
The Interaction between Memory Allocationand Adaptive Partitioning in Message-PassingMulticomputers ?Sanjeev K. SetiaDepartment of Computer ScienceGeorge Mason UniversityFairfax, VA 22030Abstract. Most studies on adaptive partitioning policies for schedul-ing parallel jobs on distributed memory parallel computers ignore theconstraints imposed by the memory requirements of the jobs. In this pa-per, we �rst show that these constraints can have a negative impact onthe performance of adaptive partitioning policies. We then evaluate theperformance of adaptive partitioning in a system where these minimumprocessor constraints are eased due to the provision of support for vir-tual memory. Our primary conclusion is that any performance bene�tsresulting from the easing of minimum processor constraints imposed bythe memory requirements of jobs will be negated by the overhead due topaging.1 IntroductionIn recent years, several adaptive partitioning strategies [6, 19, 5, 18, 17, 3, 14]have been proposed for scheduling parallel jobs on message-passing multicom-puters. A key characteristic of these policies is that they reduce the number ofprocessors allocated to individual jobs as the load on the system increases. Themotivation behind this policy is to take advantage of the \operating point" e�ect[2]. Parallel applications typically experience a diminishing return in speedup asthe number of processors allocated to them is increased. In a multiprogrammedenvironment, reducing the number of processors allocated to a job results inincreased e�ciency for that application and also frees up processors for use byother jobs. By allocating smaller partitions of the system's processors to jobsduring periods of high load and bigger partitions at times of low load, adaptivepartitioning policies can outperform policies that employ �xed-size partitions.Most studies on adaptive partitioning, however, have ignored the constraintsimposed by the memory requirements of parallel applications on the processorallocation policy. On message-passing multicomputers such as the Intel Paragon,the amount of memory available to a job depends upon the number of processorsallocated to it. Therefore, the number of processors allocated to a job has to belarge enough so that its data and code segments can �t in the local memories of? This work was partially supported by NSF grant CCR-9409697



the processors. Thus, the ability of adaptive scheduling policies to take advantageof the \operating point" e�ect by reducing the number of processors allocated tojobs at high loads is constrained by the minimumprocessor requirement imposedby the memory requirements of jobs.In this paper, we examine this interaction between processor allocation andmemory allocation that arises while implementing adaptive partitioning policies.We �rst examine the implications of job memory requirements for the perfor-mance of adaptive scheduling policies. Next, we examine the issue of whether theprovision of support for virtual memory can improve the performance of adaptivepartitioning policies by easing the constraints imposed by memory requirements.In uniprocessors, virtual memory support allows programs to execute withonly part of their data and code in main memory. Similarly, in the case ofmulticomputers, virtual memory support has the potential to decouple (to someextent) processor allocation decisions from memory requirement considerationsby allowing adaptive policies to allocate fewer processors than the minimumrequired to �t a program's data and code into memory.However, the performancebene�ts (if any) of this have to be weighed against the performance overheadsof paging. This tradeo� is the main subject of this paper.We note that the main motivation for providing virtual memory supportin multicomputers is the convenience o�ered to the application programmer,and not to the system scheduler. In this paper, however, we examine whetherthe provision of virtual memory can also be taken advantage of by the systemscheduler.We consider the performance of two classes of adaptive job scheduling policiesunder various workload conditions. The �rst policy, which we call Adaptive Par-titioning with Memory Constraints (APMC) always allocates at least as manyprocessors to a job as are needed to �t its code and data into memory. Underthe second policy, which we call Adaptive Partitioning with Virtual Memory(APVM), this minimum processor requirement is relaxed.Using a simulation model, we �rst address the question: what is the maxi-mumpermissible overhead (due to paging) for individual applications in order forAPVM to perform better than APMC? We then address the issue of whetherpaging overheads can be kept below this threshold. Using another simulationmodel, we examine the impact of factors such as the page fault rate, synchro-nization granularity and page fault service time on the overall paging overhead.In the next section, we discuss related work on this subject. In Section 3,we describe the APMC and APVM policies in more detail. In Section 4, wecompare the performance of the APMC and APVM policies. Finally, Section 5summarizes our conclusions.2 Related WorkJob scheduling strategies for parallel computers have been studied actively dur-ing the last few years [6, 19, 20, 22, 11, 18, 17, 3, 14, 12]. A recent paper by



Feitelson [8] surveys research in this area. Numerous studies have examined adap-tive partitioning policies { among these, Parsons and Sevcik [15] and Chiang etal [3] consider preemptive versions of adaptive partitioning similar to the policyconsidered in this paper.Only a few papers have examined the interaction between memory manage-ment and scheduling. Peris et al [16] developed analytical models for studyingprocessor allocation tradeo�s while taking into account the impact of memoryrequirements. Our work di�ers from this study in that we examine the sametradeo� for a speci�c adaptive partitioning policy, taking into account factorssuch as fragmentation overhead. Secondly, our study also di�ers in that we takeinto account the impact of synchronization between threads on the overall pagingoverhead incurred by a parallel application.McCann and Zahorjan [13] propose and evaluate several scheduling policiesthat take into account the constraints imposed by the memory requirements ofparallel applications. Our work di�ers in that we consider memory-constrainedadaptive partitioning policies, whereas they assume a dynamic scheduling disci-pline. Secondly, we also consider the feasibility of relaxing memory constraints.Finally, some recent studies [1, 21] have examined the working set character-istics and paging behavior of scienti�c programs on distributed memory parallelcomputers.3 Scheduling PoliciesThe policies considered in this paper have elements in common with both adap-tive space-sharing policies that have been proposed in [18, 14, 17], and gang-scheduling polices[7, 8] in use on systems such as the Intel Paragon. They re-semble gang-scheduling in that they are quantum-based policies in which all theprocessors in the system always context-switch synchronously at the end of aquantum. They resemble space-sharing policies in that the system's processorsare divided into non-overlapping partitions that are dedicated to individual jobsfor the the length of a quantum. More speci�cally, they can be classi�ed asadaptive partitioning policies because each job arriving to the system is con�g-ured to execute on a certain partition size at the time it is �rst dispatched, andthis decision is based on the job's requirements as well as current system loadconditions.It has been shown that for adaptive partitioning policies to perform wellfor workloads with high variability in job demand, either the policies have tobe preemptive in nature [3] or they have to utilize user-supplied informationabout job demand [14]. In this paper, we assume that no information (about jobdemand) is supplied by the user and consider policies that use preemption. Thus,the policies proposed in this paper are time-sharing versions of the adaptivepartitioning policies that have been proposed and analyzed in [18, 14, 17].The system scheduler maintains a job queue consisting of jobs submitted tothe system. Each job j arriving to the system submits a request for a minimumofminj and a maximum of maxj processors, where minj is equal to the minimum



number of processors required so that the job's data and code can �t into thelocal memories of the processors, while maxj is equal to the maximum numberof processors desired by the application. At this time, the job is con�gured toexecute on partition of pj processors based on a decision procedure describedbelow in Section 3.1, and is placed in the job queue.The order in which jobs get dispatched in the system is based on a negative-feedback priority scheme similar to that commonly used in uniprocessors [4].Each job has a priority associated with it which is inversely proportional to theprocessing time accumulated so far by the job. At the start of a quantum, thescheduler examines the job queue and selects the job with the highest priorityto run with its con�gured partition size (i.e., pj). It repeats this step as long asthere are processors available. If the number of processors left after schedulingone or more jobs is less than the partition size of the job with the highest priority,it examines other jobs in the queue in the order of their priority until it �nds ajob whose partition size is less than the number of available processors. If thereare no such jobs, the remaining processors are left idle 2.All the jobs selected using the procedure above are dispatched at the begin-ning of the quantum. If a job completes before its quantum expires, the freedprocessors are allocated to the waiting jobs in a similar manner. At the end ofa quantum, all the jobs executing in the system are preempted, their prioritiesare updated, and the scheduling procedure is repeated.Under both the APMC and APVM policies, a job uses all the availablememory of the processors in its partition. Under the APMC policy, when a jobis dispatched, its data and code have to be loaded into the local memories of theprocessors in its partition. Similarly, when it is preempted, the current contentsof the local memories have to be saved on disk. Under the APVM policy, weassume that the system keeps track of the active pages of memory and onlyloads those pages when a job is dispatched. Clearly, the length of a time slicehas to be long enough to amortize these costs.Periodically, the scheduler recalculates the priorities of all the processes inthe system (e.g., by dividing them by 2) so that jobs are not penalized foreverfor past processor usage. The scheduler also maintains a variable L that capturesthe load on the system as re
ected in the average number of jobs in the system,which it updates periodically3.2 An underlying assumption here is that once a job is con�gured to execute on pjprocessors, it needs at least that many processors to execute. While it is possible insome systems to use a two-level scheme whereby the virtual processors (or threads) ofan application can be scheduled on any number of processors, this is not universallytrue.3 In our implementation of this policy, the scheduler periodically samples the numberof jobs in the system, and updates this variable according to the formula Li+1 =1=2Li + 1=2Ls, where Li,Li+1, and Ls are the old, new and sampled values of Lrespectively.



3.1 Processor Allocation PolicyWe consider two processor allocation policies, APMC and APVM. APMC as-sumes no support for virtual memory and thus the number of processors allocatedto a job is at least minj , while APVM assumes support for virtual memory andcan allocate fewer than minj processors.Adaptive Partitioning with Memory Constraints(APMC) Under this policy, theprocessor allocation of a job pj is determined as follows. Let C = 2i; i � 0, suchthat 2i � P=L < 2i+1, where P is the number of processors in the system and Lis average number of jobs in the system. Then if minj � C, the job is con�guredto execute on C processors, otherwise it is con�gured to execute on (k � C)processors , where k > 1 and (k � 1) � C < minj � k � C. In other words, ifminj > C, the partition size of job j is equal to smallest multiple of C greaterthan minj .For example, consider a system with P = 128; L = 5. Then C = 32. Now ifa job arrives with minj = 20 it is con�gured to execute with 32 processors. Onthe other hand, if minj = 45, it is con�gured to execute with 64 processors.The basic idea underlying the algorithm above is that as the load, L, in-creases, the processor allocation pj of arriving jobs is reduced, subject to theconstraint that no processor is allocated fewer processors than can satisfy itsminimum memory requirement, minj . The motivation for allocating processorsin units of C processors, and for selecting C such that it is a power of 2, is tominimize fragmentation as much as possible. (We note that we have assumedthat P is also a power of 2 but it is possible to change the algorithm so that Cis always a divisor of P ).Adaptive Partitioning with Virtual Memory (APVM). This policy is similar tothe APMC policy except that the minimum number of processors that can beallocated to a job is not minj but some fraction, f of minj . The fraction f is a�xed parameter of the policy. For convenience, we denote a APVM policy withfraction f as APVM(f). Note that the APMC policy can be considered to beAPVM(1).For example, consider the same situations described above, i.e., P = 128; L =5, and C = 32. Under the APVM(0.5) policy, a job with minj = 20 would beallocated 32 processors, but a job with minj = 45 would be also be allocated32 processors. Under the APVM(0.75) policy however the job with minj = 45would be allocated 64 processors.4 Performance ComparisonsWe used a discrete event simulation to compare the performance of the policiesdescribed above under a variety of workload conditions. For all our simulations,we assumed that the underlying system was a message-passing multicomputerwith P = 128 processors. We did not model the interconnection network. Allthe processors are assumed to have the same amount of local memory.



4.1 Workload ModelJobs are assumed to arrive according to a Poisson process. Each job is character-ized by the following random variables { (i) its minimummemory requirements(M ), (ii) its maximumparallelism (N ), (iii) its total processing requirement (D),i.e., execution time on one processor, and (iv) its speedup function (S).In our simulations, we assume that N = P , i.e., each job can execute on128 processors. The total processing requirement D is chosen from a hyper-exponential distribution to model the high variability that is expected in parallelsupercomputing environments [9]. We assume that jobs can be considered tobelong to two classes - small and large. Small jobs have a mean processingrequirement of 300 seconds while large jobs have mean processing requirementof 3600 seconds. The probability of a job belonging to the class of small jobsis assumed to be 0.75. Within each class, the demand of an individual job isselected from an exponential distribution. These assumptions result in an averagejob demand (considering both classes) of 1125 seconds, with the coe�cient ofvariation of job demand (CD) of 2.05.The speedup function used in our simulations is given by S(p) = (1+�)p=(�+p). This speedup function has been used by several studies [13, 3, 5] and is shownin Figure 1. For a given number of processors (p) and given job demand (on oneprocessor), the speedup function is used to compute the processing requirementof the job on p processors. In our simulations, we assume that � is uniformlydistributed between 30 and 300, the range considered in [13, 3].For the minimummemory requirements,M , of a job we assumed three distri-butions. Under the �rst distribution, we assumed thatM is uniformly distributedin the range (1,128). Under the second distribution, we assumed that M is dis-tributed in the range (1,64) with probability 0.75 and in the range (65,128) withprobability 0.25. Under the third distribution, we assumed that M is uniformlydistributed in the range (1,64). Henceforth, we refer to these three distributionsfor M as distributions A, B, and C respectively.In order to evaluate the performance of the APVM policy, we have to modelthe overhead due to paging when a job is allocated fewer processors than itsminimumprocessor requirementminj . We de�ne this overhead as the ratio of theincrease in execution time (due to paging) when executing on pj processors andthe processing requirement on pj processors. Thus, if the increase in executiontime due to paging when a job is allocated pj processors is denoted by Tpaging(pj)and the execution time (neglecting paging) for the job on pj processors is denotedby T (pj) then Overhead(pj) = Tpaging(pj)=T (pj)Here T (pj) is computed using the speedup function (S) and the job demanddistribution (D) described above. Then, the run-time of job when allocated pjprocessors is equal to (1 +Overhead(pj)) � T (pj).For a given parallel application, the paging overhead depends upon a num-ber of factors { working set size, physical memory allocated, page fault servicetime, synchronization behavior, and page replacement policy. In our simulations,
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Fig. 1. Workload Speedup functionwe make the simplifying assumption that the paging overhead of a job is a lin-ear function of the fraction, denoted by c, of its memory requirement that isallocated to it. Thus, if a job j is allocated pj processors, and the job's mem-ory requirements are satis�ed by minj processors, then c = pj=minj . A givenAPVM(f) policy will allocate at least f � minj processors to each job. Thus,under APVM(f), c � f . In our simulations, we assumed many di�erent valuesfor the overhead (O) for a job when allocated a fraction f of its memory require-ment. For values of c between f and 1, we assumed that the overhead decreasedin a linear fashion. Thus, the overhead for paging for a job that is allocated afraction c of its memory requirement (i.e., pj = c �minj procesors) is given byOverhead(c �minj) = �0; c � 11�c1�f �O; 0 < f � c � 1This is a simpli�cation because when c falls below the working set size ofthe application the overhead increases exponentially. However, since we consideronly values of c � 0:5, and consider a wide range of overhead values O, we feelthat this model is a reasonable approximation for the purpose of comparing theAPVM and APMC policies.4.2 Scheduling Policy PerformanceWe now examine the performance of the APMC and APVM scheduling policies.Using regenerative simulation, we obtained the average response times for a



policy for a given set of input parameters. We considered job arrival rates (�)corresponding to system utilizations (� = � � D=P ) of 0.1, 0.25, 0.4, 0.55, and0.7. In each case, the simulations were run long enough to obtain 95% con�denceintervals that were within 5% of the mean. For each policy, the quantum lengthwas �xed at 2 seconds. In addition, the queue lengths were sampled and jobpriorities recalculated every 100 seconds.We �rst examine the performance of the adaptive partitioning policy de-scribed in Section 3 without taking memory requirements into account. We willuse this policy (which we henceforth call the AP policy) as our baseline policy inorder to illustrate the impact of memory constraints on the performance of theAPMC policy (Alternatively, the average response times obtained for AP canbe considered to be that of the average response times that would be obtainedfor APMC for a minimum memory requirement (M ) equivalent to that of oneprocessor).In Figure 2, we compare the performance of the AP policy with that offour gang-scheduling policies with �xed-size partitions. The four gang-schedulingpolicies examined are policies with partition sizes of 16, 32, 64, and 128 processors(denoted as GS(16), GS(32), GS(64), and GS(128) respectively). The operationof the gang-scheduling policies is identical to that of the AP policy, except thatthe partition size for all jobs is �xed a priori whereas under the AP policy thepartition size of a job is determined using the procedure described in Section3.1.
20

30

40

50

60

70

80

90

100

110

0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
es

po
ns

e 
tim

e

utilization

AP
GS(16)
GS(32)
GS(64)

GS(128)

Fig. 2. Comparison of AP and Gang scheduling with �xed size partitionsThe plots in Figure 2 show the importance of reducing processor allocation asthe system load is increased, and the performance bene�ts of taking advantage ofthe \operating point" e�ect. This result is not new { it has been demonstrated in(by now) countless studies. However, we show this plot in order to illustrate two



points. First, the plots show that a time-sharing version of adaptive partitioningcan be designed which performs reasonably well for a workload with a highcoe�cient of variation, and avoids the problems associated with a \pure" space-sharing version of the policy [14, 3]. Second, the plots in Figure 2 show that atmoderate loads, the performance of the AP policy is worse than that of the bestGS policy for a given load.The reason for this behavior is that AP policy su�ers from the e�ects offragmentation whereas the GS policies do not. Under the AP policy, situationscan arise where there are idle processors in the system, but jobs in the systemqueue cannot execute on these processors because their con�gured partition sizeis greater than the number of idle processors. This situation arises because at agiven time, there can be jobs with di�erent partition sizes executing concurrently.Under the GS policies, this situation can never arise since all jobs have the samepartition size. This fragmentation e�ect is mainly due to our assumption thatonce a job has been con�gured for a certain number of processors it needs exactlythat number to execute. If we assume a more dynamic environment (such asthat considered in [13]), in which the job can adapt to the number of availableprocessors, the performance of the AP policy should improve.Next, we consider the impact of the memory requirements of arriving jobs onthe performance of the APMC policy. In Figure 3, we plot the average responsetimes for the APMC policy for the memory requirement distributions A, B, andC (described in Section 4.1) as a function of system utilization. We also plotthe response time of the AP policy, i.e., a policy without memory requirementconstraints. The plots show that the memory requirement constraints of thejobs in the workload can have a signi�cant impact on the performance of anadaptive partitioning policy. The performance bene�ts of the APMC policiesarise from their ability to take advantage of the \operating point" e�ect byreducing the partition sizes allocated to jobs. If this ability is restricted due tomemory constraints, their performance degrades and the policies saturate quitequickly.Another factor that contributes to the performance degradation of the APMCpolicies is the fragmentation e�ect mentioned above. When jobs have widelyranging minimum processor requirements (as is the case for memory require-ment distributions A and B) the number of jobs with di�erent partition sizesexecuting concurrently in the system increases, resulting in a higher fragmenta-tion overhead. Unlike the (hypothetical 4) situation described above (for Figure2) where the fragmentation can be reduced if jobs can adapt to varying num-bers of processors, in this case the ability of a job to adjust its partition size isrestricted by the fact that it cannot reduce its partition size below its minimummemory requirement, minj . This suggests that in order to reduce the e�ectsof fragmentation in memory constrained environments, it may be necessary toprovide language and run-time support for a programmingmodel that allows dy-namic application recon�guration. Such dynamic run-time environments wouldallow the scheduler to use algorithms that avoid fragmentation, such as those4 because we do not take memory constraints into consideration
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Fig. 3. Comparison of Adaptive Partitioning policies for di�erent memory requirementdistributionsdescribed in [13].At this point, a natural question that arises is: if the minimum processorconstraint imposed by a job's memory requirements is relaxed as a consequenceof the provision of support for virtual memory, how does it a�ect the performanceof adaptive partitioning policies? If the scheduler is allowed to allocate fewerprocessors to a job than its minimum memory requirement, it could potentiallyuse this 
exibility to make decisions that reduce fragmentation and increasee�ciency in situations with high system load. However, this 
exibility comesat the cost of overhead due to paging. Thus, the key question is: how muchoverhead due to paging can be tolerated by individual applications (on average)before any performance bene�ts resulting from the easing of minimumprocessorconstraints get negated?To answer this question, we examine the performance of the APVM policy.We consider two APVM policies { APVM(0.5) and APVM(0.75). As discussedearlier, under the APVM(f) policy, the minimumnumber of processors allocatedto a job has to be large enough so that at least a fraction f of its code anddata can �t into memory. Thus the APMC policy is equivalent to APVM(1).In Figures 4{6, we plot the average response times of the APVM(0.75) policyfor three overhead values (O) { 0%, 25%, and 50% { for the three memorydistributions A, B, and C respectively. As described earlier, the plots for the 25%and 50% overheads represent the performance of the APVM(0.75) policy if theoverheads for any job that is allocated 0.75 of its minimumprocessor requirementare 25% and 50% respectively. The 0% plot is obviously not realizable but isshown for the purposes of comparison.The �gures show that the APVM policy can provide a performance bene�tat moderate to high loads provided the overhead of paging per job is 25% orless. The plots for the 50% overhead lie above that of the APMC policies in all
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the physical memory of the system is shared among multiple applications thatare executing concurrently. Under the APVM policy, however, there is only oneapplication executing on a partition at a given time. Thus, the page fault rateon a system executing a parallel application depends on its working set size andmemory reference pattern, and the amount of available memory.Unlike sequential programs, however, the overhead incurred by a parallel ap-plication depends not only on the page fault rate but also on the synchronizationpatterns within the application. This is because when a thread that is part of aparallel computation has a page fault, any sibling threads that synchronize withthe faulting thread are also delayed. Burger et al have shown that the slowdownexperienced by several scienti�c applications when their available memory wasconstrained to 90% of their data set size ranged from a factor of two to a factor ofeight. This suggests that achieving a slowdown of less than 1.25 (correspondingto the 25% overhead threshold in the previous section) will be very di�cult, ifnot impossible. However, in this study, the backing store for the paged memorywas assumed to be on disk, and an average disk service time of 16 ms was as-sumed. In this paper, we make the optimistic assumption that the average pagefault service time is 1 ms. We note that researchers have proposed the use ofdedicated \memory server" nodes [10] for implementing fast paging stores.In the case of sequential applications, a page fault service time of 1 ms,and maximum overhead threshold of 25% would imply that the maximum pagefault rate that is permissible (on average) is 250 page faults/second. In the caseof parallel applications, the page fault rate that could be tolerated would belower since the overhead of paging would also be a�ected by the synchronizationbetween threads. Intuitively, the increase in overhead due to synchronizationwould be most dramatic for applications with �ne-grain interaction betweenthreads. In order to obtain a better understanding of the relative contributionof these factors { page fault rate and granularity of synchronization { on theoverall overhead incurred by an application, we conducted a simple simulation-based experiment.In this experiment, we simulated the execution of a SPMD parallel applica-tion with a simple fork-join structure, i.e., a SPMD application with multiplephases each involving a barrier synchronization. The inputs to the simulationthat determine the synchronization behavior of the application are (i) the num-ber of threads involved in the synchronization, and (ii) the granularity of syn-chronization (i.e., time between successive barriers). Further, we assume that theapplication was perfectly load balanced so that if none of the threads involvedin the synchronization experienced a page fault, they would reach the barrier atthe same time.The inputs to the simulation that determine the paging behavior are (i) thepage fault rate of a thread, and (ii) the correlation factor, which determinesthe correlation between the times at which page faults are incurred by di�erentthreads. We assume that the page fault rate of each thread is identical, andthat the time between page faults is uniformly distributed with mean time equalto 1/(page fault rate). The correlation factor models the similarity in the pag-



ing behavior of di�erent threads. (In case of SPMD programs it is reasonableto assume that there is some similarity in the memory reference patterns ofthe threads of the application [21].) Our assumption that the page fault rateof each thread is identical implies that each thread incurs the same number ofpage faults during the simulation. In our simulation, the di�erence in times atwhich a certain page fault occurred on di�erent threads is uniformly distributedwithin time (1 � correlation factor) � (1=page fault rate) of each other. Thusif the correlation factor is 1, all threads incur a page fault at exactly the sametime. In this case, the overhead due to paging is solely due to the time takento service the page fault, and the interaction between paging and thread syn-chronization patterns does not contribute to the overall delay incurred by theparallel application.Using the model above, we simulated the execution of an application for avariety of input parameters. We varied the correlation factor between 0.5 and1, the number of threads between 8 and 128, the synchronization granularitybetween 50 { 1000 microseconds, and the page fault rate between 10-500 pagefaults/sec. The metric of interest was the slowdown experienced by the applica-tion, i.e., the ratio of the execution time of the application with paging and theexecution time without paging.In Figure 10, we plot the slowdown experienced by an application with syn-chronization granularity 50 microseconds, and a page fault rate of 100 faults/sec,as a function of the number of processors (threads) involved in the barrier. Ourresults show that the slowdown experienced depends to a large extent on thecorrelation factors. For a correlation factor of 0.9, the slowdown can be as highas a factor 5 on 128 processors. We also note that even for a correlation factor of0.99, the slowdown ranged between 1.38 and 1.5. We note that if the correlationfactor is 1, the slowdown experienced by the application at 100 faults/sec willbe 1.1. In Figure 11, we plot the slowdown for di�erent correlation factors foran application with 64 threads and synchronization granularity 50 microsecondsas a function of page fault rate. Again, we observe that the slowdown is quitehigh, e.g., for a correlation factor of 0.99 at 50 page faults/sec, the applicationexperiences a slowdown greater than 1.4.In Figure 12, we plot the slowdown experienced by an application withsynchronization granularity of 500 microseconds, and a page fault rate of 100faults/sec, as a function of the number of processors (threads) involved in thebarrier. The plots show that even though the application has a relatively largegranularity of synchronization, except for correlation factor of 0.99, the slow-down is much larger than 1.25. Figure 13 plots the slowdown for an applicationwith 64 threads and synchronization granularity of 500 microseconds as a func-tion of page fault rate. We observe that only the plot for correlation factor 0.99lies below the desired threshold of 1.25.These results indicate that the synchronization behavior of applications havea much greater impact on the overall paging overhead incurred by an applicationthan the memory reference pattern (as re
ected in the page fault rate). We arecurrently pursuing an experimental study to validate this conclusion.
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Fig. 10. Paging Overheads as a function of number of synchronizing threads for anapplication with �ne-grain interaction.
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Fig. 11. Paging Overheads as a function of page fault rate for an application with�ne-grain interaction.Even though these results have been derived from a hugely simpli�ed modelof program execution, they do suggest that even for optimistic assumptionsabout paging overheads (e.g., page fault service times of 1 millisecond) andmemory reference patterns (e.g., uniform page fault behavior across threads), theoverall slowdown experienced by an application is large enough to overwhelm anyperformance bene�ts derived from decoupling processor allocation and memoryallocation in the APVM policy.



1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 20 40 60 80 100 120 140

S
lo

w
do

w
n

Number of processors

100 page faults/sec, granularity = 500 microseconds

correlation = 0.99
correlation = 0.9
correlation = 0.5
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Fig. 13. Paging Overheads as a function of page fault rate for an application withcoarse-grain interaction.5 ConclusionsIn this paper, we studied the interaction between processor allocation and mem-ory allocation that arises in implementing adaptive partitioning on message-passing multicomputers.We �rst showed that the minimum processor constraints imposed by thememory requirements of jobs submitted to the system can have a considerablenegative impact on the performance of adaptive partitioning policies. This isdue to two reasons (i) the increase in fragmentation overhead due to widely
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