Multiprocessor Scheduling for High-Variability Service
Time Distributions

Eric W. Parsons and Kenneth C. Sevcik

Computer Systems Research Institute
University of Toronto

{epar sons, kcs}@s. t oronto. edu

Abstract. Many disciplines have been proposed for scheduling and processor al-
location in multiprogrammed multiprocessors for parallel processing. These have
been, for the most part, designed and evaluated for workloads having relatively
low variability in service demand. But with reports that variability in service de-
mands at high performance computing centers can actually be quite high, these
disciplines must be reevaluated. In this paper, we examine the performance of
two well-known static scheduling disciplines, and propose preemptive versions
of these that offer much better mean response times when the variability in ser-
vice demand is high. We argue that, in systems in which dynamic repartitioning
in applications is expensive or impossible, these preemptive disciplines are well
suited for handling high variability in service demand.

1 Introduction

There have been numerous scheduling disciplines proposed for multiprogrammed mul-
tiprocessor systems, the evaluation of which has, for the most part, been based on
workloads having a relatively low variability in the processing requirements of jobs.
However, high performance computing centers have reported that variability in service
demands can in fact be quite high. In a detailed study of the anticipated workload of
its “Numerical Aerodynamic Simulation” (NAS) facility [NAS80], NASA specified a
workload consisting of eight types of computational tasks with expected mean service
reguirements differing by as much as a factor 3500. Assuming that the service require-
ments within each class are exponential ly distributed, the coefficient of variation of ser-
vicetimes (C;), whichisthe ratio of the standard deviation of servicetimeto its mean,
in the overall workload is 7.23. This high degree of variability is further supported by a
recent workload characterization study of parallel applications at the same NAS facil-
ity [FN95]. In another study, Chiang, Mansharamani, and Vernon report that the coeffi-
cient of variation observed on aweekly basisonthe CM-5 at the University of Wisconsin
ranges from 2.5 to 6, with 40% of them being above 4 [CMV 94]. They also report that
some measurements from Cray Y MP sites range from 30 to 70 [CMV 94, Ver94].

In this paper, we consider two well-known static scheduling disciplines, showing
how they behave under high variability in service demand, and propose ways in which
they can be adapted to better handle this condition. These enhancements make no ad-
ditional assumptions about the information available at ajob’s arrival, other than what
is required by the original discipline. However, they do use preemption to effectively

time-share sets of processors among jobs. Each job always executes on the same num-
ber of processors, as determined upon arrival, but is not necessarily run to completion
when first activated.

Focusingon Cy intherange of 5to 70, our goalsare (1) to comparethe performance
of theexisting disciplinesand (2) to propose enhancementsto these disciplinesthat make
them perform better over this range of C;. For comparison purposes, we aso consider
the performance of an ideal form of equipartitioning (IEQ) in which each job receives
an egual share of the processors [ZM90]. Thisdisciplineisvery different from the static
disciplinesin that ajob’s processor allocation changesat each job arrival or completion.
If the overhead of adapting to the altered allocation is neglected (hence“ideal” equipar-
tition), then IEQ is known to perform very well for high values of C..

The principle underlying the enhanced disciplinesis based on the knowledgethat, in
uniprocessor scheduling, thevariability in servicedemand playsalargerolein determin-
ing the best scheduling discipline when exact knowledge of service demandsis absent.
For Cy; > 1, adisciplinethat favoursjobsthat havetheleast acquired service can greatly
reduce the mean response time (MRT) of the system. Our enhanced disciplines general-
ize the uniprocessor multilevel feedback (FB) approach to a multiprocessor setting.

Thetechniqueused to eval uate these disciplinesis experimentation using asynthetic
workload simulation. In studies such as this, one is usually required to use synthetic
workloads because real workloads cannot be simulated efficiently enough and real sys-
tems with actual workloads are not available for experimentation. Also, useful analytic
models are difficult to derive because the subtleties between various disciplines are dif-
ficult to model and because the workload model is quite complex.

The results in this paper are based on three synthetic workloads that differ in the
amount of speedup attained by jobs. In the first workload, all jobs have near-perfect
speedup. In this case, the results are consistent with what is known from the study of
uniprocessor systems. Asthe coefficient of variation of servicetimesincreases, so does
the mean response time for the run-to-compl etion disciplines. The enhanced disciplines
have worse performance when C; < 1, but provide improved performance as C; in-
creases beyond one. In the second workload, small jobs have very poor speedup, while
large ones have relatively good speedup. With this workload, the enhanced disciplines
arestill superior, but to alesser degree. Finally, we consider aworkload derived fromthe
NASA study mentioned above, with an intermediate speedup characterization, in order
to show how the disciplines behave under what we believe is amore realistic workload.
In this study, we used a speedup characterization that explicitly accountsfor contention
and overhead as a function of the number of processors. Thus, jobs which are alocated
too many processors can experience a reduction in overall performance [Sev94]. Such
a characterization is more realistic than those that ssmply consider the parallel and se-
quential componentsof ajob.

Thestructure of the paper isasfollows. Inthenext section, we survey scheduling dis-
ciplines that have previously been proposed and evaluated. Then, we describe in detail
the disciplines from which we derive the new versions, and present our modifications.
In Sec. 4, we specify system and workload models, and describe the simulation exper-
iments upon which we base our conclusions. The results of the simulation experiments
are presented and analyzed in Sec. 5, and conclusions are presented in Sec. 6.

2 Background

2.1 Uniprocessor Scheduling

As mentioned earlier, the performance of uniprocessor scheduling disciplines depends
to agreat extent on the distribution of servicetimes. If C; < 1, afirst-comefirst-served
(FCFS) discipline gives the best mean response time, since the job with the most ac-
quired serviceis expected to be the closest to completion. On the other hand, if Cy > 1,
then the multilevel feedback policy (FB) tends to perform best since the job with the
least acquired service is the one that has the |least expected remaining service time!. If
Cy iscloseto one, or no information is available about C;, then the round-robin disci-
pline (RR) offersagood compromiseasit yieldsamean responsetimethat isinsensitive
to the service time distribution.

Figure 1 illustrates how mean response times depend on the coefficient of variation
of servicetimesfor FCFS, RR, and FB, along with two other disciplinesthat require ad-
vance knowledge of the servicetime of each job. Shortest Processing First (SPT) sched-
ules the job with the smallest service time whenever the processor is free. The preemp-
tiveversion, Shortest Remaining Processing Time (SRPT), always assignsthe processor
to the available job that is closest to completion. The value of service time knowledge
can be seen for SPT and SRPT (particularly for C; < 2) and the value of preemption
can be seen for RR, FB, and SRPT (for Cy > 2).

2.2 Multiprocessor Scheduling

Multiprocessor scheduling algorithms can be classified according to (1) the amount of
information they require about jobs or classes of jobs, and (2) the extent to which they
preempt and reallocate processors among jobs.

Thelevels of information used by various algorithms can range from none, to some
knowledge about the workload or classes of jobs, to knowledge of the characteristics of
individual jobs, to full knowledgeabout all jobs. In this paper, we consider the third case
where somejob characteristics, such as the maximum parallelism, are known. In areal-
istic environment, such characteristicswould not be known precisely, but understanding
how to schedule with exact job-specific information is an important step in understand-
ing how to schedule effectively when this information is only approximate.

The scheduling of threads of ajob may be either independent or coordinated. Inthe
independent case, there isa single (logical) queue of individual threads. Any free pro-
cessor takes athread off the queue and executesit either to completion or for aspecified
quantum. The queue may be ordered by arrival time, expected service required, number
of threadsin the job, or some other criterion.

Inthe coordinated case, processorsare all ocated to and perhaps preempted from jobs
in groups. This approach rendersit possible to exploit cache affinity and to make an ap-
propriate processor alocation to each job in light of whatever is known about its char-
acterigtics.

! The performance of FB actually depends on the service time distribution. It has been shown
that for some distributions (e.g., a 3-point distribution with high C;), the performance of FB
can be quite poor [Sch70]. For the hyperexponential class of distributions, as are used in this
study, FB is markedly better than RR.

FCFS
15

124

Mean Response Time

SPT

RR
FB

SRPT

|]] |]
0 1 2 3 4 5

Coefficient of Variation

Fig. 1. Mean response time as a function of coefficient of variation for uniprocessor
scheduling disciplines at aloading factor of 0.75. The FB curve was obtained from sim-
ulations; all otherswere obtained analytically.

The styles of preemption that we will distinguish for coordinated scheduling are:

— Static Run-To-Completion (RTC) — Some number of processors is assigned to a
job when it is activated, and it retains exclusive use of all those processors until its
service is completed.

— Dynamic— The number of processorsallocated to ajob may change during its ex-
ecution. There may be a significant overhead for the job to reconfigure itself to ef-
fectively use the new number of processors.

— Static Quantum-Based — When ajob is first activated, it is assigned a number of
processors (asin Static Run-To-Completion), and it uses that number of processors
whenever it is active. However, its execution may be suspended, either at the ter-
mination of a quantum or when an arrival or departure occurs, and then resumed
repeatedly until its service requirement is satisfied.

Independent Scheduling The first independent multiprocessor scheduling strategies
that were proposed were smple extensions of the uniprocessor FCFS, RR, SPT, and
SRPT disciplines [MEBS8]. In FCFS and RR, threads are ordered according to the time
at which they were placed on the queue, while in SPT and SRPT, threads are ordered
according to increasing cumulative service demand remaining for the job. Implicit in
most models used to evaluate independent scheduling is the assumption that ajob’s ser-

vice requirement isindependent of the number of processorsit isallocated. In this case,
the disciplinesyield performancethat isin rel ative agreement with uniprocessor results.
Theimportance of preemption increases with the variability in service demand, as does
explicit knowledge of ajob’s service requirement.

But because of the multiprocessor aspect, some anomalies can occur. In particular,
RR will tend to give proportionately moreprocessing timetojobshaving alarger number
of threads. RRJob avoids this by timeslicing equally among jobs as well as among the
threadsof ajob [LV90]. Both RR and RRJob have been shown to performwell for values
of C, ranging from 3 to 5 [LV90].

Static Run-To-Completion Scheduling Early work in static RTC scheduling showed
that agood number of processorsto allocateto ajob isthe valuethat |eadsto the smallest
ratio of execution time to efficiency (i.e., the value at the knee of the execution time-
efficiency profile), asthisisapoint that maximizesthe ratio of benefit to cost [EZL89].
If the number of processors allocated at the knee of the curve is not known, allocating
anumber of processors equal to the average paralelism has been shown to be a good
alternative. The average parallelism (A;) of ajob j isthe average degree of parallelism
exhibited by thejob over itslifetime. If there are no overheads dueto parallelism, A; is
equivaent to the speedup on an unlimited number of processors [EZL89].

The overall workload volume, when known, should also be taken into account in the
scheduling decision [Sev89]. By reducing the number of processors alocated to jobs
as the system load increases, the mean response time can be greatly improved. In the
limit, where the system load is near one, jobs should (it can be argued) be allocated no
more than one processor since this leads to the highest possible efficiency of the sys-
tem, assuming there are no other considerations such as large memory requirements.
Conversely, under light overall load, each job can be allocated as many processors as
it needs to attain its maximum execution rate. Most multiprocessor disciplines take the
system load into account in some way to avoid the problem of early saturation that may
be caused by running jobs with too many processors.

An interesting generalization of efficiency isto consider theratio of ajob’s speedup
to an arbitrary cost function instead of to the number of processors. Thisratio, called the
efficacy of ajob, is used to determine ajob’s processor working set (pws) [GST91] (de-
scribed in more detail below). With the specific cost function chosen for use, the pwsis
equivalent to the number of processors at the knee of the execution time-efficiency pro-
file. A variety of disciplinesusing knowledge of ajob’s pws have been examined. It has
been concluded that an important consideration isto not leave any processorsidlewhile
work is available. The best of these disciplines, referred to as FF+FIFO by Ghosal et
al. [GST91], but more commonly referred to as PWS, isinvestigated in this paper.

A policy that does not make use of any job characteristics other than the maximum
parallelism is Adaptive Static Partitioning (ASP) [ST93]. Through analytic models, it
has been shown that ASP isin general superior to PWS, but the results are only known
for a2-point service time distribution where C; = 0.31. Subsequent simulation studies
providefurther evidence of the benefits of avariant of ASP where the maximum alloca-
tion to ajob is bounded [CMV 94]. Although most of the resultsrelateto C; = 5, one
experiment demonstrates that bounded ASP also performswell when C; = 30. In this

paper, we only use ASP as originally defined [ST93], with no bound on the maximum
alocationto ajab.

Dynamic Scheduling Most research in dynamic scheduling has been directed towards
reducing or eliminating the cost of processor reallocations. In the process control ap-
proach, jobs and the operating system cooperate in processor reallocations, allowing
ajob to dynamically match its degree of paralelism to the current allocation [TG89,
GTS91]. In this approach, the goal is to avoid altogether the problems of losing cache
context and the blocking of critical threads.

Twoimportant disciplinesthat have been studied in the context of processcontrol are
equipartition and demand-driven scheduling (called “dynamic scheduling” originally).
In equipartition, each jobisallocated an equal fraction of the processors, up to their max-
imum parallelism [ZM90]. Thisassumesthat all jobshave adegreeof parallelismthat is
constant throughout their lifetime. In order to handlejobswith varying degrees of paral-
lelism, demand-driven scheduling uses process control both to allow the system to take
into account changesin ajob’s parallelism and to allow the job to adapt to changesin
processor allocation [ZM90, MV Z93].

Equipartition has been shown to be effective over a wide range of workloads and a
wide range of distributionsin service demand [LV 90, CMV94]. When system loadsin-
crease, allocationsto jobs decreases allowing them to operate at a morefavourable point
on their efficiency curve. Also, because equipartition is effectively the analog of RR in
uniprocessing, it isrelatively insensitive to variability in service requirement. However,
not all applications can dynamically changetheir degree of parallelism according to the
current processor allocation, and those that can may incur a high overhead. As aresult,
we begin by considering equipartition in its ideal form (ideal equipartition or IEQ) in
which no overheads exist, and later introduce overheads in the context of the NASA-
based workload.

Several techniques have been used with dynamic scheduling in an attempt to reduce
problems associated with having fewer processors than threads:

— cache-affinity scheduling: preferenceis given to threadsthat have previously runon
agiven processor in order to limit lost cache context;

— gpin-block locking: threads requesting a lock spin for a short duration, after which
point they block and yield their processor to another thread;

— coordinated descheduling: the system ensuresthat threadshol ding locks do not have
their processor taken way.

Theuse of acombination of these techniquesand otherscan bevery effectivein reducing
the penalty associated with having fewer processorsthan threadsin centralized shared-
memory systems [GTU91].

Static Quantum-Based In this paper, we propose coordinated scheduling disciplines
that are static quantum-based. In this category, the only discipline that has been previ-
oudly studied is gang scheduling, in which sets of jobs are actively timediced [Ous82,
LV90, MV Z93]. Research into thistopic has been primarily focussed on the mechanism,
such as how it should be implemented [FR90] and how important it is for fine-grained

applications [FR92]. In our work, we consider issues such as how many processors to
assign to an arriving job and when that job should be scheduled to run.

3 Disciplines

This section describes in detail the two disciplines used in our experiments, PWS and
ASP, both before and after the enhancements made to handle high variability in service
demand. Thesetwo disciplinesdiffer primarily in the amount of information givento the
scheduler; in PWS, characteristics of the speedup curveisknownwhilein ASP only the
maximum parallelism is known. We al so experimented with other disciplines (in partic-
ular AVG [LV90] and AP [RSD*94]), but as these did not offer much in terms of addi-
tional insight, we omit the results.

3.1 Standard Disciplines

The pws of ajob is the minimum number of processors that maximizesthe ratio of its
speedup S; (n) toacost function C;(n) = n/S;(n). Thiscost function expressestheno-
tion that the cost of a processor depends on how efficiently it is being utilized. Ghosal et
a. explore severa different discipline that make use of the pws, and conclude that the
following discipline (called FF+FIFO by them) performsbest [GST91]:

PWS When ajab arrivesin the system, and there are free processors, it is allocated the
lesser of the number of free processors and its pws. When a job leaves, the sched-
uler repeatedly examines the jobs in the queue and selects the first one whose pws
fitsin the available processors; if nonefit, then thefirst job is given the remaining
processors.

PWSasoriginally defined limitsits search of the queueto just thefirst w jobs, but in this
study, we set no such limit in order to maximize the chance of finding a job for which
the pwsfitsin the available processors.

The ASPdisciplinediffersfrom PWSinthat it spreadsfree processorsevenly among
all waiting jobsinstead of allocating thefirst job as many processorsasit requires:

ASP When ajob arrivesto the system, it isgiven the lesser of its maximum parallelism
and the number of free processors. When ajob is completed, the processors are a-
located evenly among jobs that are waiting.

We assume that a job’s maximum parallelism is the number or processorsfor which its
speedup function is maximized.
Asthe baseline policy, we defineideal equipartition as follows:

IEQ When ajob arrival or departure occurs, the processors are dynamically reallo-
cated to the current set of jobsin such away that (P mod Jy,..;) jobsare alocated
| P/ Jtotar + 1| processors and the rest one less, where Jy,,; isthe total number of
jobsin the system. Periodically, the scheduler rotates the jobs, placing the last job
(in arun queue) at the front, thereby evening out any imbalances in processor al-
location. In particular, if there are more jobs than processors, all jobs receive some
fraction of the system’s processing capacity. Once again, ajob is never allocated
more processors than its maximum parallelism.

Asin previousstudies [LV90], we assume that ajob adaptsinstantaneously to the num-
ber of processorsallocated to it after each reallocation.

3.2 Multiprocessor Feedback Disciplines

Thefeedback scheduling disciplines derived from the static disciplinesall follow asim-
ilar pattern. When a job arrives to the system, it is configured for a certain number of
processors that depends on the known characteristics of the job and the other jobs cur-
rently availablefor execution. At the start of eachtimedlice, all activejobsareexamined,
and those having the least acquired processing time are scheduled to run. Acquired pro-
cessing timeisjust the number of processor-secondsallocated to the job so far, and thus
can differ from the actual work accomplished by the computation since the latter isin-
fluenced by the job’s speedup properties. The scheduler repeatedly selects the next job
which hasthe least acquired processing time and which fits within the remaining set of
processors (as configured upon arrival), and schedulesit to run.
The two variants of the static quantum-based disciplines that we present are:

FB-PWS An arriving job is configured for a partition size of

min{M4 min {pwsj,P} X P}

”” R 4+ min {pws]-,P}

processors, where 1/ ; isthejob’smaximum parallelism and R isthe sum of the pro-
cessor alocations for all jobs currently in the system. In general, each job is allo-
cated afraction of the P processorsthat correspondsits share of thetotal anticipated
number of processors allocated in the system. Under light load, ajob will allocated
more processors than its pws and under heavy load it will be allocated fewer.

FB-ASP Anarrivingjob is configured with round(P/ Jyotq) Processors, except that if
there are twice as many available processors as the computed partition size, then
one more processor is given (to account for uneven partition sizes). Thisisdifferent
from the static ASP in that the partition size is not based solely on the number of
waiting jobs (which would not make sense in this case.)

When there are fewer processors|eft than any of theremaining jobs configurations,
the scheduler runs the next job anyway using the remaining processors. For this, we as-
sume that we have a thread scheduler that, at the very least, avoids blocking critical
threads and implements some form of cache-affinity scheduling. But when a job with
adtatic alocation of p processorsis activated with only ¢ (¢ < p) processors, its execu-
tion rate will belessthat ¢/p timesitsfull execution rate due to the mismatch of threads
and processors. Gupta et a. studied the effect of combined thread scheduling features,
including those just described, and showed that for a set of four applications, the proces-
sor utilization dropped by just under 9% over batch scheduling (see Fig. 6 in Gupta et
a. [GTU91]). Adopting thisresult, we assumethat ajob that isrunning with fewer pro-
cessors than its static configuration progresses 9% slower than ¢/p times its full exe-
cution rate. Experimentation indicates, however, that these two disciplines, particularly
FB-ASP, tolerate higher dowdown values reasonably well. When the slowdown value

was increased to 100%, the increase in mean response times for FB-PWS ranged from
0% at low loadsto 24% at high loads, while for FB-ASP, the increase was less than 2%
throughout.

4 Definition of M odé

We use a discrete event ssmulation to evaluate the different scheduling disciplines. In-
put parametersto the simulator included the arrival rate, average service demand, coef-
ficient of variation of the cumulative service demand, job speedup characteristics, and
the scheduling discipline of interest. The specification of and results from the various
simulation runs are given in Sec. 5.

4.1 System Model

The system model consists of 100 functionally equivalent processors. No details of the
interconnection network or the memory system are modeled. The cost of descheduling
and rescheduling ajob in the static quantum-based disciplinesis modeled explicitly, and
isassumed to be 2.5% of the length of atimedlice (aconservative estimate). The cost of
reallocating processorsin IEQ is assumed to be zero.

Jobs are assumed to arrive according to a Poisson process, and have a service time
distribution that is Erlang, exponential, or hyperexponential, depending on the specified
coefficient of variation.

4.2 Workload Model

Our choice of job characterization explicitly allows for overheadsin a parallel compu-
tation [Sev94]. The execution time of ajab j is defined by:

T;(n) :¢%+a+ﬂn

wheren isthe number of processors allocated to the job and W; is the amount of work
(cumulative service demand) for the job. ¢ representsthe load imbalance in the threads
of the computation. « represents the amount of sequential computation and the amount
of per-processor work required for the parallelization of the computation. Finaly, 3 rep-
resents the communication and congestion delays that increase with the number of pro-
cessors. It has been shown by Wu [Wu93] that actual measured speedup functions can
be represented with this functional form if ¢, o, and 5 are chosen to yield the best fit
(with respect to least-square error). Our choice of values for ¢, o, and 3 are based on
thiswork.
Given this execution-time function, ajob’s maximum parallelismis:

%) if3=0
M; = ,/% otherwise

and itspwsis:

Vi if =0
pws,; = a—+/a? f .
’ R VA ek V_Z;W’W’ otherwise

Two characterizations were used to represent workloads having quite distinct par-
alelization overheads. In the first, al jobs, irrespective of size, have nearly perfect
speedup, whereasin the second, small jobs experience poor speedup and large jobs ex-
periencerelatively good speedup. Illustrated in Fig. 2 are representative speedup curves
for the two workloadsfor job sizes ranging from 500 to 5000000. The parameters used
for characterizingthetwo workloads (aswell the NASA workload) areshownin Table 1.

% 1009 / g_ 100 —

=1 . =1

d — Linear % 2 —— Linear

& W=500 / & W=500
sof- --- w=5000000 ol --- w=5000

--- W=50000
-+- W=500000
—— W=5000000

60
40

20 S

| | o
0 20 40 60 80 100 0 0 20 40 60 80 100

Processors Processors

(a) Workload 1 (b) Workload 2

Fig. 2. Speedup curves for workloads 1 and 2 used in this paper.

Workload|Mean Service Requirement Parameters
1 1000 ¢»=1.02,a=0.0508=0.0
2 1000 $p=13,a0a=2503=25
NASA 92371 ¢ =115, = 1000, 3 = 600

Table 1. Parameters used for the workloads used in this paper.

We also experimented with other workloads and found that, qualitatively, their per-
formance was between the two we chose. In particul ar, we considered mixed workloads
inwhich jobs had varying values of ¢, «, and 3, as might be found in actual workloads.

As such, we feel that the two workloads chosen are sufficient to explore the behaviour
of the various scheduling disciplines.

We study athird specific workload, whichischosen to represent the NA SA workload
described earlier. The service time distribution is an 8-stage hyperexponential distribu-
tion with one stage corresponding to each distinct workload component [NASS0]. Inthe
absence of speedup information about the jobs, we chose to use a characterization that
fell in between our endpoints.

5 Analysisof Smulation Results

First, we examine the performance of the various scheduling disciplines under work-
loads 1 and 2 as a function of the coefficient of variation in service demand. Next, we
examine the performance of all the disciplines under the NASA workload as afunction
of system load.

For the most part, a sufficient number of independent trials were done to obtain a
95% confidenceinterval that was within 5% of the mean for each data point in our sim-
ulation results. Because of theinstability of distributions having high coefficient of vari-
ation, however, the datapointsfor C; = 70 sometimeshaveaconfidenceinterval greater
than 5% of the mean for the higher system load values. Each trial had awarm-up period
inwhichthefirst 20 jobswerediscarded. A trial terminated when the subsequent 100000
jobs (twicethat for C; = 30 and four timesthat for C; = 70) to arrive | eft the system.
The simulation results of a run are based only on the response times of these 100000
jobs.

5.1 Workload 1

Figure 3 plots the performance of the original disciplines in comparison to their FB
counterparts as afunction C,;. Curvesare shown for each of four arrival rates for each
discipline. The solid lines represent the non-FB disciplines, while the dotted lines rep-
resent their FB counterparts. The mean service required per job was 1000, so the mean
interarrival times of 50, 20, 15, and 12.5 correspond to system loading factors of 20%,
50%, 67%, and 80%, respectively. The performance of ideal equipartitioning is shown
Separately.

In either case, the FB variant outperforms the non-FB variant as the coefficient of
variation increases beyond one. At high load and C; = 70, the response times of the
non-FB variants of PWS and ASP are more than one hundred times worse than their
FB counterparts. Consistent with results from uniprocessor scheduling, the FB variants
have, in general, decreasing mean responsetime with increasing C;, while the opposite
holdsfor the static RTC disciplines.

Figure 4 showsthe relative performance of the various disciplinesat light and heavy
loads in comparison to ideal equipartitioning. At light load, the performance difference
between the static quantum-based disciplines and IEQ is very small, and at heavy load,
FB-PWS performs equally well as |[EQ for C; > 1. The reason why FB-ASP does not
perform as well as FB-PWS in this workload is that large jobs receive the same share
of processorsas small jobs, leading to alower processor utilization when the small jobs
leave the system.

= 10000 A— A PWS-50 = 10000 A— A ASP-50
g E 0o—o PWS-20 g E 0—0 ASP20
- O—O0 PWS-15 [O—O0 ASP-15
| o—oPws-125 | o—oAsP-125
A oA FB-PWS-50 A - FB-ASP-50
1000 < -0 FB-PWS-20 1000 O ----O FB-ASP-20
F o--0oFB-PWS15 E 0 --0FB-ASP-15
[O ..0FB-PWS-125 [O0FB-ASP-125
w0k 100 BT AT g
10§
1 el L LLL el L L LLL el L L LLL 1 el L LLL el L L LLL el L L LLL
0.1 1.0 10.0 100.0 0.1 1.0 10.0 100.0
cv cv
(a) PWS - Workload 1 (b) ASP - Workload 1

Fig. 3. Performance of scheduling disciplines under workload 1.

A oA PWS-125

|~ 10000 .
c o -0 ASP-125 A

A A PWS-50 }— 10000
& o ASP-50 N g
A---A FB-PWS-50 o A---A FB-PWS-12.5
& - == FB-ASP-50 B &=-==-0 FB-ASP-12.5
O—0 IEQ-50 O—0 IEQ-12.5

#“ 1000

1000

100§ . 100422
- L& F
[o
.. fyitm == m fmmmmmmmn P i
10§) 10§
1 el L LLL el L L LLL el L L LLL 1 el L LLL el L L LLL el L L LLL
0.1 1.0 10.0 100.0 0.1 1.0 10.0 100.0
cv cv
(a) Light Load (b) Heavy Load

Fig. 4. Relative performance of scheduling disciplines under workload 1 at light and
heavy loads.

5.2 Workload 2

Asworkload 1 isstudiedin Figs. 3 and 4, the corresponding graphs for workload 2 are
shown in Figs. 5 and 6. Recall that, in workload 2, large jobs (with W; > 500000)
attain nearly linear (but not unitary) speedup out to 100 processors, but the speedup for
small jobs(withW; = 500) reachesamaximum by the point at which five processorsare
assigned. Although the graphsdisplay similar tendencies aswith thefirst workload, one

£ A— A PWS-50 £ PF A—a Asps0
= u ©—¢ PWS-25 = [o—o AsP-25
- 0—0 PWS-20 - 0—o0 AsP-20
B O—0 PWS-15 T O—0OASP-15
B A ----A FB-PWS-50 [~ A - A FB-ASP-50
- o -0 FB-PWS-25 - © -0 FB-ASP-25
O +++-O FB-PWS-20 O +++-O FB-ASP-20
A oA FB-PWS-15 |- 0.0 FB-ASP-15
1000 1000 §—
100 el L LLL el L L LLL el L L LLL 100 el L LLL el L L LLL el L L LLL
0.1 1.0 10.0 100.0 0.1 1.0 10.0 100.0
cv cv
(a) PWS - Workload 2 (b) ASP - Workload 2
Fig. 5. Performance of scheduling disciplines under workload 2.
£ OF A pwss0 £ OF Aapwsis
= [o0 ASP-50 = [©....0 ASP-15
- A---A FB-PWS-50 F A---A FB-PWS-15
[©---9 FB-ASP-50 [©---0 FB-ASP-15
- 0—0 IEQ-50 - 0—0 IEQ-15
100 el L LLL el L L LLL el L L LLL 100 el L LLL el L L LLL el L L LLL
0.1 1.0 10.0 100.0 0.1 1.0 10.0 100.0
cv cv

(a) Light Load

(b) Heavy Load

Fig. 6. Relative performance of scheduling disciplines under workload 2 at light and

heavy loads.

can observe a number of important differences, primarily due to the different speedup
characteristics exhibited by differently sized jobs.

Inthegraphfor PWS, the non-FB version showsamuch smaller degradationfor high
Cy as compared to that with workload 1. Infact, at high values of C;, acrossover takes
place and mean response time is dightly lower at higher loads than at lower loads. The
problem with FCFS policiesin general isthat long jobs delay short jobsfor the duration
of their execution. What happens in PWS, however, is that large jobs tend to receive

smaller and smaller partitionsas|oad increases, reducing their negative impact on mean
responsetime.

Thereason for thisis that PWS allocates ajob the lesser of its pws and the number
of free processors. As the load increases, the pending queue gets larger, and processors
freed by a departing job are immediately alocated to another. The size of the new par-
tition is no greater than that of the departing job and, as a result, partition sizes tend to
only get smaller astime goes on. Under light load, it is quite possible for alargejob to
arrivein arelatively quiet period and monopolize a large proportion of the processors
for an extended period of time, but as |oad increases, this becomesless and less likely.
The performance of PWS is poor at Cy = 0.1 since al jobs are roughly the same size
(and thus have the same pws); partition sizes never get a chance to decreasein size.

The FB variant of PWS, in this workload, does not offer as great an improvement
as with the previous workload. At low loads, PWS has response times more than three
timesworsethan FB-PWS. Thisratio dropsto just lessthan 2 under heavier system |oad.
At lighter load, FB-PWS shows better performance because it can assign a job more
processors than can PWS in order to make use of the entire machine.

ASP is quite different from PWS in this workload. Its response times still increase
at low loads, where, for high valuesof C,;, the response times significantly exceed those
at higher loads. At higher system loads, responsetimes areinsensitiveto C;. Sincejobs
are given what amounts to an equal fraction of processors, ASP behaves much like a
round robin system would in this case. Nonetheless, FB-A SP performs better than ASP
across al job variations. (Note that the curve for FB-ASP at an arriva rate of 20isin-
distinguishable from the curve for ASP at arate of 25.) One reason for thisisthat ASP
partitions processors freed by a departing job quite aggressively. For example, if ajob
which has 10 processorsis compl eted, and threejobs are pending, the processorsare par-
titioned as 3-3-4. FB-ASP takesamore gradual approach, giving each processafraction
of the processors based on the total number of jobsin the system. Thus, ASP often ends
up not allocating enough processors to each job, leaving many processorsidle.

The comparison between the scheduling disciplinesin Fig. 6 again showslittle per-
formance difference between the static quantum-based disciplines and IEQ under light
load, but also shows better performance by FB-PWS than |EQ as the load increases for
C4 > 1. Onecan observethat | EQ has adecreasing mean response time with increasing
Cy. Thisisdueto thefact that small jobs are greatly restricted in the number of proces-
sorsthey can acquire (e.g., ajob of size 500 has a maximum parallelism of 6), resulting
in large jobs acquiring proportionately more processors than they would without such
restrictions. Since large jobs have better speedup characteristics, the overall efficiency
of the system increases, thus reducing the mean responsetime as C; increases.

5.3 NASA Workload

To obtain a better understanding of how the various disciplines perform under a more
realistic workload, we evaluated the disciplines under the NASA workload described
earlier. Sincethisworkload has afixed coefficient of variation of 7.23, we plot the mean
response time as afunction of load in Fig. 7.

As can be seen, FB-PWS and |EQ once again perform very well at al load levels.
The benefit of preemption as used by the FB disciplinesand |EQ is quite apparent, espe-

MRT

7200007 A PWS

O——0O ASP

63000 A ----A FB-PWS
O ----O FB-ASP
54000 K—* IEQ

45000 —

36000 —

27000 —

18000 §—

9000 §—

| L | L |
0 20 40 60 80 100

Load (%)

NASA Workload

Fig. 7. Performance of the scheduling disciplines under the NASA workload as afunc-
tion of system load.

cialy at lower load levels. At about 50% load, the mean responsetime for PWS istwice
that of FB-PWS. Similarly, ASP has mean response time a little more than double that
of FB-ASP at the same load level.

5.4 Considerationsfor Distributed-Memory Systems

We are particularly interested in studying static quantum-based scheduling schemes be-
cause dynamic repartitioning schemes, such as equipartition, may either not be available
or may incur substantially greater costs on distributed shared-memory systems. On such
architectures, remote data accesses can be an order of magnitude more expensive than
local requests. As aresult, moving athread from one processor to another, for load bal-
ancing purposes, can be quite costly. Similarly, reconfiguring ajob to run on adifferent
number of allocated processors can require substantial amounts of data movement. For
example, a matrix that has been stored in an interleaved fashion may need to be com-
pletely redistributed if the original processor alocation is not a multiple of the new one.

Recall that in our implementation, we had jobs that were run in leftover partitions
that were smaller that the degree of parallelism configured for the job (to avoid having
processorsremain idle). In the centralized shared-memory architecture, the overhead of
doing this was a small factor of 9%; in a distributed shared-memory system, the over-
head is likely to be much larger. We consider the case where ajob runs half as fast as
it would be expected to (i.e., a lowdown factor of 100%), which is much more con-

servative than the case where threads can be multiplexed (possibly unevenly) on the re-
maining processors. We also consider the case where the overhead for equipartitioning
is non-zero. Since we do not have any previouswork on which we can base avaluefor
the overhead, we consider the cases where the repartitioning overhead is 0.25%, 0.5%,
and 0.75% of the mean service requirement for jobs®.

Figures 8 showsthe effect of these modificationsfor the NASA workload, now omit-
ting thelinesfor the static RT C disciplines. FB-ASP seemsto berelatively unaffected by
theincreased s owdown. The degradation in performancerelative to the previous model
isat most 1.8% over therange in loads shown. FB-PWS was affected by this changeto
agreater extent, ranging from 4% at low load to roughly 24% at high load. The reason
for thisis that FB-PWS allocates much larger partition sizesto large jobs than FB-ASP
does, which causes these jobs to run more frequently in “leftover partitions’ at half the
speed. But IEQ is affected quite severely by repartitioning overhead, especially at the
two higher levels. For an overhead of 0.75%, equipartitioning has a mean responsetime
up to almost twice that of FB-PWS.

'_
& +
Z 000 3
A---A FB-PWS
)---0O FB-ASP Sk
630004~ +—+ IEQ RN
1

X oo oK IEQ+0.25% R
54000 < - IEQ+0.5% Fo
4ok IEQ+0.75% S
45000
36000

27000 —

18000 §—

9000 §—

0 20 40 60 80 100
Load (%)

NASA Workload

Fig. 8. Effect of increasing scheduling overheads on the NASA workload, both for the
static quantum-based and the |EQ disciplines.

2 Thisis not intended to be representative of real overheads, but merely away to examine how
overheads can affect IEQ.

6 Conclusions

In this paper, we have examined the sensitivity of various scheduling disciplinesto high
variability in job service demand and proposed new preemptive disciplines that have
much better performance characteristics when the service time coefficient of variation
islarge. Our primary focusis where the coefficient of variation of service demand (C,)
ranges from 5 to 70, as has been observed at various high performance computing cen-
ters.

When jobs have nearly perfect speedup characteristics (i.e., workload 1), the be-
haviour of the various disciplines are relatively consistent with the corresponding
uniprocessor results. The performanceof static run-to-completion (RTC) disciplines de-
grades severely as C; increases, while the performance of preemptive multilevel feed-
back (FB) disciplines improves. As expected, the RTC and FB disciplines yield com-
parable responsetimesat Cy; = 1, but at C; = 70, their response times differ by two
orders of magnitude.

When, on the other hand, small jobs are characterized as having poor speedup and
large onesgood speedup (i.e., workload 2), there are anumber of interesting differences.
The performance of the RTC disciplines, because of the way in which they deal with
leftover processors, become more round-robin in nature, displaying afair amount of in-
sensitivity to C; at higher loads. Theimprovementsgained by using FB variantsof these
is substantially reduced rel ative to the near-perfect speedup case, from afactor of 100to
afactor of about four, but the improvements are still quite significant. In all workloads,
the static quantum-based disciplines (in particular FB-PWS) proved to be competitive
with ideal equipartitioning (IEQ).

Our results can be summarized as follows:

— IEQ doesvery well in all our experimentswith high C,;. The corresponding practi-
cal discipline, EQ, isagood discipline to use if it can be implemented without in-
curring excessive overhead from (1) frequent preemptions, (2) loss of cache affin-
ity when threads are moved from one processor to another, and (3) restructuring of
jobs to adapt to changes in processor allocations. However, in large multiproces-
sors with physically distributed memory modules, coordinated placement of data
and threads is critical, so overheads (2) and (3) are likely to be large. In this case,
the static quantum-based disciplines are preferable.

— If estimates of the pwsfor each job are availablefor usein scheduling, then FB-PWS
does as well as IEQ at keeping response times low for high C;. Thisis somewhat
surprising since FB-PWS must commit to a static partition size for each job when
it is activated, while IEQ does not.

— If only an estimate of each job’s maximum parallelism is available for use in
scheduling, then FB-ASP is the best rule to use, although the availability of added
knowledge can make a significant difference (as shown by FB-PWS).

There are some important implications in our study for scheduling real multipro-
grammed multiprocessor systems. Currently, auser is usually expected to choose a pro-
cessor alocation (in selecting a partition of the system) and/or to indicate the expected
execution time of thejob (in selecting a batch queue). With FB-ASP scheduling, a user
is not required to provide either of these, except for perhaps a maximum parallelism to

avoid allocating too many processorsto ajob (necessary only inlightly-loaded systems).
If asystem isbeing used for awell-defined set of applications, it is reasonableto expect
more speedup information to be available, either collected automatically by the system
or prepared off-line. In this case, a discipline like FB-PWS will give the best perfor-
mance.

One issue that the study does not consider is the resource requirements of jobs. In
particular, none of the disciplinesexamined, particularly IEQ, will performwell if mem-
ory isovercommitted, as paging overhead can significantly impact the progressof acom-
putation [BHMW94]. Clearly, future scheduling disciplines for multiprogrammed mul-
tiprocessor systems must take into account all requirementsof jobs, including processor,
memory, and 1/0.

References

[BHMW94] Douglas C. Burger, Rahmat S. Hyder, Barton P. Miller, and David A. Wood. Pag-
ing tradeoffs in distributed-shared-memory multiprocessors. In Proceedings Super-
computing ' 94, November 1994.

[CMV94] Su-Hui Chiang, Rejesh K. Mansharamani, and Mary K. Vernon. Use of applica-
tion characteristics and limited preemption for run-to-completion parallel processor
scheduling policies. In Proceedings of the 1994 ACM S GMETRICS Conference on
Measurement and Modelling of Computer Systems, pages 3344, 1994.

[EZL89] Derek L. Eager, John Zahorjan, and Edward D. Lazowska. Speedup versus effi-
ciency in parallel systems. | EEE Transactions on Computers, 38(3):408-423, March
1989.

[FNO95] Dror G. Feitelson and Bill Nitzberg. Job characteristics of a production parallel sci-
entific workload on the NASA Ames iPSC/860. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), Lecture Notes in Com-
puter Science Vol. 949. Springer-Verlag, 1995.

[FROQ] Dror G. Feitelson and Larry Rudolph. Distributed hierarchical control for parallel
processing. Computer, 23(5):65-77, May 1990.

[FR92] D. G. Feitelson and L. Rudolph. Gang scheduling performance benefits for fine-
grain synchronization. Journal of Parallel and Distributed Computing, 16:306-318,
1992.

[GST91] Dipak Ghosal, Guiseppe Serazzi, and Satish K. Tripathi. The processor working set
and its use in scheduling multiprocessor systems. |EEE Transactions on Software
Engineering, 17(5):443-453, May 1991.

[GTS91] Anoop Gupta, Andrew Tucker, and Luis Stevens. Making effective use of shared-
memory multiprocessors. The process control approach. Technical Report CSL-TR-
91-475A, Computer Systems Laboratory, Stanford University, July 1991.

[GTU91] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. Theimpact of operating sys-
tem scheduling policies and synchronization methods on the performance of parallel
applications. In Proceedings of the 1991 ACM S GMETRICS Conference on Mea-
surement and Modeling of Computer Systems, pages 120-132, 1991.

[LvoQ] Scott T. Leutenegger and Mary K. Vernon. The performance of multiprogrammed
multiprocessor scheduling policies. In Proceedings of the 1990 ACM SGMETRICS
Conference on Measurement and Modelling of Computer Systems, pages 226-236,
1990.

[MEBSS]

[MVZ93]

[NASS0]

[OusB2]

[RSD194]
[Sch70]

[Sev8g]

[Sevo4]

[ST93]

[TG8Y]

[Ver94]

[Wu93]

[ZM90]

S. Mgjumdar, D. L. Eager, and R. B. Bunt. Scheduling in multiprogrammed parallel
systems. In Proceedings of the 1988 ACM S GMETRICS Conference on Measure-
ment and Modelling of Computer Systems, pages 104-113, May 1988.

Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic processor alocation
policy for multiprogrammed shared-memory multiprocessors. ACM Transactionson
Computer Systems, 11(2):146-178, May 1993.

Numerical aerodynamic simulator processing system. Technical Report PC320-02,
NASA Ames Research Center, September 1980.

John K. Qusterhout. Scheduling techniques for concurrent systems. In Proceedings
of the 3rd International Conference on Distributed Computing (ICDCS), pages 22—
30, October 1982.

E. Rosti, E. Smirni, L. W. Dowdy, G. Serazzi, and B. M. Carlson. Robust partition-
ing policies of multiprocessor systems. Performance Evaluation, 19:141-165, 1994.
Linus E. Schrage. Optimal scheduling rules for information systems. Operations
Research, 26, August 1970.

Kenneth C. Sevcik. Characterizations of parallelism in applications and their use
in scheduling. In Proceedings of the 1988 ACM S GMETRICS International Con-
ference on Measurement and Modelling of Computer Systems, pages 171-180, May
1989.

K. C. Sevcik. Application scheduling and processor allocation in multiprogrammed
parallel processing systems. Performance Evaluation, 19:107—-140, 1994.

Sanjeev Setia and Satish Tripathi. A comparative analysis of static processor parti-
tioning policiesfor parallel computers. In Proceedings of the International Workshop
on Modeling and Smulation of Computer and Telecommunication Systems (MAS
COTS), pages 283-286, January 1993.

Andrew Tucker and Anoop Gupta. Process control and scheduling issues for multi-
programmed shared-memory multiprocessors. |n Proceedings of the 12th ACM Sym-
posium on Operating Systems Principles, pages 159-166, 1989.

Mary K. Vernon. Private communication, September 1994.

Chee-Shong Wu. Processor scheduling in multiprogrammed shared memory NUMA
multiprocessors. Master’s thesis, University of Toronto, 1993.

John Zahorjan and Cathy McCann. Processor scheduling in shared memory multi-
processors. |n Proceedings of the 1990 ACM S GMETRICS Conference on Measure-
ment and Modelling of Computer Systems, pages 214-225, 1990.

