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Abstract. Most studies on adaptive partitioning policies for schedul-
ing parallel jobs on distributed memory parallel computers ignore the
constraints imposed by the memory requirements of the jobs. In this pa-
per, we first show that these constraints can have a negative impact on
the performance of adaptive partitioning policies. We then evaluate the
performance of adaptive partitioning in a system where these minimum
processor constraints are eased due to the provision of support for vir-
tual memory. Our primary conclusion is that any performance benefits
resulting from the easing of minimum processor constraints imposed by
the memory requirements of jobs will be negated by the overhead due to
paging.

1 Introduction

In recent years, several adaptive partitioning strategies [6, 19, 5, 18, 17, 3, 14]
have been proposed for scheduling parallel jobs on message-passing multicom-
puters. A key characteristic of these policies is that they reduce the number of
processors allocated to individual jobs as the load on the system increases. The
motivation behind this policy is to take advantage of the “operating point” effect
[2]. Parallel applications typically experience a diminishing return in speedup as
the number of processors allocated to them is increased. In a multiprogrammed
environment, reducing the number of processors allocated to a job results in
increased efficiency for that application and also frees up processors for use by
other jobs. By allocating smaller partitions of the system’s processors to jobs
during periods of high load and bigger partitions at times of low load, adaptive
partitioning policies can outperform policies that employ fixed-size partitions.
Most studies on adaptive partitioning, however, have ignored the constraints
imposed by the memory requirements of parallel applications on the processor
allocation policy. On message-passing multicomputers such as the Intel Paragon,
the amount of memory available to a job depends upon the number of processors
allocated to it. Therefore, the number of processors allocated to a job has to be
large enough so that its data and code segments can fit in the local memories of
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the processors. Thus, the ability of adaptive scheduling policies to take advantage
of the “operating point” effect by reducing the number of processors allocated to
jobs at high loads 1s constrained by the minimum processor requirement imposed
by the memory requirements of jobs.

In this paper, we examine this interaction between processor allocation and
memory allocation that arises while implementing adaptive partitioning policies.
We first examine the implications of job memory requirements for the perfor-
mance of adaptive scheduling policies. Next, we examine the issue of whether the
provision of support for virtual memory can improve the performance of adaptive
partitioning policies by easing the constraints imposed by memory requirements.

In uniprocessors, virtual memory support allows programs to execute with
only part of their data and code in main memory. Similarly, in the case of
multicomputers, virtual memory support has the potential to decouple (to some
extent) processor allocation decisions from memory requirement considerations
by allowing adaptive policies to allocate fewer processors than the minimum
required to fit a program’s data and code into memory. However, the performance
benefits (if any) of this have to be weighed against the performance overheads
of paging. This tradeoff is the main subject of this paper.

We note that the main motivation for providing virtual memory support
in multicomputers is the convenience offered to the application programmer,
and not to the system scheduler. In this paper, however, we examine whether
the provision of virtual memory can also be taken advantage of by the system
scheduler.

We consider the performance of two classes of adaptive job scheduling policies
under various workload conditions. The first policy, which we call Adaptive Par-
titioning with Memory Constraints (APMC) always allocates at least as many
processors to a job as are needed to fit its code and data into memory. Under
the second policy, which we call Adaptive Partitioning with Virtual Memory
(APVM), this minimum processor requirement is relaxed.

Using a simulation model, we first address the question: what is the maxi-
mum permissible overhead (due to paging) for individual applications in order for
APVM to perform better than APMC? We then address the issue of whether
paging overheads can be kept below this threshold. Using another simulation
model, we examine the impact of factors such as the page fault rate, synchro-
nization granularity and page fault service time on the overall paging overhead.

In the next section, we discuss related work on this subject. In Section 3,
we describe the APMC and APVM policies in more detail. In Section 4, we
compare the performance of the APMC and APVM policies. Finally, Section 5
summarizes our conclusions.

2 Related Work

Job scheduling strategies for parallel computers have been studied actively dur-
ing the last few years [6, 19, 20, 22, 11, 18, 17, 3, 14, 12]. A recent paper by



Feitelson [8] surveys research in this area. Numerous studies have examined adap-
tive partitioning policies — among these, Parsons and Sevcik [15] and Chiang et
al [3] consider preemptive versions of adaptive partitioning similar to the policy
considered in this paper.

Only a few papers have examined the interaction between memory manage-
ment and scheduling. Peris et al [16] developed analytical models for studying
processor allocation tradeoffs while taking into account the impact of memory
requirements. Our work differs from this study in that we examine the same
tradeoff for a specific adaptive partitioning policy, taking into account factors
such as fragmentation overhead. Secondly, our study also differs in that we take
into account the impact of synchronization between threads on the overall paging
overhead incurred by a parallel application.

McCann and Zahorjan [13] propose and evaluate several scheduling policies
that take into account the constraints imposed by the memory requirements of
parallel applications. Our work differs in that we consider memory-constrained
adaptive partitioning policies, whereas they assume a dynamic scheduling disci-
pline. Secondly, we also consider the feasibility of relaxing memory constraints.

Finally, some recent studies [1, 21] have examined the working set character-
istics and paging behavior of scientific programs on distributed memory parallel
computers.

3 Scheduling Policies

The policies considered in this paper have elements in common with both adap-
tive space-sharing policies that have been proposed in [18, 14, 17], and gang-
scheduling polices[7, 8] in use on systems such as the Intel Paragon. They re-
semble gang-scheduling in that they are quantum-based policies in which all the
processors in the system always context-switch synchronously at the end of a
quantum. They resemble space-sharing policies in that the system’s processors
are divided into non-overlapping partitions that are dedicated to individual jobs
for the the length of a quantum. More specifically, they can be classified as
adaptive partitioning policies because each job arriving to the system is config-
ured to execute on a certain partition size at the time it is first dispatched, and
this decision 1s based on the job’s requirements as well as current system load
conditions.

It has been shown that for adaptive partitioning policies to perform well
for workloads with high variability in job demand, either the policies have to
be preemptive in nature [3] or they have to utilize user-supplied information
about job demand [14]. In this paper, we assume that no information (about job
demand) is supplied by the user and consider policies that use preemption. Thus,
the policies proposed in this paper are time-sharing versions of the adaptive
partitioning policies that have been proposed and analyzed in [18, 14, 17].

The system scheduler maintains a job queue consisting of jobs submitted to
the system. Each job j arriving to the system submits a request for a minimum of
min; and a maximum of mazx; processors, where min; is equal to the minimum



number of processors required so that the job’s data and code can fit into the
local memories of the processors, while maz; is equal to the maximum number
of processors desired by the application. At this time, the job is configured to
execute on partition of p; processors based on a decision procedure described
below in Section 3.1, and is placed in the job queue.

The order in which jobs get dispatched in the system is based on a negative-
feedback priority scheme similar to that commonly used in uniprocessors [4].
Each job has a priority associated with 1t which is inversely proportional to the
processing time accumulated so far by the job. At the start of a quantum, the
scheduler examines the job queue and selects the job with the highest priority
to run with its configured partition size (i.e., p;). It repeats this step as long as
there are processors available. If the number of processors left after scheduling
one or more jobs is less than the partition size of the job with the highest priority,
it examines other jobs in the queue in the order of their priority until it finds a
job whose partition size is less than the number of available processors. If there
are no such jobs, the remaining processors are left idle 2.

All the jobs selected using the procedure above are dispatched at the begin-
ning of the quantum. If a job completes before its quantum expires, the freed
processors are allocated to the waiting jobs in a similar manner. At the end of
a quantum, all the jobs executing in the system are preempted, their priorities
are updated, and the scheduling procedure is repeated.

Under both the APMC and APVM policies, a job uses all the available
memory of the processors in its partition. Under the APMC policy, when a job
1s dispatched, 1ts data and code have to be loaded into the local memories of the
processors in its partition. Similarly, when it is preempted, the current contents
of the local memories have to be saved on disk. Under the APVM policy, we
assume that the system keeps track of the active pages of memory and only
loads those pages when a job is dispatched. Clearly, the length of a time slice
has to be long enough to amortize these costs.

Periodically, the scheduler recalculates the priorities of all the processes in
the system (e.g., by dividing them by 2) so that jobs are not penalized forever
for past processor usage. The scheduler also maintains a variable L that captures
the load on the system as reflected in the average number of jobs in the system,
which it updates periodically?.

2 An underlying assumption here is that once a job is configured to execute on p,
processors, it needs at least that many processors to execute. While it is possible in
some systems to use a two-level scheme whereby the virtual processors (or threads) of
an application can be scheduled on any number of processors, this is not universally
true.

In our implementation of this policy, the scheduler periodically samples the number
of jobs in the system, and updates this variable according to the formula L;41 =
1/2L; +1/2Ls, where L;,L;+1, and L, are the old, new and sampled values of L
respectively.



3.1 Processor Allocation Policy

We consider two processor allocation policies, APMC and APVM. APMC as-
sumes no support for virtual memory and thus the number of processors allocated
to a job is at least min;, while APVM assumes support for virtual memory and
can allocate fewer than min; processors.

Adaptive Partitioning with Memory Constraints(APMC) Under this policy, the
processor allocation of a job p; is determined as follows. Let C' = 2t i >0, such
that 2! < P/L < 2i*! where P is the number of processors in the system and L
is average number of jobs in the system. Then if min; < (', the job is configured
to execute on C' processors, otherwise it is configured to execute on (k x C)
processors , where £ > 1 and (k — 1) x C' < min; < k x C. In other words, if
min; > C, the partition size of job j is equal to smallest multiple of C' greater
than min;.

For example, consider a system with P = 128, L = 5. Then C' = 32. Now if
a job arrives with min; = 20 it is configured to execute with 32 processors. On
the other hand, if min; = 45, it is configured to execute with 64 processors.

The basic i1dea underlying the algorithm above is that as the load, L, in-
creases, the processor allocation p; of arriving jobs is reduced, subject to the
constraint that no processor is allocated fewer processors than can satisfy its
minimum memory requirement, min;. The motivation for allocating processors
in units of C' processors, and for selecting C' such that it is a power of 2| is to
minimize fragmentation as much as possible. (We note that we have assumed
that P is also a power of 2 but it is possible to change the algorithm so that C'
is always a divisor of P).

Adaptive Partitioning with Virtual Memory (APVM). This policy is similar to
the APMC policy except that the minimum number of processors that can be
allocated to a job is not min; but some fraction, f of min;. The fraction f is a
fixed parameter of the policy. For convenience, we denote a APVM policy with
fraction f as APVM(f). Note that the APMC policy can be considered to be
APVM(1).

For example, consider the same situations described above,i.e., P = 128, L =
5, and C' = 32. Under the APVM(0.5) policy, a job with min; = 20 would be
allocated 32 processors, but a job with min; = 45 would be also be allocated
32 processors. Under the APVM(0.75) policy however the job with min; = 45
would be allocated 64 processors.

4 Performance Comparisons

We used a discrete event simulation to compare the performance of the policies
described above under a variety of workload conditions. For all our simulations,
we assumed that the underlying system was a message-passing multicomputer
with P = 128 processors. We did not model the interconnection network. All
the processors are assumed to have the same amount of local memory.



4.1 Workload Model

Jobs are assumed to arrive according to a Poisson process. Each job is character-
ized by the following random variables — (i) its minimum memory requirements
(M), (ii) its maximum parallelism (N'), (iii) its total processing requirement (D),
i.e., execution time on one processor, and (iv) its speedup function (5).

In our simulations, we assume that N = P, 1.e., each job can execute on
128 processors. The total processing requirement D is chosen from a hyper-
exponential distribution to model the high variability that i1s expected in parallel
supercomputing environments [9]. We assume that jobs can be considered to
belong to two classes - small and large. Small jobs have a mean processing
requirement of 300 seconds while large jobs have mean processing requirement
of 3600 seconds. The probability of a job belonging to the class of small jobs
i1s assumed to be 0.75. Within each class, the demand of an individual job is
selected from an exponential distribution. These assumptions result in an average
job demand (considering both classes) of 1125 seconds, with the coefficient of
variation of job demand (Cp) of 2.05.

The speedup function used in our simulations is given by S(p) = (1+8)p/(F+
p). This speedup function has been used by several studies [13, 3, 5] and is shown
in Figure 1. For a given number of processors (p) and given job demand (on one
processor), the speedup function is used to compute the processing requirement
of the job on p processors. In our simulations, we assume that 3 1s uniformly
distributed between 30 and 300, the range considered in [13, 3].

For the minimum memory requirements, M, of a job we assumed three distri-
butions. Under the first distribution, we assumed that M is uniformly distributed
in the range (1,128). Under the second distribution, we assumed that M is dis-
tributed in the range (1,64) with probability 0.75 and in the range (65,128) with
probability 0.25. Under the third distribution, we assumed that M is uniformly
distributed in the range (1,64). Henceforth, we refer to these three distributions
for M as distributions A, B, and C respectively.

In order to evaluate the performance of the APVM policy, we have to model
the overhead due to paging when a job is allocated fewer processors than its
minimum processor requirement min; . We define this overhead as the ratio of the
increase in execution time (due to paging) when executing on p; processors and
the processing requirement on p; processors. Thus, if the increase in execution
time due to paging when a job is allocated p; processors is denoted by Tpaging (pj)
and the execution time (neglecting paging) for the job on p; processors is denoted
by T'(p;) then

Overhead(p;) = Tpaging(p;)/T(p;)

Here T'(p;) is computed using the speedup function (S) and the job demand
distribution (D) described above. Then, the run-time of job when allocated p;
processors is equal to (1 4+ Qverhead(p;)) - T(p;).

For a given parallel application, the paging overhead depends upon a num-
ber of factors — working set size, physical memory allocated, page fault service
time, synchronization behavior, and page replacement policy. In our simulations,
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we make the simplifying assumption that the paging overhead of a job is a lin-
ear function of the fraction, denoted by ¢, of 1ts memory requirement that is
allocated to it. Thus, if a job j is allocated p; processors, and the job’s mem-
ory requirements are satisfied by min; processors, then ¢ = p;/min;. A given
APVM(f) policy will allocate at least f x min; processors to each job. Thus,
under APVM(f), ¢ > f. In our simulations, we assumed many different values
for the overhead (O) for a job when allocated a fraction f of its memory require-
ment. For values of ¢ between f and 1, we assumed that the overhead decreased
in a linear fashion. Thus, the overhead for paging for a job that is allocated a
fraction ¢ of its memory requirement (i.e., p; = ¢ - min; procesors) is given by

0, c>1

Overhead(c - min;) = { %:; -0,0< f<e<1

This 18 a simplification because when ¢ falls below the working set size of
the application the overhead increases exponentially. However, since we consider
only values of ¢ > 0.5, and consider a wide range of overhead values O, we feel
that this model is a reasonable approximation for the purpose of comparing the

APVM and APMC policies.

4.2 Scheduling Policy Performance

We now examine the performance of the APMC and APVM scheduling policies.
Using regenerative simulation, we obtained the average response times for a



policy for a given set of input parameters. We considered job arrival rates ()
corresponding to system utilizations (p = A - D/P) of 0.1, 0.25, 0.4, 0.55, and
0.7. In each case, the simulations were run long enough to obtain 95% confidence
intervals that were within 5% of the mean. For each policy, the quantum length
was fixed at 2 seconds. In addition, the queue lengths were sampled and job
priorities recalculated every 100 seconds.

We first examine the performance of the adaptive partitioning policy de-
scribed in Section 3 without taking memory requirements into account. We will
use this policy (which we henceforth call the AP policy) as our baseline policy in
order to illustrate the impact of memory constraints on the performance of the
APMC policy (Alternatively, the average response times obtained for AP can
be considered to be that of the average response times that would be obtained
for APMC for a minimum memory requirement (M) equivalent to that of one
processor).

In Figure 2, we compare the performance of the AP policy with that of
four gang-scheduling policies with fixed-size partitions. The four gang-scheduling
policies examined are policies with partition sizes of 16, 32, 64, and 128 processors
(denoted as GS(16), GS(32), GS(64), and GS(128) respectively). The operation
of the gang-scheduling policies is identical to that of the AP policy, except that
the partition size for all jobs is fixed a priori whereas under the AP policy the
partition size of a job is determined using the procedure described in Section

3.1.
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Fig. 2. Comparison of AP and Gang scheduling with fixed size partitions

The plots in Figure 2 show the importance of reducing processor allocation as
the system load is increased, and the performance benefits of taking advantage of
the “operating point” effect. This result is not new — it has been demonstrated in
(by now) countless studies. However, we show this plot in order to illustrate two



points. First, the plots show that a time-sharing version of adaptive partitioning
can be designed which performs reasonably well for a workload with a high
coefficient of variation, and avoids the problems associated with a “pure” space-
sharing version of the policy [14, 3]. Second, the plots in Figure 2 show that at
moderate loads, the performance of the AP policy is worse than that of the best
GS policy for a given load.

The reason for this behavior is that AP policy suffers from the effects of
fragmentation whereas the GS policies do not. Under the AP policy, situations
can arise where there are idle processors in the system, but jobs in the system
queue cannot execute on these processors because their configured partition size
is greater than the number of idle processors. This situation arises because at a
given time, there can be jobs with different partition sizes executing concurrently.
Under the GS policies, this situation can never arise since all jobs have the same
partition size. This fragmentation effect is mainly due to our assumption that
once a job has been configured for a certain number of processors it needs exactly
that number to execute. If we assume a more dynamic environment (such as
that considered in [13]), in which the job can adapt to the number of available
processors, the performance of the AP policy should improve.

Next, we consider the impact of the memory requirements of arriving jobs on
the performance of the APMC policy. In Figure 3, we plot the average response
times for the APMC policy for the memory requirement distributions A, B, and
C (described in Section 4.1) as a function of system utilization. We also plot
the response time of the AP policy, 1.e., a policy without memory requirement
constraints. The plots show that the memory requirement constraints of the
jobs in the workload can have a significant impact on the performance of an
adaptive partitioning policy. The performance benefits of the APMC policies
arise from their ability to take advantage of the “operating point” effect by
reducing the partition sizes allocated to jobs. If this ability is restricted due to
memory constraints, their performance degrades and the policies saturate quite
quickly.

Another factor that contributes to the performance degradation of the APMC
policies 1s the fragmentation effect mentioned above. When jobs have widely
ranging minimum processor requirements (as is the case for memory require-
ment distributions A and B) the number of jobs with different partition sizes
executing concurrently in the system increases, resulting in a higher fragmenta-
tion overhead. Unlike the (hypothetical ) situation described above (for Figure
2) where the fragmentation can be reduced if jobs can adapt to varying num-
bers of processors, in this case the ability of a job to adjust its partition size is
restricted by the fact that it cannot reduce its partition size below its minimum
memory requirement, msen;. This suggests that in order to reduce the effects
of fragmentation in memory constrained environments, it may be necessary to
provide language and run-time support for a programming model that allows dy-
namic application reconfiguration. Such dynamic run-time environments would
allow the scheduler to use algorithms that avoid fragmentation, such as those

4 . . . .
because we do not take memory constraints into consideration
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described in [13].

At this point, a natural question that arises is: if the minimum processor
constraint imposed by a job’s memory requirements is relaxed as a consequence
of the provision of support for virtual memory, how does it affect the performance
of adaptive partitioning policies? If the scheduler is allowed to allocate fewer
processors to a job than its minimum memory requirement, it could potentially
use this flexibility to make decisions that reduce fragmentation and increase
efficiency in situations with high system load. However, this flexibility comes
at the cost of overhead due to paging. Thus, the key question is: how much
overhead due to paging can be tolerated by individual applications (on average)
before any performance benefits resulting from the easing of minimum processor
constraints get negated?

To answer this question, we examine the performance of the APVM policy.
We consider two APVM policies - APVM(0.5) and APVM(0.75). As discussed
earlier, under the APVM(f) policy, the minimum number of processors allocated
to a job has to be large enough so that at least a fraction f of its code and
data can fit into memory. Thus the APMC policy is equivalent to APVM(1).
In Figures 4-6, we plot the average response times of the APVM(0.75) policy
for three overhead values (O) — 0%, 25%, and 50% — for the three memory
distributions A, B, and C respectively. As described earlier, the plots for the 25%
and 50% overheads represent the performance of the APVM(0.75) policy if the
overheads for any job that is allocated 0.75 of its minimum processor requirement
are 25% and 50% respectively. The 0% plot is obviously not realizable but is
shown for the purposes of comparison.

The figures show that the APVM policy can provide a performance benefit
at moderate to high loads provided the overhead of paging per job is 256% or
less. The plots for the 50% overhead lie above that of the APMC policies in all
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B for different values of paging overhead O.

the figures, while the plots for APVM with 25% overhead lie below the APMC
policy. As expected, the performance advantage of using APVM is greatest for
distribution A and least for distribution C. Further, the advantages of APVM
(for 25%) overhead) are only realized at moderate to high loads (0.4-0.7). Again,
this is to be expected since at lower loads, the processor allocation decisions made
by the APVM(0.75) and APMC policies are virtually identical with most jobs
getting partition sizes larger than their minimum processor requirements.

In Figures 7 — 9, we compare the performance of the APVM(0.5) and APMC
policies. The trends observed in these figures are identical to those observed in
figures 4-6 for the APVM(0.75) policy. However, the performance advantage of
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the APVM(0.5) policy for 25% overhead over the APMC policy is larger than
the performance advantage of the APVM(0.75) policy for 25% overhead. This
is because the APVM(0.5) policy provides greater flexibility to the scheduler
than the APVM(0.75) policy. However, the overhead for the APVM(0.5) policy
is also likely to be higher than that of the APVM(0.75) policy so a performance
comparison cannot be made for these policies assuming the same overhead.
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Fig. 7. Comparison of APVM(0.50) and APMC for memory requirements distribution
A for different values of paging overhead O.

The results described above indicate that for the APVM policy to provide a
performance advantage over the APMC policy, the overhead for paging has to
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add at most 256% to the execution time of a job. In the next section, we consider
the issue of whether it is reasonable to expect the overhead of paging to be below

this threshold.

4.3 Paging Overhead

In uniprocessor systems, the paging overhead incurred by an application depends
on the page fault rate and the page fault service time. The page fault rate in
turns depends not only on the working set characteristics of the application and
the amount of physical memory available in the system, but also the memory
demands of other applications, and the page replacement policy. This is because



the physical memory of the system is shared among multiple applications that
are executing concurrently. Under the APVM policy, however, there is only one
application executing on a partition at a given time. Thus, the page fault rate
on a system executing a parallel application depends on its working set size and
memory reference pattern, and the amount of available memory.

Unlike sequential programs, however, the overhead incurred by a parallel ap-
plication depends not only on the page fault rate but also on the synchronization
patterns within the application. This is because when a thread that is part of a
parallel computation has a page fault, any sibling threads that synchronize with
the faulting thread are also delayed. Burger et al have shown that the slowdown
experienced by several scientific applications when their available memory was
constrained to 90% of their data set size ranged from a factor of two to a factor of
eight. This suggests that achieving a slowdown of less than 1.25 (corresponding
to the 256% overhead threshold in the previous section) will be very difficult, if
not impossible. However, in this study, the backing store for the paged memory
was assumed to be on disk, and an average disk service time of 16 ms was as-
sumed. In this paper, we make the optimistic assumption that the average page
fault service time is 1 ms. We note that researchers have proposed the use of
dedicated “memory server” nodes [10] for implementing fast paging stores.

In the case of sequential applications, a page fault service time of 1 ms,
and maximum overhead threshold of 25% would imply that the maximum page
fault rate that is permissible (on average) is 250 page faults/second. In the case
of parallel applications, the page fault rate that could be tolerated would be
lower since the overhead of paging would also be affected by the synchronization
between threads. Intuitively, the increase in overhead due to synchronization
would be most dramatic for applications with fine-grain interaction between
threads. In order to obtain a better understanding of the relative contribution
of these factors — page fault rate and granularity of synchronization — on the
overall overhead incurred by an application, we conducted a simple simulation-
based experiment.

In this experiment, we simulated the execution of a SPMD parallel applica-
tion with a simple fork-join structure, i.e., a SPMD application with multiple
phases each involving a barrier synchronization. The inputs to the simulation
that determine the synchronization behavior of the application are (i) the num-
ber of threads involved in the synchronization, and (ii) the granularity of syn-
chronization (i.e., time between successive barriers). Further, we assume that the
application was perfectly load balanced so that if none of the threads involved
in the synchronization experienced a page fault, they would reach the barrier at
the same time.

The inputs to the simulation that determine the paging behavior are (i) the
page fault rate of a thread, and (ii) the correlation factor, which determines
the correlation between the times at which page faults are incurred by different
threads. We assume that the page fault rate of each thread is identical, and
that the time between page faults is uniformly distributed with mean time equal
to 1/(page fault rate). The correlation factor models the similarity in the pag-



ing behavior of different threads. (In case of SPMD programs it is reasonable
to assume that there is some similarity in the memory reference patterns of
the threads of the application [21].) Our assumption that the page fault rate
of each thread is identical implies that each thread incurs the same number of
page faults during the simulation. In our simulation, the difference in times at
which a certain page fault occurred on different threads is uniformly distributed
within time (1 — correlation factor) = (1/page fault rate) of each other. Thus
if the correlation factor is 1, all threads incur a page fault at exactly the same
time. In this case, the overhead due to paging is solely due to the time taken
to service the page fault, and the interaction between paging and thread syn-
chronization patterns does not contribute to the overall delay incurred by the
parallel application.

Using the model above, we simulated the execution of an application for a
variety of input parameters. We varied the correlation factor between 0.5 and
1, the number of threads between 8 and 128, the synchronization granularity
between 50 — 1000 microseconds, and the page fault rate between 10-500 page
faults/sec. The metric of interest was the slowdown experienced by the applica-
tion, i.e., the ratio of the execution time of the application with paging and the
execution time without paging.

In Figure 10, we plot the slowdown experienced by an application with syn-
chronization granularity 50 microseconds, and a page fault rate of 100 faults/sec,
as a function of the number of processors (threads) involved in the barrier. Our
results show that the slowdown experienced depends to a large extent on the
correlation factors. For a correlation factor of 0.9, the slowdown can be as high
as a factor b on 128 processors. We also note that even for a correlation factor of
0.99, the slowdown ranged between 1.38 and 1.5. We note that if the correlation
factor is 1, the slowdown experienced by the application at 100 faults/sec will
be 1.1. In Figure 11, we plot the slowdown for different correlation factors for
an application with 64 threads and synchronization granularity 50 microseconds
as a function of page fault rate. Again, we observe that the slowdown is quite
high, e.g., for a correlation factor of 0.99 at 50 page faults/sec, the application
experiences a slowdown greater than 1.4.

In Figure 12, we plot the slowdown experienced by an application with
synchronization granularity of 500 microseconds, and a page fault rate of 100
faults/sec, as a function of the number of processors (threads) involved in the
barrier. The plots show that even though the application has a relatively large
granularity of synchronization, except for correlation factor of 0.99, the slow-
down is much larger than 1.25. Figure 13 plots the slowdown for an application
with 64 threads and synchronization granularity of 500 microseconds as a func-
tion of page fault rate. We observe that only the plot for correlation factor 0.99
lies below the desired threshold of 1.25.

These results indicate that the synchronization behavior of applications have
a much greater impact on the overall paging overhead incurred by an application
than the memory reference pattern (as reflected in the page fault rate). We are
currently pursuing an experimental study to validate this conclusion.
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Fig.10. Paging Overheads as a function of number of synchronizing threads for an
application with fine-grain interaction.
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Fig.11. Paging Overheads as a function of page fault rate for an application with
fine-grain interaction.

Even though these results have been derived from a hugely simplified model
of program execution, they do suggest that even for optimistic assumptions
about paging overheads (e.g., page fault service times of 1 millisecond) and
memory reference patterns (e.g., uniform page fault behavior across threads), the
overall slowdown experienced by an application is large enough to overwhelm any
performance benefits derived from decoupling processor allocation and memory
allocation in the APVM policy.
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Fig.12. Paging Overheads as a function of number of synchronizing threads for an
application with coarse-grain interaction.
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Fig.13. Paging Overheads as a function of page fault rate for an application with
coarse-grain interaction.

5 Conclusions

In this paper, we studied the interaction between processor allocation and mem-
ory allocation that arises in implementing adaptive partitioning on message-
passing multicomputers.

We first showed that the minimum processor constraints imposed by the
memory requirements of jobs submitted to the system can have a considerable
negative impact on the performance of adaptive partitioning policies. This is
due to two reasons (i) the increase in fragmentation overhead due to widely



ranging minimum processor requirements, and (ii) a decrease in the ability of
the adaptive partitioning policy to reduce partition sizes at high loads in order
to take advantage of the “operating point” effect.

We then considered the performance implications of decoupling processor
allocation from memory allocation considerations (to some extent) through the
provision of support for virtual memory. We showed that easing the minimum
processor requirement imposed by a job’s memory requirements could provide a
performance benefit if the overhead due to paging was of the order of 256%. Next,
we evaluated the impact of the various factors on the paging overhead incurred
by a parallel application, and concluded that it would be difficult to keep the
overhead below this threshold.

Overall, the main conclusion of this paper is that virtual memory offers lit-
tle benefit to adaptive job scheduling policies. However, memory-constrained
adaptive policies also perform poorly for workloads consisting of applications
with widely ranging memory requirements. Thus, in order to obtain high system
throughput for such workloads, dynamic partitioning policies, that can reduce
the effects of fragmentation, are necessary.

References

1. D. Burger, R. Hyder, B. Miller, and D. Wood. Paging tradeoffs in distributed
shared-memory multiprocessors. In Proceedings of Supercomputing '94. IEEE,
November 1994.

2. Rohit Chandra, Scott Devine, Ben Verghese, Mendel Rosenblum, and Anoop
Gupta. Scheduling and page migration for multiprocessor compute servers. In
Proceedings of ASPLOS-VI pages 12-24. ACM, October 1994.

3. Su-Hui Chiang, Rajesh K. Mansharamani, and Mary K. Vernon. Use of applica-
tion characteristics and limited preemption in run-to-completion parallel processor
scheduling policies. In Proceedings of 1994 ACM Sigmetrics Conference, pages
33-44, Nashville, May 1994.

4. H. M. Deitel. An Introduction to Operating Systems. Addison-Wesley, 1984.

5. L. Dowdy. On the partitioning of multiprocessor systems. Technical report, Van-
derbilt Univ., Nashville, TN, July 1988.

6. D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus efficiency in parallel
systems. [EEF Transactions on Computers, 38:408 — 423, March 1989.

7. D. Feitelson and L. Rudolph. Gang scheduling Performance Benefits for Fine-
Grain Synchronization. Journal of Parallel and Distributed Computing, 16:306—
318, 1992.

8. Dror Feitelson. A survey of scheduling in multiprogrammed parallel systems. Tech-
nical Report RC 19790, IBM Research Division, October 1994.

9. Dror Feitelson and B. Nitzberg. Job Characteristics of a Production Parallel Sci-
entific Workload on the NASA Ames iPSC/860. In Proceedings of the IPPS 95
Workshop on Job Scheduling Strategies for Parallel Processing, pages 215-227,
April 1995.

10. Liviu Iftode, Kai Li, and Karin Peterson. Memory servers for multicomputers. In
Proceedings of the 1993 Spring CompCon, pages 538-547  February 1993.

11. S. Leutenegger and M. Vernon. The Performance of Multiprogrammed Multipro-
cessor Scheduling Policies. In Proc. of Sigmetrics ’90, May 1990.



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Cathy McCann and John Zahorjan. Processor allocation policies for message-
passing parallel computers. In Proceedings of 1994 ACM Sigmetrics Conference,
pages 19-32, Nashville, May 1994.

Cathy McCann and John Zahorjan. Scheduling memory constrained jobs on dis-
tributed memory parallel computers. Technical Report UW-CSE-94-10-05, Uni-
versity of Washington, Department of Computer Science, 1994.

V. K. Naik, S. K. Setia, and M. S. Squillante. Performance Analysis of Job
Scheduling Policies in Parallel Supercomputing Environments. In SuperComputing
98, November 1993.

Eric W. Parsons and Kenneth C. Sevcik. Multiprocessor Scheduling for High-
Variability Service Time Distributions. In Proceedings of the IPPS 95 Workshop
on Job Scheduling Strategies for Parallel Processing, pages 76—88, April 1995.
Vinod G. J. Peris, Mark S. Squillante, and Vijay K. Naik. Analysis of the impact
of memory in distributed parallel processing systems. In Proceedings of 1994 ACM
Sigmetrics Conference, pages 5-18, Nashville, May 1994.

E. Rosti, E. Smirni, G. Serazzi, .. Dowdy, and B. Carlson. Robust Partitioning
Policies of Multiprocessor Systems. Performance Evaluation, 9(2-3), 1994.

S. K. Setia and S. K. Tripathi. A Comparative Analysis of Static Processor Par-
titioning Policies for Parallel Computers. In Proc. of MASCOTS ’93, January
1993.

K. C. Sevcik. Characterizations of parallelism in applications and their use in
scheduling. In Proc. of the ACM SIGMETRICS Conf., May 1989.

A. Tucker and A. Gupta. Process control and scheduling issues for multipro-
grammed shared-memory multiprocessors. In Proc. of the 12th ACM Symposium
on Operating Systems Principles, December 1989.

K. Y. Wang and Dan C. Marinescu. An analysis of the paging activity of par-
allel programs. Technical Report CSD-TR-94-042, Purdue University, Computer
Sciences Department, June 1994.

J. Zahorjan and C. McCann. Processor scheduling in shared memory multiproces-

sors. In Proc. of ACM SIGMETRICS Conf., 1990.

This article was processed using the IANTRpX macro package with LLNCS style



