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Abstract. Many disciplines have been proposed for scheduling and processor al-
location in multiprogrammed multiprocessors for parallel processing. These have
been, for the most part, designed and evaluated for workloads having relatively
low variability in service demand. But with reports that variability in service de-
mands at high performance computing centers can actually be quite high, these
disciplines must be reevaluated. In this paper, we examine the performance of
two well-known static scheduling disciplines, and propose preemptive versions
of these that offer much better mean response times when the variability in ser-
vice demand is high. We argue that, in systems in which dynamic repartitioning
in applications is expensive or impossible, these preemptive disciplines are well
suited for handling high variability in service demand.

1 Introduction

There have been numerous scheduling disciplines proposed for multiprogrammed mul-
tiprocessor systems, the evaluation of which has, for the most part, been based on
workloads having a relatively low variability in the processing requirements of jobs.
However, high performance computing centers have reported that variability in service
demands can in fact be quite high. In a detailed study of the anticipated workload of
its “Numerical Aerodynamic Simulation” (NAS) facility [NAS80], NASA specified a
workload consisting of eight types of computational tasks with expected mean service
requirements differing by as much as a factor 3500. Assuming that the service require-
ments within each class are exponentially distributed, the coefficient of variation of ser-
vice times (Cd), which is the ratio of the standard deviation of service time to its mean,
in the overall workload is 7.23. This high degree of variability is further supported by a
recent workload characterization study of parallel applications at the same NAS facil-
ity [FN95]. In another study, Chiang, Mansharamani, and Vernon report that the coeffi-
cient of variation observed on a weekly basis on the CM-5 at the University of Wisconsin
ranges from 2.5 to 6, with 40% of them being above 4 [CMV94]. They also report that
some measurements from Cray YMP sites range from 30 to 70 [CMV94, Ver94].

In this paper, we consider two well-known static scheduling disciplines, showing
how they behave under high variability in service demand, and propose ways in which
they can be adapted to better handle this condition. These enhancements make no ad-
ditional assumptions about the information available at a job’s arrival, other than what
is required by the original discipline. However, they do use preemption to effectively



time-share sets of processors among jobs. Each job always executes on the same num-
ber of processors, as determined upon arrival, but is not necessarily run to completion
when first activated.

Focusing onCd in the range of 5 to 70, our goals are (1) to compare the performance
of the existing disciplines and (2) to propose enhancements to these disciplines that make
them perform better over this range of Cd. For comparison purposes, we also consider
the performance of an ideal form of equipartitioning (IEQ) in which each job receives
an equal share of the processors [ZM90]. This discipline is very different from the static
disciplines in that a job’s processor allocation changes at each job arrival or completion.
If the overhead of adapting to the altered allocation is neglected (hence “ideal” equipar-
tition), then IEQ is known to perform very well for high values of Cd.

The principle underlying the enhanced disciplines is based on the knowledge that, in
uniprocessor scheduling, the variability in service demand plays a large role in determin-
ing the best scheduling discipline when exact knowledge of service demands is absent.
ForCd > 1, a discipline that favours jobs that have the least acquired service can greatly
reduce the mean response time (MRT) of the system. Our enhanced disciplines general-
ize the uniprocessor multilevel feedback (FB) approach to a multiprocessor setting.

The technique used to evaluate these disciplines is experimentation using a synthetic
workload simulation. In studies such as this, one is usually required to use synthetic
workloads because real workloads cannot be simulated efficiently enough and real sys-
tems with actual workloads are not available for experimentation. Also, useful analytic
models are difficult to derive because the subtleties between various disciplines are dif-
ficult to model and because the workload model is quite complex.

The results in this paper are based on three synthetic workloads that differ in the
amount of speedup attained by jobs. In the first workload, all jobs have near-perfect
speedup. In this case, the results are consistent with what is known from the study of
uniprocessor systems. As the coefficient of variation of service times increases, so does
the mean response time for the run-to-completion disciplines. The enhanced disciplines
have worse performance when Cd < 1, but provide improved performance as Cd in-
creases beyond one. In the second workload, small jobs have very poor speedup, while
large ones have relatively good speedup. With this workload, the enhanced disciplines
are still superior, but to a lesser degree. Finally, we consider a workload derived from the
NASA study mentioned above, with an intermediate speedup characterization, in order
to show how the disciplines behave under what we believe is a more realistic workload.
In this study, we used a speedup characterization that explicitly accounts for contention
and overhead as a function of the number of processors. Thus, jobs which are allocated
too many processors can experience a reduction in overall performance [Sev94]. Such
a characterization is more realistic than those that simply consider the parallel and se-
quential components of a job.

The structure of the paper is as follows. In the next section, we survey scheduling dis-
ciplines that have previously been proposed and evaluated. Then, we describe in detail
the disciplines from which we derive the new versions, and present our modifications.
In Sec. 4, we specify system and workload models, and describe the simulation exper-
iments upon which we base our conclusions. The results of the simulation experiments
are presented and analyzed in Sec. 5, and conclusions are presented in Sec. 6.



2 Background

2.1 Uniprocessor Scheduling

As mentioned earlier, the performance of uniprocessor scheduling disciplines depends
to a great extent on the distribution of service times. If Cd < 1, a first-come first-served
(FCFS) discipline gives the best mean response time, since the job with the most ac-
quired service is expected to be the closest to completion. On the other hand, if Cd > 1,
then the multilevel feedback policy (FB) tends to perform best since the job with the
least acquired service is the one that has the least expected remaining service time1. IfCd is close to one, or no information is available about Cd, then the round-robin disci-
pline (RR) offers a good compromise as it yields a mean response time that is insensitive
to the service time distribution.

Figure 1 illustrates how mean response times depend on the coefficient of variation
of service times for FCFS, RR, and FB, along with two other disciplines that require ad-
vance knowledge of the service time of each job. Shortest Processing First (SPT) sched-
ules the job with the smallest service time whenever the processor is free. The preemp-
tive version, Shortest Remaining Processing Time (SRPT), always assigns the processor
to the available job that is closest to completion. The value of service time knowledge
can be seen for SPT and SRPT (particularly for Cd < 2) and the value of preemption
can be seen for RR, FB, and SRPT (for Cd > 2).

2.2 Multiprocessor Scheduling

Multiprocessor scheduling algorithms can be classified according to (1) the amount of
information they require about jobs or classes of jobs, and (2) the extent to which they
preempt and reallocate processors among jobs.

The levels of information used by various algorithms can range from none, to some
knowledge about the workload or classes of jobs, to knowledge of the characteristics of
individual jobs, to full knowledge about all jobs. In this paper, we consider the third case
where some job characteristics, such as the maximum parallelism, are known. In a real-
istic environment, such characteristics would not be known precisely, but understanding
how to schedule with exact job-specific information is an important step in understand-
ing how to schedule effectively when this information is only approximate.

The scheduling of threads of a job may be either independent or coordinated. In the
independent case, there is a single (logical) queue of individual threads. Any free pro-
cessor takes a thread off the queue and executes it either to completion or for a specified
quantum. The queue may be ordered by arrival time, expected service required, number
of threads in the job, or some other criterion.

In the coordinated case, processors are allocated to and perhaps preempted from jobs
in groups. This approach renders it possible to exploit cache affinity and to make an ap-
propriate processor allocation to each job in light of whatever is known about its char-
acteristics.1 The performance of FB actually depends on the service time distribution. It has been shown

that for some distributions (e.g., a 3-point distribution with high Cd), the performance of FB
can be quite poor [Sch70]. For the hyperexponential class of distributions, as are used in this
study, FB is markedly better than RR.
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Fig. 1. Mean response time as a function of coefficient of variation for uniprocessor
scheduling disciplines at a loading factor of 0.75. The FB curve was obtained from sim-
ulations; all others were obtained analytically.

The styles of preemption that we will distinguish for coordinated scheduling are:

– Static Run-To-Completion (RTC) — Some number of processors is assigned to a
job when it is activated, and it retains exclusive use of all those processors until its
service is completed.

– Dynamic — The number of processors allocated to a job may change during its ex-
ecution. There may be a significant overhead for the job to reconfigure itself to ef-
fectively use the new number of processors.

– Static Quantum-Based — When a job is first activated, it is assigned a number of
processors (as in Static Run-To-Completion), and it uses that number of processors
whenever it is active. However, its execution may be suspended, either at the ter-
mination of a quantum or when an arrival or departure occurs, and then resumed
repeatedly until its service requirement is satisfied.

Independent Scheduling The first independent multiprocessor scheduling strategies
that were proposed were simple extensions of the uniprocessor FCFS, RR, SPT, and
SRPT disciplines [MEB88]. In FCFS and RR, threads are ordered according to the time
at which they were placed on the queue, while in SPT and SRPT, threads are ordered
according to increasing cumulative service demand remaining for the job. Implicit in
most models used to evaluate independent scheduling is the assumption that a job’s ser-



vice requirement is independent of the number of processors it is allocated. In this case,
the disciplines yield performance that is in relative agreement with uniprocessor results.
The importance of preemption increases with the variability in service demand, as does
explicit knowledge of a job’s service requirement.

But because of the multiprocessor aspect, some anomalies can occur. In particular,
RR will tend to give proportionatelymore processing time to jobs having a larger number
of threads. RRJob avoids this by timeslicing equally among jobs as well as among the
threads of a job [LV90]. Both RR and RRJob have been shown to perform well for values
of Cd ranging from 3 to 5 [LV90].

Static Run-To-Completion Scheduling Early work in static RTC scheduling showed
that a good number of processors to allocate to a job is the value that leads to the smallest
ratio of execution time to efficiency (i.e., the value at the knee of the execution time-
efficiency profile), as this is a point that maximizes the ratio of benefit to cost [EZL89].
If the number of processors allocated at the knee of the curve is not known, allocating
a number of processors equal to the average parallelism has been shown to be a good
alternative. The average parallelism (Aj) of a job j is the average degree of parallelism
exhibited by the job over its lifetime. If there are no overheads due to parallelism, Aj is
equivalent to the speedup on an unlimited number of processors [EZL89].

The overall workload volume, when known, should also be taken into account in the
scheduling decision [Sev89]. By reducing the number of processors allocated to jobs
as the system load increases, the mean response time can be greatly improved. In the
limit, where the system load is near one, jobs should (it can be argued) be allocated no
more than one processor since this leads to the highest possible efficiency of the sys-
tem, assuming there are no other considerations such as large memory requirements.
Conversely, under light overall load, each job can be allocated as many processors as
it needs to attain its maximum execution rate. Most multiprocessor disciplines take the
system load into account in some way to avoid the problem of early saturation that may
be caused by running jobs with too many processors.

An interesting generalization of efficiency is to consider the ratio of a job’s speedup
to an arbitrary cost function instead of to the number of processors. This ratio, called the
efficacy of a job, is used to determine a job’s processor working set (pws) [GST91] (de-
scribed in more detail below). With the specific cost function chosen for use, the pws is
equivalent to the number of processors at the knee of the execution time-efficiency pro-
file. A variety of disciplines using knowledge of a job’s pws have been examined. It has
been concluded that an important consideration is to not leave any processors idle while
work is available. The best of these disciplines, referred to as FF+FIFO by Ghosal et
al. [GST91], but more commonly referred to as PWS, is investigated in this paper.

A policy that does not make use of any job characteristics other than the maximum
parallelism is Adaptive Static Partitioning (ASP) [ST93]. Through analytic models, it
has been shown that ASP is in general superior to PWS, but the results are only known
for a 2-point service time distribution where Cd = 0:31. Subsequent simulation studies
provide further evidence of the benefits of a variant of ASP where the maximum alloca-
tion to a job is bounded [CMV94]. Although most of the results relate to Cd = 5, one
experiment demonstrates that bounded ASP also performs well when Cd = 30. In this



paper, we only use ASP as originally defined [ST93], with no bound on the maximum
allocation to a job.

Dynamic Scheduling Most research in dynamic scheduling has been directed towards
reducing or eliminating the cost of processor reallocations. In the process control ap-
proach, jobs and the operating system cooperate in processor reallocations, allowing
a job to dynamically match its degree of parallelism to the current allocation [TG89,
GTS91]. In this approach, the goal is to avoid altogether the problems of losing cache
context and the blocking of critical threads.

Two important disciplines that have been studied in the context of process control are
equipartition and demand-driven scheduling (called “dynamic scheduling” originally).
In equipartition, each job is allocated an equal fraction of the processors, up to their max-
imum parallelism [ZM90]. This assumes that all jobs have a degree of parallelism that is
constant throughout their lifetime. In order to handle jobs with varying degrees of paral-
lelism, demand-driven scheduling uses process control both to allow the system to take
into account changes in a job’s parallelism and to allow the job to adapt to changes in
processor allocation [ZM90, MVZ93].

Equipartition has been shown to be effective over a wide range of workloads and a
wide range of distributions in service demand [LV90, CMV94]. When system loads in-
crease, allocations to jobs decreases allowing them to operate at a more favourable point
on their efficiency curve. Also, because equipartition is effectively the analog of RR in
uniprocessing, it is relatively insensitive to variability in service requirement. However,
not all applications can dynamically change their degree of parallelism according to the
current processor allocation, and those that can may incur a high overhead. As a result,
we begin by considering equipartition in its ideal form (ideal equipartition or IEQ) in
which no overheads exist, and later introduce overheads in the context of the NASA-
based workload.

Several techniques have been used with dynamic scheduling in an attempt to reduce
problems associated with having fewer processors than threads:

– cache-affinity scheduling: preference is given to threads that have previously run on
a given processor in order to limit lost cache context;

– spin-block locking: threads requesting a lock spin for a short duration, after which
point they block and yield their processor to another thread;

– coordinated descheduling: the system ensures that threads holding locks do not have
their processor taken way.

The use of a combination of these techniques and others can be very effective in reducing
the penalty associated with having fewer processors than threads in centralized shared-
memory systems [GTU91].

Static Quantum-Based In this paper, we propose coordinated scheduling disciplines
that are static quantum-based. In this category, the only discipline that has been previ-
ously studied is gang scheduling, in which sets of jobs are actively timesliced [Ous82,
LV90, MVZ93]. Research into this topic has been primarily focussed on the mechanism,
such as how it should be implemented [FR90] and how important it is for fine-grained



applications [FR92]. In our work, we consider issues such as how many processors to
assign to an arriving job and when that job should be scheduled to run.

3 Disciplines

This section describes in detail the two disciplines used in our experiments, PWS and
ASP, both before and after the enhancements made to handle high variability in service
demand. These two disciplines differ primarily in the amount of information given to the
scheduler; in PWS, characteristics of the speedup curve is known while in ASP only the
maximum parallelism is known. We also experimented with other disciplines (in partic-
ular AVG [LV90] and AP [RSD+94]), but as these did not offer much in terms of addi-
tional insight, we omit the results.

3.1 Standard Disciplines

The pws of a job is the minimum number of processors that maximizes the ratio of its
speedupSj(n) to a cost functionCj(n) = n=Sj(n). This cost function expresses the no-
tion that the cost of a processor depends on how efficiently it is being utilized. Ghosal et
al. explore several different discipline that make use of the pws, and conclude that the
following discipline (called FF+FIFO by them) performs best [GST91]:

PWS When a job arrives in the system, and there are free processors, it is allocated the
lesser of the number of free processors and its pws. When a job leaves, the sched-
uler repeatedly examines the jobs in the queue and selects the first one whose pws
fits in the available processors; if none fit, then the first job is given the remaining
processors.

PWS as originally defined limits its search of the queue to just the firstw jobs, but in this
study, we set no such limit in order to maximize the chance of finding a job for which
the pws fits in the available processors.

The ASP discipline differs from PWS in that it spreads free processors evenly among
all waiting jobs instead of allocating the first job as many processors as it requires:

ASP When a job arrives to the system, it is given the lesser of its maximum parallelism
and the number of free processors. When a job is completed, the processors are al-
located evenly among jobs that are waiting.

We assume that a job’s maximum parallelism is the number or processors for which its
speedup function is maximized.

As the baseline policy, we define ideal equipartition as follows:

IEQ When a job arrival or departure occurs, the processors are dynamically reallo-
cated to the current set of jobs in such a way that (P mod Jtotal ) jobs are allocatedbP=Jtotal +1c processors and the rest one less, where Jtotal is the total number of
jobs in the system. Periodically, the scheduler rotates the jobs, placing the last job
(in a run queue) at the front, thereby evening out any imbalances in processor al-
location. In particular, if there are more jobs than processors, all jobs receive some
fraction of the system’s processing capacity. Once again, a job is never allocated
more processors than its maximum parallelism.



As in previous studies [LV90], we assume that a job adapts instantaneously to the num-
ber of processors allocated to it after each reallocation.

3.2 Multiprocessor Feedback Disciplines

The feedback scheduling disciplines derived from the static disciplines all follow a sim-
ilar pattern. When a job arrives to the system, it is configured for a certain number of
processors that depends on the known characteristics of the job and the other jobs cur-
rently available for execution. At the start of each time slice, all active jobs are examined,
and those having the least acquired processing time are scheduled to run. Acquired pro-
cessing time is just the number of processor-seconds allocated to the job so far, and thus
can differ from the actual work accomplished by the computation since the latter is in-
fluenced by the job’s speedup properties. The scheduler repeatedly selects the next job
which has the least acquired processing time and which fits within the remaining set of
processors (as configured upon arrival), and schedules it to run.

The two variants of the static quantum-based disciplines that we present are:

FB-PWS An arriving job is configured for a partition size ofmin(Mj ; min�pwsj ; P	R+min�pwsj ; P	 � P)
processors, whereMj is the job’s maximum parallelism andR is the sum of the pro-
cessor allocations for all jobs currently in the system. In general, each job is allo-
cated a fraction of the P processors that corresponds its share of the total anticipated
number of processors allocated in the system. Under light load, a job will allocated
more processors than its pws and under heavy load it will be allocated fewer.

FB-ASP An arriving job is configured with round(P=Jtotal ) processors, except that if
there are twice as many available processors as the computed partition size, then
one more processor is given (to account for uneven partition sizes). This is different
from the static ASP in that the partition size is not based solely on the number of
waiting jobs (which would not make sense in this case.)

When there are fewer processors left than any of the remaining jobs’ configurations,
the scheduler runs the next job anyway using the remaining processors. For this, we as-
sume that we have a thread scheduler that, at the very least, avoids blocking critical
threads and implements some form of cache-affinity scheduling. But when a job with
a static allocation of p processors is activated with only q (q < p) processors, its execu-
tion rate will be less that q=p times its full execution rate due to the mismatch of threads
and processors. Gupta et al. studied the effect of combined thread scheduling features,
including those just described, and showed that for a set of four applications, the proces-
sor utilization dropped by just under 9% over batch scheduling (see Fig. 6 in Gupta et
al. [GTU91]). Adopting this result, we assume that a job that is running with fewer pro-
cessors than its static configuration progresses 9% slower than q=p times its full exe-
cution rate. Experimentation indicates, however, that these two disciplines, particularly
FB-ASP, tolerate higher slowdown values reasonably well. When the slowdown value



was increased to 100%, the increase in mean response times for FB-PWS ranged from
0% at low loads to 24% at high loads, while for FB-ASP, the increase was less than 2%
throughout.

4 Definition of Model

We use a discrete event simulation to evaluate the different scheduling disciplines. In-
put parameters to the simulator included the arrival rate, average service demand, coef-
ficient of variation of the cumulative service demand, job speedup characteristics, and
the scheduling discipline of interest. The specification of and results from the various
simulation runs are given in Sec. 5.

4.1 System Model

The system model consists of 100 functionally equivalent processors. No details of the
interconnection network or the memory system are modeled. The cost of descheduling
and rescheduling a job in the static quantum-based disciplines is modeled explicitly, and
is assumed to be 2.5% of the length of a timeslice (a conservative estimate). The cost of
reallocating processors in IEQ is assumed to be zero.

Jobs are assumed to arrive according to a Poisson process, and have a service time
distribution that is Erlang, exponential, or hyperexponential, depending on the specified
coefficient of variation.

4.2 Workload Model

Our choice of job characterization explicitly allows for overheads in a parallel compu-
tation [Sev94]. The execution time of a job j is defined by:Tj(n) = �Wjn + �+ �n
where n is the number of processors allocated to the job and Wj is the amount of work
(cumulative service demand) for the job. � represents the load imbalance in the threads
of the computation. � represents the amount of sequential computation and the amount
of per-processor work required for the parallelization of the computation. Finally, � rep-
resents the communication and congestion delays that increase with the number of pro-
cessors. It has been shown by Wu [Wu93] that actual measured speedup functions can
be represented with this functional form if �, �, and � are chosen to yield the best fit
(with respect to least-square error). Our choice of values for �, �, and � are based on
this work.

Given this execution-time function, a job’s maximum parallelism is:Mj = (1 if � = 0q�Wj� otherwise



and its pws is: pwsj = ( �Wj� if � = 0��p�2+12��Wj�6� otherwise

Two characterizations were used to represent workloads having quite distinct par-
allelization overheads. In the first, all jobs, irrespective of size, have nearly perfect
speedup, whereas in the second, small jobs experience poor speedup and large jobs ex-
perience relatively good speedup. Illustrated in Fig. 2 are representative speedup curves
for the two workloads for job sizes ranging from 500 to 5000000. The parameters used
for characterizing the two workloads (as well the NASA workload) are shown in Table 1.

 Linear
 W=500
 W=5000000

|
0

|
20

|
40

|
60

|
80

|
100

|0

|20
|40

|60

|80

|100

 (a) Workload 1

 Processors

 S
p

ee
d

u
p

 Linear
 W=500
 W=5000
 W=50000
 W=500000
 W=5000000

|
0

|
20

|
40

|
60

|
80

|
100

|0

|20

|40

|60

|80

|100

 (b) Workload 2

 Processors

 S
p

ee
d

u
p

Fig. 2. Speedup curves for workloads 1 and 2 used in this paper.

Workload Mean Service Requirement Parameters
1 1000 � = 1:02, � = 0:05, � = 0:0
2 1000 � = 1:3, � = 25, � = 25

NASA 92371 � = 1:15, � = 1000, � = 600
Table 1. Parameters used for the workloads used in this paper.

We also experimented with other workloads and found that, qualitatively, their per-
formance was between the two we chose. In particular, we considered mixed workloads
in which jobs had varying values of �, �, and �, as might be found in actual workloads.



As such, we feel that the two workloads chosen are sufficient to explore the behaviour
of the various scheduling disciplines.

We study a third specific workload, which is chosen to represent the NASA workload
described earlier. The service time distribution is an 8-stage hyperexponential distribu-
tion with one stage corresponding to each distinct workload component [NAS80]. In the
absence of speedup information about the jobs, we chose to use a characterization that
fell in between our endpoints.

5 Analysis of Simulation Results

First, we examine the performance of the various scheduling disciplines under work-
loads 1 and 2 as a function of the coefficient of variation in service demand. Next, we
examine the performance of all the disciplines under the NASA workload as a function
of system load.

For the most part, a sufficient number of independent trials were done to obtain a
95% confidence interval that was within 5% of the mean for each data point in our sim-
ulation results. Because of the instability of distributions having high coefficient of vari-
ation, however, the data points forCd = 70 sometimes have a confidence interval greater
than 5% of the mean for the higher system load values. Each trial had a warm-up period
in which the first 20 jobs were discarded. A trial terminated when the subsequent 100000
jobs (twice that for Cd = 30 and four times that for Cd = 70) to arrive left the system.
The simulation results of a run are based only on the response times of these 100000
jobs.

5.1 Workload 1

Figure 3 plots the performance of the original disciplines in comparison to their FB
counterparts as a function Cd. Curves are shown for each of four arrival rates for each
discipline. The solid lines represent the non-FB disciplines, while the dotted lines rep-
resent their FB counterparts. The mean service required per job was 1000, so the mean
interarrival times of 50, 20, 15, and 12.5 correspond to system loading factors of 20%,
50%, 67%, and 80%, respectively. The performance of ideal equipartitioning is shown
separately.

In either case, the FB variant outperforms the non-FB variant as the coefficient of
variation increases beyond one. At high load and Cd = 70, the response times of the
non-FB variants of PWS and ASP are more than one hundred times worse than their
FB counterparts. Consistent with results from uniprocessor scheduling, the FB variants
have, in general, decreasing mean response time with increasingCd, while the opposite
holds for the static RTC disciplines.

Figure 4 shows the relative performance of the various disciplines at light and heavy
loads in comparison to ideal equipartitioning. At light load, the performance difference
between the static quantum-based disciplines and IEQ is very small, and at heavy load,
FB-PWS performs equally well as IEQ for Cd > 1. The reason why FB-ASP does not
perform as well as FB-PWS in this workload is that large jobs receive the same share
of processors as small jobs, leading to a lower processor utilization when the small jobs
leave the system.
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Fig. 3. Performance of scheduling disciplines under workload 1.
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Fig. 4. Relative performance of scheduling disciplines under workload 1 at light and
heavy loads.

5.2 Workload 2

As workload 1 is studied in Figs. 3 and 4, the corresponding graphs for workload 2 are
shown in Figs. 5 and 6. Recall that, in workload 2, large jobs (with Wj � 500000)
attain nearly linear (but not unitary) speedup out to 100 processors, but the speedup for
small jobs (withWj = 500) reaches a maximum by the point at which five processors are
assigned. Although the graphs display similar tendencies as with the first workload, one
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Fig. 5. Performance of scheduling disciplines under workload 2.
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Fig. 6. Relative performance of scheduling disciplines under workload 2 at light and
heavy loads.

can observe a number of important differences, primarily due to the different speedup
characteristics exhibited by differently sized jobs.

In the graph for PWS, the non-FB version shows a much smaller degradation for highCd as compared to that with workload 1. In fact, at high values of Cd, a crossover takes
place and mean response time is slightly lower at higher loads than at lower loads. The
problem with FCFS policies in general is that long jobs delay short jobs for the duration
of their execution. What happens in PWS, however, is that large jobs tend to receive



smaller and smaller partitions as load increases, reducing their negative impact on mean
response time.

The reason for this is that PWS allocates a job the lesser of its pws and the number
of free processors. As the load increases, the pending queue gets larger, and processors
freed by a departing job are immediately allocated to another. The size of the new par-
tition is no greater than that of the departing job and, as a result, partition sizes tend to
only get smaller as time goes on. Under light load, it is quite possible for a large job to
arrive in a relatively quiet period and monopolize a large proportion of the processors
for an extended period of time, but as load increases, this becomes less and less likely.
The performance of PWS is poor at Cd = 0:1 since all jobs are roughly the same size
(and thus have the same pws); partition sizes never get a chance to decrease in size.

The FB variant of PWS, in this workload, does not offer as great an improvement
as with the previous workload. At low loads, PWS has response times more than three
times worse than FB-PWS. This ratio drops to just less than 2 under heavier system load.
At lighter load, FB-PWS shows better performance because it can assign a job more
processors than can PWS in order to make use of the entire machine.

ASP is quite different from PWS in this workload. Its response times still increase
at low loads, where, for high values ofCd, the response times significantly exceed those
at higher loads. At higher system loads, response times are insensitive to Cd. Since jobs
are given what amounts to an equal fraction of processors, ASP behaves much like a
round robin system would in this case. Nonetheless, FB-ASP performs better than ASP
across all job variations. (Note that the curve for FB-ASP at an arrival rate of 20 is in-
distinguishable from the curve for ASP at a rate of 25.) One reason for this is that ASP
partitions processors freed by a departing job quite aggressively. For example, if a job
which has 10 processors is completed, and three jobs are pending, the processors are par-
titioned as 3-3-4. FB-ASP takes a more gradual approach, giving each process a fraction
of the processors based on the total number of jobs in the system. Thus, ASP often ends
up not allocating enough processors to each job, leaving many processors idle.

The comparison between the scheduling disciplines in Fig. 6 again shows little per-
formance difference between the static quantum-based disciplines and IEQ under light
load, but also shows better performance by FB-PWS than IEQ as the load increases forCd > 1. One can observe that IEQ has a decreasing mean response time with increasingCd. This is due to the fact that small jobs are greatly restricted in the number of proces-
sors they can acquire (e.g., a job of size 500 has a maximum parallelism of 6), resulting
in large jobs acquiring proportionately more processors than they would without such
restrictions. Since large jobs have better speedup characteristics, the overall efficiency
of the system increases, thus reducing the mean response time as Cd increases.

5.3 NASA Workload

To obtain a better understanding of how the various disciplines perform under a more
realistic workload, we evaluated the disciplines under the NASA workload described
earlier. Since this workload has a fixed coefficient of variation of 7.23, we plot the mean
response time as a function of load in Fig. 7.

As can be seen, FB-PWS and IEQ once again perform very well at all load levels.
The benefit of preemption as used by the FB disciplines and IEQ is quite apparent, espe-
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Fig. 7. Performance of the scheduling disciplines under the NASA workload as a func-
tion of system load.

cially at lower load levels. At about 50% load, the mean response time for PWS is twice
that of FB-PWS. Similarly, ASP has mean response time a little more than double that
of FB-ASP at the same load level.

5.4 Considerations for Distributed-Memory Systems

We are particularly interested in studying static quantum-based scheduling schemes be-
cause dynamic repartitioning schemes, such as equipartition, may either not be available
or may incur substantially greater costs on distributed shared-memory systems. On such
architectures, remote data accesses can be an order of magnitude more expensive than
local requests. As a result, moving a thread from one processor to another, for load bal-
ancing purposes, can be quite costly. Similarly, reconfiguring a job to run on a different
number of allocated processors can require substantial amounts of data movement. For
example, a matrix that has been stored in an interleaved fashion may need to be com-
pletely redistributed if the original processor allocation is not a multiple of the new one.

Recall that in our implementation, we had jobs that were run in leftover partitions
that were smaller that the degree of parallelism configured for the job (to avoid having
processors remain idle). In the centralized shared-memory architecture, the overhead of
doing this was a small factor of 9%; in a distributed shared-memory system, the over-
head is likely to be much larger. We consider the case where a job runs half as fast as
it would be expected to (i.e., a slowdown factor of 100%), which is much more con-



servative than the case where threads can be multiplexed (possibly unevenly) on the re-
maining processors. We also consider the case where the overhead for equipartitioning
is non-zero. Since we do not have any previous work on which we can base a value for
the overhead, we consider the cases where the repartitioning overhead is 0.25%, 0.5%,
and 0.75% of the mean service requirement for jobs2.

Figures 8 shows the effect of these modifications for the NASA workload, now omit-
ting the lines for the static RTC disciplines. FB-ASP seems to be relatively unaffected by
the increased slowdown. The degradation in performance relative to the previous model
is at most 1.8% over the range in loads shown. FB-PWS was affected by this change to
a greater extent, ranging from 4% at low load to roughly 24% at high load. The reason
for this is that FB-PWS allocates much larger partition sizes to large jobs than FB-ASP
does, which causes these jobs to run more frequently in “leftover partitions” at half the
speed. But IEQ is affected quite severely by repartitioning overhead, especially at the
two higher levels. For an overhead of 0.75%, equipartitioning has a mean response time
up to almost twice that of FB-PWS.
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Fig. 8. Effect of increasing scheduling overheads on the NASA workload, both for the
static quantum-based and the IEQ disciplines.2 This is not intended to be representative of real overheads, but merely a way to examine how

overheads can affect IEQ.



6 Conclusions

In this paper, we have examined the sensitivity of various scheduling disciplines to high
variability in job service demand and proposed new preemptive disciplines that have
much better performance characteristics when the service time coefficient of variation
is large. Our primary focus is where the coefficient of variation of service demand (Cd)
ranges from 5 to 70, as has been observed at various high performance computing cen-
ters.

When jobs have nearly perfect speedup characteristics (i.e., workload 1), the be-
haviour of the various disciplines are relatively consistent with the corresponding
uniprocessor results. The performance of static run-to-completion (RTC) disciplines de-
grades severely as Cd increases, while the performance of preemptive multilevel feed-
back (FB) disciplines improves. As expected, the RTC and FB disciplines yield com-
parable response times at Cd = 1, but at Cd = 70, their response times differ by two
orders of magnitude.

When, on the other hand, small jobs are characterized as having poor speedup and
large ones good speedup (i.e., workload 2), there are a number of interesting differences.
The performance of the RTC disciplines, because of the way in which they deal with
leftover processors, become more round-robin in nature, displaying a fair amount of in-
sensitivity toCd at higher loads. The improvements gained by using FB variants of these
is substantially reduced relative to the near-perfect speedup case, from a factor of 100 to
a factor of about four, but the improvements are still quite significant. In all workloads,
the static quantum-based disciplines (in particular FB-PWS) proved to be competitive
with ideal equipartitioning (IEQ).

Our results can be summarized as follows:

– IEQ does very well in all our experiments with high Cd. The corresponding practi-
cal discipline, EQ, is a good discipline to use if it can be implemented without in-
curring excessive overhead from (1) frequent preemptions, (2) loss of cache affin-
ity when threads are moved from one processor to another, and (3) restructuring of
jobs to adapt to changes in processor allocations. However, in large multiproces-
sors with physically distributed memory modules, coordinated placement of data
and threads is critical, so overheads (2) and (3) are likely to be large. In this case,
the static quantum-based disciplines are preferable.

– If estimates of the pws for each job are available for use in scheduling, then FB-PWS
does as well as IEQ at keeping response times low for high Cd. This is somewhat
surprising since FB-PWS must commit to a static partition size for each job when
it is activated, while IEQ does not.

– If only an estimate of each job’s maximum parallelism is available for use in
scheduling, then FB-ASP is the best rule to use, although the availability of added
knowledge can make a significant difference (as shown by FB-PWS).

There are some important implications in our study for scheduling real multipro-
grammed multiprocessor systems. Currently, a user is usually expected to choose a pro-
cessor allocation (in selecting a partition of the system) and/or to indicate the expected
execution time of the job (in selecting a batch queue). With FB-ASP scheduling, a user
is not required to provide either of these, except for perhaps a maximum parallelism to



avoid allocating too many processors to a job (necessary only in lightly-loaded systems).
If a system is being used for a well-defined set of applications, it is reasonable to expect
more speedup information to be available, either collected automatically by the system
or prepared off-line. In this case, a discipline like FB-PWS will give the best perfor-
mance.

One issue that the study does not consider is the resource requirements of jobs. In
particular, none of the disciplines examined, particularly IEQ, will perform well if mem-
ory is overcommitted, as paging overhead can significantly impact the progress of a com-
putation [BHMW94]. Clearly, future scheduling disciplines for multiprogrammed mul-
tiprocessor systems must take into account all requirements of jobs, including processor,
memory, and I/O.
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