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Abstract. The space of job schedulers for parallel supercomputers is
rather fragmented, because different researchers tend to make different
assumptions about the goals of the scheduler, the information that is
available about the workload, and the operations that the scheduler may
perform. We argue that by identifying these assumptions explicitly, it is
possible to reach a level of convergence. For example, it is possible to
unite most of the different assumptions into a common framework by
associating a suitable cost function with the execution of each job. The
cost function reflects knowledge about the job and the degree to which
it fits the goals of the system. Given such cost functions, scheduling is
done to maximize the system’s profit.

1 Introduction

Both theoreticians and practitioners have been investigating and implementing
various types of schedulers, and analyzing their performance over a wide range of
workloads, leading to a large and varied body of knowledge [13]. However, many
of the assumptions as to the type of workload and the goals of the scheduler are
incompatible. We argue that the best features can and should be combined.
The following principles are common features of all scheduling systems:

— The scheduler services all jobs that are submitted.

— Jobs that provide optional resource requirement specifications are rewarded.
Jobs that are coded in a “schedulingly friendly” style are rewarded.

— Accounting and quality of service are the tools used to reward jobs.

The road to convergence starts with an explicit understanding of the differ-
ences that are to be bridged. The differences stem from different basic assump-
tions relating to performance metrics (Section 2), workload (Section 3), and
scheduler actions (Section 4). This paper therefore begins by reviewing these as-
sumptions. We can identify several common combinations of assumptions, which
have led to the creation of isolated “clusters of assumptions” (Section 5). Then,
we propose several ways to achieve convergence (Section 6).

Before continuing, the following plea for cooperation is issued. At the very
minimum, we wish that all articles about job schedulers, either real or paper
design, make clear their assumptions about the workload, the permissible actions
allowed by the system, and the metric that is being optimized.



2 Assumptions About the Goals of a Job Scheduler

There are many scheduling systems for parallel computers and even more that
are being proposed and analyzed. The systems are widely disparate both in what
they hope to accomplish and in the ways they hope to accomplish it. This section
reviews some the various, sometimes conflicting goals of schedulers.

2.1 Run Jobs

The primary goal of all schedulers is to enable the successful execution of a job,
hopefully a parallel one, on a parallel machine. While obvious, this goal should
never be forgotten. In particular, maximizing secondary goals should not starve
certain class of jobs,

Secondary scheduling goals, described in the following subsections, vary and
depend on satisfying the needs of the group versus the needs of the individual.
These goals can be broadly classified as being system centric or user centric. Some
are measurable well-defined metrics, while others are functional desiderata. They
are summarized in Table 1.

user system
centric centric

metric |[response time |utilization
throughput

functz'on| run jobs

emulate dedi- |administrative
cated machine|preferences
Table 1. Classification of scheduler goals.

2.2 Maximize Utilization of the Machine

It might appear obvious that a scheduler should maximize the utilization of the
machine. Utilization can be defined in either of two ways: either as the percentage
of CPU cycles actually used for productive computation, or as the percentage
of CPU cycles allocated to user jobs that pay for them. The difference is that
the first definition integrates the efficiency of user code into the equation, while
the latter makes a clear distinction between the allocation of resources by the
operating system and their use by the user.

The problem with utilization as a metric is that it is largely dependent on
system load (Fig 1). Consider a simple queuing model of an operating system
scheduler: requests to run jobs arrive, and they are serviced by the system. When
load is low and all jobs can be serviced, the utilization is equal to the load. When
load is high and the system saturates, utilization is equal to the saturation point.
Therefore the goal of a system designer is not to increase utilization per se but



100% 7
© I
(2] ‘
5 :
& S :ﬁ
o C L
: - £EEh
= S 7
3 ‘
(3]
>
©
T T : T : T T T : T : T
0.25 0.5 0.75 1 0.25 0.5 0.75 1
load load

Fig. 1. Utilization depends on the system load and on how efficiently the system han-
dles it, i.e. at what point does it saturate. Arrows indicate improvement in system
efficiency.

rather to delay the onset of saturation. In other words, A “good” system will
be able to sustain a higher load before becoming saturated, which means that a
higher utilization is possible if the load demands it.

Another problem with the utilization metric is that adopting it may lead to
starvation of certain jobs. For example, if the job stream includes many jobs that
require all the processors in the system, and only a handful of jobs that require
fewer processors and cause significant fragmentation, it is best from a utilization
point-of-view to only schedule the jobs that need all the processors.

2.3 Maximize Throughput

Throughput is the number of jobs completed per unit time. The throughput
metric is similar to the utilization metric in the sense that it is affected by
system load and efficiency. But, whereas utilization is maximized when there are
mainly massively parallel jobs executing for long time periods, the throughput
metric is maximized when there are many small (in parallelism and in CPU
usage) jobs.

The rationale behind this metric is that the higher the throughput the more
users are satisfied. In general, maximizing the average throughput also minimizes
the average response time for a job. This is true only when there is no knowledge
about the execution time of a job. If that is known, then scheduling the shortest
jobs first will reduce the average response time without affecting the average
throughput rate.

Throughput has the same problem as utilization: by focusing on the average
values, the system may undermine the primary goal. A parallel job mix may be
difficult to schedule and can cause significant fragmentation [16]. For example,



a 27 node job on a 32 node parallel machine leaves an awkward 5 nodes free.
If one is interested in maximizing the average number of jobs processed by the
system, it might be better to ignore jobs that cause fragmentation altogether.

2.4 Reduce Average Response time

Reducing average response time is a very common goal, especially in interactive
systems. While there is some debate about the exact definition of “response
time”, most researchers use it as a synonym for “turnaround time,” i.e. from
job submittal'to job completion time, rather than the time till when the first
output is produced [41]).

One problem with the usual response time metric is its use of absolute values.
Consider a job J, that responds in one day and another job J, that responds
in one minuite. Both jobs have the same computational requirement, then there
might be something wrong with the scheduler. On the other hand, if job J,
requires 24 hours of computation time, then the one day response time is pretty
good whereas if job Jp, only required 1 microsecond of computation time, then the
one minute response time may be bad. Jobs can be perceived as having different
weights, depending on their run time. A possible solution to this problem is to
use the average slowdown as a metric instead, where slowdown is the ratio of the
time it takes to run the job on a loaded system divided by the time it takes on
a dedicated system (this is sometimes also called the “response ratio” [4]). This
normalizes all jobs to the same scale.

Another problem with this metric is its linear regard to time. Actually re-
sponse time should be measured as perceived by those who are interested, e.g.
human users. For humans, the difference between a response of 1ms and 100ms
is immeasurable, but the difference between 1s and 100s is very annoying [18].

Finally, it should be noted that not all jobs require the same level of service in
terms of response time. Interactive jobs require interactive response times, prefer-
ably of not more than a couple of seconds. Time critical jobs require application-
dependent response times (e.g. tomorrow’s weather forecast should be ready in
time to be useful). And some jobs do not have any specific time constraints.
In fact, most parallel systems make a distinction between batch jobs and direct
jobs, with batch jobs executed only at night or when the machine would other-
wise be idle. However most efforts at modeling do not take this distinction into
account.

2.5 Fairness vs. Aadministrative Preferences

Fairness is not often advocated as a requirement on its own accord, but it un-
derlies the requirements for maximizing throughput and minimizing average re-
sponse time. But should all jobs be treated the same? For example, we have
already noted that batch jobs do not require short response times.

! We are following Steve Hortney’s campaign to use the term job submittal in place
of the masocistic term job submission; despite the fact that jobs are at the mercy of
the scheduler.



Since all jobs are not created equal, it is often desirable to give preference
to certain classes of jobs. For example, is there any preference to schedule two 8
node jobs in place of a single 16 node job? There is no abstract answer to this
question; 1t 1s dictated by the management personnel of the supercomputer. Due
to the high cost of parallel supercomputers, and their resulting use as shared
resources that are specifically targeted at large computational problems, some
installations do indeed try to encourage highly parallel jobs at the expense of
those with only moderate parallelism.

Encouraging highly parallel jobs can be viewed as “fairness to threads.” A
job with more threads, that exhibits a larger degree of parallelism, 1s assumed
to require more computational resources, and is therefore given better service.
That is, administrative preferences may cause the system to be unfair to to users
or to jobs (that is, all jobs are not considered equal).

2.6 Give the Illusion of a Dedicated Parallel Machine

Multiuser workstations and other non-parallel computers attempt to provide the
user with the illusion of a dedicated machine. This is especially true for inter-
active jobs. When a parallel computer supports multiple users via time slicing
or space slicing, 1t is generally desirable to provide the illusion of a dedicated
parallel machine. We define this to mean that if a job receives 1/k of the total
CPU cycles, then the job should take about %k times as long to complete as it
would on a dedicated machine, without taking any special actions.

To understand the issue here, consider a job scheduler that allows the indi-
vidual activities of each parallel job to be time sliced independently. An activity
may then waste many CPU cycles waiting for a message to be sent by another
activity that is currently not executing. Had the machine been dedicated to the
job, this wasted time would not occur. Thus, a user might be charged more CPU
time, just because the scheduler decided to execute several jobs in an uncoordi-
nated fashion (a simple solution for this case is therefore to use gang scheduling

[17]).

2.7 Issues That Are Often Ignored

An important observation is that most simple metrics have simple failure modes
in which they cause starvation for a class of jobs that do not promote the pre-
defined metric. For example,

— Maximizing utilization may not schedule jobs that cause fragmentation

— Maximizing throughput may not schedule large jobs

— Minimizing response time ignores the fact that batch jobs do not need it nor
want to pay for it

A more subtle observation is that a scheduling-centric metric cannot ac-
count for interactions with other resources that may become depleted first. For
example, memory 1s a critical resource and if it is not managed correctly, an ap-
plication may suffer from thrashing. Consider for a moment a job that consists of



two processes, a consumer and a producer. The producer sends messages to the
consumer process. If the rate of production is equal to the rate of consumption,
and the two processes execute simultaneously in parallel, memory can be used
efficiently. On the other hand, if they do not execute simultaneously, each mes-
sage may need to be buffered. Buffering consumes system resources and could
cause other jobs to frequently page fault. Unchecked scheduling of parallel jobs
may quickly deplete “swap” disk space. Many large installations provide massive
storage systems with latency times measured in the minutes. Such time frames
must be handled differently from the times involved with a simple page fault.

In the area of functional requirements, the need to support whatever users
may want to do is often overlooked. There are a number of examples of over-
sophisticated schedulers that may end up limiting their users:

— Users sometimes want full control over the number of processors used to run
their jobs, e.g. in order to generate speedup curves. A scheduler that sets the
number automatically and does not provide an override mechanism makes
this impossible to achieve.

— Different applications are easier to write in different programming styles, and
users also have their personal preferences. Schedulers that limit the styles
that are supported may thus alienate users that would rather use another
style. This applies, for example, to schedulers that require all jobs to be
able to adapt to changes in resource allocation at runtime, something that
is difficult to achieve in certain cases.

Finally, in modern complex systems it is often the case that the scheduler
must interact with external agents, e.g. as part of a system for heterogeneous
computing [20,30]. As part of such interactions, the scheduler might need to
make reservations for future use. This functionality is often missing, and the
performance implications (e.g. loss of resources due to reservations) are usually
not included in models and analysis.

3 Assumptions About the Workload

Although the basic object that is to be scheduled is a job, there is a major
division on the characteristics of jobs and what the scheduler knows about them.
We restrict our attention to parallel jobs. That is, jobs that are composed of
independent communicating activities. There is an underlying assumption that
communication time is fast, e.g. the time to communicate a word of information
is only about an order of magnitude longer than the time required for a CPU
to fetch a word from its memory. We exclude client-server type jobs and other
distributed computing jobs.

The definition of a parallel job from the point of view of a scheduler, unfor-
tunately, is not so clear cut. There are many styles of parallel programs, and
many structures that are imposed by some runtime systems and compilers. We
identify four types of jobs based on the number of processors to be used by the
job. This number may be specified by the user, either within the program itself



or as part of job submittal specification, or it may be dictated by the scheduler.
In addition, the number of processors may be fixed at the start of program exe-
cution or may change during the course of the computation. There are thus four
classes (Table 2). Although one of the problems with the field is that there are
too many conflicting terms, we risk adding to the complexity by proposing yet
another set of terms. We feel that these terms may help highlight the differences.

who decides| when s it decided
number | at submittal|during execution
user Rigid Evolving

system Moldable |Malleable

Table 2. Classification of job types based on specifying number of processors used.

3.1 Rigid Jobs

A rigid job requires a certain number of processors in order to execute, as speci-
fied by the user at job submittal time; there may be other resource requirements
as well, such as CPU time and memory, but we’ll focus on the requirement for
processors. A rigid job will not execute with fewer processors and will not make
use of any additional processors. The scheduler does not know anything about
the job besides the number of processors 1t needs.

., From the programmer’s perspective, the reasons for using a rigid formulation
vary. In some cases it is simply what the system interface supports, so even jobs
that are written as moldable jobs must be submitted as rigid ones. Applications
written in High Performance Fortran are usually inflexible and there are often
optimal decompositions based on the problem size. For example, it might be
very inefficient to decompose a job with an array of size 100 into 17 processors.

3.2 Evolving Jobs

An evolving job is one that may change its resource requirements during execu-
tion. Note that it is the application itself that initiates the changes. The system
must satisfy the requests or the job will not be able to continue its execution.
Again, the scheduler knows nothing about the job except for its current require-
ment for processors.

Although such jobs are not common, there is much activity in the community
to define a standard for dynamic processor requests. Such facilities already exist
in the PVM interface [21], and they are also in the process of being incorporated
into the MPI-2 standard.

The reason for the interest in this feature is that many parallel jobs are com-
posed of multiple phases, and each phase has different characteristics. In par-
ticular, different phases may contain different degrees of parallelism. By telling



the scheduler about these changes, i1t is possible for jobs to obtain additional
resources when needed, and relinquish them when they can be used more prof-
itably elsewhere (thereby reducing the cost of running the job). Also, this type
of jobs is commonly modeled by task graphs with changing widths [55].
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Fig.2. (a) Rigid jobs define a rectangle in processor-time space. (b) Moldable jobs use
one out of a choice of such rectangles. (c¢) Evolving and malleable jobs both have a
profile with a changing number of processors. The difference is that in evolving jobs
the changes are initiated by the job, while in malleable ones they are initiated by the
system.

3.3 Moldable Jobs

A job may be flexible in the number of processors that it requires and may
allow the system to dictate the allocated number of processors. There are two
types of such flexible jobs, which we call moldable and malleable. With moldable
jobs, the number of processors is set at the beginning of execution, and the job
initially configures itself to adapt to this number. After it begins execution, the
job cannot be reconfigured. It has already conformed to the mold.

If the number of processors is selected by the user and presented to the
scheduler as a requirement, the job is actually rigid from the scheduler’s point of
view. But, given a range of choices, the scheduler can set the number of processors
based on knowledge about the system load and competing jobs, knowledge that
is typically not available to the user. This has been called “adaptive partitioning”
in the literature [44].

A moldable job can be made to execute over a wide range of processors.
There 1s often a minimum number of processors on which it can execute, and
above that number, additional processors can be used to improve performance,
up to some saturation point. The resource requirement of a minimal number of
processors is usually due to memory and response time constraints. ; From a local
efficiency point of view, there is a best number of processors for the job, at the
knee of the speedup curve. But since the scheduler cares about maximizing some



overall system performance properties, it might be best if the job i1s executed
at another point. In any case, knowledge about application characteristics is
typically required [46].

Programs written using the SPMD style, e.g. with the MPI library package,
are often moldable. Moreover, workload traces from real parallel systems show
that indeed the same application may run several times using different partition
sizes [14].

3.4 Malleable Jobs

The most flexible type of jobs are malleable ones that can adapt to changes
in the number of processors during execution. The main programming styles
that permits this flexibility consists of many short independent tasks that access
shared data in a very stylized way. For example, if all the tasks have no side
effects, then to reduce the number of processors, some tasks are terminated and
restarted later on the remaining processors [43].

It 1s fairly well accepted to call changing the number of processors at runtime
“dynamic partitioning”. We prefer to call the jobs “malleable” rather than “dy-
namic” because the term “dynamic” does not indicate who is doing the dynamic
allocation. On the other hand, the shape of a malleable object can be changed
by an outside entity, while an evolving object is one that changes of its own ac-
cord. However, note that evolving and malleable should usually come together,
because one job’s evolution will cause others to have to reconfigure.

Analyzing the benefits of dynamic partitioning and malleable jobs has been
the subject of much recent research [36,7,28,39,34,23]. This research typically
compares the cost of reconfiguration with the resulting improvement in overall
performance. But such comparisons do not give a full picture. In many cases,
changing the number of processors allocated to a job requires complex interac-
tions between the operating system and the application’s runtime system [2].
For example, if the thread running on a certain processor holds a lock and then
the processor is taken away, there may be no way to free the lock. Implementing
the required interfaces to solve such problems naturally complicates the system,
and makes 1t harder to implement, which 1s one reason why malleable jobs are
currently not supported on any commercial parallel machines.

An interesting benefit of malleable jobs is that the option for changes can
be used to allow the system to collect information about the job at runtime,
by trying several configurations and checking the resulting performance. This
information can later be used to guide allocation decisions [37]. This approach
has obvious advantages over requiring the information to be available in advance,
as 1s needed for moldable jobs.

4 Assumptions About Permissible Actions

A scheduler must execute in the environment of an existing operating system and
machine architecture. This environment restricts the operations it is allowed to



perform. In some machines, the operating system provides a single system image.
That is, it does not matter from which processor an action is executed, they are
all identical. Shared Memory Parallel Processors (SMPs) often have this feature
and it is also being explored in some distributed systems [29]. When there is no
single system 1mage, it is difficult to migrate tasks. The machine architecture
may 1mpose restrictions on the types of processor partitions available and the
ability to share access to the communication substrate.

The most limited system has partition sizes of a fixed number of processors,
and allows only one job to execute from start to finish in a partition at any
time. The scheduler simply needs to keep track of empty partitions and map
incoming jobs to the appropriate partition. At the extreme, there would be only
one partition and so only one job can execute at a time. But most systems allow
many more powerful options.

4.1 Flexible Partitioning

Nowadays, most systems allow the processors to be partitioned on a job by job
basis. This is sometimes referred to as space slicing. The exact number of pro-
cessors may be forced to match the topology of the machine, as in hypercube
topologies in which partitions must also be hypercubes but of a smaller dimen-
sion. But in many cases, especially when the network topology is hidden from
the programmer, there are no such restrictions and partitioned may be formed
using arbitrary subsets of processors.

A rigid job is submitted for execution along with a specification of the number
of processors that it requires. The scheduler then creates a partition of that size
and schedules the job to execute within that partition [53,32,20,1,9,31,33]. With
moldable jobs, it is the scheduler that selects the partition size [44].

Evolving and malleable jobs require partitions that are not only flexible but
can also change dynamically at runtime. This places an added burden both on
the programmer, who must write application code that requests and adapts to
such changes, and on the scheduler, that must handle the re-allocation decisions
and coordinate them with the applications.

One common heuristic for dynamic partitioning is to strive for equal sized
partitions (usually called “equipartitioning”) [35]. The problem with this ap-
proach is that it might require all jobs to be interrupted whenever something
changes. An alternative is to use folding [35]. With folding, the number of pro-
cessors allocated to a job can only grow or shrink by factors of 2. That is, the
partition size may be halved or doubled. When a partition is halved, the run-
time system may choose to simply “fold over” the application, and time-slice
two tasks on each processor. Thus an application that has a balanced workload
over a particular partition size is likely to remain balanced after a folding oper-
ation. Many speedup curves resemble step functions, with poor speedup values
for non powers of two number of processors. However, there is some debate over

the benefits of folding [28,39].



4.2 Preemption and Time Slicing

Dynamic partitioning, discussed above, requires certain processors to be pre-
empted and re-allocated in order to accommodate load changes. Another type
of preemption is that used in order to time-slice multiple applications, as is
commonly done on uniprocessors. We identify this feature for special attention
since many systems cannot support such preemption due to limitations on the
message-passing architecture. For example, some machines require that the in-
terface to the network be set up before a job begins execution. There may be
no easy way to switch jobs without compromising the integrity of the messages.
On some systems, switching message space protection from one job to another
is permitted but is a very time consuming operation.

An extension of preemption is the ability to preempt all the members of a
parallel job at the same time, as well as restarting all the members of another
job. This is called “gang scheduling”. It is generally agreed that if time slicing is
used, then it should be implemented via gang scheduling, rather than letting each
processor do its own uncoordinated time slicing. The reason is that with gang
scheduling all the processes of a given job execute simultaneously on different
processors, thus supporting the use of fine-grain interactions [17]. An interesting
observation is that it is desirable to also preempt the network, i.e. to flush any
traffic that belongs to the job that is being de-scheduled, so as to present a clean
slate to the new job [26].

Gang scheduling suffers the overhead of context switching and corrupts cache
state, but for a large enough time quantum these overheads can be made insignif-
icant [23]. On the other hand, time slicing in general reduces the average response
time provided the distribution of execution times has a large variance [40], which
in fact it typically occurs [14].

4.3 Migration

Migration refers to the ability of a scheduler to move an executing job or some
of its components to other processors. As such it is an extension of preemption:
a task stops running on a certain processor, and it restarts on another processor.
Reasons for migration include packing in order to reduce fragmentation [6,12],
and the need to withdraw from a workstation when its owner returns [42].

Migration is simple on shared memory machines, because threads do not
have any state that is local to the processor except for their cache and TLB
footprints. The challenge i1s to ensure that interacting threads map to distinct
processors.

Migration is significantly more problematic in distributed memory machines
as it requires migrating the local memory which can be a very expensive opera-
tion. The ability to migrate a task is often hindered by systems whose message
passing libraries specify physical processor numbers as source or destination
fields for messages. Note that the elimination of virtual to physical processor
mapping increases the speed of a communication. Many systems map the net-
work FIFO queues into user space; disconnecting and reconnecting may also
require significant overhead.



4.4 Change Job Execution Order

A scheduler may be able to process jobs in an order different from the job
submittal order. Many batch systems have some such flexibility [32,24,53]. Of
course, this flexibility is only useful if there is some information as to the re-
source requirements of the waiting jobs as well as any deadlines or response time
requirements.

We mention this option since it easily leads to violation of the primary goal
of a scheduler — the execution of every job. Some aging mechanism is required
to ensure that jobs are not passed over for arbitrarily long time periods.

5 Research Clusters

The spectrum of job schedulers for parallel machines may be expected to span a
large part of all the different options for assumptions about goals, metrics, and
workloads. In fact this is not so. Several “clusters” have formed, each with its
own set of assumptions, and often oblivious of the others. This section identifies
and characterizes these “clusters of assumptions,” as a prelude to suggestions for
some degree of convergence in the next section. The clusters are summarized in
Table 3. The most controversial part is probably our classification of the goals.
Mostly, if the scheduling system ensured that jobs run with all their required
resources in a timely fashion, response time was considered as a goal. We eval-
uated the goals of utilization and throughput by considering how the scheduler
treats large batch jobs and small interactive jobs.

5.1 Rigid Jobs and Variable Partitioning

Maybe the simplest scheduling scheme is to reduce the role of the operating
system to that of a processor rental agency. Jobs request a certain number of
processors, and the system provides them for exclusive use if they are available.
The only goal is to (eventually) run the jobs. No knowledge about job behavior
1s assumed, and no special actions need be supported, except some measure of
partitioning the machine. This scheme has been called “variable partitioning”
or “pure space sharing” in the literature.

Despite its simplicity and the resulting drawbacks in terms of responsiveness,
fragmentation, and reliability, this scheme is widely used. It is especially common
on large distributed memory machines [53,27,20,9,31]. The reason is that it gets
the job done, albeit not optimally, but with relatively little investment in system
development. In an industry where time-to-market is a crucial element of success,
this is a true virtue [1]. As a result, users sometimes have to revert to signup
sheets as the actual processor allocation mechanism.

Because variable partitioning cannot run jobs immediately if the requested
number of processors is not available, jobs often have to be queued. As a re-
sult this scheme 1mplies a batch mode of operation. With sufficient backlog, it
1s then possible to select an execution order that improves system utilization



variable gang shared  adaptive dynamic

partitioning scheduling queue partitioning partitioning
goals
run jobs yes yes yes yes yes
utelization no yes yes
throughput no yes yes yes
response no yes no
admin
dedicated yes yes yes no
workloads
rigid yes yes yes yes no
evolving no no yes no yes
moldable yes yes yes yes no
malleable no no no no yes
actions
partitioning yes yes no yes yes
preemption no yes yes no yes
synchronized|  n/a yes no n/a no
migration no no yes no
ordering yes n/a n/a

Table 3. “Clusters” of common combinations of assumptions.

and throughput [32,48]. Thus even this simple scheme has bred some interest-
ing research. In addition, it has prompted research into improvements such as
adaptive and dynamic partitioning (see below).

5.2 Rigid Jobs and Gang Scheduling

Gang scheduling has been re-invented many times over because it is an intuitive
extension of timesharing on uniprocessors. It also supports interactive use and
gives the illusion of using a dedicated machine, without placing restrictions on
the programming model and without assuming knowledge about the workload.
It has therefore enjoyed considerable popularity among vendors, at least in the
form of “hype” (all vendors claim to support some form of gang scheduling)
but good implementations also exist. There have been a number of experimental
implementations [38,15,12,54,22 25] that demonstrate its usefulness.
Academically speaking, gang scheduling has repeatedly been shown to be
inferior to dynamic partitioning (see below), but only by a small margin [23,8].
The main drawbacks cited are interference with cache state, and possible loss
of resources to fragmentation. As the first can be lessened by using long time
quanta [23], and recent research suggests that the second is not so severe [12], it
seems that the advantages of gang scheduling generally outweigh its drawbacks.
However, there are still some unresolved issues. The main one concerns the
possible interaction between gang scheduling and over-committing memory re-
sources. Time slicing between two active jobs requires more memory that execut-



ing these jobs sequentially. The direct solution is to provide adequate swapping
to disks, but so far little research has been done on this issue, and parallel sys-
tems are notoriously underpowered in terms of 1/O. Another criticism of gang
scheduling is the lack of fault tolerance — if a processor fails, many jobs may
have to be aborted. While important, this problem is not unique to gang schedul-
ing: 1t is also present in other scheduling schemes and in other components of
parallel operating systems, e.g. message passing facilities.

In summary, the finer the granularity of interaction between members of a
parallel job, the more gang scheduling is required.

5.3 Evolving Jobs and a Shared Queue

Another simple extension of timesharing on uniprocessors is to use a shared
queue. Each processor chooses a process from the head of the centralized ready
queue, executes it for a time quantum, and then returns it to the tail of the queue.
As processors are not allocated permanently to jobs, the number of processes in
a job may change during runtime without causing any problems. This scheme is
especially suitable for shared memory multiprocessors, and indeed 1t is used on
many bus-based systems [50,3].

Using a shared queue as described above may suffer from three drawbacks:
contention for the queue, frequent migration of processes, and lack of coordinated
scheduling. The issue of possible contention has lead to the design of wait-free
queues, where different processes can access the queue simultaneously by using
suitable hardware primitives, such as fetch-and-add. Indeed, this was one of the
driving forces in the design of the NYU Ultracomputer, and its support for fetch-
and-add via a combining multistage network [11]. However, the idea of combining
network has not caught on because of their added complexity and design costs.

Migration occurs in this scheme because processes are typically executed on
a different processor each time they arrive at the head of the queue. As a result,
any state that may be left in a processor’s cache is lost. It has been suggested
that this effect can be reduced by using affinity scheduling, where an effort is
made to re-schedule the process on the same processor as used last time [49,10].
However, it is not clear to what degree data indeed remains in the cache, and
in any case, affinity scheduling is largely equivalent to just using longer time
quanta [51].

The third issue, lack of coordinated scheduling, may cause problems for appli-
cations where the processes interact with each other frequently. The only solution
is to use gang scheduling. While gang scheduling and a shared queue seem to be
in conflict with each other, a scheme that integrates both has been designed in
the context of the IRIX operating system for SGI multiprocessor workstations

Finally, it should be noted that this scheme benefits from similarity with
runtime systems and thread packages that run within the confines of a single
job.



5.4 Moldable Jobs and Adaptive Partitioning

Asnoted above, variable partitioning is a simple but somewhat inefficient schedul-
ing scheme. The inefficiencies result both from fragmentation, where the remain-
ing processors are insufficient for any queued job, and from the fact that jobs
may request more processors than they can use efficiently. It is therefore an in-
teresting question to assess the degree to which efficiency can be improved by
adding flexibility and information about the characteristics of different jobs.

The model adopted for this line of research is that jobs can be molded to run
on different numbers of processors, and some information about their average
parallelism or execution profile is provided. This allows the system to judiciously
choose partition sizes, without significantly affecting the programming model.
Thus when the system 1s lightly loaded, jobs are allowed to use larger numbers
of processors, even if they do not utilize them efficiently, but when system load
increases, jobs are cut down to size [44,47,46]. It has also been suggested that
the system keep some processors idle on the side in anticipation of additional
arrivals [45].

In summary, this approach has generated a rather large body of research,
but it has yet to lead to any implementations in real systems.

5.5 Malleable Jobs and Dynamic Partitioning

A more extreme approach to system optimization calls for sacrificing common
programming models along with the illusion of a dedicated machine in order
to promote efficiency. In some sense, this approach demonstrates the best per-
formance that can be achieved, given full system flexibility in the allocation of
resources, and jobs that are willing to cooperate with the system (and through
it, with each other).

The programming model requires each job to accurately inform the system
their resource requirements, and be able to adapt to changes in resource alloca-
tion that result from fluctuations in system load. The system uses information
about the characteristics of the jobs to decide on the optimal allocation: jobs are
only given additional processors if there is nothing better to do with them. When
a new job arrives, some processors are taken from existing jobs and given to the
new job, so that it will not have to wait. When a job terminates, its processors
are distributed among the other jobs, so as not to waste them [52,34,35].

A good implementation requires co-design of the operating system, the run-
time system, and the programming environment [2]. Indeed, no production im-
plementation for parallel machines have been reported so far, despite much re-
search that shows the benefits of this approach in terms of efficiency. On the
other hand, this approach has the unique advantage that jobs may be able to
tolerate system faults: a faulty processor is similar to one that is taken away
and given to another job. Likewise, jobs running on a network of workstations
will be able to tolerate workstations that drop out of the processor pool when
they are reclaimed by their owners. Therefore this approach has lately become
prominent in the context of network computing [5,43].



6 Steps Towards Convergence

The field of job scheduling for parallel processing is in flux. It is being driven
by the needs of growing numbers of installations. Sadly, there seems to be a
growing divergence between the practical approaches adopted by actual users
and the more sophisticated approaches advocated by theoreticians. Our goal
here is to point out ways in which this gap can be bridged, and show how the
different communities can benefit from the work of each other.

6.1 Step One: Be Explicit About the Differences

One of the problems in the field is the difficulty in relating the various research
results to each other. In some cases such comparisons are actually comparing
apples with oranges as if they were equivalent, in some the comparison is dis-
missed because it mistakenly seems to be irrelevant, and in some cases it is just
hard to see whether or not the comparison makes sense.

The root of the problem is with the significant implicit assumptions and
imprecise, confusing terminology. For example, dynamic partitioning research
papers usually do not make explicit the assumption that jobs are coded in a
style that tolerates changes in resource allocation at runtime, and that jobs
are willing to cooperate in order to achieve greater overall (system) efficiency.
Dynamic partitioning also assumes that the speedup functions for the jobs are
not trivial step functions in which no speedup is achieved until a critical number
of processors 1s made available and that additional processors do not affect job
performance; such speedup functions describe rigid jobs. Likewise, work on gang
scheduling usually does not make explicit the assumption that all programming
styles must be supported with no changes. Gang scheduling research assumes
that most jobs are not “embarrassingly parallel jobs” that require infrequent
interaction. When these assumptions are clarified, it is evident that the two
schemes operate in different frameworks. It is true that both strive for greater
system efficiency, but each does so in a different framework based on different
assumptions about the workload, so a comparison between them is debatable at
best.

The other problem is one of terminology. For example gang scheduling means
the same thing as coscheduling except that coscheduling will also schedule only
some threads of a parallel job instead of leaving idle processor. Other researchers
use the terms hard and soft gang scheduling to denote these differences. Such
practices make it harder for readers to figure out what the results are about,
and increase the cognitive load. While it is true that existing terminology is not
always optimal and may suffer from historical artifacts, it is still usually better
to stick with the established terms.

To summarize, we recommend that each paper should state the assumptions
use consistent terminology, and resist the urge to define new terms or give new
meaning to old ones.



6.2 Step Two: Acknowledge Deficiencies and Search for Solutions

Each scheme, by way of being dependent on a set of assumptions, has weaknesses
when the assumptions are violated. Rather than assuming them away, one should
try to overcome them by incorporating the ideas of other schemes. This may
make the difference between a theoretical proposal and a real system.

For example, major weaknesses of variable partitioning are the loss of re-
sources to fragmentation and the lack of responsiveness. Different schemes have
been proposed to overcome one or the other of these problems: gang schedul-
ing improves responsiveness, while adaptive and dynamic partitioning reduce
fragmentation and improve throughput, provided the assumptions regarding the
workload are met. But each scheme still has weaknesses when its assumptions
are not met in full.

While gang scheduling improves system responsiveness through the use of
time slicing, and also alleviates the ill-effects of fragmentation to some degree,
it does not allow for optimizations based on global knowledge of the system
load. Thus each job runs on a predefined number of processors, and this number
cannot be changed. Efficiency may be improved if support for malleable jobs is
included. Then, jobs are indeed malleable can be re-shaped to improve efficiency
based on knowledge of the speedup curve. If the workload does not include
sufficient small jobs, malleable jobs can also be re-shaped to fill in holes and
reduce fragmentation.

Dynamic partitioning improves efficiency by eliminating fragmentation and
reducing the processor allocation towards the optimal operation point for each
job when load is high. However, it must still deal with unfavorable conditions,
such as non-malleable jobs, jobs that do not provide the required information
about their operation characteristics, and situations in which too many jobs have
been submitted to run all of them at once. These problems can be addressed
using mechanisms of adaptive partitioning and gang scheduling.

The bottom line i1s that combining ideas from different scheduling schemes
can lead to important benefits for real systems. This does not mean that research
on the individual schemes is not important — on the contrary, it is definitely
necessary to focus on a narrow scheme and reduce the number of variables in
order to perform a detailed analysis. But when it comes to building real systems,
it 1s necessary to take a broader view.

6.3 Step Three: Broaden the Scope

Since expensive supercomputers should address a broad spectrum of application
programs, a job scheduler should be able to handle a workload consisting of all
sorts of jobs, be they rigid, evolving, moldable, or malleable, and all levels of
resource specifications. Moreover, a scheduler should implement the constantly
evolving policies and goals of the computer installation. Although we do not
propose a scheduler that achieves these goals; it is important to state take steps
in this direction.



Consider, for a moment, an 8 processor system and two parallel jobs. Suppose
the jobs are malleable and the system is extremely flexible in that the two jobs
can be executed in a gang scheduled, time-sliced manner with 8 nodes allocated
to each job, or it can use space slicing and dedicate 4 nodes to each job. Suppose
further that each job achieves linear speedup. Should the scheduler use space or
time slicing? If the jobs require the same execution time, then there should be
little difference, and system overheads should dictate the choice. Now suppose
one job was submitted first and is allocated 8 nodes exclusively. When the second
job arrives, 1s it more expensive to repartition the first job or to gang schedule
them? The answer now depends on the computational times of the jobs — the
number of context switches times their cost versus the repartitioning cost.

As the load on the system changes, the fraction of system resources allocated
to each job changes. In time sharing system, it is easy to see this change. In
space sharing systems, dynamic repartitioning attempts to share the resource
of the processor. However, 1t is important to keep in mind that there are other
resources such as physical memory and disk swap space.

So, one point is to understand the tradeoffs between the various modes of
sharing.

Specifically, we propose the use of cost functions that reflect the policies and
goals of the computer installation. For a given workload and cost function, the
aim of a scheduler is to maximize the revenues of the system. There may be many
different schedulers, some better suited to specific workloads and cost functions.

The cost function is defined on the execution of a job. It may be totally
fictional; that is users do not pay money to have their job executed, but there
is almost always some accounting when there is a scarce resource. Different
job types can have different cost functions. The abstract notion of money that
the system receives by executing a particular job at a particular time allows a
scheduler to handle all types of jobs. Instead of ill defined notions such as “gets
better service” there is a precise accounting for service. Policy decisions can
be reflected through the cost function and not through the scheduler allocation
algorithms.

Incentives The more flexible and fully specified a job, the easier it is to schedule.
It may be difficult to write a malleable or even a moldable job, and the user may
not wish to take the time to uncover a job’s resource requirements and speedup
curves. So, there should be an incentive to the user to write a malleable program
and to provide the system with lots of information about the program execution
requirements. There are many types of incentives, but the two most popular
choices are reduced cost and improved service; the adage “time 1s money” may
equate the two.

Since the biggest drawback of scheduling of rigid jobs is fragmentation, it
should be possible to use malleable jobs to fill in the leftover space. In addition,
some fraction of the processors should be reserved for malleable jobs. The exact
fractional value is clearly a system specific policy decision.



It seems natural to schedule jobs in the order that they arrive (or by some
priority measure). But what resources should be given to flexible jobs? The
system might have a different opinion than the user. For example, the user may
want fast response time, therefore desire the maximum number of processors,
while the system may want to satisfy the maximum number of users and thus
allocate the minimal size to a malleable job. Given a 32 processor machine and
two jobs, one rigid job requiring 24 processors and the other completely mal-
leable, the system may allocate only 8 processors to the malleable one, thereby
giving preferential treatment to the rigid job.

In other words, a reasonable scheduling strategy 1s to first take care of rigid
jobs. Then, any remaining, unassigned processors due to fragmentation can be
evenly distributed among the flexible ones. When new jobs arrive, the existing
malleable jobs can be squeezed to their minimal size, and the new job allocated
processors according to an equipartitioning strategy.

But should malleable jobs always be squeezed to their minimal size? Is it fair
to slow down malleable jobs for the sake of executing another rigid job? Will users
learn to choose the resource requirements that make their job complete sooner
independently of the job’s real requirements? For example, malleable jobs may
be declared as rigid ones to prevent their interruptions. There is no universally
correct answer to these concerns. The tradeoff can only be solved given the
goals of the computer installation. A possible approach is to reserve a fraction of
the system resources for each type of job. Particular classes can be encouraged
and given preferential treatment by varying the fraction of resources. Such a
strategy, however, restricts the ability of the scheduler and the policy maker.
What happens when there are no rigid jobs? Are the resources wasted?

Using Cost Functions By defining a cost function, there is then something to
maximize. For a given workload and cost function, some schedulers will maximize
revenues better than others. But no matter the quality of the scheduler, changing
the cost function will affect how the users view the machine. This provides
flexibility to the system manager and allows exploration of the cost function
space.

As a by-product, there 1s a common goal for theoreticians and practitioners:
maximize revenues. Of course the theoretician may assume that there is much
that is specified with the job, while the practitioner may have to approximate,
infer, or guess at this information.

Note that there are actually two types of cost functions. The one just ad-
dressed concerns the when, where, and how a job is scheduled. It reflects the
value to the scheduler of executing a job at a particular time. This indirectly
affects the quality of service received by individual jobs.

It makes sense also to speak of a potentially different cost function that
defines how much the user will have to pay. One can encourage certain types
of jobs by charging users differently. It may be necessary to have two different
functions since the scheduler gives preference to higher valued jobs whereas users
give preference to lower valued jobs.



We assume that changes in the value of a job to the scheduler do not directly
affect the offered workload. Of course once users figure out which jobs execute
early, they may change the jobs submitted for execution. On the other hand,
changes in the cost of a job to the user will quickly change the contents of the
offered workload.

We shall ignore the cost to a user and concentrate on the cost function that
defines the value of a job to the scheduler.

In what follows, we consider various components of a cost function. Real
cost functions are expected to be developed in close collaboration with man-
agement personnel of the supercomputer center in order to address policy. The
development follows the ideas found elsewhere [19].

The Importance of a Job It may be decided that the amount of parallelism of
a job 1s important. Suppose a job is executed on p processors. When computing
the importance of a job, a modified value of p may be used, such as p' = kgp.
If kg < 1 then parallelism is discouraged; if k; > 1 then it is encouraged.
Similarly, the total amount of CPU time used by a job, ¢, might be deemed
important. So another constant is required to scale the time: ' = kit.

The policy might be to encourage the use of medium sized parallelism, say
32 processors. The knee of the cost function should therefore be at this preferred
number.

Other resource requirements can be similarly scaled in a way to reflect the
importance of a job at the given installation. The final importance of a job is
then some function of the scaled components. A simple function is addition,
e.g. ¥ + p', or multiplication, e.g. # -p’, but with multiplication, elapsed time
or time per processor may make more sense since total time already incorporates
the amount of parallelism. The scaled time per processor is simply ' /p.

If a job has a dynamic parallelism profile, then these values can be defined
piecewise over periods when the number of processors is fixed, and then added
up, as in

Importance(/) = 3 Ly
mportance P v
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The Global Affect of a Job Executing one job may preclude the scheduler
from executing another, less valuable job, but it may also leave idle resources.
Thus there is a second component to a job that must take account for what else
is happening in the machine. Let us call this the affect of executing a job.

Suppose there are several jobs executing at any one time in a space slicing
manner. During this snapshot in time, there are L idle processors. Then one
could assign a value of — % L as the affect of the job during this time slice (i.e.
the cost is this factor multiplied by the time).

The affect of a job as defined is bad. The more wasted processors, the more
negative the value. This function gives proportional blame for the idle resources
based on the size of a job.



Deadlines and Response Time No matter how important is a job, without
some accounting of deadlines or response time, there is no reason for a job to be
scheduled at a particular time. The scheduler simply waits until it has enough
jobs that it can pack together without waste. When there is a deadline associated
with a job, then the cost function can reflect some policy. For example, the value
of a job may decrease the longer it misses its deadline. A function that has the
value continue to decrease (below zero) ensures that each job will eventually be
executed?.

Job Type CPU Min PEs Max PEs Arrival Deadline

Jo Rigid 6 6 6 0 1

(a) J1 Rigid 6 6 6 0 1

J> Malleable 10 1 8 0 2

Js Malleable 10 1 8 0 2
Time
5
4
3
2
1

PEs1 2 3 4 5 6 7 8 123 45678 12345678 12345678

(0] (ii) (iii) (iv)

Fig. 3. Example of scheduling rigid and malleable jobs under different cost functions.
(a) characteristics of the jobs in the workload. (b) possible schedules.

One suggested function [19] is:
(deadline — response time)/Importance

This makes sense once one recalls that our definition of importance is based
on the total use of resources. The suggested function therefore scales the delay
according to the resources used. The idea is that if a one month job misses its
deadline by a day, it is not as bad as a b minute job missing its deadline by a
day.

Consider the example of four jobs in a machine with 8 processors shown in
Fig. 3. They all arrive at time 0 and want immediate service. There are several
ways to schedule these four jobs; four examples are shown in the figure, although
there are others. Which is the right schedule? The answer is that there is no right
or wrong schedule; there is only those that maximize the cost function. Consider

2 Note that this differs from the strategy of airlines that want to maximize their on-
time performance, so that once a flight is delayed by more than 15 min, there is little
pressure to minimize the delay. A better analogy is with the construction industry
where fines are levied for each month delay in completing a building.



a simple cost function, like the one defined above, and assume that importance
is taken to be CPU time. The cost is then

deadline — response time

Cost(J) = CPU

With this function, schedule (i) gives the best score since shorter jobs have a
some what worse penalty for missing their deadlines. Increasing the importance
of the smallness of a job, say by using an importance function that squares the
computation requirements: i.e. 1/CPU?, configuration (ii) is the best. If bigger
jobs are more important, then schedule (iii) would be chosen, assuming that
fragmentation or low system utilization 1s less critical than missing deadlines.
Finally, we note that schedule (iv) would not be chosen since the malleable jobs
complete at the same time as in schedule (i) and the rigid jobs finish later. Ex-
tending the deadlines of the rigid jobs would make the two schedules equivalent.

We note that the types of simple cost and importance functions just dis-
cussed, often results in malleable jobs that start execution with few processors
and then expand their parallelism as their deadlines approach.

7 Conclusions

Job schedulers should support a workload of all types of jobs, with a varying
amount of information concerning their resource needs specified either at job
submittal time or during job execution. The system manager should be able to
define a cost function that captures the policy goals of the computation center.
The question is how to get there from where we are today.

First, it 1s important to continue the investigation into current workloads to
get a better understanding of the resource requirements of parallel applications
as well as how resources affect their performance. Some of this can be gotten
from runtime monitoring and gathered from job statistics at the supercomputer
centers. Another important input is from the designers of parallel programming
languages and programming environments, who may come up with new require-
ments and desiderata.

Second, many on-line schedulers use amortized cost analysis to make deci-
sions that are within a constant factor of the optimal, off-line algorithm. But,
without an explicit statement of what it is that the scheduler is trying to maxi-
mize, there can be no way to evaluate the success of an on-line algorithm.

Finally, it is important to keep the assumptions made by different researchers
in mind. In particular, it is necessary to always check to what degree the results
depend upon these assumptions, and to keep a lookout for ideas that may be
applicable to a wider class of jobs and systems than envisioned initially.
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