
Using Runtime Measured Workload Characteristics in Parallel
Processor Scheduling

Thu D. Nguyen, Raj Vaswani, and John Zahorjan
Department of Computer Science and Engineering, Box 352350

University of Washington, Seattle, WA 98195-2350 USA

Appears inJob Scheduling Strategies for Parallel Processing,Volume 1162 ofLecture Notes in Computer Science.
Springer-Verlag, 1996.

Abstract

We consider the use of runtime measured workload characteristics in parallel processor scheduling. Although many
researchers have considered the use of application characteristics in this domain, most of this work has assumed that such
information is availablea priori. In contrast, we propose and evaluate experimentally dynamic processor allocation policies
that rely on determining job characteristics at runtime; inparticular, we focus on measuring and using job efficiency and
speedup.

Our work is intended to be a first step towards the eventual development of production schedulers that use runtime
measured workload characteristics in making their decisions. We consider two distinct scheduling scenarios: interactive
systems, where minimizing response time is the goal, and batch systems, where maximizing useful instruction throughput is
the goal. In both these environments, our experimental results validate the following observations:

• Despite the inherent inaccuracies of runtime measurementsand the added overhead of more frequent reallocations,
schedulers that use runtime measurements of workload characteristics can significantly outperform schedulers that are
oblivious to these characteristics.

• Runtime measurements are sufficient for schedulers to achieve performance surprisingly close to that possible when
efficiency and speedup information is availablea priori.

• The primary performance loss, relative to the use ofa priori information, is due to the transient decisions of the sched-
ulers as they acquire information on the running applications, rather than to measurement and reallocation overheads.

Our experiments are performed using prototype implementations running on a 50-node KSR-2 shared memory multipro-
cessor.

This work was supported in part by the National Science Foundation (Grants CCR-9123308 and CCR-9200832) and the Washington Technology Center.

1

1 Introduction

We consider the use of runtime measured workload charac-
teristics in parallel processor scheduling. Although many
researchers have considered the use of application charac-
teristics in this domain, most of this work has assumed that
such information is availablea priori. While it is useful to
understand how to best schedule a set of jobs givena priori
information on their behaviors, in practice, it can be diffi-
cult to obtain and accurately specify such information. This
difficulty arises because of factors such as the sensitivity
of job performance to the input data set and to the relative
locations of allocated processors on the machine’s intercon-
nection network1.

As an example, consider the speedup of MP3D, an applica-
tion from the SPLASH [24] benchmark suite, when run on
the KSR-2 multiprocessor. The KSR-2 has an interconnec-
tion network that is a hierarchy of rings. The basic commu-
nication time between two rings is roughly four times that
for communication within any one [11]. Because of this,
MP3D, which has poor locality, achieves optimal speedup
at a number of processors that depends strongly on the lo-
cation of allocated processors. In particular, if all allocated
processors are located on the same ring, MP3D’s speedup
peaks at 12 processors. If allocated processors are split
across two rings, speedup peaks at 24 processors. Thus, in
the case where the user requests 12 processors, but the ones
allocated are spread across two rings, the achieved speedup
is only 2/3 that of the actual optimum. Similarly, if the user
requests 24 processors, but the ones allocated are all on one
ring, the achieved speedup is also less than optimal.

In this paper, we focus on gathering information about the
current workload at runtime and using this information to
make scheduling decisions; in particular, we measure and
use job efficiency and speedup. While at first glance, it
would appear that runtime measurements of job behaviors
are clearly useful, the actual situation is considerably more
complicated. The value of runtime measurements to par-
allel processor allocation policies depends critically onthe
answers to the following questions:

• How can speedup and efficiency be measured at run-
time with acceptably high accuracy and low over-
head?

• Do parallel applications have sufficiently stable char-
acteristics that their recent past is a good indicator of
the near future?

1Of course, supercomputer users running the same application repeat-
edly on similar data sets are accustomed to providing this information.
However, at the very least, this is an inconvenience. At the worst, appar-
ently insignificant changes in the data set may in fact have a substantial
effect on the optimum allocation, although this could go undetected by the
user.

• How can the measures taken when an application is
run on p processors be used to estimate its perfor-
mance when run onq?

• Do the costs of the potentially many reallocations
(which are inherent in this approach) required in the
search to find appropriate final allocations outweigh
the benefits?

Our goal is to help answer these questions. Taken in this
context, this paper describes work intended to address the
way in which future realizable schedulers might make use
of information gathered at runtime, focusing particularlyon
job efficiency and speedup.

We begin by presenting a scheme that allows the runtime
measurement of efficiency and speedup at low overhead.
We then examine two distinct scheduling scenarios: inter-
active systems, where minimizing response time is the goal,
and batch systems, where maximizing the rate at which use-
ful work is completed is the goal. Both kinds of computing
already have significant roles on existing large scale parallel
platforms [7]. For the interactive environment, we proposea
scheduler that uses measured speedups to adjust the proces-
sor allocation of each running job, attempting to maximize
job speedup. For batch environments, we propose a sched-
uler that uses measured efficiencies to allocate processorsin
such a way as tomaximize system efficiency.

We have implemented prototypes of both schedulers on a
50-node KSR-2. We evaluate the effectiveness of these pro-
totypes using workload mixes comprised of hand-coded par-
allel applications from the SPLASH [24] benchmark suite
and compiler-parallelized applications from the PERFECT
Club [2] benchmark suite. Our central result is that the use
of runtime measurements can improve system performance
substantially, despite the inevitable noise in the gathered
data and the associated overheads. Furthermore, schedulers
that use runtime measurements can achieve performance
surprisingly close to that possible when efficiency and
speedup information is availablea priori.

The remainder of the paper is organized as follows. In the
next section, we discuss related work. Section 3 describes
our technique for measuring job efficiency and speedup at
runtime. Section 4 describes and evaluates a response-time
oriented scheduler that makes use of these measurements.
In Section 5, we turn to the problem of maximizing the com-
pletion rate of batch work, again proposing a policy that em-
ploys runtime measurements and evaluating its performance
experimentally. Section 6 concludes our work.

2

2 Related Work

As previously mentioned, many researchers have studied
the use of application characteristics by processor sched-
ulers of multiprogrammed multiprocessor systems. Majum-
dar et al. [13], Chiang et al. [3], Leutenegger and Vernon
[12], Sevcik [22, 23], Ghosal et al. [9], Rosti et al. [21] and
others have proposed using application characteristics such
as speedup, average parallelism, and processor working set
to improve the performance of static processor schedulers.
More recently, Guha [10] has proposed that application char-
acteristics such as efficiency and execution time can also
be used profitably by dynamic processor schedulers. All
of these studies, however, assume that accurate historical
performance data is provided to the scheduler at job sub-
mission time. In contrast, we concentrate on using recently
measured characteristics of running jobs to optimize perfor-
mance for the specific workload in execution.

McCann et al. [15] have proposed a dynamic scheduler that
uses application-provided runtime idleness information to
dynamically adjust processor allocations to improve proces-
sor utilization. This work differs from ours in two respects:
(1) we consider all sources of inefficiency as opposed to just
idleness, and (2) McCann et al.’s scheduler attempts to real-
locate processors at a much finer grain than does ours. Thus,
the effectiveness of their scheduler is dependent on the ex-
istence of application idle periods that are long relative to
processor reallocation overheads.

Feitelson and Rudolph [8] take a similar approach to ours,
proposing to dynamically gather information about commu-
nicating sets of processes in an attempt to relax the con-
straints of co-scheduling. Sobalvarro and Weihl [25] also
propose several ways to use runtime identification of sets
of communicating processes to relax the constraints of co-
scheduling.

3 Measuring Job Efficiency and
Speedup at Runtime

3.1 Measuring Efficiency and Speedup

The basic parallel job characteristics we wish to exploit are
efficiency and speedup. While these measures are normally
applied to the complete execution of an application (for ex-
ample, speedup onP processors is the job completion time
when run onP processors divided by the job completion
time when run on a single processor), we take a more short-
term view in our work. In particular, we wish to measure
efficiency and speedup over the fairly short-term past, with
the intention of relying on it as a predictor of the near-term
future. We therefore use the terms efficiency and speedup

in this more instantaneous sense.

While efficiency and speedup are intimately related, in prac-
tice, efficiency is rather easily measured, whereas speedup
is not. Thus, we only measure efficiency, or more precisely,
we measure the inefficiencies due to overheads and subtract
them from 1.0. Then, when necessary, we calculate speedup
using:

Speedup(p) = Efficiency(p) ∗ p (1)

It is well known that loss of efficiency in shared memory
systems arises from a combination ofidleness(e.g, load im-
balances, synchronization constraints, and sequential por-
tions of execution),communication, system overhead(e.g.,
page faults and clock interrupts), andparallelization over-
head(e.g., per-processor initialization, work partitioning,
and synchronization). Of these four sources of loss of ef-
ficiency, it is particularly difficult to measure paralleliza-
tion overhead for hand-coded applications because initial-
ization, work partitioning, and synchronization code are typ-
ically embedded directly in normal application code. For-
tunately, our experience with a wide variety of benchmark
programs shows that parallelization overhead is typically
small [18]. Thus, we require only estimates of the first three
components (idleness, communication, and system
overhead) to accurately assess efficiency.

On the KSR-2, we rely on a combination of hardware and
software support to measure inefficiencies. Each node in the
KSR-2 has a hardware monitoring unit that maintains three
critical user-readable hardware counters: elapsed wall-clock
time, elapsed user-mode execution time, and accumulated
processor stall2. Measuring communication and system over-
head involves little more than periodically reading these
counters. Measuring idleness is slightly more involved; we
instrument all synchronization code in our runtime systems
(KSR PRESTO [11] and CThreads [4]) to keep track of
elapsed idle time using the wall-clock hardware counter.
This idleness measurement scheme is relatively overhead
free because idleness accounting is performed mostly when
the processor would otherwise be idle. Of course, this ap-
proach assumes that all application synchronization takes
place through calls to the PRESTO and CThreads libraries
rather than through direct manipulation of shared variables.
We did not, however, have to modify our applications to
meet this assumption; none of our hand-coded programs vi-
olated this assumption while all synchronization in compiler-
parallelized applications by definition takes place in the
PRESTO runtime system.

2On shared memory systems such as the KSR-2, communication isre-
quired whenever data does not currently reside in the local cache, or is not
in an appropriate state. Processors in many systems stall inthis situation;
that is, they execute no instructions until the remote data becomes avail-
able. Thus, processor stall corresponds to communication cost. On mes-
sage passing machines, measuring performance loss due to communication
would be even more straightforward, requiring only software support.

3

3.2 Measurement Interval

As will be seen below, in order for our runtime measure-
ments to be useful, it is essential that comparisons of effi-
ciency and speedup measurements made at different proces-
sor allocations be meaningful. Sinceinstantaneousspeedup
reflects the characteristic of only a small section of the full
application code, performing such comparisons can be prob-
lematic. This difficulty could be resolved by measuring
efficiencies and speedups over relatively long intervals of
time. Unfortunately, this approach has two disadvantages:
(1) it would be difficult to determine what constitutes a suf-
ficiently long period for an arbitrary application; and (2)
long measurement intervals increase the latency of the sched-
uler in responding to changes.

Thus, we instead exploit a characteristic shared by a large
variety of scientific parallel applications. In particular, we
currently consider onlyiterative parallel applications. An
iterative application is one in which the majority of the exe-
cution is driven by a sequential loop (whose bodies may be
entirely general, involving the execution of many parallel
phases, subroutine calls, etc.)3. Empirical evidence shows
that successive iterations tend to behave similarly, so that
measurements taken for a particular iteration are good pre-
dictors of near future behavior [18]. Thus, for such appli-
cations, we equate a measurement interval to an application
iteration, providing a basis by which to reasonably com-
pare a job’s performance as its processor allocation is var-
ied. Note, however, that in general, our approach does not
require applications to be iterative. At a minimum, what
we do require is that there be some identifiable point in the
application’s execution where it can indicate that a unit of
work has been completed. For example, in a fairly coarse-
grained application employing user-level threads as the ba-
sis of parallel execution, a work unit might be defined to be
the work between the kernel thread’s dequeuing and subse-
quent enqueuing (or termination) of a user-level thread.

4 Interactive Environments: Improv-
ing Response Time

In this section, we describe and evaluate a scheduling pol-
icy designed to improve response time in interactive envi-
ronments through the use of runtime gathered job charac-
teristics.

3In [18], we found that five of the ten SPLASH applications and all
seven of the Perfect Club applications we could compile wereiterative.

4.1 Policies

To evaluate whether runtime measurements can be used ben-
eficially by a scheduler, we compare the multiprogramming
performance of the following three policies:

EQUI: The basic scheduling policy on which we build is
dynamic equipartition [26]. Under EQUI, each currently
executing job is allocated an equal number of processors.
Processor reallocations take place at job arrival and depar-
ture times. EQUI is representative of the space sharing ap-
proach to processor allocation that has been found to per-
form well for multiprogrammed shared-memory multipro-
cessors [26, 15].

ST-EQUI: At the highest level, the specific policy we pro-
pose to take advantage of runtime estimated speedup al-
locates an equal number of processors to each executing
job, just as with EQUI. However, each time a reallocation
takes place, each affected job engages in aself-tuningproce-
dure [17] to estimate how many of its allocated processors
should actually be used to maximize its current speedup.
(We briefly describe self-tuning in Section 4.2.) It is well-
known that many applications do not speed up monotoni-
cally with the number of allocated processors; instead, they
slow down when executed on more processors than they can
use efficiently. Thus, it is reasonable to expect such jobs to
release excess processors because they have no incentive to
keep them. Additionally, in any system that charges for re-
source use, there is a positive incentive to release excess
resources. When one or more jobs release processors back
to the system, the scheduler reallocates these processors as
equally as possible among those jobs that can profitably
make use of more than their fair share. A job that gives
up processors can later ask for them back if its speedup
changes.

AP-EQUI: AP-EQUI is similar to ST-EQUI, except that it
usesa priori information on job speedup rather than run-
time estimates. Given this information, AP-EQUI needs
to reallocate processors only at job arrival and departure
times. When reallocating processors, it gives each job no
more processors than the number that maximizes that job’s
speedup.

It is intuitively clear that AP-EQUI should outperform ST-
EQUI. Distinctions in performance between AP-EQUI and
ST-EQUI serve to illustrate the impact of errors in our run-
time measurements, as well as the overhead of more fre-
quent reallocations and dynamic self-tuning.

The case is less clear for EQUI and ST-EQUI. ST-EQUI can
outperform EQUI when one or more jobs determine that
they are better off using fewer than their fair share of pro-
cessors and release excess processors back to the system.
On the other hand, EQUI can outperform ST-EQUI because
ST-EQUI can be expected to reallocate processors much

4

more frequently than EQUI, thereby incurring much greater
reallocation overhead. Furthermore, under ST-EQUI, all
jobs incur the cost of self-tuning, even when all jobs want
their fair share of processors. To better understand this new
source of overhead, we next present the self-tuning proce-
dure in somewhat more detail.

4.2 Self-Tuning

In this section, we present a brief overview of self-tuning.
Comprehensive details can be found in [17], which exam-
ines the use of this technique in a static (essentially unipro-
gramming) environment.

Self-tuning is an online search technique that allows a par-
allel job to: (a) dynamically measure its efficiencies at dif-
ferent allocations, (b) use these measurements to estimate
speedups, and (c) automatically adjust its allocation to max-
imize its speedup. Our current implementation of self-tuning
employs a heuristic-based optimization technique that is an
adaptation ofthe method of golden sections(MGS) [16]
to find the best allocation. MGS is a simple optimization
procedure that finds the maximum of a unimodal function
over a finite interval by iteratively computing and compar-
ing function values and narrowing the interval in which the
maximum may occur4. In our case, the function to be maxi-
mized is job speedup. A job that is self-tuning computes the
function value atp by running a single iteration usingp pro-
cessors, measuring the resulting efficiency, and calculating
speedup using equation 1 (Section 3.1).

There are two basic problems we must address in using
MGS for self-tuning. The first is that speedup functions
are not, in general, unimodal. We address this using a sim-
ple, greedy heuristic. When the results of speedup eval-
uations in the current interval of interest demonstrate that
speedup is not unimodal, we reduce the interval of interest
to the largest subinterval that contains the currently known
maximum speedup and for which the known speedup val-
ues are conformal with a unimodal function. While this
heuristic does not guarantee that self-tuning will always find
the global maximum, the experiments in [17] show that this
procedure works remarkably well, almost always converg-
ing to a near optimal value.

The second problem we face is one of efficiency. Given
an initial allocation ofP processors, MGS normally starts
searching within the the interval[1, P]. While MGS con-
verges relatively quickly (O(log(P)) steps are required),
the cost of individual probes can be quite large if the job has
poor speedup at the probed number of processors. We ad-
dress this by exploiting the fact that, in our system, speedup

4For our purposes, a functionf(x) is unimodal over an interval[a, b]
if there is somex∗ ∈ [a, b] such thatf(x) is monotone non-decreasing in
[a, x∗] and monotone non-increasing in[x∗, b]

atP processors cannot be greater thanP 5. In particular, we
begin self-tuning by executing one application iteration us-
ing allP processors available to the application. This allows
us to estimateS(P), the job’s speedup withP processors.
Since speedups at numbers of processors less thanS(P)
must be less thanS(P), we know that the globally best
number of processors must fall in[S(P), P]. Our search
therefore starts in this interval instead of[1, P]. For appli-
cations with good speedup, the interval[S(P), P] will typ-
ically be small, allowing self-tuning to be performed with
little overhead. For applications with poor speedup but only
modest slowdown, speedup will be similar at all points be-
tween[1, P] and so, again, self-tuning can be carried out
with little overhead. Only in the case where an application
initially achieves good speedup but then slows down signif-
icantly as its allocation grows does self-tuning incur signifi-
cant overhead. In this case, for largeP , S(P) is likely to be
small, resulting in a large initial search interval[S(P), P].
Furthermore, measuring speedup can be expensive at large
(close toP) and small (close to1) allocations.

4.3 Workload

As explained in Section 1, we are interested in a diverse
workload composed of both hand-coded parallel (SPLASH)
and compiler-parallelized sequential (PERFECT Club) ap-
plications.

Our previous detailed study of these applications [18] sug-
gests that they can be divided into three broad classes:

• Good speedup.Most of the hand-coded applications
fall into this class, which is characterized by fairly
good speedup that mostly rises monotonically as the
job receives more processors. Some of these applica-
tions exhibit modest slowdown beyond a certain num-
ber of allocated processors.

• Poor speedup.Almost all of the compiler-parallelized
applications fall into this class, which is character-
ized by nearly negligible speedup at most processor
values. Most of these applications exhibit significant
slowdown beyond a certain number of allocated pro-
cessors.

• Erratic speedup.This class consists of applications
whose speedup is irregular, e.g., it varies over time
or exhibits multiple local maxima. Such behavior
can be observed in both hand-coded and compiler-
parallelized applications [18].

Because it is infeasible to run experiments with all possi-
ble combinations from our benchmark suites, we instead

5This property holds because we estimate efficiency by measuring in-
efficiencies and subtracting them from 1.0.

5

0
5

10
15
20
25
30
35
40
45
50

0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

Number of Processors

Barnes (Sequential execution time = 5600 secs)

Barnes speedup

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

Number of Processors

FLO52 (Sequential execution time = 375 secs)

FLO52 speedup

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30 35 40 45 50

S
pe

ed
up

Number of Processors

MP3D (Sequential execution time = 250 secs)

MP3D speedup

Figure 1:Speedup Characteristics of the Representative Jobs

use our taxonomy to reduce the number of jobs that must
be considered, selecting a single representative application
from each of the three classes. In particular, we chose the
application exhibiting the best speedup from each class:
Barnes from the SPLASH suite to exemplify good speedup,
FLO52 from the PERFECT Club suite to exemplify poor
speedup, and MP3D from the SPLASH suite to exemplify
erratic speedup6. The measured speedup curves for these
applications are given in Figure 1.

Next, we chose to set a maximum multiprogramming level
of four, reasoning that (a) given our 50-processor machine,
higher multiprogramming levels would increase processor
demand to an extent that would render allocation decisions
trivial, and (b) such a limit is prevalent in practice since
memory constraints dictate that only a relatively small num-
ber of jobs can be allowed to run concurrently. This decision
is supported by the measurements in [7], which indicate that
multiprogramming levels of 2, 3, and 4 are the three most
common during daytime hours in a production environment.

Note that in the work presented here, we do not address
the question of which jobs should be activated when there
are more jobs than the desired level of multiprogramming.
Rather, we assume that some other mechanism, such as
the feedback scheduling employed in sequential systems, is
used for this purpose. (Parsons and Sevcik [19] present the
design and evaluation of two such schemes, for example.)
We consider the workload mix we schedule to be the subset
of a larger job mix chosen for current execution by such a
mechanism.

4.4 Implementation

At the user-level, we implementprocess controlto avoid
loss of efficiency due to mismatches between threads and
processors [26]. One limitation of our quick conversion of
the benchmark programs, though, is that we have imple-
mented application level dynamic scheduling only at itera-

6We show in [17] that self-tuning is effective for a much larger number
of applications than the 3 representative applications used in this study.

tion boundaries; the applications examine and adjust to the
number of available processors each time they begin an it-
eration, but do not do so while executing any one iteration.
It is clearly possible to do much more dynamic scheduling,
e.g., [20, 1, 6, 14]; we did not do so because of the very
large incremental implementation cost relative to our more
restrictive change, and because we expect that ST-EQUI
would perform even better when jobs are more responsive
to changes in their allocations. (Of the three policies, ST-
EQUI reallocates processors most frequently, and is there-
fore most sensitive to the latency with which applications
can respond to changing allocations.)

We have implemented the code required to perform self-
tuning in the CThreads library. Thus, the self-tuning pro-
cedure is independent of the specific application to be run.
Additionally, there is little code development overhead in-
volved in using it; we merely depend on the application to
call into our library at the beginning of each iteration.

4.5 Performance

Given the three representative applications and a maximum
multiprogramming level of four, we constructed and evalu-
ated all 31 of the possible static workload mixes containing
more than a single job type. Figures 2–4 depict the per-
formance of 16 representative samples of the 31 workload
mixes under the EQUI and ST-EQUI policies for multipro-
gramming levels 2, 3, and 4 respectively. Response times
under these two policies are shown normalized to those un-
der AP-EQUI (the horizontal line on each graph). These
results lead us to the following observations:

• The policy using runtime measurement (ST-EQUI) out-
performs the similar policy that does not (EQUI).

This effect arises because all jobs can benefit by par-
ticipating in cooperative processor allocation. In sce-
narios with high demand for processors (e.g., all jobs
request their equipartition share), ST-EQUI behaves
exactly as does EQUI, so its performance is no worse.
However, in scenarios with more complex processor

6

 barnes
 barnes

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Response Time

 barnes
 m

p3d

0.0 0.5 1.0 1.5

Normalized Response Time

 barnes
 flo52

0.0 0.5 1.0 1.5 2.0 2.5

Normalized Response Time

 flo52
 m

p3d

0.0 0.5 1.0 1.5 2.0

Normalized Response Time

F
ig

u
re

2
:R

e
sp

o
n

se
Tim

e
R

e
su

lts
a

tM
u

ltip
rog

ra
m

m
in

g
L
eve

l=
2

.
(G

rey
b

a
rs

a
re

re
su

lts
fo

r
E

Q
U

I;b
la

ck
b

a
rs

a
re

re
su

lts
fo

r
S

T-E
Q

U
I.R

e
su

lts
a

re
n

o
rm

a
lize

d
w

ith
re

sp
e

ctto
A

P
-E

Q
U

I.)

 barnes
 barnes

 flo52

0.0 0.5 1.0 1.5

Normalized Response Time

 barnes
 barnes

 m
p3d

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Normalized Response Time

 barnes
 m

p3d
 m

p3d

0.0 0.4 0.8 1.2

Normalized Response Time

 flo52
 flo52

 m
p3d

0.0 0.5 1.0 1.5 2.0

Normalized Response Time

 flo52
 m

p3d
 m

p3d

0.0 0.5 1.0 1.5 2.0

Normalized Response Time

 m
p3d

 m
p3d

 m
p3d

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Normalized Response Time

F
ig

u
re

3
:R

e
sp

o
n

se
Tim

e
R

e
su

lts
a

tM
u

ltip
rog

ra
m

m
in

g
L
eve

l=
3

.
(G

rey
b

a
rs

a
re

re
su

lts
fo

r
E

Q
U

I;b
la

ck
b

a
rs

a
re

re
su

lts
fo

r
S

T-E
Q

U
I.R

e
su

lts
a

re
n

o
rm

a
lize

d
w

ith
re

sp
e

ctto
A

P
-E

Q
U

I.)

7

 barnes barnes barnes flo52

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes barnes barnes mp3d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes barnes flo52 flo52

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes barnes mp3d mp3d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes flo52 flo52 mp3d

0.
0

0.
5

1.
0

1.
5

2.
0

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

 barnes flo52 mp3d mp3d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

N
or

m
al

iz
ed

 R
es

po
ns

e
T

im
e

Figure 4:Response Time Results at Multiprogramming Level = 4. (Grey bars are results for EQUI; black bars are results for
ST-EQUI. Results are normalized with respect to AP-EQUI.)

demands, ST-EQUI performs much better than does
EQUI; jobs that start to slow down at allocations
smaller than their EQUI-allocations run faster by shed-
ding excess processors while jobs exhibiting good
speedup gain these extra processors to run faster as
well.

• The policy using runtime measurements (ST-EQUI)
performs nearly as well as the policy that usesa priori
speedup information (AP-EQUI) in most cases.

While there are some noticeable distinctions in the
performance obtained by individual applications un-
der ST-EQUI and AP-EQUI, in general, the two
achieve performance that is roughly equivalent. This
is especially true when one considers the workload
mix as a whole: while the two policies discriminate
among the individual jobs somewhat differently, fre-
quently worse performance for one application is off-
set by better performance for another.

• The performance distinctions between the policy that
uses runtime measurements (ST-EQUI) and the policy
that usesa priori information (AP-EQUI) result from
costs associated with transient allocations.

Detailed examination of the decisions made by the
two policies shows that ST-EQUI converges to a set
of allocations with no or insignificant performance

distinctions from those under AP-EQUI. This shows
that, at least for the applications we examined, neither
inaccuracies in the runtime measurements nor the in-
ability of the search procedure to find appropriate al-
locations is a serious problem.

The primary cost of using runtime measurements in
ST-EQUI relative to relying on perfecta priori infor-
mation, as in AP-EQUI, is the penalty imposed by the
sometimes poor allocations made during ST-EQUI’s
search. If the search procedure allocates too many
processors to an application that exhibits significant
slowdown, that application is affected directly by the
resulting long self-tuning time. Additionally, other
applications may suffer an opportunity cost, since they
do not have access to the excess processors until the
application determines that it was allocated too many.

4.6 Summary

We have shown that ST-EQUI, a policy that gathers and uses
runtime information on application performance, clearly out-
performs EQUI, a similar policy that does not make use of
runtime information. ST-EQUI is fair in the sense that it
does not discriminate among job classes; it simply responds
to jobs’ requests to release/acquire processors, giving each
job equal weight in its attempt to minimize response time.

8

Because of this, ST-EQUI easily accommodates jobs that
do not self-tune, since they receive allocations equivalent to
those provided under EQUI.

In the next section, we explore schedulers that relax fairness
in the interest of maximizing overall system efficiency for
batch environments.

5 Batch Environments: Improving
System Efficiency

In batch environments, such as are common for overnight
runs of large parallel applications, the critical performance
measure is not response time, but rather the rate at which
useful work can be completed; the higher this rate, the larger
the workload that can be processed in a fixed amount of
time. In these environments, the goal of the scheduler is to
maximizesystem efficiency, the sum of the efficiencies of
all processors. In this section, we describe and evaluate a
scheduling policy, EQUAL-EFF, that relaxes fairness in the
interest of maximizing throughput.

5.1 The EQUAL-EFF Policy

The scheme we present below is motivated by considera-
tion of how a scheduler designed to maximize system ef-
ficiency could be built in practice. It seems clear that any
such allocation policy must reward applications exhibiting
good efficiencies by allocating them many processors, and
penalize those with bad efficiencies by allocating them only
a few. An appealing structure for accomplishing this is to
run all jobs for some quantum, measure their efficiencies,
transfer processors from low efficiency to high efficiency
applications, and then repeat the process. One advantage
of this approach is its simplicity: it relies on only the re-
cent efficiency measurements, which are easily and reliably
obtainable, and so does not require knowledge of the full
efficiency curves. Furthermore, we expect such a scheme to
stabilize quickly to a set of reasonable allocations, and then
to perform only a very modest rate of reallocations in the
steady state.

Our early experiments with schedulers of this sort presented
us with a set of problems that did not seem fundamentally
difficult in the abstract, but which frustrated our attemptsto
build such a scheduler in practice. In particular, we needed
a reliable way to decide whether or not the transfer of one
or more processors from a job running with low efficiency
to one running with high efficiency was merited. Further-
more, we needed a way to deal with the local irregularities
found in real efficiency curves. While both these problems
could be addressed by performing a thorough search of al-
location choices, the transient poor allocations involvedin

such searches can make them quite expensive.

Instead of performing thorough searches of the allocation
space, we choose another approach, which we present as
a first step in understanding how to solve these problems.
First, to address the local irregularities in the efficiencycurve,
we use an artificial curve extrapolated from the most re-
cently measured efficiency. In particular, having just mea-
sured the efficiency of an application onP processors to be
ǫ, we use the functionEfficiency(p) = (1 + β)/(p + β)
[5], choosingβ so that the function evaluates toǫ atp = P .

Next, we determine allocations by following anequal ef-
ficiencyrule; that is, we allocate processors in a way that
causes all applications to have about equal efficiencies ac-
cording to our extrapolated curves7. In particular, we com-
pute allocations in a simple, greedy way: we initially assign
a single processor to each application, and then assign re-
maining processors one by one to the application with the
currently highest (extrapolated) efficiency. The number of
processors actually allocated to the jobs are then adjustedto
match the newly computed allocation. We call this policy
EQUAL-EFF.

In what follows, we present two sets of results. The first set
is based on simulations, and is intended to show whether
allocations based on equal-efficiency according to extrapo-
lated efficiency curves come close to the goal of maximiz-
ing system efficiency. The second set of results is based on
measurements of a prototype implementation, and so takes
into account the inaccuracies inherent in the measurement
process and the overheads involved in reallocating proces-
sors.

5.2 Evaluating the Inherent Effectiveness of
EQUAL-EFF

Recall that our goal is to maximize system efficiency, but
that we propose to do so by using extrapolated efficiency
curves to determine allocations that result in nearly equal
application efficiencies. In this subsection, we use simu-
lations to determine whether such a procedure can come
close to achieving our goal under the optimistic assump-
tions that measured efficiency information is perfectly reli-
able and that processor reallocation cost is negligible.

The inputs to the simulations are the measured application
efficiency curves; the outputs are total system efficiencies.
Given a set of jobs, our simulator begins by allocating avail-
able processors (nearly) equally. It then iteratively uses
measured job efficiencies for the current allocation to derive
extrapolated efficiency curves and follows EQUAL-EFF’s

7Setting equal efficiency as a goal is a heuristic that is compatible with
the scheduling structure described at the beginning of thissubsection, a
structure to which we plan to return. We address how well thisheuristic
does in achieving maximum system efficiency in the next subsection.

9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-Barnes-FLO52

OPT-EFF
EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-FLO52-FLO52

OPT-EFF
EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-FLO52-MP3D

OPT-EFF
EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-MP3D-MP3D

OPT-EFF
EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-FLO52

OPT-EFF
EQUAL-EFF

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40 45 50

S
ys

te
m

 E
ffi

ci
en

cy

Number of Processors

Barnes-MP3D

OPT-EFF
EQUAL-EFF

Figure 5:Modeled Results for EQUAL-EFF and OPT-EFF

allocation scheme to compute the next allocation. This pro-
cess continues until successive allocations are identical. (It
is not at all clear that this iterative process must always con-
verge; however, in practice we did not encounter conver-
gence problems.) This final allocation is used to compute
system efficiency.

We compare the system efficiencies resulting from this pro-
cess with the maximum possible system efficiencies. We
compute the latter using a simple dynamic programming
procedure that takes the full, measured efficiency curves as
its input. We call the policy that makes these allocations
OPT-EFF.

Figure 5 plots the system efficiencies obtained by these sim-
ulations against the total number of processors in the system
for a representative set of workload mixes, as well as the
optimal system efficiencies computed for OPT-EFF. In all
cases, the greedy scheme employed by EQUAL-EFF comes
very close to the optimum, with the largest differences oc-
curring at very small numbers of processors. Furthermore,
much of this difference is caused by local irregularities in
actual efficiency curves. Results from simulations that use
smooth theoretical speedup curves show even smaller per-
formance differences.

Based on the results of this simple model, we were moti-
vated to continue to the prototype implementation of
EQUAL-EFF. The results obtained from experiments with
that prototype are presented next.

5.3 Experimental Performance Results

We evaluate the use of runtime measured job characteristics
in improving scheduling in a batch environment by consid-
ering four related policies:

• EQUI. The basic dynamic equipartition policy (Sec-
tion 4.1).

• EQUAL-EFF. The equal efficiency heuristic policy
(Section 5.1).

• ST-EQUI. The self-tuned equipartition algorithm,
which was designed to reduce response times (Sec-
tion 4.1).

• ST-EQUAL-EFF. The EQUAL-EFF policy with the
addition that each job also engages in self-tuning, re-
leasing processors when it determines that it has been
assigned more than it can profitably use.

The performance results under these policies are compared
against those predicted by OPT-EFF. Because OPT-EFF is
computed off-line, it does not capture any of the overheads
that are inevitable in scheduling in practice, exaggerating its
optimism.

We assessed performance with workloads composed of the
same representative jobs as were used in Section 4. How-
ever, we used a single multiprogramming level of 3 in all ex-
periments (a reduction from the maximum of 4 considered

10

EQUI EQUAL-EFF ST-EQUI ST-EQUAL-EFF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes barnes flo52

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

EQUI EQUAL-EFF ST-EQUI ST-EQUAL-EFF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes barnes mp3d

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

EQUI EQUAL-EFF ST-EQUI ST-EQUAL-EFF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes flo52 flo52

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

EQUI EQUAL-EFF ST-EQUI ST-EQUAL-EFF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes mp3d mp3d

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

EQUI EQUAL-EFF ST-EQUI ST-EQUAL-EFF

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

barnes flo52 mp3d

N
or

m
al

iz
ed

 S
ys

te
m

 E
ffi

ci
en

cy

Figure 6:System Efficiency Results (Multiprogramming level = 3; results are normalized with respect to OPT-EFF).

Load Job EQUI EQUAL-EFF ST-EQUI ST-EQUAL-EFF
Barnes-Barnes-FLO52 Barnes 0.32 0.44 0.43 0.44

FLO52 0.05 0.22 0.31 0.23
Barnes-Barnes-MP3D Barnes 0.35 0.44 0.37 0.44

MP3D 0.30 0.22 0.32 0.21
Barnes-FLO52-FLO52 Barnes 0.21 0.31 0.24 0.29

FLO52 0.30 0.41 0.53 0.46
Barnes-MP3D-MP3D Barnes 0.18 0.28 0.23 0.36

MP3D 0.55 0.44 0.63 0.36
Barnes-FLO52-MP3D Barnes 0.23 0.31 0.23 0.29

FLO52 0.14 0.20 0.27 0.23
MP3D 0.31 0.23 0.33 0.26

Table 1:Job Throughput Rates (jobs/ minute).

11

for the interactive environment) to reflect the likely larger
size of jobs submitted for batch execution. (This change is
supported by the measurements in [7].) Additionally, we
present here results only for those workloads that include
a Barnes job, the representative from the class of jobs hav-
ing good speedup. Workloads without Barnes are relatively
uninteresting, as there are 50/3 processors available to each
job under simple equipartition, and this number exceeds the
number that can be used profitably by the other two repre-
sentative jobs in our mixes. For this reason, as well as space
limitations, we omit these results in what follows.

Figure 6 presents the experimental results we obtained.
From them, we draw conclusions similar to those in Sec-
tion 4.5:

• Policies using runtime measurements can greatly out-
perform those without access to such information.

This is supported by comparing the results for
EQUAL-EFF, ST-EQUI, and ST-EQUAL-EFF schedul-
ing to those for EQUI.

• Equal-efficiency-based policies outperform
Equipartition-based policies.

This is supported by comparing the results for EQUAL-
EFF and ST-EQUAL-EFF to those for ST-EQUI.

• Policies using runtime measurements can approach
the performance of policies with access toa priorief-
ficiency information.

For all workloads, the performance of the equal effi-
ciency policies is within 20% of those for the overly
optimistic OPT-EFF.

• The primary policy-induced loss of efficiency is the
cost associated with the allocation search procedure.

In the cases where EQUAL-EFF and ST-EQUAL-EFF
fail to approach closely the (theoretical) optimal per-
formance of OPT-EFF, further examination revealed
that it was because of the overhead associated with
our search procedure, rather than because the search
was settling on poor final allocation choices.

Because the EQUAL-EFF policy attempts to maximize
throughput without regard to fairness, it is natural to won-
der if jobs with poor speedup characteristics are starved un-
der this discipline. Table 1 shows the job throughput rates
(in jobs/minute) for each job class under our test work-
load mixes. If starvation were a problem in practice, we
would expect to see sharp drops in throughput for FLO52
and MP3D when comparing an equal efficiency policy to
an equipartition policy. The fact that this does not happen is
a reflection of the equal efficiency policies’ guarantee that
every job be given at least one processor.

6 Conclusions

Our goal in this paper was to determine if parallel processor
allocation policies could beneficially exploit runtime mea-
surements of application performance. If so, such runtime
characterization could replace a reliance ona priori specifi-
cation of job characteristics, a time-consuming and possibly
error-prone task, or could supplement the use ofa priori in-
formation when available.

For a number of reasons, it was not obvious whether run-
time measurements would be useful to parallel schedulers.
To explore these issues, we have formulated policies that
make use of runtime measurements for both interactive and
batch oriented environments. Our experimental results show
that schedulers that use runtime measurements of workload
characteristics can significantly outperform schedulers that
are oblivious to these characteristics. Furthermore, these
schedulers can achieve performance surprisingly close to
that possible when efficiency and speedup information is
availablea priori. Given the convenience of these policies
for the users of the system, their resilience to changes in
program behavior due to phase changes within a single run
or to changes in datasets between runs, their good perfor-
mance, and the evidence from our prototypes that practical
implementations are possible, we believe that the availabil-
ity of runtime measurements is an important factor to be
considered in designing parallel processor allocation poli-
cies.

Acknowledgments

Mary Vernon provided insightful comments that helped with
both the content and presentation of this work.

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism.ACM Transac-
tions on Computer Systems, 10(1):53–79, Feb. 1992.

[2] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang,
L. Pointer, R. Roloff, A. Sameh, E. Clementi, S. Chin,
D. Schneider, G. Fox, P. Messina, D. Walker, C. Hsiung,
J. Scharzmeier, K. Lue, S. Orszag, F. Seidl, O. Johnson,
R. Goodrum, and J. Martin. The PERFECT Club Bench-
marks: Effective Performance Evaluation of Supercomput-
ers. The International Journal of Supercomputer Applica-
tions, 3(3):5–40, 1989.

[3] S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use
of Application Characteristics and Limited Preemption for
Run-To-Completion Parallel Processor Scheduling Policies.

12

In Proceedings of the ACM SIGMETRICS Conference, pages
33–44, May 1994.

[4] E. C. Cooper and R. P. Draves. C Threads. Technical Re-
port CMU-CS-88-154, Department of Computer Science,
Carnegie-Mellon University, June 1988.

[5] L. Dowdy. On the Partitioning of Multiprocessor Systems.
Technical report, Vanderbilt University, June 1988.

[6] D. L. Eager and J. Zahorjan. Chores: Enhanced Run-
Time Support for Shared-Memory Parallel Computing.ACM
Transactions on Computer Systems, 11(1):1–32, Feb. 1993.

[7] D. G. Feitelson and B. Nitzberg. Job Characteristics of a
Production Parallel Scientific Workload on the NASA Ames
iPSC/860. InProceedings of the IPPS’95 Workshop on Job
Scheduling Strategies for Parallel Processing, pages 337–
360, Apr. 1995.

[8] D. G. Feitelson and L. Rudolph. Coscheduling Based on
Runtime Identification of Activity Working Sets. Inter-
national Journal of Parallel Programming, 23(2):135–160,
Apr. 1995.

[9] D. Ghosal, G. Serazzi, and S. Tripathi. The Processor Work-
ing Set and Its Use in Scheduling Multiprocessor Systems.
IEEE Transactions on Software Engineering, 17(5):443–
453, May 1991.

[10] K. Guha. Using Parallel Program Characteristics in Dy-
namic Processor Allocation Policies. Technical Report CS-
95-03, Department of Computer Science, York University,
May 1995.

[11] Kendall Square Research Inc., 170 Tracer Lane, Waltham,
MA 02154. KSR/Series Principles of Operation, 1994.

[12] S. T. Leutenegger and M. K. Vernon. The Performance of
Multiprogrammed Multiprocessor Scheduling Policies. In
Proceedings of the ACM SIGMETRICS Conference, pages
226–236, May 1990.

[13] S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in
Multiprogrammed Parallel Systems. InProceedings of the
ACM SIGMETRICS Conference, pages 104–113, May 1988.

[14] E. P. Markatos and T. J. LeBlanc. Using Processor Affinity in
Loop Scheduling on Shared-Memory Multiprocessors.IEEE
Transactions on Parallel and Distributed Systems, 5(4):379–
400, Apr. 1994.

[15] C. McCann, R. Vaswani, and J. Zahorjan. A Dynamic
Processor Allocation Policy for Multiprogrammed Shared-
Memory Multiprocessors.ACM Transactions on Computer
Systems, 11(2):146–178, May 1993.

[16] G. P. McCormick.Nonlinear Programming. John Wiley &
Sons, Inc., 1983.

[17] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Maximizing
Speedup Through Self-Tuning of Processor Allocation. In
Proceedings of the 10th International Parallel Processing
Symposium, pages 463–468, Apr. 1996.

[18] T. D. Nguyen, R. Vaswani, and J. Zahorjan. Parallel Appli-
cation Characterization for Multiprocessor Scheduling Pol-
icy Design. In D. G. Feitelson and L. Rudolph, editors,Job
Scheduling Strategies for Parallel Processing, volume 1162

of Lecture Notes in Computer Science. Springer-Verlag,
1996.

[19] E. W. Parsons and K. C. Sevcik. Multiprocessor Scheduling
for High-Variability Service Time Distribution. InProceed-
ings of the IPPS’95 Workshop on Job Scheduling Strategies
for Parallel Processing, pages 127–145, Apr. 1995.

[20] C. Polychronopoulos and D. Kuck. Guided Self-Scheduling:
A Practical Scheduling Scheme for Parallel Supercomput-
ers.IEEE Transactions on Computers, C-36(12):1425–1439,
Dec. 1987.

[21] E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M.
Carlson. Robust Partitioning Policies of Multiprocessor Sys-
tems.Performance Evaluation, 19:141–165, 1994.

[22] K. C. Sevcik. Characterizations of Parallelism in Applica-
tions and their Use in Scheduling. InProceedings of the
ACM SIGMETRICS Conference, pages 171–180, May 1989.

[23] K. C. Sevcik. Application Scheduling and Processor Alloca-
tion in Multiprogrammed Parallel Processing Systems.Per-
formance Evaluation, 19(2/3):107–140, Mar. 1994.

[24] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory.Computer Archi-
tecture News, 20(1):5–44, 1992.

[25] P. B. Sobalvarro and W. E. Weihl. Demand-based Coschedul-
ing of Parallel Jobs on Multiprogrammed Multiprocessors.
In Proceedings of the IPPS’95 Workshop on Job Schedul-
ing Strategies for Parallel Processing, pages 106–126, Apr.
1995.

[26] A. Tucker and A. Gupta. Process Control and Scheduling
Issues for Multiprogrammed Shared-Memory Multiproces-
sors. InProceedings of the 12th ACM Symposium on Oper-
ating Systems Principles, pages 159–166, Dec. 1989.

13

