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Abstract. In multiprocessor systems, a reasonable goal of the sched-
uler is to keep all processors as busy as possible. One technique for doing
this is to allocate all available processors to the jobs waiting for ser-
vice. Techniques which allocate all available processors are known as
work-conserving policies. In this paper, non-work-conserving policies are
examined. These policies keep some number of processors idle (i.e., un-
allocated) even when there are parallel jobs that are waiting for service.
Such non-work-conserving policies set aside idle processors for antici-
pated new job arrivals or for unexpected system behavior. Two classes
of non-work-conserving space-sharing policies are examined. One policy
class keeps a certain percentage of the processors free. The other policy
class makes an allocation decision based on previously observed system
behavior. Two non-work-conserving policies, each selected from the two
classes, are evaluated against their work-conserving counterparts. It is
demonstrated that non-work-conserving policies can be particularly use-
ful when the workload or the system behavior are irregular. Variability
in the workload behavior including bursty arrivals, a high coefficient of
variation in the workload execution time, unstable systems with proces-
sor failures are among the situations where non-work-conserving policies
improve performance.

1 Introduction

General purpose multiprocessor systems offer considerable computational power
which can be used to solve problems with large computational requirements.

* This work was partially supported by Italian M.U.R.S.T. 40% and 60% projects, and
by sub-contract 19X-SL131V from the Oak Ridge National Laboratory managed by
Martin Marietta Energy Systems, Inc. for the U.S. Department of Energy under
contract no. DE-AC05-840R21400.



However, it is not always possible to efficiently exploit all available processors.
The nature of the problems to be solved, the architectural characteristics of the
parallel system (e.g., topology, interconnection network, memory architecture),
the application’s computation and communication requirements, are among the
factors that limit the efficient use of massively parallel systems. Multiprogram-
ming i1s a viable way to improve system utilization while preserving individual
application performance. However, multiprogramming complicates scheduling
since an allocation policy is needed to determine the number of processors which
should be allocated to each parallel program.

Preemptive or non-preemptive [SRDS93] processor allocation policies have
been proposed. Preemptive policies [Oust82, MEB88, PD89, FR90, DCDP90,
LV90, ZM90, MVZ93, CMV94, MZ94] allow processor redistribution upon job
arrivals and departures or when a time quantum expires. Processors may be
reclaimed from an executing job’s assignment and distributed to newly ar-
rived jobs, or additional processors may be added to an executing job’s as-
signment when processors become available. Dynamic space-sharing policies and
time-sharing policies are considered preemptive. Non-preemptive policies [Sev89,
ZM90, GSTI91, MEB91, RSDSC94, Sev94, CMV94] keep the number of proces-
sors assigned to a job constant during execution. Processor allocation decisions
occur only before execution starts. Static and adaptive space-sharing policies
are considered non-preemptive. Non-preemptive policies are characterized by
low overhead and easy implementation.

In this paper, the focus is on non-work-conserving adaptive space-sharing
policies for general purpose multiprocessor systems*. These are policies that
keep processors idle even in the presence of jobs waiting for service or policies
that set aside processors for anticipated job arrivals. Traditionally, processor
scheduling policies are devised with the goal of maximizing system utilization
by assigning all available processors as soon as possible [ZM90, GST91, CMV94].
Work-conserving policies are natural in uniprocessors where there is no advan-
tage from keeping the processor idle. When there are multiple processors, non-
work-conserving policies may be effective.

A number of non-work-conserving policies have appeared in the literature
and have proved to perform well. Restricting the number of processors assigned
to a job up to the job’s maximum parallelism has been used in the run-to-
completion (RTC) policy presented in [ZM90]. The concept of processor work-
ing set (PWS) is used as a configuration parameter for several adaptive policies
[GSTI1]. Among them, two non-work-conserving policies (FF and FF+LA) re-
strict the number of allocated processors allocated to the jobs” PWS. A policy
that restricts the number of processors as a function of the average, minimum,
and maximum parallelism of the application and the variance in parallelism has
been proposed in [Sev89]. Three families of non-work-conserving policies have
been presented in [RSDSC94]: the insurance policies (IP) that always attempt
to “save” a fixed percentage of the free processors for anticipated future arrivals,

* Dedicated supercomputers are not the target machines of the policies investigated
here. In these systems, policies that maximize throughput are commonly used.



the equal-partitioning-with-maximum (EPM) policies that restrict the number
of processors assigned to each job according to a predefined MAX parameter,
and the adaptive policies (AP) that resort to non-work-conserving decisions de-
pending on limited knowledge of the system history. A uniform comparison of
the adaptive space-sharing policies that appeared in the literature has been pre-
sented in [CMV94]. From this comparison, the ASP-MAX policy is distinguished.
The ASP-MAX policy resorts to non-work-conserving scheduling decisions by us-
ing the available parallelism of each parallel application and a fixed percentage
parameter.

A preliminary study of the advantages of leaving idle processors has been
conducted in [SRSDS95]. In this work, the properties of one specific non-work-
conserving strategy were investigated. It was found that performance improve-
ments can occur from using a non-work-conserving policy when: 1) the workload
does not scale linearly, 2) there exists a large variability in the workload inter-
arrival times, and 3) the workload is comprised of multiple classes with different
computational requirements.

This paper focuses on the potential benefits of two classes of non-work-
conserving scheduling policies. The performance of these policies for various
execution time distributions and for bursty arrivals is studied. The impact on
performance of non-work-conserving decisions in the presence of processor fail-
ures is also explored. Measures to assess the degree of non-work-conservingness
for each policy (e.g., the number of processors left idle with respect to the current
assignment) are presented.

The paper is organized as follows. Non-work-conserving policies are described
in Section 2. Section 3 illustrates the results of performance analysis for variable
execution time distributions, arrival bursts, and processor failures. In Section 4
quantitative measures of the degree to which a policy is non-work-conserving are
presented. Section 5 concludes the paper and summarizes the findings.

2 Non-Work-Conserving Policies

In this section the concept of non-work-conserving policies is illustrated. Two
families of non-work-conserving space sharing policies found in the literature
are described. In both cases, the policies schedule jobs in FIFO order, apply-
ing different non-work-conserving strategies for processor allocation, and have
minimum overhead since they are of space sharing type.

In classical scheduling theory, non-work-conserving policies keep the resource
idle or partially idle in the presence of work to be done. In uniprocessor systems,
such a characteristic is harmful to performance when the cost of waiting for
data (e.g., from cache) exceeds the cost of context switching. In multiprocessor
systems, scheduling the available processors 1s a more difficult problem. Under
space-sharing, multiple programs can execute simultaneously on disjoint subsets
of processors called partitions. Unlike uniprocessor systems, not all available
processors have to be assigned to achieve performance improvements.



At each scheduling round, a non-work-conserving decision is made when some
of the available processors are not assigned and either 1) there are jobs still
waiting for service in the queue or 2) the waiting queue is empty but the newly
allocated partitions have been restricted such that some processors are left idle.
The system is said to be in a non-work-conserving state if a non-work-conserving
decision has just been made. Not all states with unallocated processors are con-
sidered to be non-work-conserving. For example, when processors become idle
after a job finishes execution and the waiting queue is empty, the released pro-
cessors are unallocated and are not redistributed among the executing jobs. Such
system states are considered work-conserving since they are not the consequence
of a non-work-conserving decision but rather of the non-preemptive characteris-
tic of the policy. In contrast to non-work-conserving strategies, a work-conserving
policy does not leave processors idle if there are jobs waiting for service. The
number of scheduled jobs as well as the job partition size depend upon the
processor allocation algorithm.

Prior work suggests that non-work-conserving policies may perform well when
the system and workload behavior is irregular. These cases include:

— limited workload scalability (i.e., workloads with non-linear speedups),

— fluctuations in the arrival process of the parallel jobs, especially when the
arrival process is bursty,

— multiclass workloads, composed of parallel applications which impose differ-
ent demands on the system, and

— unstable systems where processor failures are possible.

In real environments, the interarrival time distribution of arriving jobs can be
irregular. Arrival bursts can occur when users submit batches of jobs to the mul-
tiprocessor. In environments that suffer from processor failures, the interrupted
jobs must be rescheduled. Recovery from processor failures allows the newly re-
covered processors to be reallocated. Multiclass workloads can place different
demands on the system. Thus, wide variability exists and it is this variability
that can be exploited by non-work-conserving policies.

The idea of keeping some processors idle is not new. However, it has not been
analyzed in detail. In this paper, two families of non-work-conserving policies
are examined. They represent two distinct ways of making non-work-conserving
decisions.

2.1 The ASP-MAX Family

The ASP-MAX (Adaptive Static Partitioning with a Maximum) family of poli-
cies offers a complete range of policies whose performance i1s a function of the
MAX parameter [CMV94]. The goal of the policy is to equally distribute all free
processors to the jobs waiting in the queue. One constraint applies: the number
of processors assigned to the job must be less than or equal to the minimum of
the job’s available parallelism and the parameter MAX. The parameter MAX
is a fraction p% of the system size. When a job’s available parallelism (i.e., the



maximum number of processors the job can effectively use) is equal to the system
size, the range of policies defined by the parameter MAX spans from non-work-
conserving (when MAX < 100%) to work-conserving (when MAX = 100%). The
policy performance is sensitive to the selection of the parameter MAX. It has
been shown that an effective rule of thumb is to set MAX to 20% [CMV94].

If a job arrives at an empty system and its available parallelism is equal to the
system size then the job is assigned a number of processors MAX xsystem_size.
Non-work-conserving decisions are made every time the system empties out and
a new job arrives with an available parallelism equal to the system size. In
the analysis presented in this paper, it i1s assumed that the the jobs’ speedup
curves are monotonically increasing. Therefore, the jobs’ available parallelism
exceeds the system size. The policy performance with various distributions of the
available parallelism has been analyzed in [CMV94]. With ASP-MAX policies,
the number of processors kept idle can be considerable (e.g., up to 80% of the
system size when MAX = 20%). Such a situation does not occur if there are jobs
waiting for service in the queue. All waiting jobs are scheduled as long as there
1s a sufficient number of processors.

2.2 The PSA Family

An alternative way of being non-work-conserving is implemented by the PSA
(Processor Saving Adaptive) policy [SRSDS95]. This policy does not force any a
priori constraint on the size of the partition. Non-work-conserving decisions are
made based upon the recent past system behavior.

At each scheduling round, the policy tries to maintain an equipartitioning
scheme. The number of partitions is computed as a function of the number of jobs
waiting in the queue. The partition size assigned to a waiting job is determined
by the total system size divided by the number of partitions. If the number of
free processors is smaller than the computed partition size, then a non-work-
conserving decision is made. No job is scheduled and the free processors are kept
idle. As the waiting queue increases, the partition size decreases proportionally.
If the queue length is smaller than the current number of partitions and there
are at least two free partitions of the previously computed partition size, then
the partition size is increased. An exception is given by the case when the system
becomes completely idle. As an illustration, consider the case when a single job
is executing in the system. If the number of processors allocated to the a job is
smaller than the whole system and the job completes before an arrival occurs,
then the policy “remembers” that the system has been divided into more than
one partition but only one was used. The new job that arrives will not be assigned
the whole system, even though the whole machine is idle. This is in anticipation
of another job arriving shortly, as occurred in the recent past. If no arrivals
occur during the execution of the newly arrived job, the next incoming job (i.e.,
in the next scheduling round) will be assigned the entire system and the entire
past history is erased. A detailed algorithmic description of the PSA policy is
presented in [SRSDS95]. Under the PSA policy, memory of the system history
is kept for one scheduling round. The severity of non-work-conserving decisions



can be extended by increasing the number of scheduling rounds that keep track
of the system history.

The focus of this paper is to investigate the impact of the different non-
work-conserving strategies on system performance. The ASP-MAX and the PSA
policies are analyzed. The next section identifies the conditions under which non-
work-conserving policies perform well.

3 Performance Analysis

In this section, the performance of the ASP-MAX and PSA policies is investi-
gated. The performance metric adopted is the response time ratio, defined as
the ratio of the average response time under a given policy to the average re-
sponse time under a reference policy [CMV94]. The absolute comparison of the
ASP-MAX and PSA policies is not the purpose of this paper®. Since the goal
of the paper is to study the impact of non-work-conserving decisions, the ef-
fects of such decisions must be isolated from those due to a different allocation
strategy by using a different reference policy for each policy family. For each
policy analyzed (i.e., ASP-MAX 20% and PSA), the reference policy consid-
ered is the corresponding work-conserving version (i.e., ASP-MAX 100% and
the work-conserving PSA version).

Particular interest is devoted to policy performance under irregular workload
behavior. Apart from the base case where exponential assumptions are made
for the workload interarrival and service time, cases are analyzed where there is
significant variability in the workload arrival and service processes. The results of
bursty arrivals and limited availability in the processor set are also investigated.

A simulation study of systems with various sizes, namely 32, 64, 128, and
256 processors, is conducted. The size of the systems, as well as the policy
complexity, prohibits the use of analytic models. Results are reported here for
the 64 processor case only because they are representative of all system sizes. A
set of b workloads with different speedups, spanning from nearly linear to almost
flat is considered. Intermediate speedups are referred to as concave m% where m
is the workload efficiency for the given system size. As an illustration, on a system
with 128 processors, a concave 75% workload has a maximum speedup of 96.
The maximum speedup is achieved with the total number of system processors
(i.e., the speedup is monotonically increasing).

3.1 The Base Case

For the base case experiment, exponential distributions for the job interarrival
and service times are assumed. In this experiment, the system does not suffer

5 Because of the way partition size is computed, the ASP-MAX and PSA policies make
non-work-conserving decisions differently. The ASP-MAX policies distribute the free
processors to the jobs waiting in the queue under the constraint of a maximum
partition size. Unequal partition sizes are allowed to co-exist. The PSA policies
compute the partition size as the total number of system processors divided by the
number of waiting jobs to limit the coexistence of unequal partition sizes.



from processor failures. Figure 1 plots the response time ratio as a function of
the system utilization for the ASP and PSA policies. For the ASP policy, the
parameter MAX is set to 20%. Experiments have been conducted with various
MAX parameters but the results are not reported here for the sake of brevity.

Curves above the reference line (dashed line) indicate that the work-conserving
policy is better. Curves below the dashed horizontal line indicate that the non-
work-conserving policy 1s better. Five workload types are used, spanning from
flat (concave 10%) to linear. The policy performance depends upon the sys-
tem load and the workload speedup characteristics. If the workload scales well
(i.e., above concave 50%), a fixed constraint such as the one imposed by the
ASP-MAX policy hurts performance significantly. Non-work-conserving deci-
sions yield an artificial inflation of response time since a possibly considerable
amount of resources is wasted due to the MAX constraint. PSA yields better
performance relative to its work-conserving counterpart. When the workloads
do not scale well (i.e., concave 10% and concave 25%), a clear benefit is noted.
The ASP-MAX policy can reach a performance gain of about 50%.
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Fig. 1. Response time ratio for the ASP-MAX 20% and PSA policies with respect to
the relative work-conserving policy for various workloads.

These workloads can take limited advantage from extra processors. In such
cases, it is better to keep idle processors for future arriving jobs. At medium
load, the PSA gain over its work conserving counterpart is around 20% and
increases up to about 40% as the system utilization increases. Since the amount
of processors kept free with ASP-MAX is larger than with PSA| the effects are
more dramatic in terms of both losses and gains for all workload types.



3.2 Arrival and Departure Processes

Non-work-conserving policies are expected to perform well in cases when irreg-
ularities are present in the workload behavior. To validate such a hypothesis,
the coefficients of variation (CV) of the distributions of the job interarrival and
execution time are varied. For the first sensitivity analysis experiment, the dis-
tribution of the workload execution time is assumed exponential. The impact
of various interarrival time distributions is investigated for CV’s in the range
of [0.15, 25]. The second sensitivity analysis experiment assumes exponential
interarrival times for the incoming jobs while the coefficient of variation of the
execution time is varied over the range [0.5, 10].

In Figure 2 the response time ratio of the two policies is reported as a func-
tion of the coefficient of variation of the arrival process for a fixed system uti-
lization (50%). Although production systems usually operate at high utilization,
a medium utilization level was selected to be able to observe the effects of non-
work-conserving decisions. Since at high utilization non-work-conserving deci-
sions seldom apply, their effects are more pronounced when the system does not
operate close to saturation. For the sake of clarity, three representative speedups
were selected out of the five speedups used in the base case experiment.
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Fig. 2. Response time ratio for the ASP-MAX 20% and PSA policies w.r.t. the cor-
responding work-conserving policy versus the CV of the interarrival time distribution
for various speedups. The system utilization is set to 50%.

As the figure shows, the increase in the arrival process variability (i.e., higher
CV’s) positively affects performance under the ASP-MAX policy and for work-
loads that scale well. As the CV of the arrival process increases, ASP-MAX is
more likely to outperform the work-conserving case (i.e., dashed reference line).
When the CV is small, the arrival process is more regular and the performance



of the ASP-MAX policy is not good for workloads that scale well. When the
workload scales poorly (flat speedup), the performance is affected in a negative
way as the arrival process CV increases. Under the PSA policy the performance
is relatively insensitive to the speedup characteristics of the workload. Perfor-
mance improves (relative to the work-conserving case) as the CV increases but
the gain 1s minimal. For CV=25, the curves start increasing. In this case, the
PSA policy 1s not able to absorb the high variability of the arrival process. The
amount of processors saved for future arrivals is not enough to accommodate the
incoming requests.

For the second sensitivity experiment, the impact of different computational
requirements from the submitted jobs is investigated by changing the coefficient
of variation of the execution time distribution over the range [0.5,10]. The ar-
rival process 1s assumed exponential. In Figure 3 the response time ratios of the
ASP-MAX and PSA policies are reported as a function of the CV of the work-
load execution time. The system utilization is fixed at 50%. Consistent with
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Fig. 3. Response time ratio for the ASP-MAX 20% and PSA policies w.r.t. the cor-
responding work-conserving policy versus the CV of the execution time distribution
(log, scale) for various speedups. The system utilization is set to 50%.

the previously observed behavior, the performance of the ASP-MAX policy im-
proves as the CV increases. When the CV is 10, the performance improvement is
around 70% with all workload types. Similarly, the PSA policy performance also
improves as the CV increases. Unlike ASP-MAX however, PSA does better than
its work-conserving counterpart even for small CV’s. As before, the performance
1s relatively insensitive to the speedup characteristics of the workload. The max-
imum response time improvement over the work-conserving counterpart policy

is about 60%.



3.3 Performance Analysis with Arrival Bursts

In this section the policy behavior with respect to bursty arrivals is analyzed.

At each arrival time, an arrival burst of a given size or a single arrival can oc-
cur with probability p and 1 — p, respectively. Bursts of size 2, 5, and 10, each
with probability 0.1, 0.5, and 0.9, are considered. Figure 4 plots the response
time ratios for the ASP-MAX policy as a function of the burst size for the three

probability values considered. As in the previous
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lization is fixed at 50%. With a burst size equal to 0, only single arrivals are
allowed. In this experiment, the workload interarrival and service times are ex-



ponential. A trade-off is observed among the burst size, the burst probability,
and the performance improvement. Figure 4 indicates that small burst sizes are
absorbed easily by the ASP-MAX policy. The large number of unassigned pro-
cessors can be employed to handle such bursts. As the bursts become larger,
the non-work-conserving choice remains preferable although its advantages are
significantly reduced.

The same experiments were conducted with the PSA policy. In Figure 5 the
response time ratios at system utilization 50% for the PSA policy as a function
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Fig. 5. Response time ratios for the PSA policy with arrival bursts and different burst
probabilities at system utilization 50%.

of different burst sizes are reported. The maximum performance improvement is
achieved with the largest burst size and burst probability. The trend is similar for



all workload types and it is monotonic across the range of burst sizes. The basic
conclusion is that as burst size increases, or as the burst probability increases,
the effectiveness of non-work-conserving policies improves.

3.4 Performance Analysis with Processor Failures

In this section the system behavior in the presence of processor failures is inves-
tigated. If a processor fails while a job 1s in execution, the job must be restarted
on a new set of processors. Two alternatives are possible: the job can be either
restarted on the portion of partition that is still operating or can be rescheduled
as if it had just entered the system. While the first alternative is not affected
by the allocation policy types, the second alternative is expected to yield bet-
ter performance under a non-work-conserving policy. If an interrupted job is to
be rescheduled on a new set of processors, processors left idle during previous
scheduling rounds can be effectively used for the job’s new allocation.

In this analysis simultaneous multiple processor failures are not allowed. Pro-
cessors fail according to a Poisson process and return to operating condition
after an exponentially distributed repair time. Idle and allocated processors are
equally likely to fail. When a processor fails, the number of free processors and
the system size are decreased accordingly and the partition size is computed
using these new values. If an idle processor fails, it i1s immediately removed from
the set of available processors and it is assigned only after it has been repaired.

In Figure 6 the response time ratios for the ASP and PSA policies are re-
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Fig. 6. Response time ratio for the ASP-MAX 20% and PSA policies with processor
failures versus the failure to repair rate ratio under the rescheduling strategy for various
workload types.

ported as a function of the failure to repair rate ratio for various workload types.



As in the previous experiments, the system utilization is set to 50%. Under the
presence of processor failures, both ASP-MAX 20% and PSA perform well con-
sistently. With ASP-MAX 20%, the performance improves for all workload types
as the failure to repair ratio increases. The effect is more pronounced for work-
loads that scale well. With the PSA policy, performance improves across the
entire range of failure to repair rate ratio regardless of the workload type. At
high ratios, the gains are consistently in the 40% to 50% improvement range.

4 Observations

It has been shown that under irregular workload and system behavior non-work-
conserving policies can yield better performance than their work-conserving
counterparts. The results suggest that as the workload behavior becomes more
irregular, non-work-conserving policies improve performance. Yet, there are spe-
cific cases where work-conserving policies are best (e.g., when the arrival process
is hypoexponential or the workload scales well).

In Section 2 two distinct non-work-conserving policies are presented. The
ASP-MAX policies make non-work-conserving allocations based on the parame-
ter MAX. The PSA policy is non-work-conserving because it never assigns fewer
processors than the computed size if such a number is not available. The PSA
decisions are made based on the knowledge of previous system states. The two
different strategies yield non-work-conserving states of different type and sever-
ity. Keeping many processors idle can be useful under certain circumstances.
However, under other circumstances, it is better to adjust the number of idle
processors according to the system state. To quantify such differences, vari-
ous non-work-conserving indices are measured. The probability of being in a
non-work-conserving state (i.e., the percentage of time spent in a non-work-
conserving state), is an overall policy measure that captures the degree to which
a policy is non-work-conserving.

Figure 7 illustrates the percentage of time spent in non-work-conserving
states for ASP-MAX 20% and PSA as a function of the system utilization for the
base case experiment of Section 3.1. As the figure shows, at low loads the ASP
policy spends more time than the PSA policy in non-work-conserving states since
it keeps many processors idle. At low loads, the PSA policy tends to assign the
entire system to a single job rather than keeping some processors idle. However,
as the load increases, small numbers of processors are left idle. At medium to
high load, few processors can be left idle more frequently since the partition size
is neither the largest possible (i.e., the whole system), nor has reached the min-
imum size (i.e., 1). This accounts for the higher percentage of time at medium
load that the PSA policy 1s observed to be in a non-work-conserving state.

An important factor is the number of processors left i1dle with respect to
the current partition size. If the average partition size is much larger than the
number of free processors, the system performance is not hurt. On the other
hand, keeping one processor free when the current partition size is 2 processors
can seriously impact performance because the system is in a high load situation.
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A measure that captures this effect i1s the ratio of the average number of
processors free in a non-work-conserving state to the average partition size. Fig-
ure 8 illustrates this ratio for the ASP and PSA policies for the various workload
types as a function of the system utilization. For the ASP-MAX policy, the ratio

14 T T 14 T
ASP-MAX 20% PSA
o 12 — o 12k -
kol kol
D:_ 1k linear - D: 1+ -
e e
§ concave 50% E
S 08 B S 08[ B
> >
< <
o 06 bl o 06 B
o o concave 10%
§ 0.4 B é 04~ concave 50% i
8 concave 10% 8
= 02 Bl D o021 ) B
LC LC linear
0 1 1 1 0 1 1 1
0 20% 40% 60% 80% 100% 0 20% 40% 60% 80% 100%
System Utilization System Utilization

Fig. 8. Ratio of the average number of free processors to the average partition size in
non-work-conserving states for the ASP-MAX 20% and PSA policies versus the system
utilization for various workload types.

is greater than 1 at medium low loads since the system is likely to have only one
or two jobs executing simultaneously. With a maximum allocation of 20% of the



system size, the number of idle processors is likely to be larger than the average
assignment.

As the system utilization increases, the number of idle processors decreases
because of the higher arrival rate. Even though the maximum partition size does
not change, more parallel jobs are in execution and less processors are left idle.
The opposite trend is observed for the PSA policy. Since the partition size is
computed based on the queue length, at low loads the number of free processors
relative to the partition size is small. Most jobs execute on the entire system or
on half of it. The percentage of free processors relative to the partition size is
never greater than 0.5, since only fragments of partitions are kept idle. Overall,
Figure 8 indicates that the PSA policy 1s more conservative than ASP-MAX
with respect to non-work-conserving decisions. This is especially true at low to
medium system loads. As the system load increases, the PSA policy resorts to
non-work-conserving decisions more often.

5 Conclusions

In this paper, the concept of non-work-conserving adaptive space-sharing poli-
cies for general purpose multiprocessor systems is presented. Two families of
policies are investigated which represent two distinct ways of making non-work-
conserving decisions. For the ASP-MAX policy, non-work-conserving decisions
are made based on the parameter MAX. The PSA policy “saves” processors ac-
cording to some knowledge of previous system history. By means of a simulation
study, the effectiveness of these policies are analyzed. Conditions are identified
under which non-work-conserving policies are useful. Non-work-conserving poli-
cies are effective when:

— the workloads that do not scale well (i.e., workload speedup curve is sublin-
ear),

— high variance exists in the arrival process of the workload to the system,

— high variance exists in the workload execution time (e.g., multiclass work-
loads),

— the workload is susceptible to bursty arrivals, and/or

— the systems is prone to processor failures.

Future work includes experimentation on a real system using real workloads.
This would allow the study of the impact of factors such as memory and 1/0
bandwidth restrictions when non-work-conserving policies are used.

References

[AMV93] R. Agrawal, R.K. Mansharamani, M.K. Vernon, “Response time bounds for
parallel processor allocation policies,” Technical Report # 1152, Computer
Science Dept., Univeristy of Wisconsin, Madison, WI, June 1993.



[CMV94]

[EZL89]

[DCDPYO]

[FR90]

[GST91]

[GTU91]

[Int93]
[Klei75]
[LV90]

[MEBSS]

[MEB91]

[MVZ93]

[MZ94]

[Oust82]

[PD8Y]

S.-H. Chiang, R.K. Mansharamani, M.K. Vernon, “Use of application char-
acteristics and limited preemption for run-to-completion parallel processor
scheduling policies,” Proc. ACM SIGMFETRICS, 1994, pp. 33-44.

D.L. Eager, J. Zahorjan, E.D. Lazowska, “Speedup versus efficiency in par-
allel systems,” IEEE Trans. on Computers, Vol 38(3), March 1989, pp.
408-423.

K. Dussa, B.M. Carlson, L.W. Dowdy, K.-H. Park, “Dynamic partitioning
in a transputer environment,” Proc. ACM SIGMETRICS, 1990, pp. 203-
213.

D.G. Feitelson, L. Rudolph, “Distributed hierarchical control for parallel
processing,” IEEE Computer, Vol 23(5), May 1990, pp. 65-77.

D. Ghosal, G. Serazzi, S.K. Tripathi, “Processor working set and its use in
scheduling multiprocessor systems,” ITEFE Trans. on Software Engineering,
Vol 17(5), May 1991, pp. 443-453.

A. Gupta, A. Tucker, S. Urushibara, “The impact of operating system
scheduling policies and synchronization methods on the performance of
parallel applications,” Proc. ACM SIGMETRICS, 1991, pp. 120-132.
Intel Corporation, Paragon OSF /1 User’s Guide, 1993.

L. Kleinrock, Queueing Systems, Vol 1, Wiley Interscience, 1975.

S.T. Leutenegger, M.K. Vernon, “The performance of multiprogrammed
multiprocessor scheduling policies,” Proc. ACM SIGMETRICS, 1990, pp.
226-236.

S. Majumdar, D.L. Eager, R.B. Bunt, “Scheduling in multiprogrammed
parallel systems,” Proc. ACM SIGMETRICS, 1988, pp. 104-113.

S. Majumdar, D.L. Eager, R. B. Bunt, “Characterization of programs for
scheduling in multiprogrammed parallel systems,” Performance FEvalua-
tion, Vol 13(2), 1991, pp. 109-130.

C. McCann, R. Vaswani, J. Zahorjan, “A dynamic processor allocation
policy for multiprogrammed shared memory multiprocessors,” ACM Trans.
on Computer Systems, Vol 11(2), February 1993, pp. 146-178.

C. McCann, J. Zahorjan, “Processor allocation policies for message-passing
parallel computers,” Proc. ACM SIGMETRICS, 1994, pp. 19-32.

J. Ousterhout, “Scheduling techniques for concurrent systems,” Proc. 3rd
International Conference on Distributed Computing Systems, 1982, pp. 22-
30.

K.-H. Park, L.W. Dowdy, “Dynamic partitioning of multiprocessor sys-
tems,” International Journal of Parallel Programming, Vol 18(2), 1989,
pp- 91-120.

[RSDSCY94] E. Rosti, E. Smirni, L.W. Dowdy, G. Serazzi, B.M. Carlson, “Robust par-

[SST93]

[Sev89]

[Sev94]

titioning policies for multiprocessor systems,” Performance FEvaluation, Vol
19(2-3), March 1994, pp. 141-165.

S.K. Setia, M.S. Squillante, S.K. Tripathi, “Processor scheduling in mul-
tiprogrammed, distributed memory parallel computers,” Proc. ACM SIG-
METRICS, 1993, pp. 158-170.

K.C. Sevcik, “Characterization of parallelism in applications and their use
in scheduling,” Proc. ACM SIGMETRICS, 1989, pp. 171-180.

K.C. Sevcik, “Application scheduling and processor allocation in multipro-
grammed multiprocessors,” Performance Evaluation, Vol 19(2-3), March
1994, pp. 107-140.



[SRDS93] E. Smirni, E. Rosti, L.W. Dowdy, G. Serazzi, “Evaluation of multiproces-
sor allocation policies,” Tech. Report, Computer Science Dept., Vanderbilt
University, Nashville, TN, August 1993.

[SRSDS95] E. Smirni, E. Rosti, G. Serazzi, L.W. Dowdy, K.C. Sevcik, “Performance
gains from leaving idle processors in multiprocessor systems,” to appear in
International Conference on Parallel Processing.

[TG89] A. Tucker, A. Gupta, “Process control and scheduling issues for multipro-
grammed shared-memory multiprocessors,” Proc. of the 12th ACM Sym-
posium on Operating Systems Principles, 1989, pp. 159-166.

[ZM90] J. Zahorjan, C. McCann, “Processor scheduling in shared memory multi-
processors,” Proc. ACM SIGMFETRICS, 1990, pp. 214-225.

[ZB91] S. Zhou, T. Brecht, “Processor pool-based scheduling for large-scale NUMA
multiprocessors,” Proc. ACM SIGMETRICS, 1991, pp. 133-142.

This article was processed using the INTRpX macro package with LLNCS style



