
Dynamic vs. Static Quantum-BasedParallel Processor Allocation �Su-Hui Chiang and Mary K. Vernonsuhui@cs.wisc.edu vernon@cs.wisc.eduComputer Sciences DepartmentUniversity of WisconsinMadison, WI 53706 USAAbstract. This paper improves upon previous synthetic workload modelsand compares the performance of dynamic spatial equipartitioning (EQS)and the semi-static quantum-based FB-PWS processor allocation de�nedin [23], under synthetic workloads that have not previously been consid-ered. These new workloads include realistic repartitioning overheads andjob characteristics that are consistent with system measurement, antic-ipated trends, and experience. The overall conclusion from the resultsis that the EQS policy is generally superior to the FB-PWS policy evenunder realistic repartitioning overheads. We �nd cases where the EQS sys-tem saturates earlier than the FB-PWS system, and vice versa. This leadsto the de�nition of a modi�ed EQS policy, called EQS-PWS, which hasperformance equal to or better than EQS and FB-PWS for all workloadsexamined in this paper.1 IntroductionIn static quantum-based parallel processor allocation policies, each job is con-�gured for a static number of processors and timesharing is used to share theprocessors among the jobs. Ousterhout's coscheduling policies [21] are exam-ples of this class of policies. Semi-static quantum-based policies allow limitedchanges in processor allocations as system load changes. Such policies greatlyreduce the frequency of job recon�guration (which can involve signi�cant datarepartitioning overheads) as compared with dynamic policies such as the spatialequipartitioning (EQS) policy.In a recent paper [23] Parsons and Sevcik have proposed a new semi-staticquantum-based parallel processor allocation policy, FB-PWS, that has the fol-lowing characteristics:load-adaptability: the number of processors allocated to a newly arrivingjob decreases as the number of jobs in the system increases,processor working set (pws): as load increases, the allocation for a newlyarriving job is proportional to it's pws measure [9], where pws is the num-�This research was partially supported by the National Science Foundation under grantsCCR-9024144, CDA-9024618, and GER-9550429.

ber of processors that permit the job to run at approximately the knee ofits execution-time vs e�ciency pro�le [15]1,Multilevel-Feedback (FB): in each quantum, priority is given to the jobsthat have so far received least service,infrequent repartitioning: In each quantum, at most one job runs on asmaller number processors than it's initial allocation (and those processorswould otherwise be idle).They also de�ne another semi-static quantum-based policy called FB-ASP thatis similar to FB-PWS but does not use the pws measure.Parsons and Sevcik show that, under particular workloads with job charac-teristics that have been observed in practice, the FB-PWS policy is competitivewith EQS even when repartitioning is assumed to have zero cost. This is animpressive result since FB-PWS commits to a processor allocation at job arrivaltime. Previous static allocation policies have generally not been competitivewith dynamic policies such as EQS under zero repartitioning cost [13, 29, 19, 4].They also show that FB-PWS and FB-ASP can substantially outperform EQSunder an ad hoc model of repartitioning costs that is intended to illustrate thepossible impact of repartitioning overheads on relative policy performance.In this paper, we further investigate the relative performance of EQS and FB-PWS. First, we examine how idealized EQS and FB-PWS compare for syntheticworkloads that are not considered in [23], but that are designed to representparallel workloads encountered in practice. An improved approach to represent-ing application speedup characteristics is developed as part of this e�ort (seesection 3). Second, we assess whether speci�c features of the FB-PWS policymight be incorporated in the EQS policy to improve performance. In particular,we consider a speci�c use of the pws measure to modify the processor alloca-tions computed by the EQS policy, leading to a new policy called EQS-PWS.Finally, we consider how processor repartitioning might be handled in a practicalimplementation of EQS or EQS-PWS. We compare the EQS, EQS-PWS, andFB-PWS policies under workload models and repartitioning overheads that arebased on recent system measurements ([8, 6, 7, 1, 10]) extrapolated to futureproduction parallel systems.We are primarily interested in evaluating relative policy performance fordaytime workloads, and thus the principal measure of interest is mean jobturnaround time. We note that results in the previous literature suggest that theEQS and FB policies provide good performance for small (\interactive") jobs.For example, the EQS policy like the processor sharing policy for uniprocessorsystems, has the key property that expected response time is proportional tothe job's service requirement. This property is called \fairness" in [12]. We alsonote that the FB-PWS policy has reduced potential for starvation of large jobs ascompared with the FB policy for uniprocessor systems, due to it's load-adaptivespace-sharing property. Further investigation of these and other more detailedmeasures is left for future work.1Speci�cally, pws is the minimumnumber of processors that maximizes the ratio of speedup,S(n), to the cost function n=S(n).

The synthetic workloads that are used to evaluate the processor allocationpolicies in this paper are based on measured characteristics of parallel workloads,but do not include memory and I/O resource requirements. In fact, neither theFB-PWS nor the EQS policy can be directly applied to real workloads in whichmemory or I/O requirements are signi�cant. For example, in the case of memoryrequirements, each policy must be modi�ed to ensure that jobs are allocatedenough memory to execute reasonably e�ciently, resulting in reduced space-sharing and greater time-sharing of the processing power. The degree to whichthe performance of each policy will change depends on the speci�c memoryrequirements in a workload of interest. The goal of the policy evaluations inthe absence of memory and I/O requirements is to provide a baseline of policyperformance comparisons, as well as some understanding of the relative policystrengths and weaknesses that may usefully guide the design and evaluation ofmore complex high performance policies for real workloads.The remainder of this paper is organized as follows. Section 2 providesde�nitions of the FB-PWS, FB-ASP, and EQS policies. Section 3 de�nes oursystem assumptions and synthetic workload models, including a revised methodfor modeling application speedups. Section 4 provides the policy comparisonsfor both the idealized case (where repartitioning cost is assumed to be zero)and for repartitioning overheads that are estimated from system measurement.Section 5 contains the conclusions of this work.2 Policy De�nitionsThe FB-PWS, FB-ASP, and EQS policies considered initially in this paper areeach de�ned below.2.1 FB-PWS and FB-ASPThe FB-PWS policy is proposed and clearly de�ned in [23]. The brief de�nitionis repeated here for the sake of reader convenience.An arriving job, j, is con�gured for the following partition size:min�Nj ; min(pwsj ; P)S +min(pwsj ; P) � P� ;where Nj is the job's maximum parallelism, pwsj is the processor working setmeasure for the job (de�ned in section 1), S is the sum of the processor allo-cations for all jobs currently in the system, and P is the number of processorsin the system. At the start of each time slice, jobs are examined in order ofleast acquired processing time, where acquired processing time is the numberof processor-seconds so far allocated to the job. Each job in turn is scheduledto run on the number of processors it is con�gured for, until there are fewerprocessors left than any of the remaining jobs' con�gurations. In this case thescheduler runs the highest priority unscheduled job on the remaining processors.

1

2

4

8

16

32

64

128

1 4 16 64 256 1024

co
nf

ig
ur

ed
 p

ar
tit

io
n

si
ze

S

pws=128
pws=64
pws=16
pws=4
pws=1Figure 1: Con�gured partition size vs. S for FB-PWSNj � P; P = 128Thus, only the last job scheduled for execution in each quantum may run on adi�erent number of processors than its initial con�guration.The FB-ASP policy is identical to the FB-PWS policy, except that an ar-riving job is con�gured for min(Nj ; P=J) processors, where J is the number ofjobs in the system including the new arrival.Note that processor allocations decrease as system load (S) increases. Forthe FB-PWS policy, Figure 1 illustrates the relationship between allocation sizeand S for several values of pwsj , assuming P = 128 and Nj � P for each jobj. Note that the allocations approach being proportional to pws as S increases,and the allocations are generous unless pws is small and S is large. Even whenS is quite large (e.g., greater than 128), the allocation for a newly arriving jobwith pws = P is still a signi�cant fraction of P . This allows e�cient jobs withlong service times to execute on a reasonable number of processors after shorterjobs have departed.2.2 EQSThe spatial equipartitioning policy, EQS, was initially proposed by Tucker andGupta in [27] and has been evaluated and/or re�ned in many subsequent studies(e.g., [13, 18, 16]). When a job arrival or departure occurs, the processors aredynamically reallocated so that each job has an equal fraction of the processorsunless a job has smaller maximum parallelism than the equipartition value. Inthe latter case, each such job is allocated a number of processors equal to itsmaximum parallelism, and the equipartition value is recursively computed for theremaining processors and jobs. The precise processor allocations may di�er fromthe equipartition value by small adjustments to avoid non-integer allocations. Inthis paper, we adjust up for jobs that have less acquired processing time, andadjust down for jobs that have more acquired processing time.Note that for the EQS policy as de�ned above, repartitioning can occurquite frequently. In section 4 we examine the impact of realistic repartitioning

overheads and we consider a \practical implementation" of the EQS policy inwhich full repartitioning only occurs once every 500 seconds.3 Model De�nitionIn this section we de�ne the system and synthetic workloads that will be simu-lated to evaluate scheduling policies in section 4. To date, traces of productionparallel workloads do not include job speedup functions, which are needed toevaluate the EQS and FB-PWS policies. Thus, we formulate a synthetic work-load model that mimics the variation in job parallelism and service demands inthe traces, and can represent a variety of speedup behaviors that are observedin practice.3.1 System AssumptionsThe system is assumed to contain P processing nodes, each functionally andperformance-equivalent with respect to applications in the workload. Communi-cation costs are represented in the synthetic workload model; otherwise, detailsof the interconnection network and memory system are left unspeci�ed.We assume that jobs are capable of adapting to changes in the numberof processors that are allocated to them. Adaptive programming techniquesand runtime support for program restructuring are active areas of research andappear to be feasible for both shared memory and message passing systems(e.g., [27, 20, 6]). Although job recon�guration can involve substantial cost,particularly if massive data movement is required, the results in [6, 11] showthat the bene�t of better processor scheduling can outweigh the associated cost.This key issue is explored further for EQS and FB-PWS in section 4.We assume that the system knows the maximum number of processing nodesthat each job can make productive use of, either because this information is spec-i�ed when the job is submitted or because the system is capable of determiningthis information at runtime using methods such as the self-tuning approach re-cently proposed by Nguyen et. al. [20]. Similarly, for the FB-PWS policy (orthe EQS-PWS policy yet to be de�ned), we assume that the system is capa-ble of knowing the pws measure for each job, perhaps from runtime estimationtechniques similar to those described in [20].In the remainder of the paper we assume the set of processing nodes arededicated to servicing a parallel workload. One might also imagine that thenodes are a set of currently idle nodes in a non-dedicated network of workstations(NOW) that is available for serving large (parallel) jobs. Such a system requiresan e�ective policy for recruiting idle nodes as well as e�cient mechanisms formigrating the processes of parallel jobs away from nodes that are preemptedby a higher priority user [2, 30, 1]. Although we do not consider the impact ofnode interruptions nor particular policy customizations that might be needed, weconsider synthetic workloads and repartitioning overheads that are relevant tosuch environments. Repartitioning overheads are discussed further in section 4.

3.2 Synthetic Workload ModelJob arrivals occur at rate �, and are modeled as a Poisson process except inone set of experiments where we investigate whether higher variability in inter-arrival times changes the impact of repartitioning overhead on relative policyperformance.The set of characteristics that de�ne each job are:Wj - the work (total cpu service requirement) that the job must perform,Nj - the maximum number of nodes that the job can productively use,and a yet-to-be-speci�ed set of parameters that correspond to the communica-tion and other execution overheads in a particular model of job speedup. Thesejob characteristics are discussed below. Section 3.2.1 develops a model of jobexecution overheads suitable for the goals of this study. We then describe thecharacterization of job parallelism (section 3.2.2), job service requirement (sec-tion 3.2.3), and correlation among the various model parameters (section 3.2.4).The workload model is summarized in section 3.2.5.3.2.1 Job Execution OverheadsOne possible functional form for job execution time, proposed in [26], is de�nedas follows: Tj(n) = �Wjn + �+ n�; � � 1; �; � � 0; (1)where- n is the number of processors allocated to the job,- � is an in
ation factor that models load imbalance in the computation,- � represents �xed overheads such as per-processor initialization, and- � represents communication overhead, which increases with n.The speedup function, WjTj(n) , for the above execution time function is:Sj(n) = 1�n + �Wj + n�Wj ; � � 1; �; � � 0; (2)and the point at which this speedup function is maximized, Mj , is:Mj = (qWj�� if � > 01 if � = 0: (3)The parameters of equation (1) correspond to overheads that are observed inpractice, and the equation has been shown to match well with measured speedupfunctions if �, �, and � are adjusted to yield best �t [28]. Below we proposea few modi�cations to the equation that improve its intuitive appeal and areneeded for our study. We then point out some important characteristics of therevised speedup function.

To derive the new speedup function, we �rst observe that one minor de�-ciency in equation (1) is that load imbalance and communication overhead costsare incurred even for n = 1. Another minor de�ciency is that �, the in
ationfactor that represents total idle time due to load imbalance, is independent of n,whereas in practice load imbalance generally increases as n increases. We furtherobserve that for any given job it is equally valid to de�ne a new communicationoverhead parameter, �0, such that � = �0Wj . That is, for the given job, thecommunication overhead is expressed as a fraction ofWj ; of course, this fractionmay vary among di�erent jobs. With these motivations in mind, we make thefollowing small modi�cations to equation (1):T 0j(n) = (1+(n�1)�0)Wjn + �+ (n� 1)�0Wj ;� � 0; 0 � �0; �0 � 1: (4)Note that the above linear increase in load imbalance with n may overestimatethe increases that are typically observed in real workloads. However, with suit-able controls and/or conservative estimates for �0, de�ned later in this paper,the simple linear dependence is adequate for the present purposes.As will be discussed further in section 3.2.2, equation (2) cannot repre-sent particular workloads of interest because the speedup depends directly onWj . We �x this problem in the speedup function corresponding to equation (4)by assuming the �xed overhead, �, is negligible.2 We justify this approxima-tion as follows. First, typically only the jobs with small processing requirementhave non-negligible �xed overhead, and these jobs tend to account for negligibleamounts of total processor usage in parallel systems [8]. Second, the approxima-tion will be imperceptible even for these jobs if the other parallelism overheadsare non-negligible. Finally, due to the assumed linear increase in load imbalancewith n in equation (4), � has approximately the same impact on the shape of thespeedup function as does �0. For these reasons, the approximation that � = 0shouldn't a�ect the policy comparisons in this paper. Making this change inequation (4), yields the following speedup function:S0j(n) = 11n+ (n�1)�0n +(n�1)�0 ;� = 0; 0 � �0; �0 � 1; (5)that has the following maximum, M 0j :M 0j = (q 1��0�0 if �0 > 01 if �0 = 0: (6)The revised speedup function has two parameters: �0 and �0. The impactof varying �0 and �0 on the shape of the speedup curve is shown in Figures 2(a)and (b), respectively. For each curve, the value of pws is shown, as is M � M 0j2In this case, the speedup could still be correlated with Wj if we specify a correlationbetween any of the execution overhead parameters and Wj , as discussed in section 3.2.4.

0

20

40

60

80

100

0 20 40 60 80 100

sp
ee

du
p

number of processors

phi’=0.1%
phi’=1%
phi’=2%
phi’=3%
phi’=4%

pws
avg

(a) �0 = 0 (Mj = 1) 0

20

40

60

80

100

0 20 40 60 80 100

sp
ee

du
p

number of processors

beta’=0.001%
beta’=0.01%
beta’=0.05%
beta’=0.1%

beta’=1%
pws
avg

M

(b) �0 = 0Figure 2: Curves generated by the modi�ed speedup function (equation 5)if M 0j � P (see �gure 2(b). Note that the increase in speedup between n = pwsand n = min(M 0j ; P) is small. This is the motivation for allocating processors inproportion to pws at high load, as in the FB-PWS policy. Also note that the newspeedup function is capable of representing a variety of curves that match thosethat are observed in practice, similar to the speedup function in equation (2).If execution e�ciency on Nj processors, Sj(Nj)=Nj , is equal to c, it isstraightforward to show from equation (5) that(Nj � 1)�0 +Nj(Nj � 1)�0 = 1c � 1: (7)We will use the above equation to de�ne particular overhead characteristics inthe experiments in section 4.3.Finally, we consider an alternate speedup model [5, 16], that has been usedwidely in studies of scheduling policy performance [13, 17, 4, 20]:Sj(n) = (� + 1)n� + n : (8)We note that this function is a special case of equation (5) in which �0 = 0 and�0 = 11 + � : (9)Thus, the curves in Figure 2(a) are also examples of the speedup function inequation (8). Furthermore, pws = � for this speedup function; thus several of thecurves are labeled with the determining parameter �. Since e�ciency increases as� increases, we will �nd it convenient to produce a positive correlation betweene�ciency and Wj in some of the synthetic workloads by setting �0 = 0 andspecifying a distribution for � that is positively correlated with Wj . For � � P(i.e., �0 � 1P+1), note that the e�ciency on n � P processors is greater than orequal to 50%, as shown in equation (8) and illustrated in Figure 2(a).

|

0
|

20
|

40
|

60
|

80
|

100

|0.0

|0.1

|0.2

|0.3

job parallelism

F
ra

ct
io

n
of

 jo
bs

 (
%

) CW=5
 CW=30

(a) Speedup Function of Equation (2)Wj � Hyperexp2(1000; CW),�=1.3, �=25, �=25 |

0
|

20
|

40
|

60
|

80
|

100

|0.0

|0.1

|0.2

|0.3

job parallelism

F
ra

ct
io

n
of

 jo
bs

 (
%

)
(b) Speedup Function of Equation (5)�0 � Uniform(0; 1%),�0 � Uniform(0; 0:1%)Figure 3: Distributions of Nj = Mj (P=100)3.2.2 Job ParallelismOne approach to generating a synthetic workload [23] is to specify the distribu-tions of the parameters that characterize the job speedups, and then to let jobparallelism, Nj , be equal to the point at which the speedup function is maxi-mized, Mj . This can be done using either the speedup function in equation (2)or equation (5). Below we discuss the disadvantages of this approach and thende�ne the approach and distributions of Nj that will be used in our policy per-formance comparisons.One drawback of setting Nj = Mj is that the complex relationship betweenMj and the parameters of the speedup function may lead to an unanticipated orundesirable distribution of job parallelism. For example, Figures 3(a) and (b),give the distributions of Nj = Mj for the speedup functions in equation (2)and equation (5), respectively. In each case, the speedup parameters are setat particular (reasonable) values. In Figure 3(a), Mj depends directly on Wj(see equation (3)); thus the hyperexponential distribution of Wj , or any otherrealistic distributions of Wj , leads to a skewed distribution toward very low jobparallelism. This distribution or the distribution in Figure 3(b) may not be thedesired parallelism distribution for the synthetic workload.The approach of setting Nj = Mj also limits the types of correlations thatcan be speci�ed among work, parallelism, and execution e�ciency. For example,one cannot model both high correlation between work and job parallelism (asobserved in [8]) but weak correlation between work and e�ciency. This maybe desirable because, for example, both small program development runs ofhighly e�cient parallel codes, as well as large jobs with moderate communicationoverheads may be expected in a parallel system of interest.We solve these problems by taking a di�erent approach. First, we explicitlyspecify the distribution of job parallelism. Next, we explicitly specify the dis-tributions of Wj , �0, and �0, and possibly correlations among these parameters,

subject only to the following constraint:�0 � 1� �0N2j : (10)This constraint guarantees Nj �Mj for the speedup function in equation (5).3Note that if �0 = 0 then equation (10) is trivially satis�ed due to the practicalrestriction that 0 � �0 � 1.The distributions of job parallelism that will be used to compare policy per-formance are illustrated in Figure 4. These distributions are motivated by thevariation in job parallelism reported for daytime user jobs on the iPSC/860 ma-chine at NASA Ames [8], and also on the SP/2 machine at the Cornell TheoryCenter [10]. The distributions in Figure 4 were generated from a parameter-ized bounded geometric distribution of job parallelism that is adapted from priorwork [13, 17] and has the following four parameters:Nmax - the maximum value for job parallelism,PNmax - the probability that an arriving job has parallelism equal to Nmax,p - the parameter of the bounded geometric distribution of parallelism forall other jobs, andN� � Nmax - the value of parallelism whose probability will increase by theprobability for parallelism greater thanNmax in the geometric distribution.An arriving job has parallelism Nmax with probability PNmax . Otherwise, theparallelism of the job is chosen from a geometric distribution with parameter p.If the selected parallelism is larger than Nmax, the job is assigned parallelismN�.One rationale for the bounded geometric distribution is that one can expecta signi�cant number of highly parallel jobs; i.e., all of the production jobs thatcan run fairly e�ciently on as many processors or nearly as many processors asare available in the system. Another rationale is that there is another class ofjobs made up of program-development runs and codes that cannot run e�cientlyon P or close to P processors. In this class of jobs, one can perhaps expect theprobability to decrease as the parallelism increases. We note that one discrep-ancy between this model and the data in [8] is that parallelism equal to twohas lower probability in the measured system than suggested by the boundedgeometric. This type of discrepancy shouldn't have great impact on the relativepolicy performance comparisons in this paper. Finally, the parameter N� is in-cluded to model the preferred parallelism equal to 32 in the measured iPSC/860and SP/2 workloads [8, 10].3Note that the restriction Nj �Mj assumes that either users are sophisticated enough notto request more than Mj processors (because the job execution time will be longer), or self-tuning [20] is used to achieve same result. Allowing Mj > Nj assumes that users sometimescon�gure their jobs to run on at most Nj < Mj processors, for convenience or because thespeedup model doesn't accurately re
ect a sharp decline in the actual speedup function beyondNj .

|

1
|

2
|

4
|

8
|

16
|

32
|

64
|

128

|0

|10

|20

|30

|40

|50

Job Size (N)

F
ra

ct
io

n
of

 jo
bs

 (
%

)

(a) Distribution 1 (N � 13)PNmax=0.05, p=0.4, N*=1 |

1
|

2
|

4
|

8
|

16
|

32
|

64
|

128

|0
|10

|20

|30

|40

|50

Job Size (N)
F

ra
ct

io
n

of
 jo

bs
 (

%
)

(b) Distribution 2 (N � 15)PNmax=0.01, p=0.28, N*=32
|

1
|

2
|

4
|

8
|

16
|

32
|

64
|

128

|0

|10
|20

|30

|40

|50

Job Size (N)

F
ra

ct
io

n
of

 jo
bs

 (
%

)

(c) Distribution 3 (N � 17)PNmax=0.1, p=0.5, N*=128 |

1
|

2
|

4
|

8
|

16
|

32
|

64
|

128

|0

|10

|20

|30

|40

|50

Job Size (N)

F
ra

ct
io

n
of

 jo
bs

 (
%

)

(d) Distribution 4 (N � 27)PNmax=0.1, p=0.28, N*=64Figure 4: Example Bounded-Geometric Distributions for Job ParallelismNmax = 1283.2.3 Job Service RequirementIn some workloads, we model job service requirement, Wj , by a two-stage hy-perexponential distribution with mean W and coe�cient of variation, CW . Weuse the notation Wj � Hyperexp2(W;CW) to denote this distribution.For most experiments, mean job service requirement will be proportional toeither job parallelism or the square of job parallelism. Let N represent mean jobparallelism and W represent the overall mean job service requirement. Also letWjjn be the service requirement for a given job, j, that has parallelism Nj = n.To specify mean service requirement proportional to job parallelism, Wjjn hasa two-stage hyperexponential distribution with mean nNW , and coe�cient of

variation called CW jn; i.e.,Wjjn � Hyperexp2(nNW;CW jn): (11)This model was proposed in [14] and formalized in [16]. If mean service re-quirement is correlated with the square of job parallelism, then the multiplierforW is replaced by n2N2 . The reported measures of Wjjn vs. n for the iPSC/860workloads at NASA Ames [8] lie between these two cases.3.2.4 Correlation Between Workload ParametersIn some experiments, we will assume that execution overheads are on averagelower for jobs with larger total service requirement. In these cases, we will usethe same notation as in equation (11). For example,�jjw � uniform(wW 100; wW 200) (12)speci�es that the values of � are selected from a uniform distribution with alower bound and upper bound that are each proportional to the job servicerequirement (Wj = w), with overall mean value for � equal to 150.3.2.5 Workload Model SummaryIn summary, the synthetic workloads used to evaluate relative policy perfor-mance in this paper have four parameters: Nj (job parallelism), Wj (total ser-vice requirement), �0 (load imbalance), and �0(communication overhead, as afraction of total work). These parameters have the following characteristics: (1)a bounded geometric distribution of job parallelism (Nj) as illustrated in Fig-ure 4, (2) a two-stage hyperexponential distribution of Wj , in most cases withmean proportional to Nj or Nj2 as de�ned in section 3.2.3, and (3) load im-balance overhead (�0 = 11+�) and communication overhead (�0) that are either�xed values or are selected from a speci�ed distribution. In some experiments,the average execution overhead will be inversely proportional to service require-ment, as de�ned in section 3.2.4. The execution overhead parameters must alsosatisfy the constraint in equation (10), which guarantees that the job's speedupfunction is non-decreasing up to Nj processors. This workload model is verysimilar to the previous workload model in [17]. The new features are the com-munication overhead parameter, �0, the N� parameter in the bounded geometricdistribution for Nj , and the distributions for the execution overhead that willbe speci�ed in the next section.4 Policy ComparisonsIn this section we present the results of policy comparison experiments that arebased on simulations with a variety of synthetic workloads. The discussion isfocussed on comparisons between the FB-PWS, EQS, and EQS-PWS policies,

although results for the FB-ASP policy [23] are also provided in the �gures forthe sake of completeness.The four parameters that characterize each job in the synthetic workloadsare summarized in section 3.2.5. The distribution of job parallelism, Nj , will beone of the four distributions depicted and numbered in Figure 4, depending onthe experiment. The distributions for the execution overhead parameters willbe explained as each experiment is introduced; these distributions are motivatedby comparisons with earlier results [23] or by speedups that are encountered inpractice (e.g., [24, 22]). Arrivals are assumed to be Poisson unless otherwisespeci�ed, and the system size (P) is 128 processing nodes in all experiments.The simulations were performed using the batch means method of gener-ating con�dence intervals, with batch size ranging from 100,000 to 200,000 jobdepartures, depending on the particular experiment. Except as noted, reportedresults have 90% con�dence intervals that are within 5% or less of the givenvalue.Section 4.1 compares the EQS and FB-PWS policies for several workloads,assuming zero repartitioning cost for both policies and zero swapping cost forFB-PWS. Section 4.2 introduces the EQS-PWS policy and compares this policyagainst EQS and FB-PWS, again assuming zero cost for swapping and reparti-tioning. Finally, Section 4.3 compares the three policies under a case of realisticpartitioning overheads.4.1 Comparisons under Zero Repartitioning CostWe �rst compare the EQS and FB-PWS under a workload that is nearly identicalto Workload 2 in [23]. That is, we use the speedup function in equation 5, setthe overhead parameters and distribution of Wj as given in Figure 5, and letNj = Mj . Note that because we have modi�ed the execution time function sothat load imbalance increases linearly in the processor allocation, we have chosen�0 = 0:003 such that the load imbalance on 100 processors is the same as the�xed overhead in Workload 2.Figure 5 gives the ratio of mean response time for the FB-PWS policy tothe mean response time of EQS, as a function of o�ered load, � = �W=P , forboth CW = 5 and CW = 30. When � = 0:9, system utilization for FB-PWS orEQS is in the range of 92% - 99%. The response time ratio for FB-ASP is alsogiven for completeness, as noted above. Similar to the results reported in [23],these results show that FB-PWS is competitive with EQS throughout the rangeof o�ered load, and also that the system with the EQS policy saturates at aslightly earlier point than the FB-PWS system.4The workload in Figure 5 has a distribution for Nj that is very similar to thedistribution in Figure 3(a). Thus, nearly all of the jobs have parallelism < 10,and a negligible fraction of jobs have parallelism greater than 50. Furthermore,in this workload, largerWj implies larger pws and larger pws implies higher e�-4We also reproduced several of the graphs in [23], not shown in this paper, to validate thatwe have correctly implemented the policy simulations.

� � FB-ASP
� � FB-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0

|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�
�

�

�
�

�
�

�
�

�

�

(a) CW = 5

� � FB-ASP
� � FB-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0
|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�

�

�

�

�

�

�

� �

�

�

(b) CW = 30Figure 5: FB-PWS vs. EQS under workload 2 in [23]Wj � Hyperexp2(1000; CW); Nj =Mj ; �0 = 0:003; � = 25; � = 25ciency on any given processor allocation. This workload thus might be favorablefor the FB-PWS policy that uses the pws measure to determine allocations.Figure 6 shows relative policy performance for two workloads that have thefollowing characteristics that di�er from Figure 5:� Distribution of job parallelism that is more consistent with observed work-loads; i.e., Distribution 1 in Figure 4.� Moderate sublinearity in the speedups of large jobs. �0 is �xed and �0 is in-versely proportional to N2j .5 Thus, largerNj implies higher pws and higherpws implies higher e�ciency on any given processor allocation. Also, Wjhas mean proportional to Nj2 and coe�cient of variation approximatelyequal to 36. However, larger Wj does not necessarily imply larger pws orhigher e�ciency.Due to the correlation between mean service requirement and Nj2, jobs withNj � 32 account for 98% of the system resource usage by this workload, inagreement with system measurements in [8].For the workload in Figure 6(a) (�0 = 0), FB-PWS is comparable to theEQS policy throughout the entire range of o�ered load. When load imbalanceis more signi�cant (i.e., �0 = 0:01, which implies that e�ciency loss due toload imbalance is 50% on 100 processors), FB-PWS saturates sooner than EQS.The reason FB-PWS does less well for this workload is that jobs with large Nj(and large pws due to low communication overhead) will, on average, experienceless space-sharing under FB-PWS than under EQS (see Figure 1). Since thesejobs dominate system resource usage and have modest speedups due to loadimbalance, the FB-PWS system saturates sooner. We note that the results in5In fact, �0 is de�ned such that Nj is the point where the speedup curve is maximized.

� � FB-ASP
� � FB-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0

|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�

�
�

�

�

�

�

�
� � � �

�
�

(a) �0 = 0

� � FB-ASP
� � FB-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0
|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�
�

�

�

�

�

�

� � �

�

�

�

(b) �0 = 1%Figure 6: The impact of large jobs with moderate execution overheadNj � Distribution 1, Wjjn � Hyperexp2(n2N2 1000; 10), �0 = 1��0N2(CW = 36)Figure 6(a) and (b) are largely the same if the workloads are changed to haveCW jn = 2 (CW = 6.6), except that the FB-ASP policy has better performanceat high load in the case that �0 = 0.As a �nal set of comparisons of FB-PWS and EQS under zero repartitioningcost, Figure 7 shows relative policy performance for workloads with similarparallelism (Distribution 3 in Figure 4) and the same distribution of Wj as inFigure 6. However, the communication overhead (�0) is assumed to be zeroand the overhead due to load imbalance (�0 = 11+�) is selected from a uniformdistribution for �. Recall that pws = �, and that Figure 2 shows that if � > 100the job will have e�ciency greater than approximately 50% on any processorallocation. Since � is nondeterministic, large Nj does not imply large pws norhigh e�ciency on a given feasible processor allocation.In Figure 7(a), e�ciency is positively correlated withWj ; in Figure 7(b), e�-ciency is independent ofWj . The results are very similar to the results in Figure6(a) and (b), respectively. Thus, in these cases, the weaker correlation betweenNj and e�ciency has not a�ected the relative performance of the policies.4.2 The EQS-PWS PolicyRecall the four characteristics of FB-PWS that are possibly bene�cial to policyperformance from section 1. The load adaptive property is also a character-istic of the EQS, and repartitioning issues will be considered in section 4.3.Furthermore, we have seen that multilevel feedback can lead to earlier systemsaturation (Figures 6-7) if a signi�cant fraction of the jobs with large Wj andlarge parallelism have only moderate speedups. On the other hand, the EQS

� � FB-ASP
� � FB-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0

|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�
�

�

�

�

�

� � � �
�

�

(a) �jjw � uniform(100 wW , 200 wW)

� � FB-ASP
� � FB-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0
|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�

�

�

�

�

�

�
�

�
�

�

�

(b) �j � uniform(100,200)Figure 7: Policy comparison with variable load imbalance overheadNj � Distribution 3, Wjjn � Hyperexp2(n2N2 1000; 2); �0 = 0(CW = 6.6)policy saturates earlier than the FB-PWS policy in Figure 5, perhaps indicatingthat the EQS policy could be improved by using the pws measure to adjust pro-cessor allocations for this (and possibly other) workloads. This motivates thefollowing new policy that we call EQS-PWS.In the EQS-PWS policy, processor allocation proceeds in two phases. In the�rst phase processors are assigned to jobs as in the EQS policy, except that eachjob's processor allocation is bounded by min(pwsj ; Nj) instead of Nj . If thereare idle processors left after phase one, the idle processors are equipartitionedamong the jobs, using Nj�min(pwsj ; Nj) as the upper bound on the additionalprocessors given to job j.The EQS-PWS policy is identical to the EQS-AVG policy de�ned in [4],except that the pws measure is used in place of average parallelism (avg). In [4],the EQS-AVG was found to have approximately the same performance as EQS,but new workload parameters are considered in this paper. Furthermore, �gure2(b) shows that eliminating the allocations above pws processors at high loadmay be more favorable than eliminating allocations above avg processors.For the workloads in Figures 6-7, EQS-PWS has identical performance toEQS, indicating that there is not much bene�t to using the pwsmeasure for thoseworkloads. Note that this is another reason why FB-PWS doesn't perform aswell at high loads in �gures 6(b) and 7(b).Figures 8 and 9 show the relative performance of the EQS-PWS policyfor the workload in Figure 5 and a new workload, respectively. The workloadin Figure 9 is similar to the workload in Figure 7, except that the executionoverhead parameter, � = pws, has a hyperexponential distribution instead of auniform distribution, leading to much greater speedup sublinearity, and perhaps

� � FB-ASP
� � FB-PWS
� � EQS-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0

|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�
�

�

�
�

�
�

�
�

�

�

� � �

�

� �

(a) CW = 5

� � FB-ASP
� � FB-PWS
� � EQS-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0
|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�

�

�

�

�

�

�

� �

�

�

�
� �

�

�

�

(b) CW = 30Figure 8: Performance of EQS-PWS under workload 2 in [23]Wj � Hyperexp2(1000; CW); Nj =Mj ; �0 = 0:003; � = 25; � = 25unrealistically poor speedups for the majority of the jobs. However, in this casethere is more potential for the EQS-PWS and FB-PWS policies to outperformEQS.In Figures 8 and 9, EQS-PWS has performance equal to or better than EQSand FB-PWS over the entire range of o�ered load. In particular, the EQS-PWSpolicy does not saturate earlier than FB-PWS in Figure 8 or Figure 9(a). Resultsfor EQS-AVG, not given in the �gures, show that for the workloads in �gures 5through 9, EQS-AVG has very nearly the same performance as EQS-PWS.4.3 Comparisons with Repartitioning OverheadsOur �nal set of experiments are aimed at determining the impact of realisticrepartitioning overhead on the relative performance of the EQS, EQS-PWS,and FB-PWS policies. In this case we use a new synthetic workload { onethat corresponds closely with the workload measurement data in [8]. Below weexplain the workload, the repartitioning overheads, and the results.The key features of the workload are:� Distribution 4 of Figure 4 is used for job parallelism. This was derivedfrom the measured distribution in [8], by shifting some of the probabilitymass for n = 32 to higher values of parallelism. The shift corrects for theincentives in the measured system for parallelism equal to 32 during thedaytime. In a system with EQS or FB-PWS scheduling, such incentiveswould not be necessary.� The service requirement is determined by a set of values forWjjn and CW jn,n = 1; 2; 4; 8; :::; 128, that are computed from Table 2 in [8]. Speci�cally,Wjjn is initially set to n� the average runtime for job size n, and CW jn is

� � FB-ASP
� � FB-PWS
� � EQS-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0

|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�

�

�

�

�
�

�

�

� �
�

� �

�

� � �
�

�
�

�

(a) �jjw � Hyperexp2(wW 100; 5)

� � FB-ASP
� � FB-PWS
� � EQS-PWS

|

0.0
|

0.2
|

0.4
|

0.6
|

0.8
|

1.0

|0.0

|0.5

|1.0
|1.5

|2.0

EQS

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

offered load (ρ)

�
�

�
� � �

�

�
�

� �

�

�
�

� �
�

�
� �

�

(b) �j � Hyperexp2 (100, 5)Figure 9: Policy comparison for workloads with very sublinear speedupNj � Distribution 1, Wjjn � Hyperexp2(n2N2 1000; 10), �0 = 0(CW = 36)set to the coe�cient of variation in runtime for n, and then the mean valueswere adjusted proportionately downward (to remove execution overhead)to get the measured system load.6 Note the large value of average totalservice requirement (W = 10566 seconds, or approximately 2.9 node-hours) for this measured iPSC/860 workload. The measured average node-hours of running time per application (with overhead), is approximatelydouble that value.� For the parallelism overheads, we let�0 � uniform(0; 1=c1 � 1Nj � 1) (13)and then �0 � uniform(0;min(1=c2 � 1Nj(Nj � 1) � �0Nj ; 1� �0N2)); (14)where c1 = 0:75 and c2 = 0:5 (see equation (7)). For this workload, thesedistributions yield �rst an execution e�ciency on Nj processors, E, thatis approximately uniformly distributed between 75% and 100%, and thenan e�ciency on Nj processors that is approximately uniformly distributedbetween 50% and E. This is a somewhat arbitrary, but well-speci�ed modelof the spread of execution e�ciencies that are encountered in practice. In6These calculations are necessarily approximate since runtime includes execution overheadwhereas total processing requirement does not. Processing requirements (without overhead)are not given in the measured data. However, we anticipate that the computed values giveapproximately the correct relative magnitudes of the average work as a function of job paral-lelism, and this is more important than quantitative accuracy of the individual values.

� � FB_PWS
� � FB_PWS (ov=0)
� � EQS_PWS
� � EQS

|

0
|

5
|

10
|

15
|

20
|

25
|

30
|

35

|0.0

|0.5

|1.0

|1.5

EQS (ov=0)

arrival rate (jobs/hr)

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

�
�

�

�
�

�

�
�

�
�

�
�

� � � � � �
� � � � �

�

(a) Poisson arrivals
� � FB_PWS
� � FB_PWS (ov=0)
� � EQS_PWS
� � EQS

|

0
|

5
|

10
|

15
|

20
|

25
|

30
|

35

|0.0

|0.5

|1.0

|1.5

EQS (ov=0)

arrival rate (jobs/hr)
M

ea
n

R
es

po
ns

e
T

im
e

R
at

io

�
�

�

�
�

�

�
�

�

�
�

�

� � � � � �
� � � � �

�

(b) CV of interarrival time = 3Figure 10: Policy Comparison with Repartitioning OverheadNj � Distribution 4, W = 10566 seconds, CW = 4.26,c1 = 0:75; c2 = 0:5the absence of data in the literature, we have relied on a variety of informalinformation about parallel job speedups in developing this model.The workload de�ned above provides one more context for comparing policyperformance, irrespective of repartitioning overhead. Note also that the over-all mean W for the measured system is larger than assumed in the syntheticworkloads for our previous experiments.For repartitioning overhead, we assume that each time the processor alloca-tion changes for a job, the entire job will stall for 5 seconds. This estimate wasarrived at by computing the time to fetch 32 megabytes of data from a remotememory, either in a network of workstations that runs the GMS global mem-ory management system [7] or in the KSR or DASH memory systems [20, 3]. InGMS, each remote fetch of an 8-kilobyte page requires 2 milliseconds. In KSR, ittakes 30 milliseconds to �ll a 256KB cache from remote memory [20]. In DASH,each remote fetch of a 16-byte cache block requires approximately 170 cycles ona 33 MHz processor. Thus, the transfer of 32 megabytes requires approximately4-10 seconds in these systems. Anticipating continued improvements in networklatencies, we conservatively select 5 seconds for the repartitioning overhead.Figure 10(a) shows the mean response time ratios of FB-PWS, EQS-PWSand EQS with repartitioning overhead with respect to an EQS system with zerorepartitioning cost. The ratio for FB-PWS with zero repartitioning overheadis also given. Job arrival rate is varied up to 30 jobs/hour, which is higherthan observed on the NASA Ames iPSC/860 (Figure 12 of [8]) or the CornellTheory Center SP/2 [10]. The system utilization at arrival rate of 30 jobs/houris 82%-85%.The results in Figure 10(a) show that relative policy performance is un-

� � FB_PWS
� � FB_PWS (ov=0)
� � EQS_PWS (Q=500)
� � EQS (Q=500)
� � EQS_PWS
� � EQS

|

0
|

10
|

20
|

30
|

40
|

50
|

60
|

70

|0.0

|0.5

|1.0

|1.5

EQS (ov=0)

arrival rate (jobs/hr)

M
ea

n
R

es
po

ns
e

T
im

e
R

at
io

� �
�

�
�

�

� �
�

�
�

�

� � � � � �

� �
� � � �

� � � � �
�

� � � � �

�

Figure 11: Policy Comparison with Repartitioning OverheadPoisson arrivals, Nj � Distribution 4, W = 5283 seconds, CW = 4.25,c1 = 0:75; c2 = 0:5changed for the given workload, with or without repartitioning overhead, eventhough processor repartitioning occurs on every arrival and departure in theEQS system. Figure 10(b) shows that this result holds even if the coe�cient ofvariation of interarrival times is increased to three by using a two-stage hyper-exponential distribution of interarrival times, re
ecting the measured coe�cientof variation in [8].To see what would happen if arrival rate is doubled to 60/hour, we halvedeach of the values of Wjjn and re-ran the experiment. The results are shown inFigure 11. For the EQS and EQS-PWS policies, we include a new case where thesystem performs full repartitioning at most once per every 500 second quantum.In this case, the system gives immediate service to an arriving job by judiciouslystealing processors from a job that is already executing; jobs with largest serviceso far received, or with allocations greater than the equipartition value, havehighest priority for relinquishing some of their processors to a newly arrivingjob. Repartitioning overhead is charged for each job recon�guration that occursbetween or at quantum boundaries.The relative policy performance is unchanged for the higher arrival rates inFigure 11, but the EQS and EQS-PWS policies that only perform full repar-titioning at the beginning of every 500 sec quantum have perceptibly betterperformance at high load than the policies that do repartitioning at every jobarrival or departure..Overall, the experiments in this section provide evidence that EQS or EQS-PWS provides superior performance even when realistic data repartitioning over-heads are considered, yet the FB-PWS policy is still a remarkably competitivealternative over a wide range of workloads.

5 ConclusionsIn this paper, we have compared the EQS and FB-PWS policies under syntheticworkloads that have not previously been considered, yet have realistic job char-acteristics [8, 10] and repartitioning overheads. As part of this e�ort, we haveimproved the previous workload models in [13, 17, 23] and we have shown howthe di�erent speedup functions used in the previous models are related. Finally,we have de�ned a new policy, EQS-PWS, which has what appear to be the mostpromising characteristics of both EQS and FB-PWS.A key feature of our realistic workloads is that job service requirementsare substantial enough to warrant execution on a parallel system, and thus jobarrival rate is at most 30�60 jobs/hour [8, 10]. The principal conclusions thatwe reach from the experiments performed in section 4, are:� The EQS policy is generally superior to the FB-PWS policy even whenrealistic repartitioning overheads are considered.� If a reasonable fraction of the jobs with large parallelism and large totalservice requirement have moderate execution overheads (e.g., 50% - 75%e�ciency on P processors), then a system with FB-PWS scheduling sat-urates before a system with EQS scheduling (Figures 6(b), 7(b)), due toless e�ective space sharing.� If a large fraction of the jobs are very ine�cient; that is, they have pwssigni�cantly smaller than their maximum parallelism, then EQS saturatesbefore FB-PWS (Figures 8, 9(a)).� For the workloads examined, EQS-PWS always performs as well as orbetter than EQS and FB-PWS. In particular, EQS-PWS avoids the earlysaturation of EQS in systems with a large fraction of very ine�cient jobs.� Although the above di�erences are worthy of consideration in future policydesign, the overall di�erences in performance among the EQS, EQS-PWS,and FB-PWS policies are perhaps surprisingly small.Given the results in this paper, we would argue that the simple EQS policy,which does not require knowledge of the pws measure for each job, may be thepreferred policy. However, the ultimate choice of policy will also depend on atleast two factors: (1) the signi�cance of the cases where EQS-PWS outperformsEQS, and (2) how well the pws measure can be estimated in practice. Fruitful ar-eas for further investigation include: (1) quantifying the workload characteristicsthat lead to di�erences in relative mean response times of the policies, (2) exam-ination of more detailed measures such as expected response time conditionedon job service requirement, (3) how well the pws measure can be estimated atruntime using techniques similar to those in [20], and (4) suitable modi�cationsto the policies to support jobs with large memory requirements.AcknowledgementsThe authors gratefully acknowledge comments and suggestions by Thu Nguyen,John Zahorjan, other workshop participants, and the anonymous reviewers,

which helped to improve this paper.References[1] R. H. Arpaci, A. C. Dusseau, A. M. Vahdat, L. T. Liu, T. E. Anderson,D. A. Patterson, The Interactions of Parallel and Sequential Workloads ona Network of Workstations. Proc. 1995 ACM Sigmetrics Joint Int'l. Conf.on Measurement and Modeling of Computer Systems, Ottawa, pp. 267-278,May 1995.[2] A. Bricker, M. Litzkow, M. Livny, Condor Technical Summary. TechnicalReport TR 1069, Computer Sciences Dept., University of Wisconsin, Madi-son, WI, January 1992.[3] R. Chandra, S. Devine, B. Verghese, A. Gupta, M. Rosenblum, Schedulingand Page Migration for Multiprocessor Compute Servers. Proc. 6th Int'l.Conf. on Architectural Support for Programming Languages and OperatingSystems (ASPLOS-VI), San Jose, CA, pp. 12-24, October 1994.[4] S.-H. Chiang, R. K. Mansharamani, M. K. Vernon, Use of Application Char-acteristics and Limited Preemption for Run-to-Completion Parallel Proces-sor Scheduling Policies. Proc. 1994 ACM Sigmetrics Conference on Mea-surement and Modeling of Computer Systems, Nashville, TN, pp. 33-44,June 1994.[5] L. W. Dowdy, On the Partitioning of Multiprocessor Systems. TechnicalReport, Vanderbilt University, July 1988.[6] G. Edjlali, G. Agrawal, A. Sussman, J. Saltz, Data Parallel Programming inan Adaptive Environment. Proc. 9th Int'l. Parallel Processing SymposiumSanta Barbara, CA, April 1995.[7] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R. Karlin, H. M. Levy, C.A. Thekkath, Implementing Global Memory Management in a WorkstationCluster. Proc. Symp. on Operating Systems Principles, Copper Mountain,CO, pp. 201-212, December, 1995.[8] D. G. Feitelson, B. Nitzberg, Job Characteristics of a Production ParallelScienti�c Workload on the NASA Ames iPSC/860. Proc. IPPS '95 Work-shop on Job Scheduling Strategies for Parallel Systems, Santa Barbara, CA,pp. 337-360, April 1995.[9] D. Ghosal, G. Serazzi, S. Tripathi, The ProcessorWorking Set and Its Use inScheduling Multiprocessor Systems. IEEE Trans. on Software Engineering,Vol. 17, No. 5, pp. 443-453, May 1991.[10] S. Hotovy, Workload Evolution on the Cornell Theory Center IBM SP2.Proc. IPPS '96 Workshop on Job Scheduling Strategies for Parallel Systems,Honolulu, Hawaii, April 1996.[11] N. Islam, A. Prodromidis, M. S. Squillante, Dynamic Partitioning in Di�er-ent Distributed-Memory Environments. Proc. IPPS '96 Workshop on JobScheduling Strategies for Parallel Systems, Honolulu, Hawaii, April 1996.[12] L. Kleinrock. Queueing Systems, Vol II: Applications. John Wiley & Sons,1976.

[13] S. T. Leutenegger, M. K. Vernon, The Performance of MultiprogrammedMultiprocessor Scheduling Policies. Proceedings of the ACM SIGMETRICSConference on Measurement & Modeling of Computer Systems, Boulder,CO, pp. 226-236, May 1990.[14] S. Majumdar, D. L. Eager, R. B. Bunt, Scheduling in MultiprogrammedParallel Systems. Proc. 1988 ACM Sigmetrics Conference on Measurementand Modeling of Computer Systems, Santa Fe, NM, pp. 104-113, May 1988.[15] S. Majumdar, D. Eager, and R. Bunt. Characterisation of programs forscheduling in multiprogrammed parallel systems. Performance Evaluation,Vol. 13, pp. 109-130, 1991.[16] R. Mansharamani. E�cient Analysis of Parallel Processor Scheduling Poli-cies. Ph.D. Thesis, Computer Sciences Dept., University of Wisconsin,Madison, WI, November 1993.[17] R. K. Mansharamani, M. K. Vernon, Properties of the EQS Parallel Pro-cessor Allocation Policy. Technical Report #1192, Univ. of Wisconsin -Madison Computer Sciences Dept., November 1993.[18] C. McCann, R. Vaswani, J. Zahorjan, A Dynamic Processor Allocation Pol-icy for Multiprogrammed, Shared Memory Multiprocessors. ACM Transac-tions on Computer Systems, Vol. 11, No. 2, pp. 146{178, May 1993.[19] V.Naik, S. Setia, and M. Squillante. Performance Analysis of Job Schedul-ing Policies in Parallel Supercomputing Environments. Proceedings of Su-percomputing'93, November 1993.[20] T. D. Nguyen, R. Vaswani, J. Zahorjan, Using Runtime Measured WorkloadCharacteristics in Parallel Processor Scheduling. Proc. IPPS '96 Workshopon Job Scheduling Strategies for Parallel Systems, Honolulu, Hawaii, April1996.[21] J. K. Ousterhout, Scheduling Techniques for Concurrent Systems, Proc. 3rdInt'l. Conf. on Distributed Computing Systems. pp. 22-30, October 1982.[22] J. D. Padhye, L. W. Dowdy, Dynamic versus Adaptive Processor AllocationPolicies for Message Passing Parallel Computers: An Empirical Compari-son. Proc. IPPS '96 Workshop on Job Scheduling Strategies for ParallelSystems, Honolulu, Hawaii, April 1996.[23] E. W. Parsons, K. C. Sevcik, Multiprocessor Scheduling for High-VariabilityService Time Distributions. Proc. IPPS '95 Workshop on Job SchedulingStrategies for Parallel Systems Santa Barbara, CA, pp. 127-145, April 1995.[24] V. G. J. Peris, M. S. Squillante, V. K. Naik, Analysis of the Impact of Mem-ory in Distributed Parallel Processing Systems. Proc. 1994 ACM SigmetricsConference on Measurement and Modeling of Computer Systems, Nashville,TN, pp. 5-18, June 1994.[25] K. C. Sevcik, Characterizations of Parallelism in Applications and TheirUse in Scheduling. Proc. 1989 ACM SIGMETRICS/Performance '89 Int'l.Conf. on Measurement and Modeling of Computer Systems, Berkeley, CA,pp. 171-180, May 1989.[26] K. C. Sevcik, Application Scheduling and Processor Allocation in Multi-programmed Parallel Processing Systems. Performance Evaluation, Vol. 19,No. 2/3, pp. 107-140, March 1994.

[27] A. Tucker, A. Gupta, Process Control and Scheduling Issues for Multipro-grammed Shared-Memory Multiprocessors. Proceedings of the 12th ACMSymposium on Operating System Principles, pp. 159-166, December 1989.[28] C.-S. Wu, Processor Scheduling in Multiprogrammed Shared MemoryNUMA Multiprocessors, Master's thesis, University of Toronto, 1993.[29] J. Zahorjan, C. McCann, Processor Scheduling in Shared Memory Multi-processors. Proc. 1990 ACM Sigmetrics Conference on Measurement andModeling of Computer Systems, Boulder, CO, pp. 214-225, May 1990.[30] S. Zhou, J. Wang, X. Zheng, P. Delisle, Utopia: A Load Sharing Facility forLarge Heterogeneous Distributed Computing Systems. Technical Report,University of Toronto, 1992.

