
Toward Convergence in Job Schedulers forParallel SupercomputersDror G. Feitelson and Larry RudolphInstitute of Computer ScienceThe Hebrew University, 91904 Jerusalem, Israelffeit,rudolphg@cs.huji.ac.ilAbstract. The space of job schedulers for parallel supercomputers israther fragmented, because di�erent researchers tend to make di�erentassumptions about the goals of the scheduler, the information that isavailable about the workload, and the operations that the scheduler mayperform. We argue that by identifying these assumptions explicitly, it ispossible to reach a level of convergence. For example, it is possible tounite most of the di�erent assumptions into a common framework byassociating a suitable cost function with the execution of each job. Thecost function re
ects knowledge about the job and the degree to whichit �ts the goals of the system. Given such cost functions, scheduling isdone to maximize the system's pro�t.1 IntroductionBoth theoreticians and practitioners have been investigating and implementingvarious types of schedulers, and analyzing their performance over a wide range ofworkloads, leading to a large and varied body of knowledge [13]. However, manyof the assumptions as to the type of workload and the goals of the scheduler areincompatible. We argue that the best features can and should be combined.The following principles are common features of all scheduling systems:{ The scheduler services all jobs that are submitted.{ Jobs that provide optional resource requirement speci�cations are rewarded.{ Jobs that are coded in a \schedulingly friendly" style are rewarded.{ Accounting and quality of service are the tools used to reward jobs.The road to convergence starts with an explicit understanding of the di�er-ences that are to be bridged. The di�erences stem from di�erent basic assump-tions relating to performance metrics (Section 2), workload (Section 3), andscheduler actions (Section 4). This paper therefore begins by reviewing these as-sumptions. We can identify several common combinations of assumptions, whichhave led to the creation of isolated \clusters of assumptions" (Section 5). Then,we propose several ways to achieve convergence (Section 6).Before continuing, the following plea for cooperation is issued. At the veryminimum, we wish that all articles about job schedulers, either real or paperdesign, make clear their assumptions about the workload, the permissible actionsallowed by the system, and the metric that is being optimized.



2 Assumptions About the Goals of a Job SchedulerThere are many scheduling systems for parallel computers and even more thatare being proposed and analyzed. The systems are widely disparate both in whatthey hope to accomplish and in the ways they hope to accomplish it. This sectionreviews some the various, sometimes con
icting goals of schedulers.2.1 Run JobsThe primary goal of all schedulers is to enable the successful execution of a job,hopefully a parallel one, on a parallel machine. While obvious, this goal shouldnever be forgotten. In particular, maximizing secondary goals should not starvecertain class of jobs,Secondary scheduling goals, described in the following subsections, vary anddepend on satisfying the needs of the group versus the needs of the individual.These goals can be broadly classi�ed as being system centric or user centric. Someare measurable well-de�ned metrics, while others are functional desiderata. Theyare summarized in Table 1. user systemcentric centricmetric response time utilizationthroughputfunction run jobsemulate dedi- administrativecated machine preferencesTable 1. Classi�cation of scheduler goals.2.2 Maximize Utilization of the MachineIt might appear obvious that a scheduler should maximize the utilization of themachine. Utilization can be de�ned in either of two ways: either as the percentageof CPU cycles actually used for productive computation, or as the percentageof CPU cycles allocated to user jobs that pay for them. The di�erence is thatthe �rst de�nition integrates the e�ciency of user code into the equation, whilethe latter makes a clear distinction between the allocation of resources by theoperating system and their use by the user.The problem with utilization as a metric is that it is largely dependent onsystem load (Fig 1). Consider a simple queuing model of an operating systemscheduler: requests to run jobs arrive, and they are serviced by the system. Whenload is low and all jobs can be serviced, the utilization is equal to the load. Whenload is high and the system saturates, utilization is equal to the saturation point.Therefore the goal of a system designer is not to increase utilization per se but
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loadFig. 1. Utilization depends on the system load and on how e�ciently the system han-dles it, i.e. at what point does it saturate. Arrows indicate improvement in systeme�ciency.rather to delay the onset of saturation. In other words, A \good" system willbe able to sustain a higher load before becoming saturated, which means that ahigher utilization is possible if the load demands it.Another problem with the utilization metric is that adopting it may lead tostarvation of certain jobs. For example, if the job stream includes many jobs thatrequire all the processors in the system, and only a handful of jobs that requirefewer processors and cause signi�cant fragmentation, it is best from a utilizationpoint-of-view to only schedule the jobs that need all the processors.2.3 Maximize ThroughputThroughput is the number of jobs completed per unit time. The throughputmetric is similar to the utilization metric in the sense that it is a�ected bysystem load and e�ciency. But, whereas utilization is maximized when there aremainly massively parallel jobs executing for long time periods, the throughputmetric is maximized when there are many small (in parallelism and in CPUusage) jobs.The rationale behind this metric is that the higher the throughput the moreusers are satis�ed. In general, maximizing the average throughput also minimizesthe average response time for a job. This is true only when there is no knowledgeabout the execution time of a job. If that is known, then scheduling the shortestjobs �rst will reduce the average response time without a�ecting the averagethroughput rate.Throughput has the same problem as utilization: by focusing on the averagevalues, the system may undermine the primary goal. A parallel job mix may bedi�cult to schedule and can cause signi�cant fragmentation [16]. For example,



a 27 node job on a 32 node parallel machine leaves an awkward 5 nodes free.If one is interested in maximizing the average number of jobs processed by thesystem, it might be better to ignore jobs that cause fragmentation altogether.2.4 Reduce Average Response timeReducing average response time is a very common goal, especially in interactivesystems. While there is some debate about the exact de�nition of \responsetime", most researchers use it as a synonym for \turnaround time," i.e. fromjob submittal1to job completion time, rather than the time till when the �rstoutput is produced [41]).One problem with the usual response time metric is its use of absolute values.Consider a job Ja that responds in one day and another job Jb that respondsin one minuite. Both jobs have the same computational requirement, then theremight be something wrong with the scheduler. On the other hand, if job Jarequires 24 hours of computation time, then the one day response time is prettygood whereas if job Jb only required 1 microsecond of computation time, then theone minute response time may be bad. Jobs can be perceived as having di�erentweights, depending on their run time. A possible solution to this problem is touse the average slowdown as a metric instead, where slowdown is the ratio of thetime it takes to run the job on a loaded system divided by the time it takes ona dedicated system (this is sometimes also called the \response ratio" [4]). Thisnormalizes all jobs to the same scale.Another problem with this metric is its linear regard to time. Actually re-sponse time should be measured as perceived by those who are interested, e.g.human users. For humans, the di�erence between a response of 1ms and 100msis immeasurable, but the di�erence between 1s and 100s is very annoying [18].Finally, it should be noted that not all jobs require the same level of service interms of response time. Interactive jobs require interactive response times, prefer-ably of not more than a couple of seconds. Time critical jobs require application-dependent response times (e.g. tomorrow's weather forecast should be ready intime to be useful). And some jobs do not have any speci�c time constraints.In fact, most parallel systems make a distinction between batch jobs and directjobs, with batch jobs executed only at night or when the machine would other-wise be idle. However most e�orts at modeling do not take this distinction intoaccount.2.5 Fairness vs. Aadministrative PreferencesFairness is not often advocated as a requirement on its own accord, but it un-derlies the requirements for maximizing throughput and minimizing average re-sponse time. But should all jobs be treated the same? For example, we havealready noted that batch jobs do not require short response times.1 We are following Steve Hortney's campaign to use the term job submittal in placeof the masocistic term job submission; despite the fact that jobs are at the mercy ofthe scheduler.



Since all jobs are not created equal, it is often desirable to give preferenceto certain classes of jobs. For example, is there any preference to schedule two 8node jobs in place of a single 16 node job? There is no abstract answer to thisquestion; it is dictated by the management personnel of the supercomputer. Dueto the high cost of parallel supercomputers, and their resulting use as sharedresources that are speci�cally targeted at large computational problems, someinstallations do indeed try to encourage highly parallel jobs at the expense ofthose with only moderate parallelism.Encouraging highly parallel jobs can be viewed as \fairness to threads." Ajob with more threads, that exhibits a larger degree of parallelism, is assumedto require more computational resources, and is therefore given better service.That is, administrative preferences may cause the system to be unfair to to usersor to jobs (that is, all jobs are not considered equal).2.6 Give the Illusion of a Dedicated Parallel MachineMultiuser workstations and other non-parallel computers attempt to provide theuser with the illusion of a dedicated machine. This is especially true for inter-active jobs. When a parallel computer supports multiple users via time slicingor space slicing, it is generally desirable to provide the illusion of a dedicatedparallel machine. We de�ne this to mean that if a job receives 1=k of the totalCPU cycles, then the job should take about k times as long to complete as itwould on a dedicated machine, without taking any special actions.To understand the issue here, consider a job scheduler that allows the indi-vidual activities of each parallel job to be time sliced independently. An activitymay then waste many CPU cycles waiting for a message to be sent by anotheractivity that is currently not executing. Had the machine been dedicated to thejob, this wasted time would not occur. Thus, a user might be charged more CPUtime, just because the scheduler decided to execute several jobs in an uncoordi-nated fashion (a simple solution for this case is therefore to use gang scheduling[17]).2.7 Issues That Are Often IgnoredAn important observation is that most simple metrics have simple failure modesin which they cause starvation for a class of jobs that do not promote the pre-de�ned metric. For example,{ Maximizing utilization may not schedule jobs that cause fragmentation{ Maximizing throughput may not schedule large jobs{ Minimizing response time ignores the fact that batch jobs do not need it norwant to pay for itA more subtle observation is that a scheduling-centric metric cannot ac-count for interactions with other resources that may become depleted �rst. Forexample, memory is a critical resource and if it is not managed correctly, an ap-plication may su�er from thrashing. Consider for a moment a job that consists of



two processes, a consumer and a producer. The producer sends messages to theconsumer process. If the rate of production is equal to the rate of consumption,and the two processes execute simultaneously in parallel, memory can be usede�ciently. On the other hand, if they do not execute simultaneously, each mes-sage may need to be bu�ered. Bu�ering consumes system resources and couldcause other jobs to frequently page fault. Unchecked scheduling of parallel jobsmay quickly deplete \swap" disk space. Many large installations provide massivestorage systems with latency times measured in the minutes. Such time framesmust be handled di�erently from the times involved with a simple page fault.In the area of functional requirements, the need to support whatever usersmay want to do is often overlooked. There are a number of examples of over-sophisticated schedulers that may end up limiting their users:{ Users sometimes want full control over the number of processors used to runtheir jobs, e.g. in order to generate speedup curves. A scheduler that sets thenumber automatically and does not provide an override mechanism makesthis impossible to achieve.{ Di�erent applications are easier to write in di�erent programming styles, andusers also have their personal preferences. Schedulers that limit the stylesthat are supported may thus alienate users that would rather use anotherstyle. This applies, for example, to schedulers that require all jobs to beable to adapt to changes in resource allocation at runtime, something thatis di�cult to achieve in certain cases.Finally, in modern complex systems it is often the case that the schedulermust interact with external agents, e.g. as part of a system for heterogeneouscomputing [20,30]. As part of such interactions, the scheduler might need tomake reservations for future use. This functionality is often missing, and theperformance implications (e.g. loss of resources due to reservations) are usuallynot included in models and analysis.3 Assumptions About the WorkloadAlthough the basic object that is to be scheduled is a job, there is a majordivision on the characteristics of jobs and what the scheduler knows about them.We restrict our attention to parallel jobs. That is, jobs that are composed ofindependent communicating activities. There is an underlying assumption thatcommunication time is fast, e.g. the time to communicate a word of informationis only about an order of magnitude longer than the time required for a CPUto fetch a word from its memory. We exclude client-server type jobs and otherdistributed computing jobs.The de�nition of a parallel job from the point of view of a scheduler, unfor-tunately, is not so clear cut. There are many styles of parallel programs, andmany structures that are imposed by some runtime systems and compilers. Weidentify four types of jobs based on the number of processors to be used by thejob. This number may be speci�ed by the user, either within the program itself



or as part of job submittal speci�cation, or it may be dictated by the scheduler.In addition, the number of processors may be �xed at the start of program exe-cution or may change during the course of the computation. There are thus fourclasses (Table 2). Although one of the problems with the �eld is that there aretoo many con
icting terms, we risk adding to the complexity by proposing yetanother set of terms. We feel that these terms may help highlight the di�erences.who decides when is it decidednumber at submittal during executionuser Rigid Evolvingsystem Moldable MalleableTable 2. Classi�cation of job types based on specifying number of processors used.3.1 Rigid JobsA rigid job requires a certain number of processors in order to execute, as speci-�ed by the user at job submittal time; there may be other resource requirementsas well, such as CPU time and memory, but we'll focus on the requirement forprocessors. A rigid job will not execute with fewer processors and will not makeuse of any additional processors. The scheduler does not know anything aboutthe job besides the number of processors it needs.>From the programmer's perspective, the reasons for using a rigid formulationvary. In some cases it is simply what the system interface supports, so even jobsthat are written as moldable jobs must be submitted as rigid ones. Applicationswritten in High Performance Fortran are usually in
exible and there are oftenoptimal decompositions based on the problem size. For example, it might bevery ine�cient to decompose a job with an array of size 100 into 17 processors.3.2 Evolving JobsAn evolving job is one that may change its resource requirements during execu-tion. Note that it is the application itself that initiates the changes. The systemmust satisfy the requests or the job will not be able to continue its execution.Again, the scheduler knows nothing about the job except for its current require-ment for processors.Although such jobs are not common, there is much activity in the communityto de�ne a standard for dynamic processor requests. Such facilities already existin the PVM interface [21], and they are also in the process of being incorporatedinto the MPI-2 standard.The reason for the interest in this feature is that many parallel jobs are com-posed of multiple phases, and each phase has di�erent characteristics. In par-ticular, di�erent phases may contain di�erent degrees of parallelism. By telling



the scheduler about these changes, it is possible for jobs to obtain additionalresources when needed, and relinquish them when they can be used more prof-itably elsewhere (thereby reducing the cost of running the job). Also, this typeof jobs is commonly modeled by task graphs with changing widths [55].
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(a) (b) (c)Fig. 2. (a) Rigid jobs de�ne a rectangle in processor-time space. (b) Moldable jobs useone out of a choice of such rectangles. (c) Evolving and malleable jobs both have apro�le with a changing number of processors. The di�erence is that in evolving jobsthe changes are initiated by the job, while in malleable ones they are initiated by thesystem.3.3 Moldable JobsA job may be 
exible in the number of processors that it requires and mayallow the system to dictate the allocated number of processors. There are twotypes of such 
exible jobs, which we call moldable and malleable. With moldablejobs, the number of processors is set at the beginning of execution, and the jobinitially con�gures itself to adapt to this number. After it begins execution, thejob cannot be recon�gured. It has already conformed to the mold.If the number of processors is selected by the user and presented to thescheduler as a requirement, the job is actually rigid from the scheduler's point ofview. But, given a range of choices, the scheduler can set the number of processorsbased on knowledge about the system load and competing jobs, knowledge thatis typically not available to the user. This has been called \adaptive partitioning"in the literature [44].A moldable job can be made to execute over a wide range of processors.There is often a minimum number of processors on which it can execute, andabove that number, additional processors can be used to improve performance,up to some saturation point. The resource requirement of a minimal number ofprocessors is usually due to memory and response time constraints. >From a locale�ciency point of view, there is a best number of processors for the job, at theknee of the speedup curve. But since the scheduler cares about maximizing some



overall system performance properties, it might be best if the job is executedat another point. In any case, knowledge about application characteristics istypically required [46].Programs written using the SPMD style, e.g. with the MPI library package,are often moldable. Moreover, workload traces from real parallel systems showthat indeed the same application may run several times using di�erent partitionsizes [14].3.4 Malleable JobsThe most 
exible type of jobs are malleable ones that can adapt to changesin the number of processors during execution. The main programming stylesthat permits this 
exibility consists of many short independent tasks that accessshared data in a very stylized way. For example, if all the tasks have no sidee�ects, then to reduce the number of processors, some tasks are terminated andrestarted later on the remaining processors [43].It is fairly well accepted to call changing the number of processors at runtime\dynamic partitioning". We prefer to call the jobs \malleable" rather than \dy-namic" because the term \dynamic" does not indicate who is doing the dynamicallocation. On the other hand, the shape of a malleable object can be changedby an outside entity, while an evolving object is one that changes of its own ac-cord. However, note that evolving and malleable should usually come together,because one job's evolution will cause others to have to recon�gure.Analyzing the bene�ts of dynamic partitioning and malleable jobs has beenthe subject of much recent research [36,7,28,39,34,23]. This research typicallycompares the cost of recon�guration with the resulting improvement in overallperformance. But such comparisons do not give a full picture. In many cases,changing the number of processors allocated to a job requires complex interac-tions between the operating system and the application's runtime system [2].For example, if the thread running on a certain processor holds a lock and thenthe processor is taken away, there may be no way to free the lock. Implementingthe required interfaces to solve such problems naturally complicates the system,and makes it harder to implement, which is one reason why malleable jobs arecurrently not supported on any commercial parallel machines.An interesting bene�t of malleable jobs is that the option for changes canbe used to allow the system to collect information about the job at runtime,by trying several con�gurations and checking the resulting performance. Thisinformation can later be used to guide allocation decisions [37]. This approachhas obvious advantages over requiring the information to be available in advance,as is needed for moldable jobs.4 Assumptions About Permissible ActionsA scheduler must execute in the environment of an existing operating system andmachine architecture. This environment restricts the operations it is allowed to



perform. In some machines, the operating system provides a single system image.That is, it does not matter from which processor an action is executed, they areall identical. Shared Memory Parallel Processors (SMPs) often have this featureand it is also being explored in some distributed systems [29]. When there is nosingle system image, it is di�cult to migrate tasks. The machine architecturemay impose restrictions on the types of processor partitions available and theability to share access to the communication substrate.The most limited system has partition sizes of a �xed number of processors,and allows only one job to execute from start to �nish in a partition at anytime. The scheduler simply needs to keep track of empty partitions and mapincoming jobs to the appropriate partition. At the extreme, there would be onlyone partition and so only one job can execute at a time. But most systems allowmany more powerful options.4.1 Flexible PartitioningNowadays, most systems allow the processors to be partitioned on a job by jobbasis. This is sometimes referred to as space slicing. The exact number of pro-cessors may be forced to match the topology of the machine, as in hypercubetopologies in which partitions must also be hypercubes but of a smaller dimen-sion. But in many cases, especially when the network topology is hidden fromthe programmer, there are no such restrictions and partitioned may be formedusing arbitrary subsets of processors.A rigid job is submitted for execution along with a speci�cation of the numberof processors that it requires. The scheduler then creates a partition of that sizeand schedules the job to execute within that partition [53,32,20,1,9,31,33]. Withmoldable jobs, it is the scheduler that selects the partition size [44].Evolving and malleable jobs require partitions that are not only 
exible butcan also change dynamically at runtime. This places an added burden both onthe programmer, who must write application code that requests and adapts tosuch changes, and on the scheduler, that must handle the re-allocation decisionsand coordinate them with the applications.One common heuristic for dynamic partitioning is to strive for equal sizedpartitions (usually called \equipartitioning") [35]. The problem with this ap-proach is that it might require all jobs to be interrupted whenever somethingchanges. An alternative is to use folding [35]. With folding, the number of pro-cessors allocated to a job can only grow or shrink by factors of 2. That is, thepartition size may be halved or doubled. When a partition is halved, the run-time system may choose to simply \fold over" the application, and time-slicetwo tasks on each processor. Thus an application that has a balanced workloadover a particular partition size is likely to remain balanced after a folding oper-ation. Many speedup curves resemble step functions, with poor speedup valuesfor non powers of two number of processors. However, there is some debate overthe bene�ts of folding [28,39].



4.2 Preemption and Time SlicingDynamic partitioning, discussed above, requires certain processors to be pre-empted and re-allocated in order to accommodate load changes. Another typeof preemption is that used in order to time-slice multiple applications, as iscommonly done on uniprocessors. We identify this feature for special attentionsince many systems cannot support such preemption due to limitations on themessage-passing architecture. For example, some machines require that the in-terface to the network be set up before a job begins execution. There may beno easy way to switch jobs without compromising the integrity of the messages.On some systems, switching message space protection from one job to anotheris permitted but is a very time consuming operation.An extension of preemption is the ability to preempt all the members of aparallel job at the same time, as well as restarting all the members of anotherjob. This is called \gang scheduling". It is generally agreed that if time slicing isused, then it should be implemented via gang scheduling, rather than letting eachprocessor do its own uncoordinated time slicing. The reason is that with gangscheduling all the processes of a given job execute simultaneously on di�erentprocessors, thus supporting the use of �ne-grain interactions [17]. An interestingobservation is that it is desirable to also preempt the network, i.e. to 
ush anytra�c that belongs to the job that is being de-scheduled, so as to present a cleanslate to the new job [26].Gang scheduling su�ers the overhead of context switching and corrupts cachestate, but for a large enough time quantum these overheads can be made insignif-icant [23]. On the other hand, time slicing in general reduces the average responsetime provided the distribution of execution times has a large variance [40], whichin fact it typically occurs [14].4.3 MigrationMigration refers to the ability of a scheduler to move an executing job or someof its components to other processors. As such it is an extension of preemption:a task stops running on a certain processor, and it restarts on another processor.Reasons for migration include packing in order to reduce fragmentation [6,12],and the need to withdraw from a workstation when its owner returns [42].Migration is simple on shared memory machines, because threads do nothave any state that is local to the processor except for their cache and TLBfootprints. The challenge is to ensure that interacting threads map to distinctprocessors.Migration is signi�cantly more problematic in distributed memory machinesas it requires migrating the local memory which can be a very expensive opera-tion. The ability to migrate a task is often hindered by systems whose messagepassing libraries specify physical processor numbers as source or destination�elds for messages. Note that the elimination of virtual to physical processormapping increases the speed of a communication. Many systems map the net-work FIFO queues into user space; disconnecting and reconnecting may alsorequire signi�cant overhead.



4.4 Change Job Execution OrderA scheduler may be able to process jobs in an order di�erent from the jobsubmittal order. Many batch systems have some such 
exibility [32,24,53]. Ofcourse, this 
exibility is only useful if there is some information as to the re-source requirements of the waiting jobs as well as any deadlines or response timerequirements.We mention this option since it easily leads to violation of the primary goalof a scheduler { the execution of every job. Some aging mechanism is requiredto ensure that jobs are not passed over for arbitrarily long time periods.5 Research ClustersThe spectrum of job schedulers for parallel machines may be expected to span alarge part of all the di�erent options for assumptions about goals, metrics, andworkloads. In fact this is not so. Several \clusters" have formed, each with itsown set of assumptions, and often oblivious of the others. This section identi�esand characterizes these \clusters of assumptions," as a prelude to suggestions forsome degree of convergence in the next section. The clusters are summarized inTable 3. The most controversial part is probably our classi�cation of the goals.Mostly, if the scheduling system ensured that jobs run with all their requiredresources in a timely fashion, response time was considered as a goal. We eval-uated the goals of utilization and throughput by considering how the schedulertreats large batch jobs and small interactive jobs.5.1 Rigid Jobs and Variable PartitioningMaybe the simplest scheduling scheme is to reduce the role of the operatingsystem to that of a processor rental agency. Jobs request a certain number ofprocessors, and the system provides them for exclusive use if they are available.The only goal is to (eventually) run the jobs. No knowledge about job behavioris assumed, and no special actions need be supported, except some measure ofpartitioning the machine. This scheme has been called \variable partitioning"or \pure space sharing" in the literature.Despite its simplicity and the resulting drawbacks in terms of responsiveness,fragmentation, and reliability, this scheme is widely used. It is especially commonon large distributed memory machines [53,27,20,9,31]. The reason is that it getsthe job done, albeit not optimally, but with relatively little investment in systemdevelopment. In an industry where time-to-market is a crucial element of success,this is a true virtue [1]. As a result, users sometimes have to revert to signupsheets as the actual processor allocation mechanism.Because variable partitioning cannot run jobs immediately if the requestednumber of processors is not available, jobs often have to be queued. As a re-sult this scheme implies a batch mode of operation. With su�cient backlog, itis then possible to select an execution order that improves system utilization



variable gang shared adaptive dynamicpartitioning scheduling queue partitioning partitioninggoalsrun jobs yes yes yes yes yesutilization no yes yesthroughput no yes yes yesresponse no yes noadmindedicated yes yes yes noworkloadsrigid yes yes yes yes noevolving no no yes no yesmoldable yes yes yes yes nomalleable no no no no yesactionspartitioning yes yes no yes yespreemption no yes yes no yessynchronized n/a yes no n/a nomigration no no yes noordering yes n/a n/aTable 3. \Clusters" of common combinations of assumptions.and throughput [32,48]. Thus even this simple scheme has bred some interest-ing research. In addition, it has prompted research into improvements such asadaptive and dynamic partitioning (see below).5.2 Rigid Jobs and Gang SchedulingGang scheduling has been re-invented many times over because it is an intuitiveextension of timesharing on uniprocessors. It also supports interactive use andgives the illusion of using a dedicated machine, without placing restrictions onthe programming model and without assuming knowledge about the workload.It has therefore enjoyed considerable popularity among vendors, at least in theform of \hype" (all vendors claim to support some form of gang scheduling)but good implementations also exist. There have been a number of experimentalimplementations [38,15,12,54,22,25] that demonstrate its usefulness.Academically speaking, gang scheduling has repeatedly been shown to beinferior to dynamic partitioning (see below), but only by a small margin [23,8].The main drawbacks cited are interference with cache state, and possible lossof resources to fragmentation. As the �rst can be lessened by using long timequanta [23], and recent research suggests that the second is not so severe [12], itseems that the advantages of gang scheduling generally outweigh its drawbacks.However, there are still some unresolved issues. The main one concerns thepossible interaction between gang scheduling and over-committing memory re-sources. Time slicing between two active jobs requires more memory that execut-



ing these jobs sequentially. The direct solution is to provide adequate swappingto disks, but so far little research has been done on this issue, and parallel sys-tems are notoriously underpowered in terms of I/O. Another criticism of gangscheduling is the lack of fault tolerance | if a processor fails, many jobs mayhave to be aborted. While important, this problem is not unique to gang schedul-ing: it is also present in other scheduling schemes and in other components ofparallel operating systems, e.g. message passing facilities.In summary, the �ner the granularity of interaction between members of aparallel job, the more gang scheduling is required.5.3 Evolving Jobs and a Shared QueueAnother simple extension of timesharing on uniprocessors is to use a sharedqueue. Each processor chooses a process from the head of the centralized readyqueue, executes it for a time quantum, and then returns it to the tail of the queue.As processors are not allocated permanently to jobs, the number of processes ina job may change during runtime without causing any problems. This scheme isespecially suitable for shared memory multiprocessors, and indeed it is used onmany bus-based systems [50,3].Using a shared queue as described above may su�er from three drawbacks:contention for the queue, frequent migration of processes, and lack of coordinatedscheduling. The issue of possible contention has lead to the design of wait-freequeues, where di�erent processes can access the queue simultaneously by usingsuitable hardware primitives, such as fetch-and-add. Indeed, this was one of thedriving forces in the design of the NYU Ultracomputer, and its support for fetch-and-add via a combiningmultistage network [11]. However, the idea of combiningnetwork has not caught on because of their added complexity and design costs.Migration occurs in this scheme because processes are typically executed ona di�erent processor each time they arrive at the head of the queue. As a result,any state that may be left in a processor's cache is lost. It has been suggestedthat this e�ect can be reduced by using a�nity scheduling, where an e�ort ismade to re-schedule the process on the same processor as used last time [49,10].However, it is not clear to what degree data indeed remains in the cache, andin any case, a�nity scheduling is largely equivalent to just using longer timequanta [51].The third issue, lack of coordinated scheduling, may cause problems for appli-cations where the processes interact with each other frequently. The only solutionis to use gang scheduling. While gang scheduling and a shared queue seem to bein con
ict with each other, a scheme that integrates both has been designed inthe context of the IRIX operating system for SGI multiprocessor workstations[3].Finally, it should be noted that this scheme bene�ts from similarity withruntime systems and thread packages that run within the con�nes of a singlejob.



5.4 Moldable Jobs and Adaptive PartitioningAs noted above, variable partitioning is a simple but somewhat ine�cient schedul-ing scheme. The ine�ciencies result both from fragmentation, where the remain-ing processors are insu�cient for any queued job, and from the fact that jobsmay request more processors than they can use e�ciently. It is therefore an in-teresting question to assess the degree to which e�ciency can be improved byadding 
exibility and information about the characteristics of di�erent jobs.The model adopted for this line of research is that jobs can be molded to runon di�erent numbers of processors, and some information about their averageparallelism or execution pro�le is provided. This allows the system to judiciouslychoose partition sizes, without signi�cantly a�ecting the programming model.Thus when the system is lightly loaded, jobs are allowed to use larger numbersof processors, even if they do not utilize them e�ciently, but when system loadincreases, jobs are cut down to size [44,47,46]. It has also been suggested thatthe system keep some processors idle on the side in anticipation of additionalarrivals [45].In summary, this approach has generated a rather large body of research,but it has yet to lead to any implementations in real systems.5.5 Malleable Jobs and Dynamic PartitioningA more extreme approach to system optimization calls for sacri�cing commonprogramming models along with the illusion of a dedicated machine in orderto promote e�ciency. In some sense, this approach demonstrates the best per-formance that can be achieved, given full system 
exibility in the allocation ofresources, and jobs that are willing to cooperate with the system (and throughit, with each other).The programming model requires each job to accurately inform the systemtheir resource requirements, and be able to adapt to changes in resource alloca-tion that result from 
uctuations in system load. The system uses informationabout the characteristics of the jobs to decide on the optimal allocation: jobs areonly given additional processors if there is nothing better to do with them.Whena new job arrives, some processors are taken from existing jobs and given to thenew job, so that it will not have to wait. When a job terminates, its processorsare distributed among the other jobs, so as not to waste them [52,34,35].A good implementation requires co-design of the operating system, the run-time system, and the programming environment [2]. Indeed, no production im-plementation for parallel machines have been reported so far, despite much re-search that shows the bene�ts of this approach in terms of e�ciency. On theother hand, this approach has the unique advantage that jobs may be able totolerate system faults: a faulty processor is similar to one that is taken awayand given to another job. Likewise, jobs running on a network of workstationswill be able to tolerate workstations that drop out of the processor pool whenthey are reclaimed by their owners. Therefore this approach has lately becomeprominent in the context of network computing [5,43].



6 Steps Towards ConvergenceThe �eld of job scheduling for parallel processing is in 
ux. It is being drivenby the needs of growing numbers of installations. Sadly, there seems to be agrowing divergence between the practical approaches adopted by actual usersand the more sophisticated approaches advocated by theoreticians. Our goalhere is to point out ways in which this gap can be bridged, and show how thedi�erent communities can bene�t from the work of each other.6.1 Step One: Be Explicit About the Di�erencesOne of the problems in the �eld is the di�culty in relating the various researchresults to each other. In some cases such comparisons are actually comparingapples with oranges as if they were equivalent, in some the comparison is dis-missed because it mistakenly seems to be irrelevant, and in some cases it is justhard to see whether or not the comparison makes sense.The root of the problem is with the signi�cant implicit assumptions andimprecise, confusing terminology. For example, dynamic partitioning researchpapers usually do not make explicit the assumption that jobs are coded in astyle that tolerates changes in resource allocation at runtime, and that jobsare willing to cooperate in order to achieve greater overall (system) e�ciency.Dynamic partitioning also assumes that the speedup functions for the jobs arenot trivial step functions in which no speedup is achieved until a critical numberof processors is made available and that additional processors do not a�ect jobperformance; such speedup functions describe rigid jobs. Likewise, work on gangscheduling usually does not make explicit the assumption that all programmingstyles must be supported with no changes. Gang scheduling research assumesthat most jobs are not \embarrassingly parallel jobs" that require infrequentinteraction. When these assumptions are clari�ed, it is evident that the twoschemes operate in di�erent frameworks. It is true that both strive for greatersystem e�ciency, but each does so in a di�erent framework based on di�erentassumptions about the workload, so a comparison between them is debatable atbest.The other problem is one of terminology. For example gang scheduling meansthe same thing as coscheduling except that coscheduling will also schedule onlysome threads of a parallel job instead of leaving idle processor. Other researchersuse the terms hard and soft gang scheduling to denote these di�erences. Suchpractices make it harder for readers to �gure out what the results are about,and increase the cognitive load. While it is true that existing terminology is notalways optimal and may su�er from historical artifacts, it is still usually betterto stick with the established terms.To summarize, we recommend that each paper should state the assumptionsuse consistent terminology, and resist the urge to de�ne new terms or give newmeaning to old ones.



6.2 Step Two: Acknowledge De�ciencies and Search for SolutionsEach scheme, by way of being dependent on a set of assumptions, has weaknesseswhen the assumptions are violated. Rather than assuming them away, one shouldtry to overcome them by incorporating the ideas of other schemes. This maymake the di�erence between a theoretical proposal and a real system.For example, major weaknesses of variable partitioning are the loss of re-sources to fragmentation and the lack of responsiveness. Di�erent schemes havebeen proposed to overcome one or the other of these problems: gang schedul-ing improves responsiveness, while adaptive and dynamic partitioning reducefragmentation and improve throughput, provided the assumptions regarding theworkload are met. But each scheme still has weaknesses when its assumptionsare not met in full.While gang scheduling improves system responsiveness through the use oftime slicing, and also alleviates the ill-e�ects of fragmentation to some degree,it does not allow for optimizations based on global knowledge of the systemload. Thus each job runs on a prede�ned number of processors, and this numbercannot be changed. E�ciency may be improved if support for malleable jobs isincluded. Then, jobs are indeed malleable can be re-shaped to improve e�ciencybased on knowledge of the speedup curve. If the workload does not includesu�cient small jobs, malleable jobs can also be re-shaped to �ll in holes andreduce fragmentation.Dynamic partitioning improves e�ciency by eliminating fragmentation andreducing the processor allocation towards the optimal operation point for eachjob when load is high. However, it must still deal with unfavorable conditions,such as non-malleable jobs, jobs that do not provide the required informationabout their operation characteristics, and situations in which too many jobs havebeen submitted to run all of them at once. These problems can be addressedusing mechanisms of adaptive partitioning and gang scheduling.The bottom line is that combining ideas from di�erent scheduling schemescan lead to important bene�ts for real systems. This does not mean that researchon the individual schemes is not important | on the contrary, it is de�nitelynecessary to focus on a narrow scheme and reduce the number of variables inorder to perform a detailed analysis. But when it comes to building real systems,it is necessary to take a broader view.6.3 Step Three: Broaden the ScopeSince expensive supercomputers should address a broad spectrum of applicationprograms, a job scheduler should be able to handle a workload consisting of allsorts of jobs, be they rigid, evolving, moldable, or malleable, and all levels ofresource speci�cations. Moreover, a scheduler should implement the constantlyevolving policies and goals of the computer installation. Although we do notpropose a scheduler that achieves these goals, it is important to state take stepsin this direction.



Consider, for a moment, an 8 processor system and two parallel jobs. Supposethe jobs are malleable and the system is extremely 
exible in that the two jobscan be executed in a gang scheduled, time-sliced manner with 8 nodes allocatedto each job, or it can use space slicing and dedicate 4 nodes to each job. Supposefurther that each job achieves linear speedup. Should the scheduler use space ortime slicing? If the jobs require the same execution time, then there should belittle di�erence, and system overheads should dictate the choice. Now supposeone job was submitted �rst and is allocated 8 nodes exclusively. When the secondjob arrives, is it more expensive to repartition the �rst job or to gang schedulethem? The answer now depends on the computational times of the jobs { thenumber of context switches times their cost versus the repartitioning cost.As the load on the system changes, the fraction of system resources allocatedto each job changes. In time sharing system, it is easy to see this change. Inspace sharing systems, dynamic repartitioning attempts to share the resourceof the processor. However, it is important to keep in mind that there are otherresources such as physical memory and disk swap space.So, one point is to understand the tradeo�s between the various modes ofsharing.Speci�cally, we propose the use of cost functions that re
ect the policies andgoals of the computer installation. For a given workload and cost function, theaim of a scheduler is to maximize the revenues of the system. There may be manydi�erent schedulers, some better suited to speci�c workloads and cost functions.The cost function is de�ned on the execution of a job. It may be totally�ctional; that is users do not pay money to have their job executed, but thereis almost always some accounting when there is a scarce resource. Di�erentjob types can have di�erent cost functions. The abstract notion of money thatthe system receives by executing a particular job at a particular time allows ascheduler to handle all types of jobs. Instead of ill de�ned notions such as \getsbetter service" there is a precise accounting for service. Policy decisions canbe re
ected through the cost function and not through the scheduler allocationalgorithms.Incentives The more 
exible and fully speci�ed a job, the easier it is to schedule.It may be di�cult to write a malleable or even a moldable job, and the user maynot wish to take the time to uncover a job's resource requirements and speedupcurves. So, there should be an incentive to the user to write a malleable programand to provide the system with lots of information about the program executionrequirements. There are many types of incentives, but the two most popularchoices are reduced cost and improved service; the adage \time is money" mayequate the two.Since the biggest drawback of scheduling of rigid jobs is fragmentation, itshould be possible to use malleable jobs to �ll in the leftover space. In addition,some fraction of the processors should be reserved for malleable jobs. The exactfractional value is clearly a system speci�c policy decision.



It seems natural to schedule jobs in the order that they arrive (or by somepriority measure). But what resources should be given to 
exible jobs? Thesystem might have a di�erent opinion than the user. For example, the user maywant fast response time, therefore desire the maximum number of processors,while the system may want to satisfy the maximum number of users and thusallocate the minimal size to a malleable job. Given a 32 processor machine andtwo jobs, one rigid job requiring 24 processors and the other completely mal-leable, the system may allocate only 8 processors to the malleable one, therebygiving preferential treatment to the rigid job.In other words, a reasonable scheduling strategy is to �rst take care of rigidjobs. Then, any remaining, unassigned processors due to fragmentation can beevenly distributed among the 
exible ones. When new jobs arrive, the existingmalleable jobs can be squeezed to their minimal size, and the new job allocatedprocessors according to an equipartitioning strategy.But should malleable jobs always be squeezed to their minimal size? Is it fairto slow downmalleable jobs for the sake of executing another rigid job?Will userslearn to choose the resource requirements that make their job complete soonerindependently of the job's real requirements? For example, malleable jobs maybe declared as rigid ones to prevent their interruptions. There is no universallycorrect answer to these concerns. The tradeo� can only be solved given thegoals of the computer installation. A possible approach is to reserve a fraction ofthe system resources for each type of job. Particular classes can be encouragedand given preferential treatment by varying the fraction of resources. Such astrategy, however, restricts the ability of the scheduler and the policy maker.What happens when there are no rigid jobs? Are the resources wasted?Using Cost Functions By de�ning a cost function, there is then something tomaximize. For a given workload and cost function, some schedulers will maximizerevenues better than others. But no matter the quality of the scheduler, changingthe cost function will a�ect how the users view the machine. This provides
exibility to the system manager and allows exploration of the cost functionspace.As a by-product, there is a common goal for theoreticians and practitioners:maximize revenues. Of course the theoretician may assume that there is muchthat is speci�ed with the job, while the practitioner may have to approximate,infer, or guess at this information.Note that there are actually two types of cost functions. The one just ad-dressed concerns the when, where, and how a job is scheduled. It re
ects thevalue to the scheduler of executing a job at a particular time. This indirectlya�ects the quality of service received by individual jobs.It makes sense also to speak of a potentially di�erent cost function thatde�nes how much the user will have to pay. One can encourage certain typesof jobs by charging users di�erently. It may be necessary to have two di�erentfunctions since the scheduler gives preference to higher valued jobs whereas usersgive preference to lower valued jobs.



We assume that changes in the value of a job to the scheduler do not directlya�ect the o�ered workload. Of course once users �gure out which jobs executeearly, they may change the jobs submitted for execution. On the other hand,changes in the cost of a job to the user will quickly change the contents of theo�ered workload.We shall ignore the cost to a user and concentrate on the cost function thatde�nes the value of a job to the scheduler.In what follows, we consider various components of a cost function. Realcost functions are expected to be developed in close collaboration with man-agement personnel of the supercomputer center in order to address policy. Thedevelopment follows the ideas found elsewhere [19].The Importance of a Job It may be decided that the amount of parallelism ofa job is important. Suppose a job is executed on p processors. When computingthe importance of a job, a modi�ed value of p may be used, such as p0 = k0p.If k0 < 1 then parallelism is discouraged; if k0 > 1 then it is encouraged.Similarly, the total amount of CPU time used by a job, t, might be deemedimportant. So another constant is required to scale the time: t0 = k1t.The policy might be to encourage the use of medium sized parallelism, say32 processors. The knee of the cost function should therefore be at this preferrednumber.Other resource requirements can be similarly scaled in a way to re
ect theimportance of a job at the given installation. The �nal importance of a job isthen some function of the scaled components. A simple function is addition,e.g. t0 + p0, or multiplication, e.g. t0 � p0, but with multiplication, elapsed timeor time per processor may make more sense since total time already incorporatesthe amount of parallelism. The scaled time per processor is simply t0=p.If a job has a dynamic parallelism pro�le, then these values can be de�nedpiecewise over periods when the number of processors is �xed, and then addedup, as in Importance(J) = Xi t0ipi p0iThe Global A�ect of a Job Executing one job may preclude the schedulerfrom executing another, less valuable job, but it may also leave idle resources.Thus there is a second component to a job that must take account for what elseis happening in the machine. Let us call this the a�ect of executing a job.Suppose there are several jobs executing at any one time in a space slicingmanner. During this snapshot in time, there are L idle processors. Then onecould assign a value of � pjP L as the a�ect of the job during this time slice (i.e.the cost is this factor multiplied by the time).The a�ect of a job as de�ned is bad. The more wasted processors, the morenegative the value. This function gives proportional blame for the idle resourcesbased on the size of a job.



Deadlines and Response Time No matter how important is a job, withoutsome accounting of deadlines or response time, there is no reason for a job to bescheduled at a particular time. The scheduler simply waits until it has enoughjobs that it can pack together without waste. When there is a deadline associatedwith a job, then the cost function can re
ect some policy. For example, the valueof a job may decrease the longer it misses its deadline. A function that has thevalue continue to decrease (below zero) ensures that each job will eventually beexecuted2.(a) Job Type CPU Min PEs Max PEs Arrival DeadlineJ0 Rigid 6 6 6 0 1J1 Rigid 6 6 6 0 1J2 Malleable 10 1 8 0 2J3 Malleable 10 1 8 0 2(b)
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  1    2    3     4     5     6     7    8   1    2    3     4     5     6     7    8Fig. 3. Example of scheduling rigid and malleable jobs under di�erent cost functions.(a) characteristics of the jobs in the workload. (b) possible schedules.One suggested function [19] is:(deadline � response time)=ImportanceThis makes sense once one recalls that our de�nition of importance is basedon the total use of resources. The suggested function therefore scales the delayaccording to the resources used. The idea is that if a one month job misses itsdeadline by a day, it is not as bad as a 5 minute job missing its deadline by aday.Consider the example of four jobs in a machine with 8 processors shown inFig. 3. They all arrive at time 0 and want immediate service. There are severalways to schedule these four jobs; four examples are shown in the �gure, althoughthere are others. Which is the right schedule? The answer is that there is no rightor wrong schedule; there is only those that maximize the cost function. Consider2 Note that this di�ers from the strategy of airlines that want to maximize their on-time performance, so that once a 
ight is delayed by more than 15 min, there is littlepressure to minimize the delay. A better analogy is with the construction industrywhere �nes are levied for each month delay in completing a building.



a simple cost function, like the one de�ned above, and assume that importanceis taken to be CPU time. The cost is thenCost(J) = deadline � response timeCPUWith this function, schedule (i) gives the best score since shorter jobs have asome what worse penalty for missing their deadlines. Increasing the importanceof the smallness of a job, say by using an importance function that squares thecomputation requirements: i.e. 1=CPU2, con�guration (ii) is the best. If biggerjobs are more important, then schedule (iii) would be chosen, assuming thatfragmentation or low system utilization is less critical than missing deadlines.Finally, we note that schedule (iv) would not be chosen since the malleable jobscomplete at the same time as in schedule (i) and the rigid jobs �nish later. Ex-tending the deadlines of the rigid jobs would make the two schedules equivalent.We note that the types of simple cost and importance functions just dis-cussed, often results in malleable jobs that start execution with few processorsand then expand their parallelism as their deadlines approach.7 ConclusionsJob schedulers should support a workload of all types of jobs, with a varyingamount of information concerning their resource needs speci�ed either at jobsubmittal time or during job execution. The system manager should be able tode�ne a cost function that captures the policy goals of the computation center.The question is how to get there from where we are today.First, it is important to continue the investigation into current workloads toget a better understanding of the resource requirements of parallel applicationsas well as how resources a�ect their performance. Some of this can be gottenfrom runtime monitoring and gathered from job statistics at the supercomputercenters. Another important input is from the designers of parallel programminglanguages and programming environments, who may come up with new require-ments and desiderata.Second, many on-line schedulers use amortized cost analysis to make deci-sions that are within a constant factor of the optimal, o�-line algorithm. But,without an explicit statement of what it is that the scheduler is trying to maxi-mize, there can be no way to evaluate the success of an on-line algorithm.Finally, it is important to keep the assumptions made by di�erent researchersin mind. In particular, it is necessary to always check to what degree the resultsdepend upon these assumptions, and to keep a lookout for ideas that may beapplicable to a wider class of jobs and systems than envisioned initially.References1. T. Agerwala, J. L. Martin, J. H. Mirza, D. C. Sadler, D. M. Dias, and M. Snir,\SP2 system architecture". IBM Syst. J. 34(2), pp. 152{184, 1995.
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