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proach, because it coschedules processes that are cur-rently communicating or have done so recently andthus are expected to do so again in the near future.Because demand-based coscheduling uses more infor-mation than does Ousterhout's form of coscheduling[9], it can reduce the di�culty of the scheduling prob-lem and exploit opportunities for coscheduling thattraditional coscheduling cannot. Because it does notrely on a particular programming technique, such astask-queue based multithreading, demand-based co-scheduling is applicable in domains where process con-trol [13] is not.Demand-based coscheduling is intended for schedul-ing mixed loads of parallel and serial jobs, wherethe parallel jobs may be synchronous message-passingapplications, sets of processes communicating usingshared memory, or clients and servers communicat-ing through kernel-mediated remote procedure calls.It is also intended for use on a wide variety ofplatforms that support timesharing: large message-passing multiprocessors, message-passing- and shared-memory-based departmental servers, desktop shared-memory multiprocessors with a low degree of paral-lelism, and networks of workstations. In the sectionsahead, we will describe algorithms for demand-basedcoscheduling on such platforms.1.1 GoalsOusterhout compared parallel scheduling and virtualmemory systems in [9]. He suggested that cosche-duling is necessary on timeshared multiprocessors run-ning parallel jobs in order to avoid a kind of processthrashing that is analogous to virtual memory thrash-ing. This kind of process thrashing arises because pro-cess can run for only a short period before blocking onan attempt to synchronize with another process that isnot currently scheduled; the result is greatly increasednumbers of context switches.We build on this analogy of parallel scheduling tovirtual memory, but rather than building a mechanismthat resembles swapping, as traditional coscheduling



does, we seek to produce a mechanism that resemblesdemand paging. To take the analogy somewhat fur-ther, our goals are to produce a scheduler that is non-intrusive in the same way that demand paging is non-intrusive: we do not want to impose on the program-mer a particular programming model. For example,while demand-based coscheduling could be compatiblewith a task-queue-based multithreaded approach likeprocess control [13], we do not want to require that allparallel applications be coded in a multithreaded fash-ion in order not to su�er excessive context-switching.Again as with demand paging, we want an approachthat is exible: we wish to free the programmer andthe compiler writer from consideration of exactly howmany processors are present on the target machine, inthe same way that demand paging frees the program-mer and the compiler writer from considering exactlyhow much physical memory is present on the targetmachine. This is as distinct from traditional cosche-duling [9], in which there is no clear means for schedul-ing jobs with more processes than there are nodes onthe multiprocessor.Finally, we want an approach that is dynamic, andcan adapt to changing conditions of load and com-munication between processes. For example, we ex-pect that client/server applications will be particularlyimportant on multiprocessor systems. In such appli-cations, it may not be known ahead of time whichclient processes will communicate with which servers,but if the rate of communication is su�ciently high,coscheduling will be important. Examples might in-clude SQL front ends communicating with a paralleldatabase engine, or window system clients and servers,or di�erent modules in a microkernel operating systemrunning on a multiprocessor.Demand-based coscheduling meets these goals: itis non-intrusive, exible, and dynamic. Like demandpaging as compared to swapping, it is a mechanismthat improves performance in most cases without re-quiring extra knowledge from the programmer or thecompiler writer.1.2 TerminologyWe use the word job to describe a distinct applica-tion running on a computer. The application maybe a single serial process that does not communi-cate with any other process but the kernel; or it maybe a multithreaded application consisting of separateprocesses sharing a single address space; it could bea single-process, multiple-data application communi-cating with message-passing; or it could even be aclient/server application consisting of one or more

server processes and one or more client processes com-municating with each other. The important point isthat a job is a logically distinct application consistingof one or more processes that communicate.We use the word process in the traditional way thatit is used in the operating systems literature: we meanthe state of a serially-executed program with an ad-dress space (possibly wholly or partly shared withother processes) and a process control block. A pro-cess may be executed on at most one processing nodeof a multiprocessor at a time.In order to hide the latency of certain operations,a process may have one or more threads of control;these share the address space of the process and itsprocess control block. Depending on the threads im-plementation, they may be dispatched by the kernelor by a user scheduler, or some combination thereof.Demand-based coscheduling does not require multi-threading, but may enhance the performance of mul-tithreaded applications.2 The Problem of Timesharing Multipro-cessorsTo date, parallel computers have been used mostlyfor the solution of scienti�c and engineering problems,and as testbeds for research in parallel computation.In these problem domains, the problem of schedul-ing parallel jobs is simpli�ed. Batch scheduling maybe appropriate if the problems are large and the I/Oand synchronization blocking rates are low. If the I/Oand synchronization blocking rates are low and themultiprocessor has a larger number of nodes than aredemanded by the problems, simple space partition-ing and a batch queue may be the best choice. Suchjob-scheduling policies are particularly appropriate forvery expensive computers, where economics will dic-tate careful planning of the job load, and users shouldbe encouraged to perform their debugging o�-line, un-der emulation if possible.2.1 Problems with batch processing andspace partitioningHowever, as multiprocessors continue to follow thecourse set by uniprocessors over the past forty years,they have begun to move out of laboratories and com-puting centers and into o�ces. Already multiproces-sors with relatively small numbers of nodes (4 { 16)have become popular as departmental servers, and wehave begun to see desktop machines with two and fournodes. In business environments, these machines donot typically run explicitly parallel jobs, although we



can expect that explicitly parallel compute-intensivejobs will appear once the platforms have become su�-ciently popular. Instead, they are purchased becausethe typical departmental server and many desktop ma-chines run large numbers of processes, and some ofthe processes are su�ciently compute-intensive thatsharing the memory, disk and display resources of themachine is the most economical solution.In these o�ce environments, with mixed loads ofclient/server jobs, serial jobs, and (in the future) par-allel jobs, the scheduling problem becomes more com-plex. Batch scheduling is inappropriate, because re-sponse times must be low. Simple space-partitioningwill not be su�cient in such an environment, becausethe number of processes will be high compared to thenumber of processors. Furthermore, it can be di�cultto know in advance how many processes a job will re-quire or which processes will communicate with otherprocesses | under a protocol like Microsoft's ObjectLinking and Embedding (OLE), for example, an editormay communicate with a spreadsheet or a databasedepending on which document has been loaded.2.2 Independent timesharing results in poorperformanceCrovella et al. have presented results in [3] thatshow that independent timesharing without regard forsynchronization produced signi�cantly greater slow-downs than coscheduling, in some cases a factor oftwo worse in total runtime of applications.1 Chan-dra et al. have reported similar results in [2]: insome cases independent timesharing is as much as40% slower than coscheduling. In [5], Feitelson andRudolph compared the performance of gang schedul-ing using busy-waiting synchronization to that of in-dependent (uncoordinated) timesharing using block-ing synchronization. They found that for applica-tions with �ne-grained synchronization, performancecould degrade severely under uncoordinated timeshar-ing as compared to gang scheduling. In an exam-ple where processes synchronized about every 160�secon a NUMA multiprocessor with 4-MIPS processingnodes, applications took roughly twice as long to exe-cute under uncoordinated scheduling as they did un-der gang scheduling.In general, the results cited above agree with theclaims advanced by Ousterhout in [9]: under indepen-dent timesharing, multiprogrammed parallel job loads1Crovella et al. found that hardware partitions gave the bestperformance in their experiments, but, as we have discussedabove, these are not feasible when one has a large number ofjobs to run on a small number of processors.

will su�er large numbers of context switches, with at-tendant overhead due to cache and TLB reloads. Theextra context switches result from attempts to syn-chronize with descheduled processes resulting in block-ing. As Gupta et al. have shown in [6], the use of non-blocking (spinning) synchronization primitives will re-sult in even worse performance under moderate mul-tiprogrammed loads, because, while the extra contextswitches are avoided, the spinning time is large.Although the literature to date has described ex-periments with relatively small numbers of jobs time-sharing a multiprocessor, we may expect (and know,from experience) that departmental servers in prac-tice will be heavily loaded for some portion of theirlifetime. The reason is a simple economic one: a sys-tem that is not heavily loaded is not fully utilized;an underutilized system is a waste of resources. Wemay expect that more heavily loaded systems will suf-fer even higher synchronization blocking rates underindependent timesharing, and commensurately highercontext switching overhead.2.3 Traditional coschedulingWe see that on timeshared multiprocessors, somemechanismmust be provided to ensure that extra con-text switch overhead due to synchronization delays isavoided. Ousterhout's solution was coscheduling, de-scribed in [9]. Under this traditional form of cosche-duling, the processes constituting a parallel job arescheduled simultaneously across as many of the nodesof a multiprocessor as they require. Some fragmenta-tion may result from attempts to pack jobs into theschedule; in this case, and also in the case of block-ing due to synchronization or I/O, alternate jobs areselected and run.Relatively good performance has been reportedfor competent implementations of traditional cosche-duling. Gupta et al. report in [6] that when co-scheduling was used with 25-millisecond timeslices ona simulated system, it achieved 71% utilization, ascompared to 74% for batch scheduling (poorer per-formance is reported with 10-millisecond timeslices).Chandra et al. conclude in [2] that coscheduling andprocess control achieve similar speedups running onthe Stanford DASH distributed-shared-memory mul-tiprocessor as compared to independent timesharing.However, traditional coscheduling su�ers from twoproblems. The �rst is that, without information aboutwhich processes are communicating, it is not clearhow to extend any of Ousterhout's three algorithms towork on jobs where the number of processes is largerthan the number of processors | the best one might



do would be an oblivious round-robin among the pro-cesses during a timeslice in which the job was allocatedthe entire machine. The second is that the selection ofalternate jobs to run, either when the process allotteda node is not runnable or because of fragmentation,is not in any way coordinated under Ousterhout's co-scheduling.We may expect the �rst problem to become signi�-cant as multiprocessors become more prevalent. Man-ufacturers wishing to provide systems of varying ex-pense and power already vary the number of nodes onthe multiprocessors they sell, so that one may buy bus-based symmetric multiprocessors with as few as twoor as many as six processors from some manufactur-ers. The application programmer must then be con-cerned with somehow keeping the number of processesthat constitute a parallel application exible. This iseasy if the application is a multithreaded one using atask queue. But if the application uses a client/servermodel, or if it consists of independent processes com-municating through message-passing or some smalleramount of shared memory, the extra heavyweight con-text switches required in the case of frequent synchro-nization will result in considerable overhead.The second problem is a performance problem. Al-though the loads examined in the works we have citedhave typically been highly parallel ones, many paral-lel jobs have relatively long sections in which many ofthe processes are blocked. In these sections alternateprocesses must be selected to run on the nodes wherethe blocked processes reside. Additionally, the inter-nal fragmentation in Ousterhout's most popular algo-rithm (the matrix algorithm) results in some nodesnot having processes assigned to them by the algo-rithm during some timeslices; these nodes will alsoneed to perform this \alternate selection." Unfortu-nately, traditional coscheduling presents no means ofcoscheduling these alternates. The result is that evenin the two-job case examined by Crovella et al. in[3], when approximately 25% of the cycles in the mul-tiprocessor were devoted to running alternates, theiruse decreased the runtime of the application to whichthey were devoted only about 1%.2.4 Distributed hierarchical controlDistributed hierarchical control was presented by Fei-telson and Rudolph in [4]. The algorithm logicallystructures the multiprocessor as a binary tree in whichthe processing nodes are at the leaves and all the chil-dren of a tree node are considered a partition. Jobsare handled by a controller at the level of the smallestpartition larger than the number of processes required

by the job. The placement algorithm strives to bal-ance loads and keep fragmentation low.Unlike Ousterhout's coscheduling, distributed hier-archical control has a mechanism for the coordinatedscheduling of alternates. Suppose K of the nodes allo-cated to a job cannot run the job's processes, becausethese processes are blocked. Then the placement al-gorithm will attempt to �nd a job with K or fewerprocesses to run on these K nodes.If a partition holds processes belonging to di�er-ent parallel jobs, then the parallel jobs are gang-scheduled within the partition. Distributed hierar-chical control thus strikes a middle ground betweenspace-partitioning and coscheduling. It is particularlyattractive for larger multiprocessors, where it removesthe bottleneck inherent in the centrally-controlled tra-ditional coscheduling of Ousterhout. However, dis-tributed hierarchical control was not designed forsmaller machines, such as the desktop machines anddepartmental servers we have described, on which weexpect that it would su�er from the same problems astraditional coscheduling.2.5 Process controlTucker and Gupta suggested in [13] a strategy calledprocess control , which has some of the characteristicsof space partitioning and some of the characteristicsof timesharing. Under process control, parallel jobsmust be written as multithreaded applications keepingtheir threads in a task queue. The scheduler dividesthe number of processors on the system by the numberof parallel jobs to calculate the \number of availableprocessors." The system dynamicallymakes known toeach parallel application the number of available pro-cessors, and the application maintains as many pro-cesses as there are available processors. The processessimply dequeue threads from the application's taskqueue and run them until they block, at which pointthey take another thread. If more parallel jobs ex-ist than there are processors, the scheduler timesharesprocessor sets among the parallel jobs.One advantage of this approach is that when theprocesses of a parallel job switch among threads, theswitch performed is a low-overhead one that does notcross address-space boundaries, because the multi-ple threads of an application share an address space.Thus fewer heavyweight context switches need be per-formed. Tucker and Gupta also cite as an advantagewhat they call the operating point e�ect | the factthat many parallel jobs will run more e�ciently on asmaller number of nodes than on a larger number ofnodes, due to the overhead of communication among



larger numbers of processes.Several published works [2, 6, 12] cite good perfor-mance for process control, but these works also �ndthat coscheduling can be modi�ed to have equivalentlygood performance.It will be clear in what follows that demand-basedcoscheduling is not at all incompatible with a mul-tithreaded approach; it might even be made to workwith process control. But we �nd process control aloneto be insu�cient for the o�ce environment we havedescribed for two reasons: the requirement that appli-cations be programmed in a particular way, and thehigh variability of runtimes of memory-intensive ap-plications.We have already discussed the �rst problem, that ofintrusiveness, to some extent above. For many paral-lel applications, especially data-parallel applications,a multithreaded approach is entirely appropriate. Butfor others, applications composed of subtasks that per-form distinct and logically autonomous functions, themultithreaded approach may be inappropriate or evenimpracticable. Examples might include clients andservers that require high rates of communication, butwhere for security reasons the client is not allowed ac-cess to all of the server's data.Thus process control alone is insu�cient as ascheduling approach in the environment we have de-scribed, because in requiring that all parallel appli-cations be coded in a task-queue multithreaded fash-ion, it would require that an important abstraction begiven up by the programmer in order to achieve goodperformance: the abstraction of a process with its ownaddress space. But processes o�er modularity and se-curity, and application writers will be loath to giveup these qualities in applications where the processabstraction is the natural one.The second problem, that of high variability of run-times for some sorts of processes under process control,results from certain parallel jobs requiring more re-sources than are available on a single node in order toexecute e�ciently. Under process control, the arrivalof new jobs into the system can cause the \numberof available processors" to fall below a critical levelat which the performance on some jobs will begin todeteriorate worse than linearly.This implies that in fact the jobs in question showsuperlinear speedup. In fact this is true in two ex-amples in published works on process control. In [6],the LU application is found to perform very poorlyunder process control when run on three processors,and the authors point out that a drastically increasedcache miss rate is to blame. Similarly, in [2], the

Ocean application su�ers a twofold decrease in e�-ciency when run on eight processors as compared towhen it is run on sixteen processors. Some of thisdecrease in e�ciency is attributed by the authors todata distribution optimizations being performed in thesixteen-processor case, but not in the eight-processorcase. The implication is that, if the data distributionoptimizations had not been performed in the sixteen-processor case, the Ocean application would have per-formed nearly as ine�ciently in the sixteen-processorcase as in the eight-processor case. So far as one cantell from the published work alone, this attributionof cause may be mistaken, because the same workshows a coscheduling experiment in which data distri-bution optimizations were not performed. In this ex-periment, coscheduling among two jobs su�ered onlya �ve-percent decrease in e�ciency compared to thestandalone sixteen-processor case with data distribu-tion optimizations| thus it seems that we can boundabove the e�ect of data distribution optimizations by�ve percent. Because the authors state that Ocean hasa larger working set than the other applications tested,we suspect that the actual cause of the ine�ciencyhere may be the larger number of cache misses thatresult from the application being executed on a collec-tive cache of half the size as in the sixteen-processorcase.Helmbold and McDowell have documented this sortof \superunitary speedup due to increasing cache size"in [7]. Because of this property of certain parallel ap-plications, their ideal \operating point" is larger thanone | possibly considerably larger than one. Thusforcing them to run on fewer processors will be veryine�cient. This is not a problem under coscheduling,because under coscheduling the arrival of new jobsdoes not cause fewer processors to be devoted to theexecution of a parallel job.We believe that the phenomenon of increasing inef-�ciency with higher loads under process control maybe an important problem in practice. This is becausesoftware tends to perform near the memory bound-aries available on most users' processors. The reasonfor this pressure is simply economic: purchasers ofcomputer hardware will tend to buy as little memoryas possible while still maintaining satisfactory perfor-mance on applications; to purchase more would bewasteful. Purveyors of software tend to use morememory to add new features to their applications inorder to gain competitive advantage. Programming soas to conserve memory requires more e�ort and thuscosts more, and will be done only insofar as is neces-sary to keep customers happy.



This pushing at the boundaries of available mem-ory will probably mean that many commercial applica-tions will show superlinear speedup. If process controlas it is described in [13] were used as the only meansof timesharing a multiprocessor, we would expect thatsuch applications would show poor performance whenthe job load was high.3 Demand-based CoschedulingDemand-based coscheduling is what we call our newapproach to scheduling mixed workloads on multipro-grammedmultiprocessors. The approach dictates onlythat processes that are communicating be cosched-uled. In particular, demand-based coscheduling doesnot require a particular method of process placement;processes may be placed or migrated in whateverfashion seems appropriate for load-balancing or data-distribution reasons.We present two methods for doing demand-basedcoscheduling, although there might of course be manymore. These two methods are dynamic coschedulingand predictive coscheduling .Dynamic coscheduling was called adaptive gangscheduling in an earlier work [11], and is an ap-proach suited for use on message-passing multiproces-sors or on distributed shared-memory multiprocessorsin which cache-line-invalidation events can interruptthe processor. Under dynamic coscheduling, messagesarriving at a node, if addressed to a process other thanthe one currently running, sometimes cause preemp-tion of the running process in favor of the process towhich the message is addressed. Thus, processes ondi�erent processors that communicate frequently willtend to be coscheduled, reducing the amount of con-text switching and the amount of blocking due to syn-chronization.Predictive coscheduling can be used on message-passing or shared-memory multiprocessors, but couldalso be used on bus-based shared-memory multipro-cessors. Under predictive coscheduling, the recenthistory of communication between processes is usedto identify a set of correspondents for each process.When a process is scheduled on one node, an attemptis made to schedule its correspondents on other nodesfor simultaneous execution.We can see right away that demand-based cosche-duling will be able to perform coscheduling in somecases where traditional coscheduling cannot. For ex-ample, consider a case in which two parallel jobs, Aand B, are run on an eight-node bus-based shared-memory multiprocessor, as shown in Figure 1. Sup-
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ning process can be performed by a library routinewhich can execute a system call in the case when ascheduling decision must be made.Demand-based coscheduling should also work onmany distributed-shared-memory multiprocessors. Ina cache-coherence scheme such as the software schemespresented by Chaiken et al. in [1], cache line invali-dations can be treated in the same fashion as arrivingmessages. We can do even better on systems withnetwork interface processors, such as FLASH [8] orTyphoon [10]. In these systems, some of the sched-uler state can be cached in the interface processor, sothat the scheduling decision can be made without con-sulting the computation processor. The computationprocessor could be interrupted only when a preemp-tion was needed. In this case the number of exceptionscould be kept to the minimum necessary.It is more di�cult to envision applying this schemeto a shared-memory multiprocessor with hardware-only cache-coherence protocols; for such processorspredictive coscheduling will be more appropriate.We now develop a dynamic coscheduling algorithmby taking the simplest possible implementation ofthis idea and successively modifying it to achieve fairscheduling while maintaining good coscheduling.4.1 The \always-schedule" dynamic cosche-duling algorithmThe �rst version of the dynamic coscheduling algo-rithm is the simplest possible one, in which the job forwhich the arriving message was destined is always im-mediately scheduled. We have modeled this case ana-lytically with a Markov process for two symmetric jobsof N processes running on N nodes, using the weakassumptions that messages are uniformly addressed,that the processes generating them are memoryless,and that the run-time of processes before they blockspontaneously is exponentially distributed. We callthe assumptions \weak" because we expect that realprocesses exhibit greater regularity that would in factimprove the performance of such a scheduler.The two-job Markov process is a skip-free birth-death process, and a closed-form solution for thesteady-state probabilities is possible. The multipro-cessor has N nodes. The states of the process arede�ned as follows: in state i, N � i nodes are runningthe �rst job and i are running the second job. If wecall the jobs job A and job B, in our model we makeuse of the quantities qSA and qSB, the rates of sponta-neous context switching of processes for jobs A and B.The spontaneous switching rate is intended to captureat once the notion of timeslice expiration and block-

ing due to I/O or synchronization requirements. Anode running a process will switch from running it tothe next resident process at this rate. We also use thequantities qMA and qMB, the rates of message-sendingfor processes of jobs A and B | these are the ratesat which the running processes generate uniformly-addressed messages to other processes that make uptheir jobs.In summary, then, state 0 is the state in which allthe nodes are running job A and no nodes are runningjob B. In state 64, all the nodes are running job Band no nodes are running job A. In state 32, half ofthe nodes are running each job.The steady-state probabilities are then given bypk = p0 k�1Yi=0 (N � i)qSB + iN�iN qMB(i + 1)qSA + (N � i � 1) (i+1)N qMA (1)wherep0 = 11 +PNk=1Qk�1i=0 (N�i)qSB+iN�iN qMB(i+1)qSA+(N�i�1) (i+1)N qMA (2)Results for this case are shown in Figure 2. Here wehave taken qSA = qSB = QS and qMA = qMB = QM .The vertical axis is steady-state probability. The deepaxis is log10(Qs=Qm). The horizontal axis along thefront gives state number.Towards the front of the graph, we see that the prob-abilities of being in the states where all the nodes arerunning one job or the other are high, and the prob-abilities of being in states where some nodes are run-ning one job and some running the other are low. Wesee then that the ratio of the rate of sending messagesto the rate of spontaneous switching of processes de-termines the steady-state probability that all proces-sors in the modeled system are running a single job.We found that if several hundred or more messagesare sent on average between the spontaneous contextswitches, then the steady-state probability that allprocessors are either running one job or all proces-sors are running the other job is about one-half. Iffewer messages are sent between spontaneous contextswitches, then a binomial behavior begins to emerge,so that when only one message is being sent on averagebetween spontaneous context switches, about half ofthe processors are running one job, and half runninganother. It is to be noted, though, that when very fewmessages are being sent, coscheduling is unlikely to beimportant.
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scheduler cycles.We maintain for each process i a quantity ri, thenumber of scheduler cycles for which it has run sincethe process that most recently joined the scheduler runqueue started running. We de�ne a global quantityh, which can be modi�ed to a�ect the \volatility" ofscheduling: a larger value of h causes the scheduler totake longer to switch due to arriving messages.Run-time equalization works as follows: when amessage destined for process j arrives at its node,which is running process i, i 6= j, we switch to pro-cess j if and only if rj + h < ri, that is, if and onlyif process j lags process i by more than h schedulercycles. This de�nition of h means that if the sys-tem is run for no more than H scheduler cycles, andh = �H, the \equalizing" algorithm will always be-have the the same as the \always-switch" algorithm.This is because rj cannot be greater than H if thesystem is run for no more than H cycles, and so nec-essarily rj + h � 0, and in this scenario process i hasrun for at least 1 scheduling cycle. With this verynegative value of h, then, the scheduler will alwayscontext-switch due to arriving messages.On the other hand, if h = H and the system isrun for no more than H cycles, a process i will neveraccumulate more than H scheduling cycles, and it willalways be the case that rj +h � ri (until possibly theHth cycle, when the experiment ends). Thus withthis large positive value of h, the scheduler will nevercontext-switch due to arriving messages.
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Figure 3: Steady-state probabilities in the case where message-sending rates di�er very slightly { see the text forfurther details.We found that, for values of h near �1; 000, rea-sonably fair performance was attained over the run-ning of an experiment; however, little coschedulingwas achieved. The results for the more radical caseof message-sending rates of :25 and :5 may be seen inFigure 4.Our intuition about the failure to coschedule undersimple equalization is that, by disregarding more op-portunities to coschedule processes, we caused morethrashing. In general, the higher the value of h, theless coscheduling was achieved. One possible solutionwas to further reduce h, but in fact, we already had amechanism that proved to work better in practice atrecovering strong coscheduling behavior, by ensuringthat the scheduler makes progress from job to job.4.3 The \epochs and equalization" dynamiccoscheduling algorithmConsider a scenario in which about half of the nodeson a multiprocessor are running one parallel job, andhalf the other. In our simulation, when a node runningparallel job A spontaneously switches to parallel jobB, there is a probability of close to 1=2 that the nextmessage it receives will be destined for a process be-longing to job A, provided that message-sending ratesfor the two jobs are equal. Thus there is a substan-tial probability that the node will switch quickly backto job B without job A ever having achieved full co-scheduling. This probability is greater if switching ismostly spontaneous.Epoch values are used to reduce this sort of thrash-ing. The epoch value is maintained in a counter ateach node. The counter is incremented at each spon-taneous context switch. When a node sends a message,

the epoch value is included in the message; when re-ceiving a message, the node considers switching only ifthe equalization criteria are met and the epoch num-ber is higher than its own. If the node does switchprocesses, it adopts the higher epoch number as itsown.The result is that nodes \defecting" from a paralleljob will not return to the job due to messages beingsent by nodes remaining with the job. Progress mustbe made to the new job before the node will considerswitching back. The results for this strategy can beseen in Figure 5, and are quite encouraging | cosche-duling behavior is achieved for more than about 300messages per timeslice, even given our pessimistic as-sumptions. As in Figure 4, message-sending rates of:25 and :5 are used.5 Predictive CoschedulingIf we wish to implement coscheduling on a bus-basedshared memory multiprocessor, with hardware-onlycache-coherence protocols, the detection of commu-nication becomes more complicated than on message-passing architectures. If the program uses library rou-tines for heavyweight remote procedure calls or forsemaphores, the invocation of the kernel to delivermessages, perform blocking tests of semaphores, orset semaphores will allow the scheduler to be awareof communication between processes, and dynamic co-scheduling can be used.But if instead processes communicate only throughshared memory pages in user mode, the kernel is notinvoked, and cannot detect communication when ithappens. We might consider using memory protec-
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k (state number)Figure 4: Degree of coscheduling in the case where message-sending rates di�er by a factor of two, but equalizationis used. The vertical axis approximates steady-state probability { the scale is the number of iterations out of100,000 in which the process was found in the indicated state.tion on shared memory pages to signal the kernel the�rst time during a process's lifetime that it requestsaccess to a shared memory page, but this could bequite expensive if a large number of shared memorypages are touched and memory protection traps areslow.Another possibility is to recognize that coschedulingis a performance optimization, and is not required forcorrectness, so that it is feasible to use a mechanismthat simply provides hints as to which processes arelikely to communicate with each other. If such a mech-anism is correct with high probability, it will be su�-cient to allow good performance.We proceed by describing predictive coschedulingin the next section, and then proceed to describe aninexpensive mechanism for detecting communicationusing virtual memory hardware.5.1 CorrespondentsUnder predictive coscheduling , processes that have re-cently communicated with each other are called cor-respondents. As in LRU demand paging, past be-havior is treated as a predictor of future behavior,and so predictive coscheduling works by coschedulingrunnable correspondents. In particular, when a pro-cess is scheduled on a node, an attempt is made tosimultaneously schedule on other nodes its runnablecorrespondents. On a message-passing multiproces-sor, this could be done by sending messages to the

nodes on which the correspondents resided. On abus-based shared-memory processor, other processeswould be selected for preemption, interrupts would besignalled on their nodes, and the correspondents wouldbe scheduled.We have not yet tested this strategy, although it ap-pears promising. Clearly a runtime equalization mech-anism would be necessary to ensure fairness; possiblya mechanism like epochs would be desirable to reducethrashing. The selection of processes for preemption isanother open question. It might be desirable to selectfor preemption the processes with the fewest corre-spondents, because such processes will be runnable inthe future under a wider variety of circumstances.It is also worth noting that if communication be-tween processes is entirely memoryless | so that onepair of processes that have recently communicated isno more likely to communicate in the future than isany other pair of processes | predictive coschedulingwill not perform well. This is because predictive co-scheduling attempts to predict future behavior on thebasis of past behavior, a strategy that will work nobetter than random selection with uniform probabilityfor memoryless processes. Of course, this scenario isunlikely to arise in most parallel jobs, where the con-stituent processes will communicate with each otherrepeatedly.
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k (state number)Figure 5: Degree of coscheduling achieved in the case where message-sending rates di�er by a factor of two, andboth equalization and epochs are used { the vertical axis approximates steady-state probability, being the numberof iterations out of 100,000 in which the simulator was in the indicated state.5.2 Detecting communication through sharedmemory on bus-based shared-memorymultiprocessorsIt remains to describe a means of identifying cor-respondents on bus-based shared-memory multipro-cessors | that is, detecting communication throughshared memory. Because, as we noted above, we donot think that this information need be perfect, wepropose using the information in translation lookasidebu�ers (TLBs) on processors where these are readable.Processor-readable TLBs are becoming more common,because of the attractiveness of handling TLB missesin software on RISC processors. Among the processorsthat have readable TLBs are MIPS processors, DECAlpha processors, and HP PA-RISC processors. Intel486-series processors also provide a means of readingthe TLB through the test instruction interface; read-ing the TLB does not require disabling virtual mem-ory.The algorithm for �nding correspondents is simple.In the process control block (PCB) for each user pro-cess that shares memory, we maintain a �eld that con-tains a list of correspondents. For each user processwe maintain in memory a data structure, keyed by vir-tual page address, that contains an entry for each ofthe shared memory pages mapped in the process. Thestructure is called the Shared Page Recent AccessorsTable (SPRAT). Each entry in the SPRAT contains alist of processes that have recently accessed the page.

At certain points in the execution of a process, we iter-ate over the TLB, �nding entries for shared data pagesin this process's address space. For each such entry,we �nd the corresponding page entry in the SPRATand add the current process to the list there. Thenwe add the processes in the SPRAT entry to the cor-respondents list in this process's PCB.Because the TLB is typically small (256 or fewer en-tries), it can be searched quickly. Because the replace-ment policy is typically approximate LRU within a set(or simply LRU on fully-associative TLBs), the TLBcontains information about which pages have beenread or written recently. We may choose to searchit just before descheduling a process, or perhaps alsoat other convenient times, such as system calls andexceptions.Entries will also need to be cleared from the SPRATand the correspondents list in the PCB. One inexpen-sive possibility is to maintain the lists as FIFOs of�xed and limited size | for example, the number ofnodes on the machine would be a good limit. Anotherpossibility is simply to clear the information at pseu-dorandom intervals | this can also be implementedinexpensively.There are likely to be other means of detectingcommunication through shared memory on bus-basedshared-memory multiprocessors using virtual mem-ory information | as has been found in the �eldof lifetime-based garbage collection, the information



maintained by a virtual memory system is very rich.6 ConclusionsWe have presented demand-based coscheduling, a newapproach to scheduling parallel computations on mul-tiprogrammed multiprocessors that promises betterperformance by coscheduling only those processes thatcommunicate with each other. Demand-based cosche-duling is:� Non-intrusive | the programmer is not requiredto write parallel programs in a particular style.E.g., multithreading is not required; if full-edgedprocesses are a better abstraction, they can beused instead. Process placement or migration al-gorithms are not imposed by demand-based co-scheduling.� Flexible | If a job composed of a large number ofprocesses is run on a multiprocessor with a smallnumber of nodes, demand-based scheduling cantake advantage of local communication patternsthat may provide better performance.� Dynamic | Newly-initiated communication be-tween processes is detected automatically as ademand for synchronization by demand-based co-scheduling. Thus it is well-suited to newer pro-gramming paradigms (e.g., OLE) that may resultin �ne-grained communication between processesthe programmer could not have anticipated wouldcommunicate.� Decentralized | scheduling decisions are madelocally in demand-based coscheduling. Unlikein traditional coscheduling, there is no \alter-nate coscheduling problem," because there is nocentrally-imposed notion of a single currently-scheduled job.Additionally, because demand-based coschedulingdoes not limit the number of processes making up aparallel job, conditions of high load will not cause jobsto su�er from the anomalous behavior on memory-intensive programs reported in work on process con-trol.We presented two forms of demand-based cosche-duling: dynamic coscheduling, which is suited for useon message-passing processors and distributed-shared-memory processors with software cache-coherence pro-tocols; and predictive coscheduling, which we ex-pect to work well on shared-memory processors withhardware-only cache-coherence protocols.

We presented analytical and simulation results thatshow that the number of messages sent per timeslice isa key factor in achieving good coscheduling behaviorunder dynamic coscheduling, and that with a meancommunication rate of more than � 300 messages pertimeslice in our simulations, strong coscheduling be-havior was achieved. We also showed that even undervery pessimistic assumptions, dynamic coschedulingcan achieve strong coscheduling behavior while main-taining fairness in scheduling. We expect that realapplications will achieve even stronger coschedulingbehavior.We discussed a means of using virtual memoryhardware to identify correspondents | communicat-ing processes | on shared-memory platforms withhardware-only cache-coherence protocols.We are currently completing a more faithful simula-tor that will allow us to evaluate more demand-basedcoscheduling strategies under a variety of syntheticloads. Following this, we plan to implement demand-based coscheduling on an actual multiprocessor so thatit may be evaluated under actual application loads.AcknowledgementsThe authors wish to thank Bert Halstead, ButlerLampson, and Larry Rudolph for valuable discussionsof the ideas presented in this paper. Paul Barton-Davis, Allen Downey, Shel Kaphan, and VolkerStrumpen were kind enough to read drafts of the paperand give us their detailed comments. Finally, the sug-gestions of the anonymous referees were helpful andvery much appreciated.References[1] Chaiken, D., Kubiatowicz, J., and Agarwal,A. \LimitLESS Directories: A Scalable Coher-ence Scheme," in Fourth International Confer-ence on Architectural Support for ProgrammingLanguages and Operating Systems (ASPLOS IV),April 1991, pp. 224{234.[2] Chandra, R., et al. \Scheduling and Page Mi-gration for Multiprocessor Compute Servers," inSixth International Conference on ArchitecturalSupport for Programming Languages and Operat-ing Systems (ASPLOS VI), San Jose, California,October, 1994, pp. 12{24.[3] Crovella, M., et al. \Multiprogramming on Multi-processors," in Third IEEE Symposium on Paral-lel and Distributed Processing, 1991, pp. 590{597.[4] Feitelson, D. G., and Rudolph, L. \DistributedHierarchical Control for Parallel Processing," in
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