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Abstract. Much of the recent work on multiprocessor scheduling disciplines has
used abstract workload models to explore the fundamental, high-level proper-
ties of the various alternatives. As continuing work on these policies increases
their level of sophistication, however, it is clear that the choice of appropriate
policies must be guided at least in part by the typical behavior of actual parallel
applications. Our goal in this paper is to examine a variety of such applications,
providing measurements of properties relevant to scheduling policy design. We
give measurements for both hand-coded parallel programs (from the SPLASH
benchmark suites) and compiler-parallelized programs (from the PERFECT Club
suite) running on a KSR-2 shared-memory multiprocessor.
The measurements we present are intended primarily to address two aspects of
multiprocessor scheduling policy design:

– In the spectrum between aggressively dynamic and static allocation policies,
what is an appropriate choice for the rate at which reallocations should take
place?

– Is it possible to take measurements of application speedup and efficiency at
runtime that are sufficiently accurate to guide allocation decisions?

We address these questions through three sets of measurements:
– First, we examine application speedup, and the sources of speedup loss. Our

results confirm that there is considerable variation in job speedup, and that
the bulk of the speedup loss is due to communication and idleness.

– Next, we examine runtime measurement of speedup information. We begin
by looking at how such information might be acquired accurately and at
acceptable cost. We then investigate the extent to which recent measurements
of speedup accurately predict the future, and so the extent to which such
measurements might reasonably be expected to guide allocation decisions.

– Finally, we examine the durations of individual processor idle periods, and
relate these to the cost of reallocating a processorat those times. These results
shed light on the potential for aggressively dynamic policies to improve
performance.

1 Introduction

A quantitative understanding of realistic workload characteristics is critical to the de-
sign of processor scheduling policies. Because such information has not been widely
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available, many scheduling studies have been performed using analytic or synthetic
workload models [19, 17, 29, 5]. While such artificial workloads are a valuable tool, the
increasing sophistication of the policies being studied requires a corresponding increase
in the sophistication of the workload models. Our purpose in this paper is to identify
and quantify workload characteristics that will help formulate and parameterize such
models.

We address this issue in the context of multiprogrammed shared-memory multi-
processors through measurements of seventeen scientific applications when run on a
60 node KSR-2. The measurements we present are intended primarily to address two
aspects of multiprocessor scheduling policy design:

– In the spectrum between aggressively dynamic and static allocation policies, what
is an appropriate choice for the rate at which reallocations should take place?

– Is it possible to take measurements of application speedup and efficiency at runtime
that are sufficiently accurate to guide allocation decisions?

We address these questions through three sets of measurements. First, we examine
application speedup, and the sources of speedup loss. Our results confirm that there is
considerable variation among jobs, and provide information that will support work on
the use of speedup information in making scheduling decisions [13, 23].

Second, because it is at least burdensome, and perhaps impossible, to accurately
collect and supply such information at job submission time, we look at the problem
of estimating job speedup at runtime. We first demonstrate a technique for estimating
“instantaneous speedup” at runtime that is both efficient and accurate. We next examine
the extent to which recent measurements of application speedup accurately predict
the near future. Clearly, for runtime measurements to be useful in scheduling, such
predictions must be reliable. We find that this is a difficult problem, and propose what
is at least a first step solution that engages the cooperation of the application in making
measurements.

Finally, observing that idleness is a significant source of speedup loss, we examine the
durations of individual processor idle periods, and relate these to the cost of reallocating
a processor at those times. We find that while most idle periods are too short to justify
reallocating a processor, there is still considerable idleness in those fewer periods of
greater length. We examine how much processor time could be recovered by reallocation
based on various conservative assumptions about the cost of doing so.

Because we believe that realistic workloads will be comprised of applications that
are implemented using a variety of methodologies, our application suite consists of
programs from two distinct development domains: (1) hand-coded parallel applications
that implement sophisticated parallel algorithms and may include optimizations such
as load balancing and careful data partitioning to minimize communication, and (2)
compiler-parallelized sequential programs.

We use programs from the SPLASH and SPLASH-2 benchmark suites [30, 37]
to represent hand-coded parallel applications, and programs from the PERFECT Club
benchmark suite [3] and an industrial fluid dynamics program (obtained from Analytical
Methods, Inc.) to represent compiler-parallelized sequential applications.

The remainder of the paper is organized as follows. Section 2 discusses related work.
Section 3 documents our experimental platform. Section 4 looks at application speedup,



and identifies and quantifies the major components of speedup loss. Section 5 examines
the question of whether instantaneous speedup varies significantly during execution, and
so sheds light on the extent to which recent measurements of application performance
predict its future behavior. Section 6 reports measurements of the frequency and duration
of processor idleness, characteristics important in deciding how aggressive schedulers
should be in reallocating idle processors. Section 7 gives our conclusions.

2 Related Work

The PERFECT Club benchmark suite is one of several standard benchmark suites
used to measure the capability of parallelizing compilers [3]. As such, many studies
have characterized the behavior of a number of these PERFECT Club programs, e.g.,
[7, 11, 26]. However, these studies have typically focused on properties of the code that
affect a compiler’s ability to parallelize them, and not, as we do, on properties of their
execution that affect a scheduler’s ability to best schedule parallelized versions of the
programs.

For the SPLASH and SPLASH-2 benchmark suites, Singh et al. [30] and Woo
et al. [37] provide significant information, including speedup, cache behavior, and
synchronization wait time. Our measurements supplement their reports by quantifying
sources of speedup loss, as well as more fine-grained application behaviors such as
frequency and duration of idle periods. Furthermore, we contrast the behaviors of
these applications with those of compiler-parallelized applications, and consider the
implications of their differences to the design of parallel processor scheduling policies.

Feitelson and Nitzberg [12] report a variety of statistics on the parallel workloads of
an iPSC/860 located at NASA Ames. They discuss what we call submitted workload mix
characteristics, such as the ratio of sequential to parallel jobs, resource usage patterns
(e.g., the correlation between total resource requirement and the degree of parallelism),
job submission rates, and system utilization. In contrast, we characterize fine-grained
behaviors of individual applications in order to answer questions such as “how often do
applications idle one or more of their allocated processors?” and “are idle periods long
enough with respect to reallocation cost such that reallocation in response to application
idleness can improve system utilization?”.

Cypher et al. [8] report measurements for a number of applications running on
message-passing multiprocessor systems in a manner similar to ours. However, because
they were attempting to address architectural issues, they concentrate on different mea-
sures (e.g., memory and I/O requirements) than those presented here. Similarly, many
other researchers (e.g., [9, 1, 27]) report results from studies of application memory
behavior.

3 The Experimental Environment

3.1 Hardware and Software Platform

All measurements were done on a Kendall Square Research KSR-2 COMA shared-
memory multiprocessor. Our machine consists of 60 40-MHz dual-issue proprietary



processors, partitioned into two clusters of 30. Each processor is connected to a 256-
KByte data cache, 256-KByte instruction cache, and a 32-MByte attraction memory.
Processors in each cluster, and the clusters themselves, are connected by separate 1 GB/s.
slotted ring networks1. The attraction memories cooperate to implement a sequentially
consistent, globally-shared address space. The unit of transfer and sharing between
attraction memories is 128 bytes.

Each node in the KSR-2 contains a hardware monitoring unit called the Event Moni-
tor that compiles information such as cache misses and processor stall (communication)
time. This information is made available to the system and user jobs through a set of
read-only registers.

The KSR-2 runs a variant of the OSF/1 UNIX operating system. We use CThreads
[6], an efficient user-level threads package, as the vehicle of parallelism. We instrumented
CThreads using the event monitors to collect the data presented in the remainder of this
paper.

SPLASH and SPLASH-2 programs run directly on CThreads. We use both the KSR
KAP [16] and Stanford SUIF compilers [36] to parallelize sequential programs. We
use both systems because they represent different tradeoffs in technology and product
maturity. KSR KAP is a commercial product that has been adapted specifically to
the KSR architecture and optimized through productization. SUIF, on the other hand,
is a research vehicle. As such, SUIF implements many state-of-the-art parallelization
techniques not present in KAP, but has been less concerned with standard optimizations
and has not been tuned to the KSR architecture.

3.2 Applications

Tables 1 and 2 list the applications that we measured, and give brief descriptions of
each as well as their execution time when run on a single processor2. This single-
processor time represents the execution of a parallel version of the program running on
a single processor, not of a sequential version of the program. We use these as the base
times in computing speedup, rather than the times for true sequential versions, because
our interest is in schedulers; the performance gap between the sequential version and
parallel version executing on a single processor highlights the weakness of the program
or compiler, but does not present an opportunity exploitable by the scheduler.

For reasons of space, in what follows, we show results for only a representative
sample of our seventeen applications. We refer the reader to [24] for an expanded
version of this paper containing more comprehensive data.1 Note, however, that Dongarra and Dunigan have measured a peak bandwidth of only 8 MB/s

on a KSR-1, which has 20-MHz processors connected by the same network as in the KSR-2
[10].2 All applications were measured while running default data sets that came with the benchmark
suites, except that the number of iterations for QCD were reduced from 100 to 2 to shorten
execution times in our experiments.



Application Exec. time (secs) Description
Barnes y 1159.14 Barnes-Hut N-body simulation.
Fft y 6.12 Fast Fourier transform.
Fmm y 602.98 Fast Multipole Method N-body

simulation.
LocusRoute 78.56 VLSI standard cell router.
MP3D 25.02 Simulation of rarefied hypersonic flow.
Ocean y 1663.02 Model currents in ocean basin.
Pverify 52.30 Logical verification.
Raytrace y 271.90 Rendering of 3-dimensional scene.
Radix y 199.50 Integer radix sorting.
Water y 300.00 N-body molecular dynamics problem.

Table 1. Hand-coded applications. (y from SPLASH-2, remainder from SPLASH.)

Application KAP Exec. SUIF Exec. Description
time (secs) time (secs)

ADM 364.12 – Hydrodynamic simulation using
mesoscale hydrodynamic model.

ARC2D 904.14 1699.48 Analysis of fluid flow problems using
Euler equations.

DYFESM 175.94 327.48 Analysis of symmetric anisotropic
structures.

FLO52 374.36 406.66 Analysis of transonic inciscid flow
past an airfoil using unsteady Euler
equations.

QCD 157.16 230.38 Simulation of gauge theory using a
Monte Carlo-based algorithm.

TRACK 412.38 – Tracking of moving targets based on
sensor inputs.

USAero 3240.16 – CFD computation.

Table 2. Compiler-parallelized sequential applications. (All except USAero from PER-
FECT Club suite.)

4 Speedup and Sources of Speedup Loss

4.1 Application Speedup

In this section, we examine the speedup characteristics of the jobs in our workload. We
begin by giving the speedup functions for all jobs, both to better document the workload
and to support previous work by others asserting that schedulers should take individual
job speedups into consideration in making allocation decisions. We then identify and
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Fig. 1. Speedup for (a), (b) hand-coded applications,(c), (d) sequential applicationspar-
allelized by KAP, and (e) sequential applications parallelized by SUIF. (Note: Different
Y-axis scales are used for legibility.)

quantify the sources of speedup loss as a prelude to an investigation of how speedup
might be characterized through runtime measurement.

Figure 1 plots speedup against the number of processors. (The experiments for
the applications parallelized by SUIF were terminated at 20 processors because the
slowdown they experienced caused running times to be excessive. Also, not all applica-
tions could be run successfully with SUIF: either the compiler itself or the parallelized
application failed during execution.) We observe that:



– Speedups vary greatly, even among applications in the same class (hand-coded or
compiler-parallelized).

– Speedup is typically much worse for compiler-parallelized applications than for
hand-coded applications.

– Most speedup curves are relatively smooth and roughly convex-shaped. This im-
plies that speedup values for a relatively few allocations might allow reasonably
accurate extrapolation to other allocations. (See [23] for an application of this idea
to scheduling.)

– For most hand-coded applications, there is an allocation beyond which they slow
down gradually. With the exception of ARC2D when parallelized by KAP, all
compiler-parallelized jobs slow down significantlyafter achieving their peak speedups.

– Hand-coded applications seem to tolerate crossing the cluster boundary fairly well,
whereas the two compiler-parallelized applications that were still speeding up at 30
processors (USAero and ARC2D), slow down when they are spread across clusters.

We now turn our attention to quantifying and characterizing factors contributing to
speedup loss as applications are executed on larger processor allocations.

4.2 Loss of Speedup

We have two goals in this subsection. One immediate goal is to document the sources
of speedup loss in our applications as part of our workload characterization. A second,
longer term objective, is to work towards an accurate and efficient scheme for measuring
speedup at runtime.

It is well-known that loss of speedup in shared-memory systems arise from the
following factors [21, 28]:

1. Idleness: at times, parallel programs must idle allocated processors because of
insufficient parallelism or load imbalance.

2. Communication: in shared-memory machines such as the KSR-2, communication
takes place when the executing thread refers to data that either does not currently
reside in its cache or is not in the appropriate state. In the case of the KSR-2, this
can occur for both the processor cache and the attraction memory (which itself is
a cache). KSR-2 processors stall while waiting for the data to be fetched from a
remote node. Thus, on the KSR-2, communication overheads appear as processor
stall.

3. System overhead: even sequential programs incur system overhead because of
events such as page faults, clock interrupts, etc. Such overhead can be more signif-
icant for highly parallel programs, however, because these events typically occur
on every processor (and so must occur more often for a program running on more
processors). Furthermore, the asynchronous nature of these events can degrade the
performance of tightly-coupled parallel programs.

4. Parallelization overhead: parallel programs typically must incur computational
overheads that are not present in sequential programs, such as per-processor initial-
ization, work partitioning, and locking and unlocking on entry and exit of a critical
section.
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Fig. 2. Loss of speedup for hand-coded applications. (The distance from each curve to
the curve below it represents the speedup loss due to that factor.)

Of the four sources, it is particularly difficult to measure parallelization overhead for
hand-coded applications because initialization, work partitioning, and synchronization
code are typically scattered throughout the application code. Thus, in what follows, we
measure only idleness, communication, and system overhead, and infer parallelization
cost from the remaining speedup loss.

Figures 2 and 3 plot speedup and speedup loss due to idleness, communication, and
system overhead for a number of applications that achieve modest to good speedup.
In each graph, the lowest curve represents actual measured speedup. Each curve above
the speedup function represents what speedup would have been had a single source of
speedup loss been eliminated. In order from bottom to top, we consider communication,
idleness, system overhead, and parallelization overhead. (We also plot ideal (linear)
speedup.) The graphs are cumulative; e.g., the curve for which idleness overhead has
been set to 0 also has communication cost set to 0. Thus, the distance between each
pair of curves in the figure indicates the magnitude of speedup loss due to the overhead
associated with the higher curve. (Parallelization overhead is the difference between the
ideal and system overhead curves.)

We observe that parallelization overhead is negligible, and that system overhead
is typically very small compared to idleness and communication cost. On average,
parallelization overhead accounts for less than 1% of application processor time while
system overhead accounts for less than 3%. We note, though, that production workloads
stressing the capacity of main memory could exhibit considerably more system overhead
due to paging than we observe using these benchmark suites.
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Fig. 3. Loss of speedup for compiler-parallelized applications. (The distance from each
curve to the curve below it represents the speedup loss due to that factor.)

On the other hand, both hand-coded and compiler-parallelized applications can
contain significant idleness, although compiler-parallelized applications tend to exhibit
more. Among all the hand-coded applications we studied, idleness can be as high as 60%
of processor time; even Barnes, the application showing the best overall speedup in our
application suite, can contain as much as 20% idleness. KAP-parallelized applications
can contain up to 83% idleness, while SUIF-parallelized applications can contain up to
50% idleness.

Similarly, both hand-coded and compiler-parallelized applications can contain sig-
nificant communication overhead. Hand-coded applications seem to be divided into two
classes, those that slow down and those that continue to speed up with increasing allo-
cation size up to the maximum number of processors available. Interestingly, almost all
those that slow down exhibit considerably worse communication losses than those that



do not (e.g., up to 94% of MP3D execution time can be attributed to communication
overhead). Applications parallelized by either KAP or SUIF can contain up to 50%
communication overhead.

5 Runtime Measurement of Speedup

In the previous section we observed that there is considerable variation in speedup
behavior among jobs, encouraging the development of policies that use speedup infor-
mation in making allocation decisions. Most speedup-sensitive policies that have been
proposed to date have been static, and so require a priori specification of each job’s
speedup function. In this section we investigate a different approach that would be of
use to dynamic policies, the acquisition of speedup characterizations at runtime through
measurement. The attraction of using runtime measurements is both its convenience
(since it relieves the user of the burden of providing this information) and its potentially
greater accuracy (since applications whose speedup are sensitive to their input data or
the relative locations of their allocated processors cannot be characterized a priori). Of
course, runtime measurements can also be used to complement a priori information
when such information is available.

We begin by looking at how accurate runtime speedup measurements can be made
at reasonable overhead. We then examine the extent to which recent measurements of
speedup predict future behavior.

5.1 Estimating Speedup Through Runtime Measurement

In the previous section we found that the majority of speedup loss is due to idleness
and communication. In fact, Figures 2 and 3 show that there are very small differences
between ideal speedup and the sum of actual speedup, idleness loss, and communication
loss. As noted, however, system overhead can be more significant for programs with
large memory requirements, where paging becomes a more significant source of over-
head. These observations suggest that reasonably accurate measurements of speedup for
scheduling purposes can be made at runtime by monitoring these three components of
speedup loss.

We have implemented this approach to runtime measurement on our KSR-2. To
measure communication cost and system overhead, we rely on hardware support. The
per-node event monitors available on the KSR-2 (see Section 3.1) maintain three critical
hardware counters: elapsed wall-clock time, elapsed user-mode execution time, and ac-
cumulated processor stall (communication). Dividingstall time by wall-clock time gives
us the efficiency loss due to communication, from which we can infer the corresponding
speedup loss. Dividing the difference between wall-clock time and user-mode time by
wall-clock time gives us the efficiency loss due to system activities.

This method of computing communication cost and system overhead is quite effi-
cient. If the scheduler is implemented in the operating system kernel, then accessing
these counters is simply a matter of reading the appropriate hardware registers. If the
scheduler is implemented as a user-level server, the hardware registers would need to be
mapped to shared-memory or the server would have to make use of low-level messaging



services to read the remote registers. Note that in order for such a user-level server to read
the remote registers, it would need to interrupt the running thread. If sample intervals
are not too small, however, this is unlikely to be a significant source of overhead.

To measure idleness, we need to depend on the application itself. If applications are
built using runtime systems such as Cthreads, then idleness measurements can be made
without requiring explicit programmer effort by placing the measurement code in the
thread package. Currently, we instrument the Cthreads synchronization code to keep
running counts of processor idleness, and make this information available to the system
via a piece of system-designated shared-memory. This approach is relatively overhead-
free because idleness accounting is performed when the processor would otherwise
not be doing any useful work. Of course, this approach assumes that all application
synchronization takes place through calls to the CThreads libraries rather than through
direct manipulation of shared variables. We did not, however, have to modify our
applications to meet this assumption; none of our hand-coded programs violated this
assumption, while all synchronization in compiler-parallelized applications by definition
takes place in the thread package.

Note that while we have relied on the specific hardware counters on the KSR-2
processor, many modern processors include similar functionality. For example, both the
DEC Alpha and the Intel Pentium processors contain counters for various sorts of cache
misses, which could be translated into estimates of communication cost [31, 4].

5.2 Using Speedup Measurements to Predict Future Behavior

For runtime speedup measurements to be of practical use to schedulers, application
speedups must be predictable. By predictable we mean that if an application’s speedup
is measured over some interval, the application will continue to execute at roughly that
speedup for some time to come. In the remainder of this section we consider the question
of application speedup predictability. To facilitate comparisons of prediction errors for
different allocations of processors, we normalize our results. Specifically, we measure
prediction errors in terms of efficiency, rather than speedup itself.

The simplest approach to predicting future speedup is to use quantum-based mea-
surements of current speedup and to guess that the future will look like the past.
Intuitively, we expect longer quantum lengths to result in more accurate predictions.

We evaluate this approach to speedup prediction through trace-based simulation. We
first create traces for each of our applications. Each trace contains measured efficien-
cies for each 100ms of execution. Given these traces, we can compare the efficiency
measured during each proposed measurement quantum, Q > 100ms, to the efficiency
observed during the next quantum3.

To evaluate the error of the efficiency predictions, we need to choose an appropriate
measure. (For example, a natural choice might be mean absolute error.) Because we are
interested in how useful these predictions will be to schedulers, choosing an appropriate3 Predicting that efficiency in the next quantum will be equal to efficiency in the just completed

quantum is, of course, only one possible choice. We also investigated another natural choice,
the use of exponentially decaying histories of all past observations. We found this technique to
be generally less accurate, however.



measure is a difficult problem. On the one hand, the measure should reflect the average
difference between the predicted and actual future efficiencies. On the other hand, the
average difference alone is not sufficient information: it understates the error because
occasional very incorrect predictions might induce a scheduler to make unfortunate
allocation choices that can degrade performance much more than proportional to the
error in the predictions (see, for example [22]). At the other extreme, looking at the
maximum single-prediction error probably overestimates error, since errors of that
magnitude may be exceedingly rare.

Because of the conflicting demands on the error measure to reflect both the common
and the worst cases, we use a measure that can be parameterized to flow smoothly from
one extreme to the other. In particular, letM (Q)i be the measured efficiency during theith quantum of length Q, and let the complete execution consist of N (Q) quanta. The
measure of prediction error we use isError = Cvuut 1N (Q)� 1 N(Q)�1Xi=1 (jM (Q)i+1 �M (Q)ij)C (1)

For C = 1, this is the mean absolute error; as C ! 1, the measure increasingly
reflects the maximum absolute error.

Figures 4 and 5 graph our error measure for a selected subset of our applications.
In each graph, the X-axis represents the measurement quantum length, Q, in ms, and
the Y-axis the error measure. The distinct curves on each graph correspond to different
values of C, the parameter of our measure.

We make three observations based on this data. First, for some applications, even
quite long measurement intervals are not sufficient to obtain good accuracy, while
for others much shorter intervals suffice. This makes choosing a system measurement
interval difficult: long intervals are needed for some jobs, but shorter intervals are more
advantageous to the scheduler (since they allow more frequent opportunities to correct
inappropriate allocations).

Second, for all applications, the accuracy at a fixed measurement interval improves
as the application is allocated more processors. This is simply a reflection of a changing
time scale: the job is able to execute a larger fragment of its code in a fixed time period
such that the time period becomes more representative of overall behavior.

Finally, many of the applications exhibit mild periodic behavior in accuracy as a
function of quantum length.

All of these observations have a common explanation: there is little reason to expect
the next measurement interval to look like the previous one unless the application is
executing substantially similar code in both. Stated differently, we expect efficiency
measurements to be most accurate in predicting future behavior when the measurement
interval corresponds to the execution of some section of code that will be repeated.

In related work [22, 23], we have made use of this observation, exploiting a partic-
ularly simple (but also quite common) program structure: an outer sequential loop that
drives the execution. In those works we show that schedulers that use measurements
taken over intervals corresponding to executions of the outer loop can significantly
improve application as well as system performance.
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Fig. 4. Prediction Error Versus Measurement Quantum Length (Q). (Note: Different
Y-axis scales are used for legibility.)

Of course, having to rely on a particular program structure (as well as the cooperation
of the application to indicate when it has reached the beginning of an iteration) is not
ideal. It remains to be seen whether it is possible to design schedulers that can accurately
predict speedup without having to depend on application cooperation. Our data suggests
that such a scheduler would have to dynamically “learn” the appropriate quantum for
individual applications.

6 Processor Idle Periods

Multiprocessor scheduling disciplines can be broadly characterized as being static (the
allocation made to a job is kept fixed for its entire execution), quasi-dynamic (realloca-
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Fig. 5. Prediction Error Versus Measurement Quantum Length (Q). (Note: Different
Y-axis scales are used for legibility.)

tions are performed at job arrival and departure moments, but not otherwise), or dynamic
(reallocations may be performed at any time). In this section we focus on application
characteristics that reflect on the opportunity to improve performance through dynamic
reallocations.

The primary potential advantage of dynamic policies over quasi-dynamic ones is
their ability to exploit the processor idleness that occurs during execution due to such
things as sequential portions of execution, load imbalance, and contention for critical
sections. The speedup results given in Section 4 show that there is considerable idleness
in typical applications. To take advantage of this idleness, however, the duration of
individual idle periods must exceed the cost associated with reallocating the processor.
In the next subsection, we examine the reallocation cost on our machine. In succeed-



From Fill Time
local attraction memory 1.28ms
within cluster 8.96ms
outside cluster 30.72ms

Table 3. Time required to completely refill the KSR-2’s 256KB processor cache.

ing subsections we present measurements providing indications of whether processor
idleness can be exploited through dynamic reallocation.

6.1 Processor Reallocation Cost

There are two components to processor reallocation cost: system path length and cache
penalty. System path length is the time required to execute operating system code for
reassigning a processor from one job to another, i.e., to perform a context switch.
Measurements on our KSR-2 shows path length context switch costs in the range of
3 to 5ms. However, the KSR-2 processor reallocation mechanism was designed for
ease of implementation, and uses a simple but very inefficient approach. In contrast,
measurements of a Sequent Symmetry, an older shared-memory multiprocessor with
much slower processors, indicate path length costs for context switching of about 750�s
[20]. Based on this somewhat conflicting information, it appears that context switch path
length costs below 1ms are easily possible on modern multiprocessors. However, it is
unlikely that designers of production systems will invest the effort to optimize context
switching until it becomes clear that there is a tangible payoff. For this reason, a
conservative estimate of 1-2ms context switch times may be a reasonable reflection of
typical systems.

The cache penalty component of reallocation cost reflects the fact that dynamic
movement of processors can adversely affect program cache behavior, and therefore
performance. The importance of cache performance to modern processor speed has
motivated the recent work on cache-affinity scheduling [33, 32, 14, 35].

To evaluate the cache related cost of dynamic reallocation, we look at the worst-
case times on the KSR-2. Recall that each processor in the KSR-2 has two caches, a
256 KByte processor cache and a 32 MB attraction memory. In what follows we focus
on the processor cache, as we believe it will be the major source of cache interference
over the reallocation intervals we are considering. A miss in the processor cache can
be filled by three levels in the memory hierarchy: the local attraction memory, the
attraction memory of another processor on the same cluster, and the attraction memory
of a processor on another cluster. Table 3 gives the times required to completely fill the
256 KByte processor cache from these three levels of machine memory.

6.2 Idle Period Length Distribution

We consider first the distribution of the length of processor idle periods. Figure 6 gives
results for five applications that achieves moderate to good speedup. For each number
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Fig. 6. Distributionof idle period lengths. (Each component of the bars is the fraction of
the total number of idle periods whose lengths fall in the intervals given in the legend.)

of processors we show the percentage of all idle periods with durations that fall into
four intervals: (0-10ms), [10-50ms), [50-100ms), and >100ms.

These graphs show that an overwhelming number of idle periods are short – less than
10ms. Furthermore, more detailed examination of the data shows that the average length
of these short idle periods is typically well below 1ms. This suggests that aggressive
dynamic reallocation (e.g., reallocating at the beginning of every idle period) may be
ineffective or even detrimental to system performance for both application classes,
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Fig. 7. Distribution of idle time. (Each component of the bars is the fraction of processor
time represented by idle periods whose lengths fall in the intervals given in the legend.)

since estimated reallocation cost (Section 6.1) is longer than the length of the typical
idle period for either class. This set of results for compiler-parallelized applications
were particularly surprising, suggesting that sequential portions typically run for only
short periods of time.

6.3 Idle Period Time Distribution

One approach to dealing with short idle periods is to filter them by waiting a short time
before context switching. Ousterhout [25], Lo and Gligor [18], and Karlin et al. [15]
take this approach in the context of implementing locks for mutual exclusion, where
such filtering is called “two-phase blocking” or “spin-then-block.” McCann et. al. [20]
have proposed a delayed reallocation scheme as part of a dynamic scheduling policy.
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Fig. 8. Residual idleness as a percentage of processor time assuming a 10ms total
reallocation cost.

A natural question to ask is how much idleness exists whose duration exceeds the
context switch delay time. We address this question in Figure 7. Each bar shows the
percent of total processor time represented by idle periods with durations in (0-10ms),
[10-50ms), [50-100ms), and >100ms. This figure shows that long idle periods, al-
though few in numbers, can account for a large fraction of total processor time, providing
evidence that delayed reallocation may be profitable, at least for many applications.

6.4 Residual Idleness After Filtering

A delay-based reallocationscheme can improve performance only if application residual
idleness – idleness remaining after the delay interval has elapsed – exceeds the cost of
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Fig. 9. Residual idleness as a percentage of processor time assuming a 30ms total
reallocation cost.

reallocating the processor. Thus, we now consider residual idleness.
In what follows, we compute residual idleness by subtracting the sum of the delay

time and the reallocation time from the total duration of each idle period greater than the
delay time. The reallocation time includes two reallocation path length costs and two
cache fill times. Because the latter depends strongly on both the workload (because of
the footprints of the original and replacing applications) and on the system (because data
placement decisions affect cache refill time), we use a number of different assumptions
about the total cost to reflect different possible scenarios. We use 10ms as a conservative
estimate for the case that either footprints are small or else the cache can be refilled
from the local attraction memory. We use 70ms as an estimate for the case of very
large footprints that must be filled from memories not on the local cluster. Finally, we
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Fig. 10. Residual idleness as a percentage of processor time assuming a 70ms total
reallocation cost.

use 30ms as a compromise between these extremes, representing perhaps a more likely
cost.

Figures 8 and 9 plot residual idleness as a function of the delay before reallocation,
assuming a total reallocation cost of 10ms and 30ms respectively. The Y-axis value of
each point on each curve shows residual idleness as a fraction of total job processor
time. The initial rise in the curves represents the benefit of a short delay – uselessly
short idle periods are filtered out. The gradual decrease in the curves for longer delays
represents the lost opportunity to use the processor as the delay to reallocate increases.

These figures show that delays from 10ms to about 20ms can result in significant
recovery of processing power in many applications, while for the rest there is little or no
loss. We also note that the appropriate delay time depends only weakly on the reallocation
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Fig. 11. Idleness (measured over 100ms intervals) versus time.

cost, indicating that it is more strongly tied to characteristics of the applications (i.e.,
the distribution of idle period lengths) than to reallocation times. At these reallocation
costs, the distinctions in distributions among the applications are remarkably small; all
give acceptable results for similar delay times.

Figure 10 plots normalized residual idleness assuming a reallocation cost of 70ms.
At this cost, dynamic reallocation becomes less attractive. The previously productive de-
lay range (10-20ms) can seriously degrade performance for some applications, although
dynamic reallocation continues to recover significant processing power for others.



6.5 Using Idle Periods to Run Interactive Jobs

The previous subsection has shown that idleness-based dynamic reallocation can im-
prove system performance, especially if incurred cache penalties are small and receiving
threads can effectively make use of short processing periods. For this reason, we spec-
ulate that it may be more profitable to reallocate an idle processor to an interactive
job rather than a parallel one. While current proposals for space-sharing systems that
address support of interactive work typically partition available processors into two
pools, one to run interactive jobs and one to run parallel jobs [34, 2], taking advantage
of processors idled by parallel jobs could reduce the size of the partition dedicated to
interactive work. Of interest to such schemes is whether idle periods occur often enough
to support the running of interactive jobs without degrading the response time observed
by interactive users.

Figure 11 plots idleness timelines, that is, “instantaneous idleness” against appli-
cation execution time. We show timelines for hand-coded applications running on 10
processors and compiler-parallelized applications running on 5 processors. Timelines for
different number of processors are similar to those shown. We observe that while hand-
coded applications can contain long compute periods between idle periods, compiler-
parallelized applications display almost continuous idleness. Thus, while we have not
yet pursued this proposal, it seems plausible that at least some of the support for in-
teractive computing could be provided by making use of temporarily idle processors
allocated to parallel jobs.

7 Conclusions

In this paper, we have presented measurements of the behavior of two distinct imple-
mentation classes of scientific applications on a shared-memory multiprocessor system.
Based on our measurements, we make the following observations:

– Significant differences exist in the speedup behavior of applications, supporting the
importance of work on scheduling policies that use speedup information to guide
scheduling decisions.

– For systems where a priori speedup information is not available, in many cases, it is
possible to characterize general application behavior using runtime measurements
of idleness, communication, and system overhead.

– On shared-memory systems, in order to reliably predict application speedups at
runtime, the scheduler must rely on information provided by the runtime system.

– Although most idle periods are too short to merit reallocation of the processor, for
some applications, long idle periods represent a significant fraction of execution
time. We have shown that, for these applications, imposing a short delay before
reallocating a processor when it goes idle is effective in filtering out the short idle
periods and recovering much of this idleness.
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