Demand-based Coscheduling of Parallel Jobs on Multiprogrammed
Multiprocessors

Patrick G. Sobalvarro*
pgs@lcs.mit.edu

Abstract

We present demand-based coscheduling, a new ap-
proach to scheduling parallel computations on mul-
tiprogrammed multiprocessors. In demand-based co-
scheduling, rather than making the pessimistic as-
sumption that all the processes constituting a par-
allel job must be simultaneously scheduled in order
to achieve good performance, we wuse information
about which processes are communicating in order to
coschedule only these; the result is more opportunities
for coscheduling and fewer preemptions than in more
traditional coscheduling schemes. We introduce two
particular types of demand-based coscheduling. The
first @s dynamic coscheduling, which was conceived for
use on message-passing architectures. We present an
analytical model and a simulation of dynamic cosche-
duling that show that the algorithm can achicve good
performance under pessimistic assumptions. The sec-
ond 1s predictive coscheduling, for which we present an
algorithm that detects communication by using virtual
memory system information on a bus-based shared-
memory multiprocessor.

1 Introduction

This paper describes demand-based coscheduling, a
new approach to scheduling parallel computations on
multiprogrammed multiprocessors, which generalizes
earlier work presented in [11]. Under demand-based
coscheduling, processes are scheduled simultaneously
only if they communicate; communication is treated
as a demand for synchronization. Processes that do
not communicate need not be coscheduled. In par-
ticular, demand-based coscheduling is a dynamic ap-

*Support for Patrick Sobalvarro’s work was provided in part
under a Draper Fellowship from the Charles Stark Draper Lab-
oratory, Inc. This work was supported in part by the Advanced
Research Projects Agency under Contract N00014-91-J-1698,
by grants from IBM and AT&T, and by an equipment grant
from DEC.

tCurrently on leave at the DEC Systems Research Center,
Palo Alto, CA.

William E. Weihl?

weihl@lcs.mit.edu

proach, because it coschedules processes that are cur-
rently communicating or have done so recently and
thus are expected to do so again in the near future.
Because demand-based coscheduling uses more infor-
mation than does Ousterhout’s form of coscheduling
[9], it can reduce the difficulty of the scheduling prob-
lem and exploit opportunities for coscheduling that
traditional coscheduling cannot. Because it does not
rely on a particular programming technique, such as
task-queue based multithreading, demand-based co-
scheduling is applicable in domains where process con-
trol [13] is not.

Demand-based coscheduling is intended for schedul-
ing mixed loads of parallel and serial jobs, where
the parallel jobs may be synchronous message-passing
applications, sets of processes communicating using
shared memory, or clients and servers communicat-
ing through kernel-mediated remote procedure calls.
It is also intended for use on a wide variety of
platforms that support timesharing: large message-
passing multiprocessors, message-passing- and shared-
memory-based departmental servers, desktop shared-
memory multiprocessors with a low degree of paral-
lelism, and networks of workstations. In the sections
ahead, we will describe algorithms for demand-based
coscheduling on such platforms.

1.1 Goals

Ousterhout compared parallel scheduling and virtual
memory systems in [9]. He suggested that cosche-
duling is necessary on timeshared multiprocessors run-
ning parallel jobs in order to avoid a kind of process
thrashing that is analogous to virtual memory thrash-
ing. This kind of process thrashing arises because pro-
cess can run for only a short period before blocking on
an attempt to synchronize with another process that is
not currently scheduled; the result is greatly increased
numbers of context switches.

We build on this analogy of parallel scheduling to
virtual memory, but rather than building a mechanism
that resembles swapping, as traditional coscheduling

does, we seek to produce a mechanism that resembles
demand paging. To take the analogy somewhat fur-
ther, our goals are to produce a scheduler that is non-
wntrusive in the same way that demand paging is non-
intrusive: we do not want to impose on the program-
mer a particular programming model. For example,
while demand-based coscheduling could be compatible
with a task-queue-based multithreaded approach like
process control [13], we do not want to require that all
parallel applications be coded in a multithreaded fash-
ion in order not to suffer excessive context-switching.

Again as with demand paging, we want an approach
that is flezible: we wish to free the programmer and
the compiler writer from consideration of exactly how
many processors are present on the target machine, in
the same way that demand paging frees the program-
mer and the compiler writer from considering exactly
how much physical memory is present on the target
machine. This is as distinct from traditional cosche-
duling [9], in which there is no clear means for schedul-
ing jobs with more processes than there are nodes on
the multiprocessor.

Finally, we want an approach that is dynamic, and
can adapt to changing conditions of load and com-
munication between processes. For example, we ex-
pect that client/server applications will be particularly
important on multiprocessor systems. In such appli-
cations, it may not be known ahead of time which
client processes will communicate with which servers,
but if the rate of communication is sufficiently high,
coscheduling will be important. Examples might in-
clude SQL front ends communicating with a parallel
database engine, or window system clients and servers,
or different modules in a microkernel operating system
running on a multiprocessor.

Demand-based coscheduling meets these goals: 1t
is non-intrusive, flexible, and dynamic. Like demand
paging as compared to swapping, it is a mechanism
that improves performance in most cases without re-
quiring extra knowledge from the programmer or the
compiler writer.

1.2 Terminology

We use the word job to describe a distinct applica-
tion running on a computer. The application may
be a single serial process that does not communi-
cate with any other process but the kernel; or it may
be a multithreaded application consisting of separate
processes sharing a single address space; it could be
a single-process, multiple-data application communi-
cating with message-passing; or it could even be a
client /server application consisting of one or more

server processes and one or more client processes com-
municating with each other. The important point is
that a job is a logically distinct application consisting
of one or more processes that communicate.

We use the word process in the traditional way that
it is used in the operating systems literature: we mean
the state of a serially-executed program with an ad-
dress space (possibly wholly or partly shared with
other processes) and a process control block. A pro-
cess may be executed on at most one processing node
of a multiprocessor at a time.

In order to hide the latency of certain operations,
a process may have one or more threads of control,
these share the address space of the process and its
process control block. Depending on the threads im-
plementation, they may be dispatched by the kernel
or by a user scheduler, or some combination thereof.
Demand-based coscheduling does not require multi-
threading, but may enhance the performance of mul-
tithreaded applications.

2 The Problem of Timesharing Multipro-
cessors

To date, parallel computers have been used mostly
for the solution of scientific and engineering problems,
and as testbeds for research in parallel computation.

In these problem domains, the problem of schedul-
ing parallel jobs is simplified. Batch scheduling may
be appropriate if the problems are large and the I/0
and synchronization blocking rates are low. If the I/0
and synchronization blocking rates are low and the
multiprocessor has a larger number of nodes than are
demanded by the problems, simple space partition-
ing and a batch queue may be the best choice. Such
job-scheduling policies are particularly appropriate for
very expensive computers, where economics will dic-
tate careful planning of the job load, and users should
be encouraged to perform their debugging off-line, un-
der emulation if possible.

2.1 Problems with batch processing and
space partitioning

However, as multiprocessors continue to follow the
course set by uniprocessors over the past forty years,
they have begun to move out of laboratories and com-
puting centers and into offices. Already multiproces-
sors with relatively small numbers of nodes (4 — 16)
have become popular as departmental servers, and we
have begun to see desktop machines with two and four
nodes. In business environments, these machines do
not typically run explicitly parallel jobs, although we

can expect that explicitly parallel compute-intensive
jobs will appear once the platforms have become suffi-
ciently popular. Instead, they are purchased because
the typical departmental server and many desktop ma-
chines run large numbers of processes, and some of
the processes are sufficiently compute-intensive that
sharing the memory, disk and display resources of the
machine is the most economical solution.

In these office environments, with mixed loads of
client/server jobs, serial jobs, and (in the future) par-
allel jobs, the scheduling problem becomes more com-
plex. Batch scheduling is inappropriate, because re-
sponse times must be low. Simple space-partitioning
will not be sufficient in such an environment, because
the number of processes will be high compared to the
number of processors. Furthermore, it can be difficult
to know in advance how many processes a job will re-
quire or which processes will communicate with other
processes — under a protocol like Microsoft’s Object
Linking and Embedding (OLE), for example, an editor
may communicate with a spreadsheet or a database
depending on which document has been loaded.

2.2 Independent timesharing results in poor
performance

Crovella et al. have presented results in [3] that
show that independent timesharing without regard for
synchronization produced significantly greater slow-
downs than coscheduling, in some cases a factor of
two worse in total runtime of applications.! Chan-
dra et al. have reported similar results in [2]: in
some cases independent timesharing is as much as
40% slower than coscheduling. In [5], Feitelson and
Rudolph compared the performance of gang schedul-
ing using busy-waiting synchronization to that of in-
dependent (uncoordinated) timesharing using block-
ing synchronization. They found that for applica-
tions with fine-grained synchronization, performance
could degrade severely under uncoordinated timeshar-
ing as compared to gang scheduling. In an exam-
ple where processes synchronized about every 160usec
on a NUMA multiprocessor with 4-MIPS processing
nodes, applications took roughly twice as long to exe-
cute under uncoordinated scheduling as they did un-
der gang scheduling.

In general, the results cited above agree with the
claims advanced by Ousterhout in [9]: under indepen-
dent timesharing, multiprogrammed parallel job loads

1Crovella et al. found that hardware partitions gave the best
performance in their experiments, but, as we have discussed
above, these are not feasible when one has a large number of
jobs to run on a small number of processors.

will suffer large numbers of context switches, with at-
tendant overhead due to cache and TLB reloads. The
extra context switches result from attempts to syn-
chronize with descheduled processes resulting in block-
ing. As Gupta et al. have shown in [6], the use of non-
blocking (spinning) synchronization primitives will re-
sult in even worse performance under moderate mul-
tiprogrammed loads, because, while the extra context
switches are avoided, the spinning time is large.

Although the literature to date has described ex-
periments with relatively small numbers of jobs time-
sharing a multiprocessor, we may expect (and know,
from experience) that departmental servers in prac-
tice will be heavily loaded for some portion of their
lifetime. The reason is a simple economic one: a sys-
tem that is not heavily loaded is not fully utilized,;
an underutilized system is a waste of resources. We
may expect that more heavily loaded systems will suf-
fer even higher synchronization blocking rates under
independent timesharing, and commensurately higher
context switching overhead.

2.3 Traditional coscheduling

We see that on timeshared multiprocessors, some
mechanism must be provided to ensure that extra con-
text switch overhead due to synchronization delays is
avoided. Qusterhout’s solution was coscheduling, de-
scribed in [9]. Under this traditional form of cosche-
duling, the processes constituting a parallel job are
scheduled simultaneously across as many of the nodes
of a multiprocessor as they require. Some fragmenta-
tion may result from attempts to pack jobs into the
schedule; in this case, and also in the case of block-
ing due to synchronization or 1/O, alternate jobs are
selected and run.

Relatively good performance has been reported
for competent implementations of traditional cosche-
duling. Gupta et al. report in [6] that when co-
scheduling was used with 25-millisecond timeslices on
a simulated system, it achieved 71% utilization, as
compared to 74% for batch scheduling (poorer per-
formance is reported with 10-millisecond timeslices).
Chandra et al. conclude in [2] that coscheduling and
process control achieve similar speedups running on
the Stanford DASH distributed-shared-memory mul-
tiprocessor as compared to independent timesharing.

However, traditional coscheduling suffers from two
problems. The first is that, without information about
which processes are communicating, it is not clear
how to extend any of Ousterhout’s three algorithms to
work on jobs where the number of processes is larger
than the number of processors — the best one might

do would be an oblivious round-robin among the pro-
cesses during a timeslice in which the job was allocated
the entire machine. The second is that the selection of
alternate jobs to run, either when the process allotted
a node is not runnable or because of fragmentation,
i1s not in any way coordinated under Qusterhout’s co-
scheduling.

We may expect the first problem to become signifi-
cant as multiprocessors become more prevalent. Man-
ufacturers wishing to provide systems of varying ex-
pense and power already vary the number of nodes on
the multiprocessors they sell, so that one may buy bus-
based symmetric multiprocessors with as few as two
or as many as six processors from some manufactur-
ers. The application programmer must then be con-
cerned with somehow keeping the number of processes
that constitute a parallel application flexible. This is
easy if the application is a multithreaded one using a
task queue. But if the application uses a client/server
model, or if it consists of independent processes com-
municating through message-passing or some smaller
amount of shared memory, the extra heavyweight con-
text switches required in the case of frequent synchro-
nization will result in considerable overhead.

The second problem is a performance problem. Al-
though the loads examined in the works we have cited
have typically been highly parallel ones, many paral-
lel jobs have relatively long sections in which many of
the processes are blocked. In these sections alternate
processes must be selected to run on the nodes where
the blocked processes reside. Additionally, the inter-
nal fragmentation in Ousterhout’s most popular algo-
rithm (the matrix algorithm) results in some nodes
not having processes assigned to them by the algo-
rithm during some timeslices; these nodes will also
need to perform this “alternate selection.” Unfortu-
nately, traditional coscheduling presents no means of
coscheduling these alternates. The result is that even
in the two-job case examined by Crovella et al. in
[3], when approximately 25% of the cycles in the mul-
tiprocessor were devoted to running alternates, their
use decreased the runtime of the application to which
they were devoted only about 1%.

2.4 Distributed hierarchical control

Distributed hierarchical control was presented by Fei-
telson and Rudolph in [4]. The algorithm logically
structures the multiprocessor as a binary tree in which
the processing nodes are at the leaves and all the chil-
dren of a tree node are considered a partition. Jobs
are handled by a controller at the level of the smallest
partition larger than the number of processes required

by the job. The placement algorithm strives to bal-
ance loads and keep fragmentation low.

Unlike Ousterhout’s coscheduling, distributed hier-
archical control has a mechanism for the coordinated
scheduling of alternates. Suppose K of the nodes allo-
cated to a job cannot run the job’s processes, because
these processes are blocked. Then the placement al-
gorithm will attempt to find a job with K or fewer
processes to run on these K nodes.

If a partition holds processes belonging to differ-
ent parallel jobs, then the parallel jobs are gang-
scheduled within the partition. Distributed hierar-
chical control thus strikes a middle ground between
space-partitioning and coscheduling. It is particularly
attractive for larger multiprocessors, where it removes
the bottleneck inherent in the centrally-controlled tra-
ditional coscheduling of Ousterhout. However, dis-
tributed hierarchical control was not designed for
smaller machines, such as the desktop machines and
departmental servers we have described, on which we
expect that it would suffer from the same problems as
traditional coscheduling.

2.5 Process control

Tucker and Gupta suggested in [13] a strategy called
process control, which has some of the characteristics
of space partitioning and some of the characteristics
of timesharing. Under process control, parallel jobs
must be written as multithreaded applications keeping
their threads in a task queue. The scheduler divides
the number of processors on the system by the number
of parallel jobs to calculate the “number of available
processors.” The system dynamically makes known to
each parallel application the number of available pro-
cessors, and the application maintains as many pro-
cesses as there are available processors. The processes
simply dequeue threads from the application’s task
queue and run them until they block, at which point
they take another thread. If more parallel jobs ex-
ist than there are processors, the scheduler timeshares
processor sets among the parallel jobs.

One advantage of this approach is that when the
processes of a parallel job switch among threads, the
switch performed is a low-overhead one that does not
cross address-space boundaries, because the multi-
ple threads of an application share an address space.
Thus fewer heavyweight context switches need be per-
formed. Tucker and Gupta also cite as an advantage
what they call the operating point effect — the fact
that many parallel jobs will run more efficiently on a
smaller number of nodes than on a larger number of
nodes, due to the overhead of communication among

larger numbers of processes.

Several published works [2, 6, 12] cite good perfor-
mance for process control, but these works also find
that coscheduling can be modified to have equivalently
good performance.

It will be clear in what follows that demand-based
coscheduling is not at all incompatible with a mul-
tithreaded approach; it might even be made to work
with process control. But we find process control alone
to be insufficient for the office environment we have
described for two reasons: the requirement that appli-
cations be programmed in a particular way, and the
high variability of runtimes of memory-intensive ap-
plications.

We have already discussed the first problem, that of
intrusiveness, to some extent above. For many paral-
lel applications, especially data-parallel applications,
a multithreaded approach is entirely appropriate. But
for others, applications composed of subtasks that per-
form distinct and logically autonomous functions, the
multithreaded approach may be inappropriate or even
impracticable. FExamples might include clients and
servers that require high rates of communication, but
where for security reasons the client is not allowed ac-
cess to all of the server’s data.

Thus process control alone is insufficient as a
scheduling approach in the environment we have de-
scribed, because in requiring that all parallel appli-
cations be coded in a task-queue multithreaded fash-
ion, it would require that an important abstraction be
given up by the programmer in order to achieve good
performance: the abstraction of a process with its own
address space. But processes offer modularity and se-
curity, and application writers will be loath to give
up these qualities in applications where the process
abstraction is the natural one.

The second problem, that of high variability of run-
times for some sorts of processes under process control,
results from certain parallel jobs requiring more re-
sources than are available on a single node in order to
execute efficiently. Under process control, the arrival
of new jobs into the system can cause the “number
of available processors” to fall below a critical level
at which the performance on some jobs will begin to
deteriorate worse than linearly.

This implies that in fact the jobs in question show
superlinear speedup. In fact this is true in two ex-
amples in published works on process control. In [6],
the LU application is found to perform very poorly
under process control when run on three processors,
and the authors point out that a drastically increased
cache miss rate is to blame. Similarly, in [2], the

Ocean application suffers a twofold decrease in effi-
ciency when run on eight processors as compared to
when it is run on sixteen processors. Some of this
decrease in efficiency is attributed by the authors to
data distribution optimizations being performed in the
sixteen-processor case, but not in the eight-processor
case. The implication is that, if the data distribution
optimizations had not been performed in the sixteen-
processor case, the Ocean application would have per-
formed nearly as inefficiently in the sixteen-processor
case as in the eight-processor case. So far as one can
tell from the published work alone, this attribution
of cause may be mistaken, because the same work
shows a coscheduling experiment in which data distri-
bution optimizations were not performed. In this ex-
periment, coscheduling among two jobs suffered only
a five-percent decrease in efficiency compared to the
standalone sixteen-processor case with data distribu-
tion optimizations — thus it seems that we can bound
above the effect of data distribution optimizations by
five percent. Because the authors state that Ocean has
a larger working set than the other applications tested,
we suspect that the actual cause of the inefficiency
here may be the larger number of cache misses that
result from the application being executed on a collec-
tive cache of half the size as in the sixteen-processor
case.

Helmbold and McDowell have documented this sort
of “superunitary speedup due to increasing cache size”
in [7]. Because of this property of certain parallel ap-
plications, their ideal “operating point” is larger than
one — possibly considerably larger than one. Thus
forcing them to run on fewer processors will be very
inefficient. This is not a problem under coscheduling,
because under coscheduling the arrival of new jobs
does not cause fewer processors to be devoted to the
execution of a parallel job.

We believe that the phenomenon of increasing inef-
ficiency with higher loads under process control may
be an important problem in practice. This is because
software tends to perform near the memory bound-
aries available on most users’ processors. The reason
for this pressure is simply economic: purchasers of
computer hardware will tend to buy as little memory
as possible while still maintaining satisfactory perfor-
mance on applications; to purchase more would be
wasteful. Purveyors of software tend to use more
memory to add new features to their applications in
order to gain competitive advantage. Programming so
as to conserve memory requires more effort and thus
costs more, and will be done only insofar as is neces-
sary to keep customers happy.

This pushing at the boundaries of available mem-
ory will probably mean that many commercial applica-
tions will show superlinear speedup. If process control
as it is described in [13] were used as the only means
of timesharing a multiprocessor, we would expect that
such applications would show poor performance when

the job load was high.

3 Demand-based Coscheduling

Demand-based coscheduling is what we call our new
approach to scheduling mixed workloads on multipro-
grammed multiprocessors. The approach dictates only
that processes that are communicating be cosched-
uled. In particular, demand-based coscheduling does
not require a particular method of process placement;
processes may be placed or migrated in whatever
fashion seems appropriate for load-balancing or data-
distribution reasons.

We present two methods for doing demand-based
coscheduling, although there might of course be many
more. These two methods are dynamic coscheduling
and predictive coscheduling.

Dynamic coscheduling was called adaptive gang
scheduling in an earlier work [11], and is an ap-
proach suited for use on message-passing multiproces-
sors or on distributed shared-memory multiprocessors
in which cache-line-invalidation events can interrupt
the processor. Under dynamic coscheduling, messages
arriving at a node, if addressed to a process other than
the one currently running, sometimes cause preemp-
tion of the running process in favor of the process to
which the message is addressed. Thus, processes on
different processors that communicate frequently will
tend to be coscheduled, reducing the amount of con-
text switching and the amount of blocking due to syn-
chronization.

Predictive coscheduling can be used on message-
passing or shared-memory multiprocessors, but could
also be used on bus-based shared-memory multipro-
Under predictive coscheduling, the recent
history of communication between processes is used
to identify a set of correspondents for each process.
When a process is scheduled on one node; an attempt
is made to schedule its correspondents on other nodes
for simultaneous execution.

CESSOTrs.

We can see right away that demand-based cosche-
duling will be able to perform coscheduling in some
cases where traditional coscheduling cannot. For ex-
ample, consider a case in which two parallel jobs, A
and B, are run on an eight-node bus-based shared-
memory multiprocessor, as shown in Figure 1. Sup-

Node number
0 1 2 3 4 5 6 7
T
i
m Al A2 Al A2 Al A2 Al A2
e
s
|
i
¢ B B B B
e

Figure 1: A scheduling scenario in which demand-
based coscheduling can achieve better results than tra-
ditional coscheduling.

pose that the processes labeled ‘A1’ are intercommu-
nicating in the current phase of the computation, and
the processes labeled ‘A2’ are also intercommunicat-
ing, but that these two groups do not currently com-
municate with each other, despite being part of the
same application. Suppose also that the processes of
job B intercommunicate.

In this case, under both traditional coscheduling
and demand-based coscheduling, in the first times-
lice, the processes of job A can be run. In the second
timeslice, when job B runs, under traditional cosche-
duling, alternates must be selected to run on the nodes
that B’s processes do not occupy. Because there is no
means of coscheduling alternates in traditional cosche-
duling, it is highly probable that some mixture of the
processes labeled ‘A1” and those labeled ‘A2’ will be
scheduled, whereas under demand-based coscheduling
on a bus-based shared-memory multiprocessor, one of
the intercommunicating sets may be picked and run.

4 Dynamic Coscheduling

Dynamic coscheduling identifies communicating pro-
cesses by examining messages being received in the
normal course of the computation. Under dynamic
coscheduling, sometimes a message arriving at a node
will cause it to start running a process belonging to the
application that was running on the processor where
the message originated.

On a message-passing multiprocessor, this 1is
straightforward to implement; an arriving message not
addressed to the currently running process can trigger
an exception (as might be necessary in any case to
enforce protection). Alternatively, if protection is not
an important issue and the network interface is ma-
nipulated directly in user mode, the detection of an
arriving message not addressed to the currently run-

ning process can be performed by a library routine
which can execute a system call in the case when a
scheduling decision must be made.

Demand-based coscheduling should also work on
many distributed-shared-memory multiprocessors. In
a cache-coherence scheme such as the software schemes
presented by Chaiken et al. in [1], cache line invali-
dations can be treated in the same fashion as arriving
messages. We can do even better on systems with
network interface processors, such as FLASH [8] or
Typhoon [10]. In these systems, some of the sched-
uler state can be cached in the interface processor, so
that the scheduling decision can be made without con-
sulting the computation processor. The computation
processor could be interrupted only when a preemp-
tion was needed. In this case the number of exceptions
could be kept to the minimum necessary.

It is more difficult to envision applying this scheme
to a shared-memory multiprocessor with hardware-
only cache-coherence protocols; for such processors
predictive coscheduling will be more appropriate.

We now develop a dynamic coscheduling algorithm
by taking the simplest possible implementation of
this idea and successively modifying it to achieve fair
scheduling while maintaining good coscheduling.

4.1 The *always-schedule” dynamic cosche-
duling algorithm

The first version of the dynamic coscheduling algo-
rithm is the simplest possible one, in which the job for
which the arriving message was destined is always im-
mediately scheduled. We have modeled this case ana-
lytically with a Markov process for two symmetric jobs
of N processes running on N nodes, using the weak
assumptions that messages are uniformly addressed,
that the processes generating them are memoryless,
and that the run-time of processes before they block
spontaneously is exponentially distributed. We call
the assumptions “weak” because we expect that real
processes exhibit greater regularity that would in fact
improve the performance of such a scheduler.

The two-job Markov process is a skip-free birth-
death process, and a closed-form solution for the
steady-state probabilities is possible. The multipro-
cessor has N nodes. The states of the process are
defined as follows: in state ¢, N — ¢ nodes are running
the first job and ¢ are running the second job. If we
call the jobs job A and job B, in our model we make
use of the quantities qg4 and ¢gp, the rates of sponta-
neous context switching of processes for jobs A and B.
The spontaneous switching rate is intended to capture
at once the notion of timeslice expiration and block-

ing due to I/O or synchronization requirements. A
node running a process will switch from running it to
the next resident process at this rate. We also use the
quantities gy 4 and gprp, the rates of message-sending
for processes of jobs A and B — these are the rates
at which the running processes generate uniformly-
addressed messages to other processes that make up
their jobs.

In summary, then, state 0 is the state in which all
the nodes are running job A and no nodes are running
job B. In state 64, all the nodes are running job B
and no nodes are running job A. In state 32, half of
the nodes are running each job.

The steady-state probabilities are then given by

k-1 . CN—i
(N —d)qsp + i qup
Pr = Po H i R 2 (i+1) (1)
im0 (+ Dgsa+ (N —i—1)"F~qma
where
1
Po N—1 (2)

- N k—1 (N—i)gsp+i qMB
1 _ o ~
+Zk_1 HZ_O (Z'+1)QSA+(N—Z'—1)(1$1)(]MA

Results for this case are shown in Figure 2. Here we
have taken gs4 = qsp = Qs and qya = quB = Qum-
The vertical axis is steady-state probability. The deep
axis is log10(Qs/®@m). The horizontal axis along the
front gives state number.

Towards the front of the graph, we see that the prob-
abilities of being in the states where all the nodes are
running one job or the other are high, and the prob-
abilities of being in states where some nodes are run-
ning one job and some running the other are low. We
see then that the ratio of the rate of sending messages
to the rate of spontaneous switching of processes de-
termines the steady-state probability that all proces-
sors in the modeled system are running a single job.
We found that if several hundred or more messages
are sent on average between the spontaneous context
switches, then the steady-state probability that all
processors are either running one job or all proces-
sors are running the other job i1s about one-half. If
fewer messages are sent between spontaneous context
switches, then a binomial behavior begins to emerge,
so that when only one message is being sent on average
between spontaneous context switches, about half of
the processors are running one job, and half running
another. It is to be noted, though, that when very few
messages are being sent, coscheduling is unlikely to be
important.

Figure 2: Steady-state probabilities found using a Markov model to calculate dynamic coscheduling performance
on a 64-processor system running two jobs. See the text for further details.

It is encouraging that with such a simple rule, we
find strong coscheduling behavior under such weak
assumptions. Unfortunately, this coscheduling algo-
rithm has a fatal flaw. The flaw is that it is com-
pletely unfair, tending to very strongly favor jobs that
send a lot of messages. Also, even if message-sending
rates are equal, this algorithm may take a very long
time to switch out of a state in which most processors
are running one job, although this dynamic behavior
of the algorithm cannot be seen from the steady-state
probabilities alone.

Figure 3 illustrates the unfairness of this algorithm,
showing the steady-state probabilities for the case
where gs4 = gqsp = 0.005 but gpra = 0.49 and
gup = 0.5. It can be seen that, despite the fact
that the message-sending rates are very close, job A
achieves full coscheduling only about 2% of the time
whereas job B achieves full coscheduling about three
times as often.

4.2 The “equalizing” dynamic coscheduling
algorithm

We modified the “always-schedule” dynamic cosche-
duling algorithm to require that runnable processes
receive equal shares of the CPU, within some constant
difference. We called this policy “run-time equaliza-
tion.” Because it was more difficult to analytically
model the new algorithm, we wrote a discrete event
simulator for it, and ran experiments in which we
modeled a 64-node multiprocessor running for 100,000

scheduler cycles.

We maintain for each process i a quantity r;, the
number of scheduler cycles for which it has run since
the process that most recently joined the scheduler run
queue started running. We define a global quantity
h, which can be modified to affect the “volatility” of
scheduling: a larger value of h causes the scheduler to
take longer to switch due to arriving messages.

Run-time equalization works as follows: when a
message destined for process j arrives at its node,
which is running process ¢, ¢ # j, we switch to pro-
cess j if and only if r; + h < r;, that is, if and only
if process j lags process ¢ by more than h scheduler
cycles. This definition of A means that if the sys-
tem is run for no more than H scheduler cycles, and
h = —H | the “equalizing” algorithm will always be-
have the the same as the “always-switch” algorithm.
This is because r; cannot be greater than H if the
system is run for no more than H cycles, and so nec-
essarily r; + h < 0, and in this scenario process ¢ has
run for at least 1 scheduling cycle. With this very
negative value of h, then, the scheduler will always
context-switch due to arriving messages.

On the other hand, if h = H and the system 1is
run for no more than H cycles, a process ¢ will never
accumulate more than H scheduling cycles, and 1t will
always be the case that r; +h > r; (until possibly the
H™ cycle, when the experiment ends). Thus with
this large positive value of &, the scheduler will never
context-switch due to arriving messages.

P{k}

.07
06
05
.04
03

.021\1\

© o o o o o

10 20 30 40

) 50 k (state nunber)

Figure 3: Steady-state probabilities in the case where message-sending rates differ very slightly — see the text for

further details.

We found that, for values of h near —1,000, rea-
sonably fair performance was attained over the run-
ning of an experiment; however, little coscheduling
was achieved. The results for the more radical case
of message-sending rates of .25 and .5 may be seen in
Figure 4.

Our intuition about the failure to coschedule under
simple equalization is that, by disregarding more op-
portunities to coschedule processes, we caused more
thrashing. In general, the higher the value of &, the
less coscheduling was achieved. One possible solution
was to further reduce h, but in fact, we already had a
mechanism that proved to work better in practice at
recovering strong coscheduling behavior, by ensuring
that the scheduler makes progress from job to job.

4.3 The “epochs and equalization” dynamic
coscheduling algorithm

Consider a scenario in which about half of the nodes
on a multiprocessor are running one parallel job, and
half the other. In our simulation, when a node running
parallel job A spontaneously switches to parallel job
B, there is a probability of close to 1/2 that the next
message 1t receives will be destined for a process be-
longing to job A, provided that message-sending rates
for the two jobs are equal. Thus there is a substan-
tial probability that the node will switch quickly back
to job B without job A ever having achieved full co-
scheduling. This probability is greater if switching is
mostly spontaneous.

Epoch values are used to reduce this sort of thrash-
ing. The epoch value is maintained in a counter at
each node. The counter is incremented at each spon-
taneous context switch. When a node sends a message,

the epoch value is included in the message; when re-
ceiving a message, the node considers switching only if
the equalization criteria are met and the epoch num-
ber is higher than its own. If the node does switch
processes, it adopts the higher epoch number as its
OWTL.

The result is that nodes “defecting” from a parallel
job will not return to the job due to messages being
sent by nodes remaining with the job. Progress must
be made to the new job before the node will consider
switching back. The results for this strategy can be
seen in Figure 5, and are quite encouraging — cosche-
duling behavior is achieved for more than about 300
messages per timeslice, even given our pessimistic as-
sumptions. As in Figure 4, message-sending rates of
.25 and .5 are used.

5 Predictive Coscheduling

If we wish to implement coscheduling on a bus-based
shared memory multiprocessor, with hardware-only
cache-coherence protocols, the detection of commu-
nication becomes more complicated than on message-
passing architectures. If the program uses library rou-
tines for heavyweight remote procedure calls or for
semaphores, the invocation of the kernel to deliver
messages, perform blocking tests of semaphores; or
set semaphores will allow the scheduler to be aware
of communication between processes, and dynamic co-
scheduling can be used.

But if instead processes communicate only through
shared memory pages in user mode, the kernel is not
invoked, and cannot detect communication when it
happens. We might consider using memory protec-

8000

iterations
4000

7

N

4

7

////////

//////////?’/;/

y

y

Y

/.

. 4

644

Figure 4: Degree of coscheduling in the case where message-sending rates differ by a factor of two, but equalization
is used. The vertical axis approximates steady-state probability — the scale is the number of iterations out of
100,000 in which the process was found in the indicated state.

tion on shared memory pages to signal the kernel the
first time during a process’s lifetime that it requests
access to a shared memory page, but this could be
quite expensive if a large number of shared memory
pages are touched and memory protection traps are
slow.

Another possibility is to recognize that coscheduling
is a performance optimization, and is not required for
correctness, so that it is feasible to use a mechanism
that simply provides hints as to which processes are
likely to communicate with each other. If such a mech-
anism 1s correct with high probability, it will be suffi-
cient to allow good performance.

We proceed by describing predictive coscheduling
in the next section, and then proceed to describe an
inexpensive mechanism for detecting communication
using virtual memory hardware.

5.1 Correspondents

Under predictive coscheduling, processes that have re-
cently communicated with each other are called cor-
respondents. As in LRU demand paging, past be-
havior is treated as a predictor of future behavior,
and so predictive coscheduling works by coscheduling
runnable correspondents. In particular, when a pro-
cess 18 scheduled on a node, an attempt 1s made to
simultaneously schedule on other nodes its runnable
correspondents. On a message-passing multiproces-
sor, this could be done by sending messages to the

nodes on which the correspondents resided. On a
bus-based shared-memory processor, other processes
would be selected for preemption, interrupts would be
signalled on their nodes, and the correspondents would

be scheduled.

We have not yet tested this strategy, although it ap-
pears promising. Clearly a runtime equalization mech-
anism would be necessary to ensure fairness; possibly
a mechanism like epochs would be desirable to reduce
thrashing. The selection of processes for preemption is
another open question. It might be desirable to select
for preemption the processes with the fewest corre-
spondents, because such processes will be runnable in
the future under a wider variety of circumstances.

It is also worth noting that if communication be-
tween processes is entirely memoryless — so that one
pair of processes that have recently communicated is
no more likely to communicate in the future than is
any other pair of processes — predictive coscheduling
will not perform well. This is because predictive co-
scheduling attempts to predict future behavior on the
basis of past behavior, a strategy that will work no
better than random selection with uniform probability
for memoryless processes. Of course, this scenario is
unlikely to arise in most parallel jobs, where the con-
stituent processes will communicate with each other
repeatedly.

30000
iterations
150

>
//

8 K

>
4
7

-
\\////////////////Z] 1,

Ty
4

644

Figure 5: Degree of coscheduling achieved in the case where message-sending rates differ by a factor of two, and
both equalization and epochs are used — the vertical axis approximates steady-state probability, being the number
of iterations out of 100,000 in which the simulator was in the indicated state.

5.2 Detecting communication through shared
memory on bus-based shared-memory
multiprocessors

It remains to describe a means of identifying cor-
respondents on bus-based shared-memory multipro-
cessors — that is, detecting communication through
shared memory. Because, as we noted above, we do
not think that this information need be perfect, we
propose using the information in translation lookaside
buffers (TLBs) on processors where these are readable.
Processor-readable TLBs are becoming more common,
because of the attractiveness of handling TLB misses
in software on RISC processors. Among the processors
that have readable TLBs are MIPS processors, DEC
Alpha processors, and HP PA-RISC processors. Intel
486-series processors also provide a means of reading
the TLB through the test instruction interface; read-
ing the TLB does not require disabling virtual mem-
ory.

The algorithm for finding correspondents is simple.
In the process control block (PCB) for each user pro-
cess that shares memory, we maintain a field that con-
tains a list of correspondents. For each user process
we maintain in memory a data structure, keyed by vir-
tual page address, that contains an entry for each of
the shared memory pages mapped in the process. The
structure is called the Shared Page Recent Accessors
Table (SPRAT). Each entry in the SPRAT contains a

list of processes that have recently accessed the page.

At certain points in the execution of a process, we iter-
ate over the TLB, finding entries for shared data pages
in this process’s address space. For each such entry,
we find the corresponding page entry in the SPRAT
and add the current process to the list there. Then
we add the processes in the SPRAT entry to the cor-
respondents list in this process’s PCB.

Because the TLB is typically small (256 or fewer en-
tries), it can be searched quickly. Because the replace-
ment policy 1s typically approximate LRU within a set
(or simply LRU on fully-associative TLBs), the TLB
contains information about which pages have been
read or written recently. We may choose to search
it just before descheduling a process, or perhaps also
at other convenient times, such as system calls and
exceptions.

Entries will also need to be cleared from the SPRAT
and the correspondents list in the PCB. One inexpen-
sive possibility 1s to maintain the lists as FIFOs of
fixed and limited size — for example, the number of
nodes on the machine would be a good limit. Another
possibility is simply to clear the information at pseu-
dorandom intervals — this can also be 1implemented
inexpensively.

There are likely to be other means of detecting
communication through shared memory on bus-based
shared-memory multiprocessors using virtual mem-
ory information — as has been found in the field
of lifetime-based garbage collection, the information

maintained by a virtual memory system is very rich.

6 Conclusions

We have presented demand-based coscheduling, a new
approach to scheduling parallel computations on mul-
tiprogrammed multiprocessors that promises better
performance by coscheduling only those processes that
communicate with each other. Demand-based cosche-
duling is:

e Non-intrusive — the programmer is not required
to write parallel programs in a particular style.
FE.g., multithreading is not required; if full-fledged
processes are a better abstraction, they can be
used instead. Process placement or migration al-
gorithms are not imposed by demand-based co-
scheduling.

e Flexible — If a job composed of a large number of
processes is run on a multiprocessor with a small
number of nodes, demand-based scheduling can
take advantage of local communication patterns
that may provide better performance.

e Dynamic — Newly-initiated communication be-
tween processes is detected automatically as a
demand for synchronization by demand-based co-
scheduling. Thus it 1s well-suited to newer pro-
gramming paradigms (e.g., OLE) that may result
in fine-grained communication between processes
the programmer could not have anticipated would
communicate.

e Decentralized — scheduling decisions are made
locally in demand-based coscheduling. Unlike
in traditional coscheduling, there is no “alter-
nate coscheduling problem,” because there is no
centrally-imposed notion of a single currently-

scheduled job.

Additionally, because demand-based coscheduling
does not limit the number of processes making up a
parallel job, conditions of high load will not cause jobs
to suffer from the anomalous behavior on memory-
intensive programs reported in work on process con-
trol.

We presented two forms of demand-based cosche-
duling: dynamic coscheduling, which is suited for use
on message-passing processors and distributed-shared-
memory processors with software cache-coherence pro-
tocols; and predictive coscheduling, which we ex-
pect to work well on shared-memory processors with
hardware-only cache-coherence protocols.

We presented analytical and simulation results that
show that the number of messages sent per timeslice is
a key factor in achieving good coscheduling behavior
under dynamic coscheduling, and that with a mean
communication rate of more than ~ 300 messages per
timeslice in our simulations, strong coscheduling be-
havior was achieved. We also showed that even under
very pessimistic assumptions, dynamic coscheduling
can achieve strong coscheduling behavior while main-
taining fairness in scheduling. We expect that real
applications will achieve even stronger coscheduling
behavior.

We discussed a means of using virtual memory
hardware to identify correspondents — communicat-
ing processes — on shared-memory platforms with
hardware-only cache-coherence protocols.

We are currently completing a more faithful simula-
tor that will allow us to evaluate more demand-based
coscheduling strategies under a variety of synthetic
loads. Following this, we plan to implement demand-
based coscheduling on an actual multiprocessor so that
it may be evaluated under actual application loads.

Acknowledgements

The authors wish to thank Bert Halstead, Butler
Lampson, and Larry Rudolph for valuable discussions
of the ideas presented in this paper. Paul Barton-
Davis, Allen Downey, Shel Kaphan, and Volker
Strumpen were kind enough to read drafts of the paper
and give us their detailed comments. Finally, the sug-
gestions of the anonymous referees were helpful and
very much appreciated.

References

[1] Chaiken, D., Kubiatowicz, J., and Agarwal,
A. “LimitLESS Directories: A Scalable Coher-
ence Scheme,” in Fourth International Confer-
ence on Architectural Support for Programming
Languages and Operating Systems (ASPLOS IV),
April 1991, pp. 224-234.

[2] Chandra, R., et al. “Scheduling and Page Mi-
gration for Multiprocessor Compute Servers,” in
Siwzth International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS VI}, San Jose, California,
October, 1994, pp. 12-24.

[3] Crovella, M., et al. “Multiprogramming on Multi-
processors,” in Third IEEE Symposium on Paral-
lel and Distributed Processing, 1991, pp. 590-597.

[4] Feitelson, D. G., and Rudolph, L. “Distributed
Hierarchical Control for Parallel Processing,” in

IEEE Computer, Vol. 25, No. 3, pp. 65-77, May,
1990.

Feitelson, D. G., and Rudolph, L. “Gang Schedul-
ing Performance Benefits for Fine-Grain Synchro-
nization,” in Journal of Parallel and Distributed
Computing, Vol. 16, No. 4, pp. 306-318, Decem-
ber, 1992.

Gupta, A., Tucker, A. and Urushibara, S. “The
Impact of Operating System Scheduling Poli-
cies and Synchronization Methods on the Perfor-
mance of Parallel Applications,” in Proceedings of
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, May, 1991, pp.
120-132.

Helmbold, D. P.; and McDowell, C. E. “Modeling
Speedup(n) Greater than n,” in IEEE Transac-
tions on Parallel and Distributed Systems, Vol. 1,
No. 2, April 1990, pp. 250-256.

Kuskin, J. et al. “The Stanford FLASH Multipro-
cessor,” in Proceedings of the 21st Annual Sympo-
stum on Computer Architecture, Chicago, lllinois,

April, 1994.

Ousterhout, John K. “Scheduling Techniques
for Concurrent Systems,” in Third International

Conference on Distributed Computing Systems,
October, 1982, pp. 22-30.

Reinhardt, S. K., Larus, J. R., and Wood, D. A.
“Tempest and Typhoon: User-level Shared Mem-
ory,” in Proceedings of the 21st Annual Sympo-
stum on Computer Architecture, Chicago, lllinois,

April, 1994.

Sobalvarro, P. G. “Adaptive Gang-Scheduling for
Distributed-Memory Multiprocessors,” in Pro-
ceedings of the 1994 MIT Student Workshop on
Scalable Computing, MIT Laboratory for Com-
puter Science Technical Report No. 622, July,
1994.

Tucker, A. Efficient Scheduling on Multipro-
grammed Shared-Memory Multiprocessors. Stan-
ford University Department of Computer Sci-
ence Technical Report CSL-TR-94-601, Novem-
ber, 1993.

Tucker, A. and Gupta, A. “Process Control and
Scheduling Issues for Multiprogrammed Shared-
Memory Multiprocessors,” in Proceedings of the
12th ACM Symposium on Operating Systems
Principles, 1989, pp. 159-186.

