requirement. Also let
Wjin be the service requirement for a given job, j, that has parallelism N; = n.
To specify mean service requirement proportional to job parallelism, W, has
a two-stage hyperexponential distribution with mean %W, and coefficient of

variation called Cyy|; i.e.,

n —
Wj\n ~ Hyperexp2(ﬁW70W\n)' (11)

This model was proposed in [14] and formalized in [16]. If mean service re-

quirement is correlated with the square of job parallelism, then the multiplier
J— 2

for W is replaced by % The reported measures of W), vs. n for the iPSC/860

workloads at NASA Ames [8] lie between these two cases.

3.2.4 Correlation Between Workload Parameters

In some experiments, we will assume that execution overheads are on average
lower for jobs with larger total service requirement. In these cases, we will use
the same notation as in equation (11). For example,

w w
0ilw ~ unif =100, =200 12
il uni orm(W =) (12)

specifies that the values of § are selected from a uniform distribution with a
lower bound and upper bound that are each proportional to the job service
requirement (W; = w), with overall mean value for § equal to 150.

3.2.5 Workload Model Summary

In summary, the synthetic workloads used to evaluate relative policy perfor-
mance in this paper have four parameters: N; (job parallelism), W; (total ser-
vice requirement), ¢’ (load imbalance), and (’'(communication overhead, as a
fraction of total work). These parameters have the following characteristics: (1)
a bounded geometric distribution of job parallelism (IV;) as illustrated in Fig-
ure 4, (2) a two-stage hyperexponential distribution of W;, in most cases with
mean proportional to N; or Nj2 as defined in section 3.2.3, and (3) load im-
balance overhead (¢’ = ﬁ) and communication overhead (') that are either
fixed values or are selected from a specified distribution. In some experiments,
the average execution overhead will be inversely proportional to service require-
ment, as defined in section 3.2.4. The execution overhead parameters must also
satisfy the constraint in equation (10), which guarantees that the job’s speedup
function is non-decreasing up to N; processors. This workload model is very
similar to the previous workload model in [17]. The new features are the com-
munication overhead parameter, ', the N* parameter in the bounded geometric
distribution for NN;, and the distributions for the execution overhead that will

be specified in the next section.

4 Policy Comparisons

In this section we present the results of policy comparison experiments that are
based on simulations with a variety of synthetic workloads. The discussion is
focussed on comparisons between the FB-PWS, EQS, and EQS-PWS policies,

although results for the FB-ASP policy [23] are also provided in the figures for
the sake of completeness.

The four parameters that characterize each job in the synthetic workloads
are summarized in section 3.2.5. The distribution of job parallelism, N;, will be
one of the four distributions depicted and numbered in Figure 4, depending on
the experiment. The distributions for the execution overhead parameters will
be explained as each experiment is introduced; these distributions are motivated
by comparisons with earlier results [23] or by speedups that are encountered in
practice (e.g., [24, 22]). Arrivals are assumed to be Poisson unless otherwise
specified, and the system size (P) is 128 processing nodes in all experiments.

The simulations were performed using the batch means method of gener-
ating confidence intervals, with batch size ranging from 100,000 to 200,000 job
departures, depending on the particular experiment. Except as noted, reported
results have 90% confidence intervals that are within 5% or less of the given
value.

Section 4.1 compares the EQS and FB-PWS policies for several workloads,
assuming zero repartitioning cost for both policies and zero swapping cost for
FB-PWS. Section 4.2 introduces the EQS-PWS policy and compares this policy
against EQS and FB-PWS, again assuming zero cost for swapping and reparti-
tioning. Finally, Section 4.3 compares the three policies under a case of realistic
partitioning overheads.

4.1 Comparisons under Zero Repartitioning Cost

We first compare the EQS and FB-PWS under a workload that is nearly identical
to Workload 2 in [23]. That is, we use the speedup function in equation 5, set
the overhead parameters and distribution of W; as given in Figure 5, and let
N; = M;. Note that because we have modified the execution time function so
that load imbalance increases linearly in the processor allocation, we have chosen
¢' = 0.003 such that the load imbalance on 100 processors is the same as the
fixed overhead in Workload 2.

Figure 5 gives the ratio of mean response time for the FB-PWS policy to
the mean response time of EQS, as a function of offered load, p = AW /P, for
both Cy =5 and Cy = 30. When p = 0.9, system utilization for FB-PWS or
EQS is in the range of 92% - 99%. The response time ratio for FB-ASP is also
given for completeness, as noted above. Similar to the results reported in [23],
these results show that FB-PWS is competitive with EQS throughout the range
of offered load, and also that the system with the EQS policy saturates at a
slightly earlier point than the FB-PWS system.*

The workload in Figure 5 has a distribution for /V; that is very similar to the
distribution in Figure 3(a). Thus, nearly all of the jobs have parallelism < 10,
and a negligible fraction of jobs have parallelism greater than 50. Furthermore,
in this workload, larger W; implies larger pws and larger pws implies higher effi-

4We also reproduced several of the graphs in [23], not shown in this paper, to validate that
we have correctly implemented the policy simulations.

2.0 - 1—1 FB-ASP 2.0 - 1—1 FB-ASP

&--a FB-PWS &5 FB-PWS
) i)
T T
x 15 x 15
]]
E £
9 W/B/E/B\ﬂ p : i
(3] (3]
2 1.0 s a 2 10l = 2
2 EQS 3 EQS
0 0
]]
o o
c 05+ c 05+
]]
(5] 5]
= =
0.0 ! | | | | 0.0 ! | | | |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
offered load (p) offered load (p)
(a) CW =5 (b) CW = 30

Figure 5: FB-PWS vs. EQS under workload 2 in [23]
W, ~ Hyperexp, (1000, Cy), N; = M;, ¢ = 0.003,a = 25,3 = 25

ciency on any given processor allocation. This workload thus might be favorable
for the FB-PWS policy that uses the pws measure to determine allocations.

Figure 6 shows relative policy performance for two workloads that have the
following characteristics that differ from Figure 5:

e Distribution of job parallelism that is more consistent with observed work-
loads; i.e., Distribution 1 in Figure 4.

e Moderate sublinearity in the speedups of large jobs. ¢' is fixed and g’ is in-
versely proportional to NJ-Q.5 Thus, larger N; implies higher pws and higher
pws implies higher efficiency on any given processor allocation. Also, W;
has mean proportional to Nj2 and coefficient of variation approximately
equal to 36. However, larger W; does not necessarily imply larger pws or
higher efficiency.

Due to the correlation between mean service requirement and Nj2, jobs with
N; > 32 account for 98% of the system resource usage by this workload, in
agreement with system measurements in [8].

For the workload in Figure 6(a) (¢’ = 0), FB-PWS is comparable to the
EQS policy throughout the entire range of offered load. When load imbalance
is more significant (i.e., ¢ = 0.01, which implies that efficiency loss due to
load imbalance is 50% on 100 processors), FB-PWS saturates sooner than EQS.
The reason FB-PWS does less well for this workload is that jobs with large N;
(and large pws due to low communication overhead) will, on average, experience
less space-sharing under FB-PWS than under EQS (see Figure 1). Since these
jobs dominate system resource usage and have modest speedups due to load
imbalance, the FB-PWS system saturates sooner. We note that the results in

5In fact, B’ is defined such that Nj is the point where the speedup curve is maximized.

2.0 - 1—1 FB-ASP 2.0 - 1—1 FB-ASP A

&--a FB-PWS &5 FB-PWS
) i)
T T
x 15 x 15
]]
E E
[[et
] o BAp]
2 1.0 A 2 1.0
s EQS 8§ EQS
0 0
]]
o o
c 05+ c 05+
]]
(5] 5]
= =
0.0 ! | | | | 0.0 ! | | | |
00 02 04 06 08 10 00 02 04 06 08 10
offered load (p) offered load (p)
(a) ¢ =0 (b) ¢' = 1%

Figure 6: The impact of large jobs with moderate execution overhead
Nj ~ Distribution 1, Wj,, ~ Hyperexp2(;=221000, 10), /' = 1;,—'3’
(Cw = 36)

Figure 6(a) and (b) are largely the same if the workloads are changed to have
Cwin = 2 (Cw = 6.6), except that the FB-ASP policy has better performance
at high load in the case that ¢' = 0.

As a final set of comparisons of FB-PWS and EQS under zero repartitioning
cost, Figure 7 shows relative policy performance for workloads with similar
parallelism (Distribution 3 in Figure 4) and the same distribution of W; as in
Figure 6. However, the communication overhead (8') is assumed to be zero
and the overhead due to load imbalance (¢’ = ﬁ) is selected from a uniform
distribution for 4. Recall that pws = 4, and that Figure 2 shows that if 6 > 100
the job will have efficiency greater than approximately 50% on any processor
allocation. Since ¢ is nondeterministic, large N; does not imply large pws nor
high efficiency on a given feasible processor allocation.

In Figure 7(a), efficiency is positively correlated with W;; in Figure 7(b), effi-
ciency is independent of W;. The results are very similar to the results in Figure
6(a) and (b), respectively. Thus, in these cases, the weaker correlation between

N; and efficiency has not affected the relative performance of the policies.

4.2 The EQS-PWS Policy

Recall the four characteristics of FB-PWS that are possibly beneficial to policy
performance from section 1. The load adaptive property is also a character-
istic of the EQS, and repartitioning issues will be considered in section 4.3.
Furthermore, we have seen that multilevel feedback can lead to earlier system
saturation (Figures 6-7) if a significant fraction of the jobs with large W; and
large parallelism have only moderate speedups. On the other hand, the EQS

2.0 - 1—1 FB-ASP 2.0 - 1—1 FB-ASP

a--s FB-PWS o FB-PWS
8 8
T T
@ 15} x© 151
Q Q
E E 4
= = &
3 1.0] 1.0 .
c . c .
g g EQS
n n
O] O]
04 04
c 05+ c 05+
@]
(3] (3]
= =
00 | | |] | 00 | | |] |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
offered load (p) offered load (p)
(a) 6} ~ uniform (1005, 2005=) (b) 0; ~ uniform(100,200)

Figure 7: Policy comparison with variable load imbalance overhead
N; ~ Distribution 3, Wj, ~ Hyperexp2(;=221ooo, 2), f'=0
(Cw = 6.6)

policy saturates earlier than the FB-PWS policy in Figure 5, perhaps indicating
that the EQS policy could be improved by using the pws measure to adjust pro-
cessor allocations for this (and possibly other) workloads. This motivates the
following new policy that we call EQS-PWS.

In the EQS-PWS policy, processor allocation proceeds in two phases. In the
first phase processors are assigned to jobs as in the EQS policy, except that each
job’s processor allocation is bounded by min(pws;, N;) instead of N;. If there
are idle processors left after phase one, the idle processors are equipartitioned
among the jobs, using N; — min(pws;, N;) as the upper bound on the additional
processors given to job j.

The EQS-PWS policy is identical to the EQS-AVG policy defined in [4],
except that the pws measure is used in place of average parallelism (avg). In [4],
the EQS-AVG was found to have approximately the same performance as EQS,
but new workload parameters are considered in this paper. Furthermore, figure
2(b) shows that eliminating the allocations above pws processors at high load
may be more favorable than eliminating allocations above avg processors.

For the workloads in Figures 6-7, EQS-PWS has identical performance to
EQS, indicating that there is not much benefit to using the pws measure for those
workloads. Note that this is another reason why FB-PWS doesn’t perform as
well at high loads in figures 6(b) and 7(b).

Figures 8 and 9 show the relative performance of the EQS-PWS policy
for the workload in Figure 5 and a new workload, respectively. The workload
in Figure 9 is similar to the workload in Figure 7, except that the execution
overhead parameter, § = pws, has a hyperexponential distribution instead of a
uniform distribution, leading to much greater speedup sublinearity, and perhaps

2.0 - 1—1 FB-ASP 2.0 - 1—1 FB-ASP
a--s FB-PWS o FB-PWS
+---+ EQS-PWS : +---+ EQS-PWS
15+

1.0 M
EQS

-5

15+

1.0

05+ 05+

Mean Response Time Ratio
"
4
.

Mean Response Time Ratio

0.0 ! ! | | | 0.0 ! ! |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

offered load (p) offered load (p)

(a) Cw =5 (b) Cw =30

Figure 8: Performance of EQS-PWS under workload 2 in [23]
W; ~ Hyperexp, (1000, Cw), N; = M;, ¢' =0.003,a0 =25,3 =25

unrealistically poor speedups for the majority of the jobs. However, in this case
there is more potential for the EQS-PWS and FB-PWS policies to outperform
EQS.

In Figures 8 and 9, EQS-PWS has performance equal to or better than EQS
and FB-PWS over the entire range of offered load. In particular, the EQS-PWS
policy does not saturate earlier than FB-PWS in Figure 8 or Figure 9(a). Results
for EQS-AVG, not given in the figures, show that for the workloads in figures 5
through 9, EQS-AVG has very nearly the same performance as EQS-PWS.

4.3 Comparisons with Repartitioning Overheads

Our final set of experiments are aimed at determining the impact of realistic
repartitioning overhead on the relative performance of the EQS, EQS-PWS,
and FB-PWS policies. In this case we use a new synthetic workload — one
that corresponds closely with the workload measurement data in [8]. Below we
explain the workload, the repartitioning overheads, and the results.

The key features of the workload are:

e Distribution 4 of Figure 4 is used for job parallelism. This was derived
from the measured distribution in [8], by shifting some of the probability
mass for n = 32 to higher values of parallelism. The shift corrects for the
incentives in the measured system for parallelism equal to 32 during the
daytime. In a system with EQS or FB-PWS scheduling, such incentives
would not be necessary.

e The service requirement is determined by a set of values for W and Cyy |y,
n =1,2,48,...,128, that are computed from Table 2 in [8]. Specifically,

W is initially set to nx the average runtime for job size n, and Cy, is

2.0 - 1—1 FB-ASP 2.0 - 1—1 FB-ASP

a--s FB-PWS o FB-PWS
2 +---+ EQS-PWS 2 +--+ EQS-PWS
@ 15} x© 151
g g a
= = Ao °
© A A o D/E/‘é/#’_%\ﬁ/ﬂ
g 10 > & ———— 2 10 === % __
*_ e
g Tl EQS g '~0--_*;‘/EQS
7] T 0
O] O]
o o
c 05t c 05t
@]
(3] (3]
= =
0.0 | | |] | 0.0 | | |] |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
offered load (p) offered load (p)
(a) 6| ~ Hyperexp,(3100,5) (b) 0; ~ Hyperexp, (100, 5)

Figure 9: Policy comparison for workloads with very sublinear speedup
N; ~ Distribution 1, Wj, ~ Hyperexp2(;=221ooo, 10), B'=0
(Cw = 36)

set to the coeflicient of variation in runtime for n, and then the mean values
were adjusted proportionately downward (to remove execution overhead)
to get the measured system load.® Note the large value of average total
service requirement (/W = 10566 seconds, or approximately 2.9 node-
hours) for this measured iPSC/860 workload. The measured average node-
hours of running time per application (with overhead), is approximately
double that value.

e For the parallelism overheads, we let

]./Cl -1

I if
¢' ~ uniform(0, N; =1

) (13)
and then

1/ea —1 ¢ 1-—¢
N(Nj—l) _Fja N2))7

J

B ~ uniform (0, min((14)

where ¢; = 0.75 and ¢; = 0.5 (see equation (7)). For this workload, these
distributions yield first an execution efficiency on IV; processors, E, that
is approximately uniformly distributed between 75% and 100%, and then
an efficiency on N; processors that is approximately uniformly distributed
between 50% and E. This is a somewhat arbitrary, but well-specified model
of the spread of execution efficiencies that are encountered in practice. In

6These calculations are necessarily approximate since runtime includes execution overhead
whereas total processing requirement does not. Processing requirements (without overhead)
are not given in the measured data. However, we anticipate that the computed values give
approximately the correct relative magnitudes of the average work as a function of job paral-
lelism, and this is more important than quantitative accuracy of the individual values.

15+ 15+

ie] ie]
T T
@ @
() ()
£ 10 E 10
: EQS (ov=0) : EQS (ov=0)
))
S & s FB_PWS s a-a FB_PWS
§ a—n FB_PWS (ov=0) § a—n FB_PWS (ov=0)
14 051+ o---« EQS_PWS o 051 e---« EQS_PWS
c c
g x--x EQS g x--x EQS
= =
0.0 | | | I I I I 0.0 | | | I I I |
0O 5 10 15 20 25 30 35 0O 5 10 15 20 25 30 35
arrival rate (jobs/hr) arrival rate (jobs/hr)
(a) Poisson arrivals (b) Cy of interarrival time = 3

Figure 10: Policy Comparison with Repartitioning Overhead
N; ~ Distribution 4, W = 10566 seconds, Cy = 4.26,
Cc1 = 0.75,02 =0.5

the absence of data in the literature, we have relied on a variety of informal
information about parallel job speedups in developing this model.

The workload defined above provides one more context for comparing policy
performance, irrespective of repartitioning overhead. Note also that the over-
all mean W for the measured system is larger than assumed in the synthetic
workloads for our previous experiments.

For repartitioning overhead, we assume that each time the processor alloca-
tion changes for a job, the entire job will stall for 5 seconds. This estimate was
arrived at by computing the time to fetch 32 megabytes of data from a remote
memory, either in a network of workstations that runs the GMS global mem-
ory management system [7] or in the KSR or DASH memory systems [20, 3]. In
GMS, each remote fetch of an 8-kilobyte page requires 2 milliseconds. In KSR, it
takes 30 milliseconds to fill a 256 KB cache from remote memory [20]. In DASH,
each remote fetch of a 16-byte cache block requires approximately 170 cycles on
a 33 MHz processor. Thus, the transfer of 32 megabytes requires approximately
4-10 seconds in these systems. Anticipating continued improvements in network
latencies, we conservatively select 5 seconds for the repartitioning overhead.

Figure 10(a) shows the mean response time ratios of FB-PWS, EQS-PWS
and EQS with repartitioning overhead with respect to an EQS system with zero
repartitioning cost. The ratio for FB-PWS with zero repartitioning overhead
is also given. Job arrival rate is varied up to 30 jobs/hour, which is higher
than observed on the NASA Ames iPSC/860 (Figure 12 of [8]) or the Cornell
Theory Center SP/2 [10]. The system utilization at arrival rate of 30 jobs/hour
is 82%-85%.

The results in Figure 10(a) show that relative policy performance is un-

15+

kel
I
o
) R
E 10 g s -
: EQS (ov=0)
%]
S a-n FB_PWS
g,')- a—a FB_PWS (ov=0)
@ 05} oo EQS_PWS (Q=500)
§ 1—1 EQS (Q=500)
= +---« EQS_PWS
x--x EQS

0.0 I I I I I I I
0 10 20 30 40 50 60 70

arrival rate (jobs/hr)

Figure 11: Policy Comparison with Repartitioning Overhead
Poisson arrivals, N; ~ Distribution 4, W = 5283 seconds, Cy = 4.25,
c1 =0.75,c0=0.5

changed for the given workload, with or without repartitioning overhead, even
though processor repartitioning occurs on every arrival and departure in the
EQS system. Figure 10(b) shows that this result holds even if the coefficient of
variation of interarrival times is increased to three by using a two-stage hyper-
exponential distribution of interarrival times, reflecting the measured coefficient
of variation in [8].

To see what would happen if arrival rate is doubled to 60/hour, we halved
each of the values of Wj,, and re-ran the experiment. The results are shown in
Figure 11. For the EQS and EQS-PWS policies, we include a new case where the
system performs full repartitioning at most once per every 500 second quantum.
In this case, the system gives immediate service to an arriving job by judiciously
stealing processors from a job that is already executing; jobs with largest service
so far received, or with allocations greater than the equipartition value, have
highest, priority for relinquishing some of their processors to a newly arriving
job. Repartitioning overhead is charged for each job reconfiguration that occurs
between or at quantum boundaries.

The relative policy performance is unchanged for the higher arrival rates in
Figure 11, but the EQS and EQS-PWS policies that only perform full repar-
titioning at the beginning of every 500 sec quantum have perceptibly better
performance at high load than the policies that do repartitioning at every job
arrival or departure..

Overall, the experiments in this section provide evidence that EQS or EQS-
PWS provides superior performance even when realistic data repartitioning over-
heads are considered, yet the FB-PWS policy is still a remarkably competitive
alternative over a wide range of workloads.

5 Conclusions

In this paper, we have compared the EQS and FB-PWS policies under synthetic
workloads that have not previously been considered, yet have realistic job char-
acteristics [8, 10] and repartitioning overheads. As part of this effort, we have
improved the previous workload models in [13, 17, 23] and we have shown how
the different speedup functions used in the previous models are related. Finally,
we have defined a new policy, EQS-PWS, which has what appear to be the most
promising characteristics of both EQS and FB-PWS.

A key feature of our realistic workloads is that job service requirements
are substantial enough to warrant execution on a parallel system, and thus job
arrival rate is at most 30—60 jobs/hour [8, 10]. The principal conclusions that
we reach from the experiments performed in section 4, are:

e The EQS policy is generally superior to the FB-PWS policy even when
realistic repartitioning overheads are considered.

e If a reasonable fraction of the jobs with large parallelism and large total
service requirement have moderate execution overheads (e.g., 50% - 75%
efficiency on P processors), then a system with FB-PWS scheduling sat-
urates before a system with EQS scheduling (Figures 6(b), 7(b)), due to
less effective space sharing.

e If a large fraction of the jobs are very inefficient; that is, they have pws
significantly smaller than their maximum parallelism, then EQS saturates
before FB-PWS (Figures 8, 9(a)).

e For the workloads examined, EQS-PWS always performs as well as or
better than EQS and FB-PWS. In particular, EQS-PWS avoids the early
saturation of EQS in systems with a large fraction of very inefficient jobs.

e Although the above differences are worthy of consideration in future policy
design, the overall differences in performance among the EQS, EQS-PWS,
and FB-PWS policies are perhaps surprisingly small.

Given the results in this paper, we would argue that the simple EQS policy,
which does not require knowledge of the pws measure for each job, may be the
preferred policy. However, the ultimate choice of policy will also depend on at
least two factors: (1) the significance of the cases where EQS-PWS outperforms
EQS, and (2) how well the pws measure can be estimated in practice. Fruitful ar-
eas for further investigation include: (1) quantifying the workload characteristics
that lead to differences in relative mean response times of the policies, (2) exam-
ination of more detailed measures such as expected response time conditioned
on job service requirement, (3) how well the pws measure can be estimated at
runtime using techniques similar to those in [20], and (4) suitable modifications
to the policies to support jobs with large memory requirements.

Acknowledgements

The authors gratefully acknowledge comments and suggestions by Thu Nguyen,
John Zahorjan, other workshop participants, and the anonymous reviewers,

which helped to improve this paper.

References

[1]

R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson,
D. A. Patterson, The Interactions of Parallel and Sequential Workloads on
a Network of Workstations. Proc. 1995 ACM Sigmetrics Joint Int’l. Conf.
on Measurement and Modeling of Computer Systems, Ottawa, pp. 267-278,
May 1995.

A. Bricker, M. Litzkow, M. Livny, Condor Technical Summary. Technical
Report TR 1069, Computer Sciences Dept., University of Wisconsin, Madi-
son, WI, January 1992.

R. Chandra, S. Devine, B. Verghese, A. Gupta, M. Rosenblum, Scheduling
and Page Migration for Multiprocessor Compute Servers. Proc. 6th Int’l.
Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VI), San Jose, CA, pp. 12-24, October 1994.

S.-H. Chiang, R. K. Mansharamani, M. K. Vernon, Use of Application Char-
acteristics and Limited Preemption for Run-to-Completion Parallel Proces-
sor Scheduling Policies. Proc. 199/ ACM Sigmetrics Conference on Mea-
surement and Modeling of Computer Systems, Nashville, TN, pp. 33-44,
June 1994.

L. W. Dowdy, On the Partitioning of Multiprocessor Systems. Technical
Report, Vanderbilt University, July 1988.

G. Edjlali, G. Agrawal, A. Sussman, J. Saltz, Data Parallel Programming in
an Adaptive Environment. Proc. 9th Int’l. Parallel Processing Symposium
Santa Barbara, CA, April 1995.

M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M. Levy, C.
A. Thekkath, Implementing Global Memory Management in a Workstation
Cluster. Proc. Symp. on Operating Systems Principles, Copper Mountain,
CO, pp. 201-212, December, 1995.

D. G. Feitelson, B. Nitzberg, Job Characteristics of a Production Parallel
Scientific Workload on the NASA Ames iPSC/860. Proc. IPPS ’95 Work-
shop on Job Scheduling Strategies for Parallel Systems, Santa Barbara, CA,
pp- 337-360, April 1995.

D. Ghosal, G. Serazzi, S. Tripathi, The Processor Working Set and Its Use in
Scheduling Multiprocessor Systems. IEEE Trans. on Software Engineering,
Vol. 17, No. 5, pp. 443-453, May 1991.

S. Hotovy, Workload Evolution on the Cornell Theory Center IBM SP2.
Proc. IPPS ’96 Workshop on Job Scheduling Strategies for Parallel Systems,
Honolulu, Hawaii, April 1996.

N. Islam, A. Prodromidis, M. S. Squillante, Dynamic Partitioning in Differ-
ent Distributed-Memory Environments. Proc. IPPS 96 Workshop on Job
Scheduling Strategies for Parallel Systems, Honolulu, Hawaii, April 1996.
L. Kleinrock. Queueing Systems, Vol II: Applications. John Wiley & Sons,
1976.

[13]

[14]

[15]

[18]

[19]

S. T. Leutenegger, M. K. Vernon, The Performance of Multiprogrammed
Multiprocessor Scheduling Policies. Proceedings of the ACM SIGMETRICS
Conference on Measurement € Modeling of Computer Systems, Boulder,
CO, pp. 226-236, May 1990.

S. Majumdar, D. L. Eager, R. B. Bunt, Scheduling in Multiprogrammed
Parallel Systems. Proc. 1988 ACM Sigmetrics Conference on Measurement
and Modeling of Computer Systems, Santa Fe, NM, pp. 104-113, May 1988.
S. Majumdar, D. Eager, and R. Bunt. Characterisation of programs for
scheduling in multiprogrammed parallel systems. Performance Evaluation,
Vol. 13, pp. 109-130, 1991.

R. Mansharamani. Efficient Analysis of Parallel Processor Scheduling Poli-
cies. Ph.D. Thesis, Computer Sciences Dept., University of Wisconsin,
Madison, WI, November 1993.

R. K. Mansharamani, M. K. Vernon, Properties of the EQS Parallel Pro-
cessor Allocation Policy. Technical Report #1192, Univ. of Wisconsin -
Madison Computer Sciences Dept., November 1993.

C. McCann, R. Vaswani, J. Zahorjan, A Dynamic Processor Allocation Pol-
icy for Multiprogrammed, Shared Memory Multiprocessors. ACM Transac-
tions on Computer Systems, Vol. 11, No. 2, pp. 146-178, May 1993.
V.Naik, S. Setia, and M. Squillante. Performance Analysis of Job Schedul-
ing Policies in Parallel Supercomputing Environments. Proceedings of Su-
percomputing’93, November 1993.

T. D. Nguyen, R. Vaswani, J. Zahorjan, Using Runtime Measured Workload
Characteristics in Parallel Processor Scheduling. Proc. IPPS 96 Workshop
on Job Scheduling Strategies for Parallel Systems, Honolulu, Hawaii, April
1996.

J. K. Ousterhout, Scheduling Techniques for Concurrent Systems, Proc. 3rd
Int’l. Conf. on Distributed Computing Systems. pp. 22-30, October 1982.
J. D. Padhye, L. W. Dowdy, Dynamic versus Adaptive Processor Allocation
Policies for Message Passing Parallel Computers: An Empirical Compari-
son. Proc. IPPS °96 Workshop on Job Scheduling Strategies for Parallel
Systems, Honolulu, Hawaii, April 1996.

E. W. Parsons, K. C. Sevcik, Multiprocessor Scheduling for High-Variability
Service Time Distributions. Proc. IPPS ’95 Workshop on Job Scheduling
Strategies for Parallel Systems Santa Barbara, CA, pp. 127-145, April 1995.
V. G. J. Peris, M. S. Squillante, V. K. Naik, Analysis of the Impact of Mem-
ory in Distributed Parallel Processing Systems. Proc. 1994 ACM Sigmetrics
Conference on Measurement and Modeling of Computer Systems, Nashville,
TN, pp. 5-18, June 1994.

K. C. Sevcik, Characterizations of Parallelism in Applications and Their
Use in Scheduling. Proc. 1989 ACM SIGMETRICS/Performance 89 Int’l.
Conf. on Measurement and Modeling of Computer Systems, Berkeley, CA,
pp. 171-180, May 1989.

K. C. Sevcik, Application Scheduling and Processor Allocation in Multi-
programmed Parallel Processing Systems. Performance Evaluation, Vol. 19,
No. 2/3, pp. 107-140, March 1994.

[27] A. Tucker, A. Gupta, Process Control and Scheduling Issues for Multipro-
grammed Shared-Memory Multiprocessors. Proceedings of the 12th ACM
Symposium on Operating System Principles, pp. 159-166, December 1989.

[28] C.-S. Wu, Processor Scheduling in Multiprogrammed Shared Memory
NUMA Multiprocessors, Master’s thesis, University of Toronto, 1993.

[29] J. Zahorjan, C. McCann, Processor Scheduling in Shared Memory Multi-
processors. Proc. 1990 ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems, Boulder, CO, pp. 214-225, May 1990.

[30] S. Zhou, J. Wang, X. Zheng, P. Delisle, Utopia: A Load Sharing Facility for
Large Heterogeneous Distributed Computing Systems. Technical Report,
University of Toronto, 1992.

