
IPPS'95 Workshop on Job Scheduling Strategies for Parallel Processing 1

Time Space Sharing Scheduling and

Architectural Support

Atsushi Hori, Takashi Yokota, Yutaka Ishikawa, Shuichi Sakai,

Hiroki Konaka, Munenori Maeda, Takashi Tomokiyo, J�org Nolte,

Hiroshi Matsuoka, Kazuaki Okamoto, Hideo Hirono

Tsukuba Research Center

Real World Computing Partnership

Tsukuba Mitsui Building 16F, 1-6-1 Takezono

Tsukuba-shi, Ibaraki 305, Japan

TEL:+81-298-53-1661, FAX:+81-298-53-1652

E-mail:

�

hori; yokota; ishikawa; sakai; konaka; m{maeda

tomokiyo; jon; matsuoka; okamoto; hirono

�

@trc.rwcp.or.jp

Abstract

In this paper, we describe a new job scheduling class,

called \Time Space Sharing Scheduling" (TSSS) for dy-

namically partitionable parallel machines. As an in-

stance of TSSS, we explain the \Distributed Queue Tree"

(DQT) that we have proposed already. We also pro-

pose some architectural support to implement TSSS on

a parallel machine as adequately as TSS on sequential

machines. The most important architectural support is

\network preemption." The proposed architectural sup-

port will be implemented on our RWC-1, a message-

driven parallel machine, and the DQT will also be im-

plemented in the operating system on the RWC-1, called

SCore, under development in our RWC project

1 Introduction

So far, many techniques of job scheduling for parti-

tionable parallel machines involve �nding an idle parti-

tion and mapping a newly entered job onto it [3, 4, 12,

20]. In most cases, however, processor utilization is far

from optimal because of fragmentation. Krueger et al.

proposed a new job scheduling scheme, called \scan",

and found that job scheduling order, not mapping, is

more important to achieve higher processor utilization

[11]. All methods, however, are batch scheduling and an

interactive programming environment can not be pro-

vided. CM-5[18] and Paragon[10] provide time-sharing

scheduling. In CM-5, partitioning can only be changed

at system bootup time, and in Paragon (OSF/1) par-

titioning and the partition in which a job is executed

must be speci�ed by user.

If the target parallel machine is dynamically parti-

tionable, one can implement a job scheduler where the

parallel machine is multiplexed in time (time sharing)

and divided into sub-processor-space (space sharing).

With this scheduler, an interactive programming envi-

ronment is possible and allocation of processor resources

can be optimized because only the required processing

power is allocated. The combination of time sharing

and space sharing can achieve higher processor utiliza-

tion than batch scheduling, because late-coming jobs

may cancel the fragmentation of processor space. The

scheduler should have the ability to select which par-

tition is to be allocated to balance the load. At the

same time, the scheduling process should be distributed

and can run in parallel to avoid bottlenecks. The load-

balancing and distributed process of scheduling are to-

tally new. We call this kind of scheduling class \Time

Space Sharing Scheduling (TSSS)".

In this paper, we focus on two aspects of TSSS. The

�rst is TSSS (Section 2) as a new class of scheduling

on dynamically partitionable parallel machines, and our

Distributed Queue Tree (DQT) [9] as an instance of

TSSS. The second is architectural support to realize a

multi-user, multi-programming environment like UNIX

(Section 3). We also describe the architectural sup-

port that will be implemented in RWC-1[16] (Section

4). One of the most important architectural support is

\network preemption" derived from implementing fast

process switching. We will also describe how a network



IPPS'95 Workshop on Job Scheduling Strategies for Parallel Processing 2

preemption mechanism is essential for parallel machines

to implement not only an interactive, multi-user, and

multi-programming environment, but also the detection

of termination of distributed processes, global garbage

collection, and checkpointing.

2 Time Space Sharing Schedul-

ing

Time space sharing scheduling (TSSS) is a new class

of job scheduling technique to provide a multi-process

programming environment. It is a combination of time-

sharing and space-sharing job scheduling techniques for

dynamically partitionable parallel machines. Figure 1

shows an example of the TSSS. A process is a set of

threads running over the processors in an assigned par-

tition. When a process is switched, gang scheduling of

the threads is assumed because the communication de-

lay can be minimized with gang scheduling [14, 2].

Partitio
n Plane 3

Partitio
n Plane 1

Partitio
n Plane 2

Time

Figure 1: Example of TSSS

With TSSS, a process exclusively occupies a partition

in a certain time slot. There could be a choice that each

processor be multiplexed at thread level, not at process

level. However, this could result in a larger working

set and processor thrashing [6]. A parallel machine is

multiplexed in terms of time and processor space with

TSSS. A TSSS scheduler should schedule a process to

each time slot and map the partition. A partition at a

certain time slot is a virtualized parallel machine and

a processor address space from the user's view point.

We assume that the target parallel machine is homo-

geneous, and that the user cannot specify the partition

to which a process allocated. Only the TSSS scheduler

can decide which partition is allocated. The same sit-

uation can be seen in the conventional TSS, where the

Process A Process B

Process C

Process D

Scheduling Partition

Figure 2: Example of Piped Processes

user cannot specify the time slot. A process group can

occupy a partition. In this case, only the locations of

subpartitions of the member processes can be speci�ed,

relative to the process group partition. Viewed from

the operating system, a partition is a computational re-

source. The TSSS scheduler is also a virtual parallel

machine server of various sizes. Partitions should be

allocated by a TSSS scheduler according to the status

of the entire system, normally, to balance the system

load. The scheduling process of TSSS, however, should

be distributed to avoid possible bottlenecks.

A TSSS system provides not only enough computa-

tional power for the job (task), but also an interactive

programming environment by time-sharing. Processes

can also run in parallel, if they are located in di�erent

but non-overlapped partitions. A good example of the

power of TSSS can be found in piped processes in UNIX.

In Figure 2, process A, B, C, and D are connected with

pipes (denoted as curved arrows) and located in disjoint

subpartitions in a scheduling partition. These four pro-

cesses can be scheduled simultaneously and run in true

parallel. The input of process A can be a terminal, and

this piped command can be interactive. In UNIX, the

speed of this piped command is tentative and is dom-

inated by the slowest process in the command. With

TSSS, however, the speed of all processes can be equal-

ized and can reach maximum speed when the partition

sizes of the processes are chosen in the right way. Thus

the bene�t of command modularity and the best par-

allel performance execution can be gained in a familiar

and natural manner.

2.1 Distributed Queue Tree

We proposed the Distributed Queue Tree (DQT) [9] as

an instance of TSSS. The DQT is a distributed tree

structure for process scheduling management. Each node

of the DQT has a process run queue. Every process in

the queue requires that the number of processors does

not exceed the partition size of the node. The DQT tree



IPPS'95 Workshop on Job Scheduling Strategies for Parallel Processing 3

N3 N4 N5 N6
Q3 Q4 Q6Q5

N1 N2
Q1 Q2

N0
Q0

Figure 3: Example of DQT

Table 1: Example of DQT scheduling

Time Slot # PE0 PE1 PE2 PE3

0 Q

0

(0)

1 Q

0

(1)

2 Q

1

(0) Q

2

(0)

3 Q

1

(1) Q

5

(0) Q

6

(0)

4 Q

3

(0) Q

4

(0) Q

5

(1) Q

6

(1)

5 Q

3

(0) Q

4

(1) Q

5

(2) Q

6

(0)

6 Q

0

(0)

7 Q

0

(1)

8 Q

1

(0) Q

2

(0)

9 Q

1

(1) Q

5

(0) Q

6

(1)

10 Q

3

(0) Q

4

(0) Q

5

(1) Q

6

(0)

11 Q

3

(0) Q

4

(1) Q

5

(2) Q

6

(1)

12 Q

0

(0)

: :

structure should reect the nesting of the dynamic par-

titioning. Each DQT node should be distributed to the

processor in the partition corresponding to the node.

Each DQT node only communicates with its supernode

and subnodes. When a process is suspended, the pro-

cess should be dequeued from the process run queue.

In the DQT, this queue operation is needed only in a

processor that plays the role of a DQT node.

Figure 3 shows an example DQT. Each node has a

process run queue represented by a rectangle to the right

of the node. The width of each rectangle is equal to the

length of the queue. The root node, N0, is responsible

for the entire processor space (full partition). Each of

nodes N1 and N2 is responsible for a halved partition.

Each of nodes N3, N4, N5 and N6 is responsible for a

quartered partition.

Table 1 shows the scheduling corresponding to the

DQT in Figure 3. In this table, the jth process in the

queue Q

i

of the ith node is denoted by \Q

i

(j)". The

entire processor space is assigned to Q

0

(0) at time slot

0 and to Q

0

(1) at time slot 1. In time slot 2, halved

t0

t1

t3
t4

t5

t6

t7(t0)

t2

Figure 4: Example of front movement

partitions are assigned and two processes are running

simultaneously in the adjacent partitions. In time slot

3, the right-hand side halved partition is halved again,

while the left-hand side halved partition is left as is since

there are two processes in queue Q

1

. Every process is

scheduled at least once in 6 time slots in this case.

A DQT node is activated when a process in the queue

of the node is scheduled. At a certain time, the line con-

necting activated DQT nodes in a tree diagram is called

a front. Figure 4 shows an example of movement of the

front. In this �gure, the rectangles in the DQT nodes

represent the process run queue in that node. If the

load of DQT is well-balanced, the front is a horizon-

tal line moving downward repeatedly. The lines t0 and

t1 in Figure 4 are examples. The front moves faster

on the DQT branch with the lighter load than on the

heavier loaded branch (The front is denoted by t2 or

t3, for example). If a part of the front hits the bot-

tom of the tree (t4), then the part goes back to the

node where the load is unbalanced (t5 and t6). This

is to keep the processors as busy as possible. Conse-

quently smaller processes may be scheduled more often

than larger processes. As supposed, this strategy can

cause an unfairness in scheduling.

The policy of deciding which partition is to be al-

located when a process is created is very important in

balancing the DQT load. This is because job allocation

is the only chance to balance the load of a DQT. A well-

balanced DQT exhibits not only good processor utiliza-

tion, but also a shorter response time and fair schedul-

ing [9]. We proposed various job allocation policies [9].

Figure 5 shows an example of one of the proposed job

allocation policies.

The number on each DQT node represents the load



IPPS'95 Workshop on Job Scheduling Strategies for Parallel Processing 4

9

24

1 2 3 2

7

4

2

1

Partition Size
add_task(1)

Figure 5: Example of job allocation

on the branch, in this case, the number of virtual pro-

cessors needed to schedule all processes in the sub-DQT

at once. For example, the number on the left node in

the second level is 9, because the node itself requires 6

virtual processors (three processes times partition size

two) and the virtual processors in the subnodes (one for

left subnode and two for right subnode). The add task

message is sent to the root when a partition for a newly

created process is required. This message is forwarded

to the subnode whose load is lighter, until it reaches the

node that has the required partition size (in this case,

the required size is one). The goal of the add task mes-

sage will be the partition for a newly created process.

We have been evaluating DQT with a number of sim-

ulations. The latest simulation results show that DQT

exhibits very good linearity in processor utilization from

low-load situations to high-load situations, independent

of job size distribution, and also good stability even with

a 99% workload.

2.2 Related Works

Feitelson and Rudolph proposed a \Distributed Hierar-

chical Control" (DHC)[7, 6] that is also an instance of

TSSS. DQT and DHC are very similar in the nature of

distribution and scalability. The major di�erence be-

tween DQT and DHC, however, lies in the assumptions

made and the target computing environment. In DQT,

the scheduling unit is a \process", an entity of parallel

program execution and a set of thread, while in DHC

the unit is a \thread" as a part of a parallel program

execution on a single processor. In DHC each scheduler

at the lowest level should manage the threads on each

processor. In DQT, however, each DQT node, includ-

ing the DQT nodes at the lowest level, only manages

a \virtualized parallel machine" corresponding to the

node. The DQT nodes at the lowest level can be asso-

ciated with the smallest partition size larger than one.

Thus the height (number of levels) of DQT is the mag-

nitude of the partition size that the system provides.

The thread management in DQT is orthogonal to job

scheduling.

The disadvantage in the assumption of DQT is that

the number of running processors (threads) may vary

during program execution. If the number of running

processors is less than partition size, then processor uti-

lization is decreased. The overhead of forking threads

over processors, however, can be much lower than the

case in DHC because there is no scheduling overhead.

While in DHC, idle processors can be eliminated be-

cause of thread level scheduling, the scheduling over-

head can be considerably heavy when the lifetime of

threads is relatively short. Thus DHC is somewhat

aimed at a distributed computing environment in which

a longer thread lifetime assumed, but our DQT is tar-

geted at more closely connected parallel machines in

which a shorter thread lifetime supposed.

We assume that the overhead of thread invocation

is very low, and that there is some architectural sup-

port for partitioning and gang-scheduling. In message-

driven, multi-threaded processors like MDP [5] or our

RWC-1 [16], threads are controlled by hardware. The

software overhead in thread control should be elimi-

nated.

3 Architectural Support for TSSS

Some kind of architectural support is required to im-

plement e�cient TSSS. In the following subsections, we

discuss the kind of architectural support that enables

practical TSSS. In subsections 3.1 and 3.2, we concen-

trate on the partitioning itself. We discuss the charac-

teristics of partitioning that enables e�cient TSSS. In

subsection 3.3, we propose a new concept called \net-

work preemption."

3.1 Degree of partitioning

A number of network topologies have been proposed so

far. Most of the them, however, are mainly considered

in terms of the application or architecture, but not in

terms of the parallel operating system. A parallel appli-

cation can be aware of network topology. Job schedul-

ing, however, is a part of the operating system and it

is relatively hard to maintain. The control structure of

TSSS should not be aware of network topology from the

viewpoint of portability.

In practice, the TSSS control structure is not com-

pletely independent from the network topology. Here

we consider the \partitioning degree" of a network. For



IPPS'95 Workshop on Job Scheduling Strategies for Parallel Processing 5

Partition A

P1

P2

Partition B
The message of partition A being passed from node P1

to node P2 passes through partition B (in case of X-Y

routing). Partition A is open and partition B is closed.

Figure 6: An open partition and a closed partition in a

2D mesh

example, the partitioning degree of a hyper-cube is usu-

ally two, because every sub-partition is halved recur-

sively. In a 2D-mesh, the partitioning degree can be

four. The partition allocation problem is very similar

to the problem of memory allocation. If the distribu-

tion of the required partition size is unknown, a par-

titioning degree of two and a binary buddy allocation

strategy are the best from the viewpoint of fragmenta-

tion and the simplicity of algorithm [15]. This gives a

new approach to the design of a network topology on

a parallel machine. In a 2D-mesh, the partitioning de-

gree can be two. In this case, however, both the mean

and maximum hop counts increase, and hot spots can

appear more easily. Thus, parallel machine designers

should consider the partitioning degree if they want to

provide TSSS.

3.2 Open and closed partition

The partitions of a network can be divided into \open

partitions" and \closed partitions", depending on the

network topology, routing algorithm, and shape of the

partition.

Open partition: On a direct network where every

router is associated with a processor, if any kind

of message can go out the partition that includes

the sending node, then the partition is called an

open partition.

Closed partition: In communications between pro-

cessors in the same partition, if no messages goes

out of the partition, then the partition is called a

closed partition.

In an open partition, a process may interfere or block

the execution of another process when it sends a num-

ber of messages into the network. This situation should

be avoided when a time-critical application, such as a

multimedia server, runs simultaneously with other ap-

plications. Thus, all possible partitions should be closed

to prevent any inter-process interference. In terms of

fault tolerance, a defective processor or router can be

easily isolated, if all possible partitions are closed.

3.3 Network preemption

The process switching speed is the key, implementing

TSSS as e�ciently as on sequential machines. If time-

critical applications are the target of the machine, then

the process switching time should be fast enough, and

should guarantee the maximum process switching time.

On a distributed memory parallel machine, the han-

dling of messages being passed around a network is the

major issue faced in guaranteeing the process switching

time. In CM-5, time sharing in a partition is imple-

mented with an AFD (All Fall Down) operation [18].

When a scheduler decides to switch a process, the sub-

network in the partition enters AFD mode. In this

mode, all messages in the subnetwork go to the near-

est processors regardless of the message destinations.

After the AFD mode, the kernel switches to a new pro-

cess. The new process's messages that were previously

saved by the AFD, are sent into the network again. The

message order is not preserved. Further, in CM-5, mes-

sage sending in user-mode can fail when a kernel sends

a message, or when process switching takes place [19].

Therefore, any message sending in user-mode should al-

ways be veri�ed.

We will generalize this AFD scheme. A typical ques-

tion would be \Why not preempt the network as well

as the processors ?", since the network is a crucial part

in a parallel machine. There is a big di�erence between

AFD and network preemption. With network preemp-

tion, the message sending in user-mode never fails, and

the message order can also be preserved.

On a direct network, network preemption can be im-

plemented more easily than on an indirect network if

all possible partitioning of the network is closed. This

is because every router is associated with a processor

and they are close enough to implement the network

preemption mechanism in a direct network. In a closed

partition, all router statuses must be saved when switch-

ing processes are in the partition. Thus, closed par-

titioning guarantees the locality of process switching.

The time to preempt a (sub)network may not depend

on system size (number processor or router) and may

be a constant order.



IPPS'95 Workshop on Job Scheduling Strategies for Parallel Processing 6

With closed partitions, one can avoid inter-process

interference caused by hardware conicts. With a net-

work preemption mechanism, even in a situation in which

a user sends a number of messages into a network and

the network is saturating, the maximum process switch-

ing time can be guaranteed to be reasonable. Network

preemption also means avoiding inter-process interfer-

ence in the time domain.

A network preemption mechanism provides not only

fast process switching, but also termination (idle) detec-

tion of a distributed computation. A distributed com-

putation is said to be terminated, if (i) every process

is idle, and (ii) there are no messages in a network [1].

The second condition can be checked by investigating

on the saved router status. In practice the next con-

dition is needed: (iii) no suspending systemcalls. This

checks the existence of one or more threads waiting for

the result(s) of systemcall(s), such as I/O completion.

If only condition (iii) fails, then the process is idle. The

simplest way to check if a process is idle or not is to

inspect the router status sampled at the every process

switching. The same technique can be used in global

garbage collection (GC), since the distributed termina-

tion problem and global GC problem are dual [17].

The other application of network preemption is check-

pointing. With network preemption, the process con-

text and router status can be stored onto disk(s) at a

checkpoint, and the status can be restored. Then, pro-

gram execution can be restarted. Fast process switch-

ing with a network preemption mechanism helps to im-

plement e�cient and practical checkpointing. Thus a

network preemption mechanism is considered to be es-

sential for a practical parallel machine.

The synchronization of network preemption now be-

comes an issue. If a network preemption signal is prop-

agated by a normal multicasted message, some of it can

be lost. This is because some of the multicasted mes-

sages may be saved with their router statuses into the

processors' memory, before the signal delivery to every

router in a closed partition has been completed. This

situation may cause a deadlock or failure of synchro-

nization of network preemption. To prevent this, special

broadcast and synchronization mechanisms are needed

to implement network preemption.

3.4 Related Works

Lin and Wu proposed a conict-free network [13] where

any hardware resource contentions can never arise in

communications. Here, the hardware resources may in-

clude wires, message bu�ers, input ports, output ports,

and so on. If any communications in a partition are

conict-free from the communications in other parti-

Figure 7: Example of CCCB

tions, then the interference between processes in di�er-

ent partitions can be avoided. In a direct network, the

closed partitions are conict-free of each other. How-

ever, as described in subsection 3.2, the conict-free par-

titions may not be enough for implementing a practical

multi-user, multi-program environment.

4 Architectural Support in RWC-

1

RWC-1[16] is a message-driven, multithreaded parallel

machine under development in our RWC project. An

operating system kernel for RWC-1, named \SCore,"[8]

is also under development. The DQT scheduling will

be implemented on the SCore. RWC-1 will have archi-

tectural support for TSSS, as described in the previous

section.

The network is called \Cube Connected Circular Banyan"

(CCCB). Figure 7 shows an example of a CCCB net-

work. Every RWC-1 router has a virtual-cut-through

routing mechanism which is deadlock free. The FIFO

message order is preserved. The partitioning nature of

CCCB is almost the same as in a hyper-cube. CCCB

has the characteristics of a partitioning degree of two,

with all possible partitioning being closed.

The network preemption mechanism is called a drain

as opposed to the AFD of CM-5. When a drain signal is

generated from a processor, the signal propagates to ev-

ery processor in the current partition. To enable this, at



IPPS'95 Workshop on Job Scheduling Strategies for Parallel Processing 7

least every router on the \edge" of the partition should

know which ports to propagate the drain signal to. The

drain signal is completely di�erent from a normal com-

munication message, but is more like a control signal.

Upon receiving the drain signal, every router freezes the

receiving and sending of messages as soon as possible,

and propagates drain signals to the next routers. When

every input port of a router falls into the drain mode,

the router asserts an interrupt to let the local kernel

know that now is the time to switch processes. Thus

drain signals are synchronized and gang-scheduling of

threads can be realized with the interrupts triggered by

the synchronization.

The procedure to switch processes can be outlined as

follows:

1. The scheduler decides to switch processes.

2. The scheduler transmits a drain signal to

the current partition. Every router in the

partition is now frozen.

3. Every local kernel receives an interrupt trig-

gered by the drain signal.

4. The kernel saves the router status.

5. The kernel saves the process status.

6. The kernel restores the process status.

7. The kernel restores the router status.

8. The kernel sets partition information to the

router (if partitioning is changed).

9. The kernel releases the router. The router

is now operational.

10. The kernel restarts the new process.

We will now try to measure the cost of the process

switch on RWC-1. In the procedure above, those steps

in bold are the additional costs to the sequential ma-

chine. The cost of gang-scheduling with this drain mech-

anism is dominated by two procedures; one is the cost of

propagating the drain signal, and the other is the cost

of saving and restoring the router status.

With the drain mechanism of RWC-1, the theoretical

maximum time to propagate the drain signal (T

drain

)

can be estimated by

T

drain

� D

max

� L

max

+D

max

�H

max

where D

max

is the maximum hop count in the largest

partition, L

max

is the maximum length of the message,

and H

max

is the maximum time for one hop. The �rst

term on the right hand side is the maximum time to end

the receiving of the incoming message. Since in RWC-

1, messages are transmitted and received in a pipeline

fashion, one must wait for the receiving of the incoming

message (or packet) to complete. The second term is

the time to propagate the drain signal.

The time to save or restore the router status depends

mostly on the size of the bu�er in the router. The to-

tal size of the bu�er in an RWC-1 router is relatively

large, because of virtual-cut-through routing and the

avoidance of deadlock. To shorten the process switching

time, we designed RWC-1 so that saving and restoring

the router status can be done by hardware in the back-

ground. Thus, the operating system can devote itself to

saving or restoring the process status.

In the RWC-1 with 1,024 processors, the T

drain

is

estimated to be less than 200 clock cycles and the saving

or restoration time of the router status is estimated to

be less than 2,000 clock cycles. Including the operating

system overhead, the process switching time is expected

to be less than 500 �s. This is far less than the 4 ms

processes switching time on CM-5 [2].

5 Summary

We described a new job scheduling class called \Time

Space Sharing Scheduling" for dynamically partition-

able parallel machines. TSSS can implement an inter-

active, multi-user, multi-programming environment for

parallel machines that is as adequate as conventional

sequential machines. As an instance of TSSS, we have

explained our \Distributed Queue Tree." We also sug-

gested that parallel machine designers be aware of archi-

tectural support for (i) partitioning degree being two,

(ii) closed partitioning, and (iii) network preemption

in implementing a practical TSSS. We also described

the architectural support on the RWC-1. The process

switching ability of RWC-1 will be comparable with se-

quential machines.

Among the proposed architectural support, network

preemption is the most important concept for paral-

lel machines. Because it not only provides fast process

switching, but can also be used to detect the idle or ter-

minated status of a distributed process, checkpointing,

and global GC. We believe that most parallel machines

in the future should implement the mechanism of net-

work preemption.

With the architectural support for TSSS and DQT

scheduling, we believe that TSSS will become one of the

most practical job schedulings schemes for parallel ma-

chines. We will implement the proposed architectural

support in RWC-1, and DQT in the operating system



IPPS'95 Workshop on Job Scheduling Strategies for Parallel Processing 8

for RWC-1, SCore.

References

[1] G. R. Andrews. Paradigms for Process Interac-

tion in Distributed Programs. Computing Surveys,

23(1):49{90, March 1991.

[2] D. C. Burger, R. S. Hyder, B. P. Miller, and D. A.

Wood. Paging Tradeo�s in Distributed-Shared-

Memory Multiprocessors. In Supercomputing'94,

pages 590{599, November 1994.

[3] M.-S. Chen and K. G. Shin. Subcube Alloca-

tion and Task Migration in Hypercube Multi-

processors. IEEE Transactions on Computers,

39(9):1146{1155, 1990.

[4] P.-J. Chuang and N.-F. Tzeng. A Fast Recognition-

Complete Processor Allocation Strategy for Hyper-

cube Computers. IEEE Transactions on Comput-

ers, 41(4):467{479, 1992.

[5] W. J. Dally, J. S. Fiske, J. S. Keen, R. A. Lethin,

M. D. Noakes, and P. R. Nuth. The Message-

Driven Procesor: A Multicomputer Processing

node with E�cient Mechanisms. IEEE Micro,

pages 23{39, April 1992.

[6] D. G. Feitelson and L. Rudolph. Distributed Hi-

erarchical Control for Parallel Processing. COM-

PUTER, pages 65{77, May 1990.

[7] D. G. Feitelson and L. Rudolph. Mapping and

Scheduling in a Shared Parallel Environment Using

Distributed Hierarchical Control. In International

Conference on Parallel Processing, volume I, pages

1{8, 1990.

[8] A. Hori, Y. Ishikawa, H. Konaka, M. Maeda, and

T. Tomokiyo. Overview of Massively Parallel Oper-

ating System Kernel SCore. Technical Report TR-

93003, Real World Computing Partnership, 1993.

[9] A. Hori, Y. Ishikawa, H. Konaka, M. Maeda, and

T. Tomokiyo. A Scalable Time-Sharing Schedul-

ing for Partitionable, Distributed Memory Parallel

Machines. In Proceedings of the Twenty-Eighth An-

nual Hawaii International Conference on System

Science, volume II, pages 173{182. IEEE Computer

Society Press, January 1995.

[10] Intel Corporation. PARAGON OSF/1 USER'S

GUIDE, April 1993.

[11] P. Krueger, T.-H. Lai, and V. A. Dixit-Radiya.

Job Scheduling Is More Important than Proces-

sor Allocation for Hypercube Computers. IEEE

Transactions on Parallel and Distributed Systems,

5(5):488{497, 1994.

[12] K. Li and K.-H. Cheng. A Two-Dimensional Buddy

System for Dynamic Resource Allocation in a Par-

titionable Mesh Connected System. Journal of

Parallel and Distributed Computing, 12(5):79{83,

May 1991.

[13] W. Lin and C.-L. Wu. A Distributed Resource

Management Mechanism for a Partitionable Multi-

processor System. IEEE Transactions on Comput-

ers, 37(2):201{210, February 1988.

[14] J. K. Ousterhout. Scheduling Techniques for Con-

current Systems. In Proceedings of Third Interna-

tional Conference on Distributed Computing Sys-

tems, pages 22{30, 1982.

[15] J. L. Peterson and T. A. Norman. Buddy System.

Communication of the ACM, 20(6):421{431, June

1977.

[16] S. Sakai, K. Okamoto, H. Matsuoka, H. Hirono,

Y. Kodama, and M. Sato. Super-threading: Archi-

tectural and software mechanisms for optimizing

parallel computation. In Proceedings of 1993 In-

ternational Conference on Supercomputing, pages

251{260, 1993.

[17] G. Tel and F. Mattern. The Derivation of Dis-

tributed Termination Detection Algorithms from

Garbage Collection Schemes. ACM Transactions

on Programming Languages and Systems, 15(1):1{

35, January 1993.

[18] Thinking Machines Corporation. Connection Ma-

chine CM-5 Technical Summary, November 1992.

[19] Thinking Machines Corporation. NI Systems Pro-

gramming, October 1992. Version 7.1.

[20] Y. Zhu. E�cient Processor Allocation Strategies

for Mesh-Connected Parallel Computers. Journal

of Parallel and Distributed Computing, 16:328{337,

1992.


