
CS-1995-12Scheduling to Reduce Memory CoherenceOverhead on Coarse-Grain Multiprocessors1Christopher Connelly Carla Schlatter Ellis
Department of Computer ScienceDuke UniversityDurham, North Carolina 27708{0129March, 1995

1This research was supported in part by NSF grant CCR-9113170.

Scheduling to Reduce Memory CoherenceOverhead on Coarse-Grain Multiprocessors�Christopher Connelly Carla Schlatter EllisMarch, 1995AbstractSome Distributed Shared Memory (DSM) and Cache-Only MemoryArchitecture (COMA) multiprocessors keep processes near the data theyreference by transparently replicating remote data in the processes' lo-cal memories. This automatic replication of data can impose substantialmemory system overhead on an application since all replicated data mustbe kept coherent. We examine the e�ect of task scheduling on data repli-cation and memory system overhead due to coherency requirements. Weshow that simple policies using programmer hints can reduce memorycoherence overhead in our workload applications.1 IntroductionRecent work has shown that the e�ciency of shared memory, NUMA (Non-Uniform Memory Access) multiprocessors can be improved considerably bykeeping threads and data near each other. This can be accomplished by one ofseveral mechanisms: the OS can migrate or replicate an application's data pages[4, 5, 11, 12]; the OS or user-level thread scheduler may attempt to schedulethreads on processors where they have previously executed and built up a certainamount of memory or cache state (e.g. a�nity scheduling [15, 18, 21]); or pro-grammer hints for task scheduling may be embedded in an object's speci�cationin an object-oriented, task-queue based parallel language [6]. The task-queuemodel is widely used for parallel programming and is well suited for dynamicallychanging environments [20].In contrast to NUMA multiprocessors, some machines based on DistributedShared Memory (DSM) or Cache-Only Memory Architectures (COMA) guar-antee that threads and their data are kept close together by automatically repli-cating shared pages and requiring memory references to be satis�ed from localmemory. While this policy helps keep threads and data on the same node,�This research was supported in part by NSF grant CCR-9113170.1

we speculate that it can also lead to increases in memory tra�c if threads arescheduled without regard to the location of the data they access.In this paper we examine the e�ect of task placement on memory systemoverhead on DSM platforms. Previous work has shown that even under optimalconditions applications implemented with heavy-weight threads bene�t very lit-tle from sharing-based placement policies [19, 7]. However, previous work hasalso shown that applications based on a task-queue model can show appreciableperformance gains from policies that place tasks near the data they referenceor near other tasks that reference the same data [6, 15]. We have thereforerestricted our work to applications conforming to a task-queue model.Using a task-queue model in a DSM or COMA environment raises severalquestions that previous work has not addressed:1. Do task scheduling policies a�ect an application's data sharing patterns?Do some task placement policies cause data to be more widely shared thanothers? Does this in turn increase memory system overhead?2. Is there a role for the operating system in strengthening worker-data lo-cality? For example, can threads be scheduled in such a way as to limitthe number of processors sharing a data object?3. Will increases in worker-data locality translate into reductions in memorycoherence overhead, and thus into improvements in application perfor-mance?In the following sections we will address these questions. The remainder ofthis paper is structured as follows. Section 2 discusses related work. Section 3discusses the methodology and metrics we use in our experiments. Section 4 es-tablishes workload parameters. Results are presented in Section 5, and Section 6concludes the paper.2 Related WorkSeveral recent papers have explicitly or implicitly addressed the impact of taskscheduling on multiprocessor memory system overhead, application performance,and data sharing. Thekkath and Eggers [19] use trace-driven simulation toexamine the e�ect of data-sharing based placement on the execution time ofapplications from the SPLASH [17] and the PRESTO [3] suites running ona multithreaded, multiprocessor architecture. Threads scheduled on the sameprocessor share a cache, and the authors hypothesize that by placing threadssharing large amounts of data on the same processor, cache misses (compul-sory and invalidate) and coherency overhead can be decreased and performanceimproved. However, after using o�-line analysis to determine optimal threadplacements, the authors observe no signi�cant improvements. They conclude2

that sharing-based placement does not improve either execution time or cacheperformance, and that the determining factor in application performance is loadbalance, even in the presence of in�nite caches. The authors attribute this tothe uniform access to shared data by application threads and the small fractionof total references that are to shared data.Stanford's COOL project [6] and Markatos and LeBlanc [14] examine thee�ect of task placement on performance for applications running in a task-queueenvironment. COOL, a parallel object-oriented environment, uses applicationhints to the run-time scheduler to enqueue a task on a node for which it hasa�nity. Markatos and LeBlanc simulate synthetic task-queue programs under arange of architectural parameters. Both papers report substantial performancegains when tasks are scheduled on compute nodes already containing data thatthey reference. Although both [6] and [14] allow for the caching of remote data,both platforms implement a �xed home node for VM pages, meaning that pagesneither migrate nor are replicated. In this context, the ability to place a task onthe home node of its data can eliminate a substantial number of remote cachemisses and greatly improve execution times.Chandra et al. [5] have investigated the e�ect of OS scheduling and pagemigration policies on the cache behavior and execution time of applicationsrunning on the Stanford DASH [13], thus examining the interaction betweendata sharing patterns and locality management policies. They do not investigatethe interaction of page migration or replication (which is under implementation)and the task scheduling policies of COOL (also implemented on the DASH).Our work di�ers from the previous work in that we examine a DSM multipro-cessor in which data is migrated and replicated automatically, and all memoryreferences are satis�ed from local memory. In this context, the question ofkeeping threads near the data they reference becomes a question of managingmemory coherence overhead.3 MethodologyIn the following sections we will attempt to answer the questions outlined in theintroduction. To examine the role of the OS in task placement and determineif task placement a�ects the sharing of data objects, we measure the numberof processors mapping a data page, the worker-set size, at a large number ofpost-initialization sample points under each placement policy. Results are pre-sented as a series of worker-set size distribution plots. To examine the e�ect oftask placement on memory coherence overhead, we measure coherency tra�c(bytes transfered in update messages to maintain internode coherency and pagetransfers to replicate data) under each policy. Finally, we look at the impact oftask placement on parallel execution time.All results presented in this paper were obtained using a generic DSM mem-ory hierarchy simulator running with Stanford's Tango multiprocessor simulator3

[9].3.1 Task-queue modelOur programming model is loosely modeled after the Uniform System [2] andassumes that an application spawns a single, non-migratory server process foreach processor assigned to the application. Each server process executes forthe duration of the application, fetching tasks from user-level ready queues,executing them, and searching for new tasks. These tasks tend to be short andare run to completion. Tasks may create new tasks, and may be nested.To minimize contention, task queues are distributed throughout the multi-processor. Each processor has both private and public task queues. Tasks inthe private queue are always executed before tasks in the public queue, and areguaranteed to be executed by the owner of the private queue. Private-queuetasks may be enqueued by any process. Load balance is maintained by allow-ing idle server processes to steal tasks from the public queues of other serverprocesses. To reduce the overhead of fetching a potentially large number ofshort-lived tasks individually, a server-process may dequeue several tasks at atime. The number of tasks dequeued in a single fetch operation is known as thechunk size, and is a function of application characteristics and task placementpolicy (see Section 4.1).3.2 Workload applicationsThe target workload consists of four applications from Stanford's SPLASH suiterewritten to conform to a task-queue environment. Barnes, mp3d and water arelarge-scale scienti�c applications, while cholesky is a scienti�c kernel. Barnesis an implementation of the Barnes-Hut algorithm for an n-body gravitationalproblem; mp3d simulates rare�ed
uid
ow; and water is an n-body moleculardynamics application. Cholesky performs parallel Cholesky factorization on asparse matrix. Detailed descriptions of each application are available in [17].The di�culty of porting the workload to a task-queue environment variedwidely from application to application. On the one hand, the SPLASH versionof cholesky already conformed to our model, so we were able to simply replacecalls to the cholesky task management functions with calls to our more generalfunctions. On the other hand, the original versions of water and mp3d bothstatically partition work, so rewriting them to conform to a task-queue modelrequired somewhat more work.To avoid confusion concerning application versions, the original versions ofeach application are hereafter referred to with the su�x \-splash" (e.g. barnes-splash), while the task-queue versions are referred to with the su�x \-tq" (e.g.barnes-tq). 4

3.2.1 Important application characteristicsBarnes. Two types of tasks are used in the barnes-tq application. First, themaster thread creates a single \top-level"task for each processor in the partition;these tasks run for the duration of the application. Each of the top-level tasks isresponsible for moving a set of bodies through a gravitational n-body simulationthrough a time-step consisting of several distinct phases. Approximately 90% ofparallel execution time is spent in the force computation phase [17]. Top-leveltasks generate a new task to correspond to the force computation for each bodyin each time step. A 4096 byte VM page will hold data structures correspondingto approximately 40 tasks. Since each top-level task creates a force-computationtask for each body in its set and these bodies reside in contiguous portions ofthe virtual address space, we expect placement policies that enqueue tasks onthe generating node to work relatively well.Cholesky. Tasks in the cholesky-tq application have been optimized toincrease the amount of work done between task fetch operations, at the expenseof some potential load imbalance [17]. Tasks may create one or more newtasks, though unlike barnes-tq, these are not executed until the creator taskhas terminated. Because a new task often shares data with its creator task, weexpect local task placement policies to work fairly well.Mp3d. As with barnes-tq, two types of tasks are used to implement mp3d-tq: a top-level task running for the duration of the application, and a largenumber of short-lived tasks used to implement the move phase of each timestep, which accounts for roughly 90% of execution time [17]. We expect policiesthat place tasks on the generating node to perform relatively well.Water. Water-tq uses a master-slave task queue model in which a single\master" thread creates all tasks, and many \slave" server processes fetch thetasks and execute them. The master process also executes tasks, in additionto controlling the
ow of computation. Because water-tq contains a relativelysmall number of tasks, this model achieves acceptable performance. However,unlike cholesky-tq and barnes-tq, we expect local placement policies to createload imbalance and large worker-set sizes as all tasks are enqueued on a singlenode. On the other hand, policies that distribute the tasks more evenly andallow tasks to build state on a given node may achieve better performance.All the applications from the SPLASH suite were originally written for small-scale UMA multiprocessors. Though this limits their scalability, especially forthe large scale multiprocessors which we study, the UMA programming modelis widely viewed as the most convenient model for parallel programming. Pro-viding the appearance of an UMA environment on NUMA, DSM and COMAmachines is the goal of much current research. We acknowledge the likelihoodof artifact due to the small-scale nature of the original target; however, morecontemporary benchmarks are not widely available or accepted.5

3.3 The target architectureWe simulate a generic DSM multiprocessor based loosely upon the Galactica Net[22]. We assume the multiprocessor consists of a number of compute nodes con-nected by a high speed network. Compute nodes consist of a memory module,network interface, and a processor. Internode data consistency is maintainedwith a distributed directory update protocol: for each shared page in a node,the interface module maintains a pointer to the next node in a virtual sharingring of processors with copies of the page. When a shared page is written, a copyof the new value is sent around the ring to all participating nodes [23]. Releaseconsistency [10] is supported to reduce update latency. A competitive updatepolicy is used to invalidate stale pages: when the number of remote updates toa particular page between local references exceeds a threshold value, the localcopy of the page is invalidated and the node is removed from the virtual sharingring for that page. Pages are assumed to be 4096 bytes.We model a write-update protocol with competitive invalidation to minimizethe e�ect of the particular memory coherence policy on our results. Speci�cally,previous work has shown that a write-invalidate policy can make worker-setsappear arti�cially small, while a pure write-update policy can make worker-setsappear arti�cially large, especially if data tends to migrate from processor toprocessor [8]. A write-update, competitive invalidate policy will allow data tobe actively shared, but prevent stale data from lingering on a node where it isno longer needed. It should prevent any gross distortions of worker-set size.Communication and CPU timings are based on Galactica Net prototype�gures [24]. Page invalidation thresholds and task chunk size are set on a per-application basis such that execution time is minimized for each application (seeSection 4 and [8]).3.4 Task placement policiesThe placement policies we evaluate fall in two principal categories, dependingon the structure of task queues. Policies which are unblocked associate a singlepublic task queue with each processor; tasks assigned to the processor are simplyenqueued in FIFO order. Blocked policies associate an array of queues witheach processor. Under a blocked policy, a particular queue within the arrayof queues is chosen in such a way as to group a certain set of tasks together(e.g. tasks operating on a certain object). The di�erence between blocked andunblocked policies is important given that tasks can be stolen or fetched inchunks, rather than individually. This means that an unblocked chunk of tasksis likely to contain a number of unrelated tasks, while tasks in a blocked chunkare more likely to share data or contend for certain objects. We hypothesizethat by executing related tasks on a single processor, data replication and therelated coherency overhead can be reduced.Task placement policy determines which processor will receive a newly gen-6

erated task. If an array of queues is used, the placement policy also determineswhich of the processor's queues receives the task. The placement policies thatwe investigate in this paper are:� Random (RAND): a new task is placed on a queue chosen at random.This serves as a baseline for our other placement policies.� Round Robin (RR): task queues are selected in a round robin fashion.If more than one process creates tasks, then each creator maintains aseparate pointer indicating the next queue to receive a task. This policytends to balance computational load, and will schedule iterative tasks (e.g.time stepping a body) on the same processor over several time steps if thenumber of tasks in each time step is divisible by the number of processors.However, RR will spread tasks in a single coherency block over a largenumber of processors, so we expect worker-set sizes to be relatively large.� Memory A�nity (MEM): task queues are chosen based on an applica-tion hint indicating the address of an object for which the task has a�nity(e.g. a data structure the task references). An attempt is made to placethe task on a node possessing a local copy of the object. (Full queuescause a task to be placed elsewhere.) This policy can reduce unnecessarydata replication by placing tasks near the data they will use, and willallow data sharing patterns to evolve gracefully over time. When severalnodes are found to possess copies of the a�nity page, an attempt is madeto balance load by distributing tasks among all such nodes. This policyrequires a programmer hint in the form of a pointer to the a�nity object,and the ability to query the OS for the location of a copy of the pagecontaining the a�nity object.� Local A�nity (LOCAL): all tasks are placed on the queue of theprocessor that generates them. For applications such as barnes-tq andcholesky-tq, where tasks can create new tasks, we intuitively expect thispolicy to perform competitively. For applications such as water-tq, wherea single master process creates all tasks, we expect this policy to lead toload imbalance.� Home Node A�nity (HOME): application provides a�nity hints, asin memory a�nity placement, but tasks are placed on the \home node"of the object for which they have a�nity.1 Although this policy does notensure that the a�nity object is present on the selected node, it will allowiterative applications to build up state on a particular node. Home nodea�nity tends to schedule tasks on nodes where they previously executed,1The concept of a home node on a DSM platform may correspond to the node maintain-ing directory and state information for a particular coherency block, or it may simply be aconvenient way to distribute load. 7

and will balance computational load if a�nity objects are uniformly dis-tributed.� Blocked Home Node A�nity (BLOCK-HOME): task queues areimplemented as an array of queues. Like home node a�nity, tasks arescheduled on the \home node" of the a�nity object. Furthermore, taskswith a�nity to objects in the same coherency block are placed on the samequeue. This policy requires a programmer hint in the form of a pointer tothe a�nity object.� Blocked Memory A�nity (BLOCK-MEM): as with memory a�nityplacement, tasks are scheduled on a node with a local copy of the a�nityobject. As with blocked policies, tasks operating on objects in the samecoherency block are placed on the same queue. This policy requires aprogrammer hint in the form of a pointer to the a�nity object, and theability to query the OS for the location of a copy of the page containingthe a�nity object.� Blocked Local A�nity (BLOCK-LOCAL): tasks are placed on thelocal queues. If an a�nity hint is available, tasks are further groupedaccording to a�nity object.4 Setting parametersResults in [8] show that for our architectural parameters, the most appropriatemultiprocessor sizes for simulations of SPLASH suite applications are 32 proces-sors for barnes-splash and water-splash, and 16 processors for cholesky-splashand mp3d-splash. The applications do not scale well on the target architecturefor larger partitions. In the following sections, we focus on simulation resultsfor these machine sizes.Results in [7] show that �nding an appropriate value for the page invalidationthreshold is important for two reasons. First, the invalidation threshold canimpact performance. If the threshold is too low, application pages will tendto be invalidated while they are still in use, and performance will su�er asthe application spends cycles refetching pages. Conversely, a threshold thatis too high will allow stale pages to linger on nodes where they are no longerused, imposing unnecessary coherency overhead on tasks that are using them.Second, the threshold value a�ects worker-set distribution, our primary metricfor data sharing. Low thresholds make worker-sets appear arti�cially smallwhile high thresholds make worker-sets appear arti�cially large. The thresholdvalues used in this paper have been determined empirically such that executiontime is minimized and worker-set sizes are stable. Invalidation thresholds forthe workload applications are summarized in Table 1.8

0 10 20 30

local chunk size

0.0

0.5

1.0

no
rm

al
iz

ed
 e

xe
cu

ti
on

 t
im

e barnes, mem
barnes, local
barnes, block-local
cholesky, mem
cholesky, local
cholesky, block-local
mp3d, mem
mp3d, local
mp3d, block-local
water, mem
water, home
water, block-localFigure 1: Execution times for workload, as a function of task chunk size.4.1 Task chunk sizeChunk size refers to the number of tasks that may be dequeued by a server pro-cess in a single fetch operation. Server processes may want to fetch several tasksat a time to amortize the cost of shared queue operations, to reduce contentionfor shared queues, and to avoid splitting up groups of tasks with a�nity forthe same object. However, large chunk sizes may lead to load imbalance sincefetched but unexecuted tasks cannot be stolen by idle server processes.Figure 1 shows execution time for the workload applications as a functionof chunk size. Times are normalized for each application with respect to theexecution time at chunksize = 1. For reasons of clarity, a single placementpolicy is presented for each application; other policies do not di�er qualitatively.Task chunking works well for barnes-tq, mp3d-tq, and water-tq, which havesmall tasks. Execution times decrease markedly as chunk size increases from oneto four. At this point execution time increases for water-tq, due to increasingload imbalance, levels o� for barnes-tq, and continues to fall for mp3d-tq. Thisis largely due to di�erences in the granularity of the applications: water-tqgenerates 512 tasks for each phase of computation (for our problem sizes), whilebarnes-tq and mp3d-tq generate 4096, and 64K, respectively. Task chunkingperforms poorly for cholesky-tq, which su�ers from increasing load imbalanceas chunk sizes grow.

9

rand

rr m
em

local

hom
e

block-hom
e

block-m
em

block-local
SPLA

SH

placement policy

0

10

20

30

w
or

ke
r-

se
t

si
ze

barnes n = 32: Worker Set Size vs. Task Placement

99th percentile
95th percentile
75th percentile
50th percentile
25th percentile

Figure 2: Barnes-tq: worker set size distribution versus task placement policy.4.1.1 Summary of application parametersValues for page invalidation threshold and task chunk size were determinedempirically on a per application, per placement basis. Table 1 summarizesparameter values assumed in the remainder of this paper.5 ResultsIn this section we analyze results from our process placement study. In Figures 2{ 5 we present worker-set size distribution graphs for the workload applicationsand also for the original SPLASH implementations. In the discussion below wewill focus on worker-set size distribution of application pages, excluding pagesused by the task-queue layer in order to separate the implementation speci�ce�ects of the latter.22Our shared memory allocation routines guarantee that task-queue and application pagesdo not overlap.
10

placement inval. chunkapp n policy thresh. sizeRAND 152 8RR 152 8MEM 304 8barnes 32 LOCAL 152 8HOME 152 8BLOCK-HOME 152 8BLOCK-MEM 225 8BLOCK-LOC 76 8RAND 76 1RR 76 1MEM 152 1cholesky 16 LOCAL 76 1HOME 76 1BLOCK-HOME 76 1BLOCK-MEM 76 1BLOCK-LOC 76 1RAND 608 128RR - -MEM 608 64mp3d 16 LOCAL 608 128HOME 608 128BLOCK-HOME 608 128BLOCK-MEM - -BLOCK-LOC 608 128RAND 76 4RR 76 4MEM 152 4water 32 LOCAL 76 4HOME 76 4BLOCK-HOME 38 8BLOCK-MEM 38 8BLOCK-LOC 38 4Table 1: Summary of parameters used in evaluating task placement policies. nindicates the number of processors simulated for each application. No param-eters were set for mp3d-tq under RR or BLOCK-MEM because simulations ofthese policies did not complete. 11

rand

rr m
em

local

hom
e

block-hom
e

block-m
em

block-local
SPLA

SH

placement policy

0

5

10

15

w
or

ke
r-

se
t

si
ze

cholesky n = 16: Worker Set Size vs. Task Placement

99th percentile

95th percentile

75th percentile

50th percentile

25th percentile

Figure 3: Cholesky-tq: worker set size distribution versus task placement policy.

12

rand

m
em

local

hom
e

block-hom
e

block-local
SPLA

SH

placement policy

0

5

10

15

w
or

ke
r-

se
t

si
ze

mp3d n = 16: Worker Set Size vs. Task Placement

99th percentile

95th percentile

75th percentile

50th percentile

25th percentile

Figure 4: Mp3d-tq: worker set size distribution versus task placement policy.

13

rand

rr m
em

local

hom
e

block-hom
e

block-m
em

block-local
SPLA

SH

placement policy

0

10

20

30

w
or

ke
r-

se
t

si
ze

water n = 32: Worker Set Size vs. Task Placement

99th percentile
95th percentile
75th percentile
50th percentile
25th percentile

Figure 5: Water-tq: worker set size distribution versus task placement policy.

14

5.1 Worker-set size and task placementBarnes. Results are summarized in Figure 2. As expected, local and blocked-local placement policies work relatively well, due to the static assignment ofbodies to processes. Somewhat surprisingly, round-robin and random place-ment policies perform better (in terms of worker-set sizes) than memory a�nityplacements. RR placement tends to in
ate worker-set sizes by placing adjacenttasks on adjacent processors rather than on the same processor. However, be-cause the number of tasks generated by each top-level task is divisible by thenumber of processors, RR also places tasks on the same processor on successivetime steps.3 Random placement results in slightly smaller worker-set sizes thanRR because tasks in the same coherency block are more often mapped to thesame processor. MEM placement results in large worker-set sizes because itattempts to balance computational load by distributing tasks among all nodeswith valid copies of the a�nity page, rather than attempting to localize all taskswith a�nity for a certain page on a single node. In addition, MEM uses a higherpage invalidation threshold, which tends to in
ate worker-set sizes. (We'll saymore about this in the Section 5.2.) In contrast, local and home placementpolicies attempt to allow tasks to accumulate state on a particular node byscheduling tasks on the same node over several successive time steps. LOCALplacement causes tasks to be enqueued on the generating node. In the case ofbarnes-tq, each top-level task resides on a �xed processor, time-steps a �xedset of contiguous (in memory space) bodies, and generates force-computationtasks for each of its bodies. Thus, LOCAL placement results in tasks beingenqueued with other tasks from the same coherency block, on a node that islikely to have a copy of the block. Likewise, HOME placement attempts toschedule all tasks associated with a given coherency block on the same node,though not necessarily on the originating node, and to distribute these blocksof tasks evenly throughout the multiprocessor. These two policies and theirblocked versions result in large worker-set size decreases relative to RR, MEM,and RAND placement policies, and also relative to barnes-splash.Cholesky. Unlike barnes-tq, cholesky-tq shows very little variability inworker-set size as a function of task placement policy. All placement policiesresult in roughly the same worker-set size distribution. As previously mentioned,blocked policies have little e�ect due to the dynamic nature of task generation.This also a�ects unblocked policies. Because of the small number of ready tasksat any time, tasks tend to be executed by the �rst idle server process ratherthan by the owner of the queue on which they are placed. Our statistics showthat under HOME task placement, for instance, of 564 tasks generated, 395 areexecuted by remote server processes.We note that the SPLASH version of cholesky uses a shared task-queue3Placing tasks in the same coherency block on di�erent processors is inherent to the round-robin policy while placing tasks on the same processor over multiple time steps is a coincidenceof this particular problem size. RR placement does not do this for mp3d-tq, for instance.15

implemented as part of the application module. Results for cholesky-splashpresented in Figure 3 include task-queue pages in the computation of worker-set size distribution, while data for cholesky-tq does not. Including the task-queue pages in results for cholesky-tq does not change median or lower-quartileworker-set sizes for any of the placements examined, although it increases upper-quartile size for four placements (MEM and all blocked placements), and 95thpercentile size for all placements except RAND. For all placements, worker-setsizes are still smaller for cholesky-tq than for cholesky-splash.Mp3d. Mp3d-tq shows the highest sensitivity to placement of the fourapplications. In part this is due to the �ne granularity of tasks. Randomplacement causes nearly every page to be shared by every processor, while localplacements result in much smaller worker-sets (median size of three on a sixteenprocessor partition). Unlike the other applications, memory-a�nity placementperforms signi�cantly better than random, although random has particularlylarge worker-sets. In terms of execution time, RAND in fact outperforms MEM.RR and BLOCK-MEM performed so poorly that they caused the simulationtime counter to over
ow. Both policies would tend to spread related tasks overa large number of nodes. No results are presented for these two policies.Water. Water-tq, unlike barnes-tq and cholesky-tq, uses a master processto generate all application tasks, so we would expect local placement policies tolead to large worker sets. However, Figure 5 shows that LOCAL and BLOCK-LOCAL perform quite similarly to other policies. In e�ect, distributing taskson the master's ready queues by coherency block (as in BLOCK-LOCAL) seemsto mitigate the e�ect of placing all tasks on a single node by allowing blocks ofrelated tasks to be fetched by remote server processes, and preventing unnec-essary replication of data. And because tasks which are adjacent in memoryspace are enqueued consecutively, a sort of de facto task blocking exists underthe LOCAL policy as well: remote server processes are likely to dequeue a groupof tasks with a�nity for the same coherency block.Surprisingly, the median worker-set size for the MEM policy is larger than forLOCAL. As with barnes-tq, this seems to result from distributing load amongall the nodes in the target worker-set, as well as from higher invalidation thresh-olds. In addition, the di�erence may be reinforced by the master-slave imple-mentation of water-tq: consecutive tasks will correspond to adjacent (in memoryspace) data structures, and a chunk of tasks on the local (master's) queue willtend to operate on a small number of coherency blocks.4 In contrast, the un-blocked memory a�nity policy will tend to spread tasks from a single blockamong all nodes with a copy of the block, and because the tasks are spreadaround, they will also tend to be more �nely interleaved with tasks from othercoherency blocks. This can lead to the replication of several coherency blockswhen chunks of remote tasks are fetched. Worker-set sizes under BLOCK-MEMare comparable to other blocked policies, presumably because this task inter-4The precise number will depend on chunk size and alignment.16

leaving is avoided by blocking tasks, and because invalidation thresholds arelower.For all applications we were able to improve worker-set size distributionover the original SPLASH versions. Most of the SPLASH applications alreadyshowed good worker-data locality, as evidenced by their generally small medianworker-set sizes. Still, in most cases, median worker-set size was reduced justby moving to a task-queue environment, and in many cases it was reduced evenfurther by the appropriate task placement policies. For instance, the medianworker-set size for water-splash with 32 processors is three. Median worker-setsize for water-tq is three or less for all but the worst placement policies. Likewise,median worker-set size for cholesky-splash is two for 16 processors, while medianworker-set size for cholesky-tq is one for all placements. Much more variationis seen in the results for barnes-tq, which has the largest worker-set sizes of anyof the SPLASH applications. Several placement policies result in signi�cantlylarger median worker-set sizes than the original SPLASH version, but severalpolicies show signi�cant improvement over barnes-splash. In particular, thelocal and block-local policies perform well.5.2 Task placement and memory coherence overheadMemory coherence tra�c consists of data sent between nodes in the form ofupdates, page transfers, and remove-node-from-sharing-ring messages in orderto maintain a consistent view of system state.5 In this section we will examinethe e�ect of task placement on the number of pages transfered and updatesdelivered.Figure 6 shows total coherency tra�c for the workload applications underthe eight placement policies. We assume that each page transfer sends 4096data bytes plus 8 address bytes, and each update message sends 8 data bytesand 8 address bytes. Update tra�c counts the number of update bytes received(an update on a four-node sharing ring results in 16 bytes being received byfour nodes|the sender receives a copy of the update as an acknowledgment|for a total of 64 update bytes). We note that with the exception of barnes-tq,placement policy seems to have only a small e�ect on application page transfers.In particular, policies designed to allow tasks to build up state on a given nodeperform comparably to random or round-robin policies. This would seem toindicate that tasks are unable to accumulate any signi�cant amount of stateon a node over successive iterations of an algorithm. Perhaps pages are sharedwidely enough that even when most tasks from a given page are scheduled onthe same node, the a�nity page will become stale on its home node and beinvalidated over the course of most iterations. Alternatively, it could indicatethat page transfers due to initial references to data structures by the \owning"5Page invalidation signals arise from a local update counter, and so are not counted as partof the coherency tra�c; however, when a page is invalidated, a message must be sent aroundthe virtual sharing ring to prevent updates from being sent to the removed node.17

rand
rr m

em
local
hom

e
block-hom

e

block-m
em

block-local
rand
rr m

em
local
hom

e
block-hom

e

block-m
em

block-local
rand
rr m

em
local
hom

e
block-hom

e

block-m
em

block-local
rand
m

em
local
hom

e
block-hom

e

block-local

placement policy

0.0

0.5

1.0

no
rm

al
iz

ed
 c

oh
er

en
cy

 t
ra

ff
ic

 (
to

ta
l b

yt
es

)

barnes-tq cholesky-tq water-tq mp3d-tq

task-queue update traffic
task-queue page traffic
application update traffic
application page traffic

Figure 6: Memory coherence tra�c as a function of task placement policy.Tra�c consists of update messages and page transfers for both application andtask-queue data. Data is normalized with respect to each application's totaltra�c under random task placement.
18

task (the task currently in charge of time stepping the data structure) comprisea small fraction of the total page transfers for the page containing the object.Either case would indicate high worker-set volatility as a possible performancebottleneck.For barnes-tq MEM and BLOCK-MEM result in signi�cantly fewer pagetransfers than other policies (roughly 69% and 55% fewer transfers, respectively,than RAND). In fact, the di�erence is caused primarily by di�erences in pageinvalidation threshold and only indirectly by task placement policy. Recallthat page invalidation threshold is determined empirically such that applicationexecution time is minimized (Section 4). From Table 1 we see that under MEMapplications tend to run faster with higher invalidation thresholds than underother unblocked policies. In this case, the higher threshold makes it less likelythat a page for which an unexecuted task has a�nity will be invalidated beforethe task is executed. Application coherency tra�c under BLOCK-MEM andBLOCK-HOME is comparable to unblocked policies. We note that task blockingis designed to minimize task fragmentation (spreading tasks operating on thesame coherency block over several nodes); with median worker-set size in excessof 20 nodes for all policies, task fragmentation accounts for only a small fractionof coherency tra�c. In general, we note that barnes-tq shows little sensitivity(in terms of coherency tra�c) to placement policy. We attribute this to the widesharing of application pages: reducing worker-set size by one or two processorssimply does not have much of an impact on total tra�c.For cholesky-tq and water-tq, application coherency tra�c is minimized bythe three blocked placement policies (though total coherency tra�c is relativelyhigh for these policies). Because these applications have good worker-data lo-cality, as indicated by their small median worker-set sizes, task blocking is ableto reduce coherency tra�c by keeping tasks from the same coherency block to-gether in the presence of task stealing. Although the dynamic nature of taskcreation in cholesky limits the e�ectiveness of all placement policies, blockedpolicies are able to take advantage of the initial surplus of ready tasks to fetchchunks of related tasks, while unblocked policies cannot. Note that because theinitial third of cholesky-tq tasks are created by processor 0, and have a�nity forprocessor 0, almost all of these tasks are enqueued on node 0 under BLOCK-LOCAL and BLOCK-MEM.Mp3d-tq and water-tq show somewhat more sensitivity to task placementthan barnes-tq or cholesky-tq. Both have small median worker-set sizes (thoughmp3d-tq's vary considerably), so increases in worker-set size often results in anoticeable increase in coherency tra�c. For instance, RR tends to distributetasks from the same coherency block on a large number of processors, and resultsin a signi�cant increase in coherency tra�c for water-tq (31% more tra�c thanRAND and 69% more than HOME). Results are equally striking for mp3d-tq:under RAND the application requires 35% more coherency tra�c than underLOCAL. 19

rand
rr m

em
local
hom

e
block-hom

e

block-m
em

block-local
rand
rr m

em
local
hom

e
block-hom

e

block-m
em

block-local
rand
rr m

em
local
hom

e
block-hom

e

block-m
em

block-local
rand
rr m

em
local
hom

e
block-hom

e

block-m
em

block-local

placement policy

0.0

0.5

1.0

1.5

no
rm

al
iz

ed
 e

xe
cu

ti
on

 t
im

e

barnes
cholesky
mp3d
water

Figure 7: Execution times for workload applications versus task placement pol-icy. Times are normalized with respect to each application's execution timeunder RAND.5.3 Task placement and execution timeRAND, RR, MEM, and BLOCK-MEM. Execution times for the workloadapplications under the various placement policies are summarized in Figure 7.For all applications except cholesky-tq, random task placement results in slightlybetter performance than round-robin placement, indicating that load balancingis not the determining factor in application performance. (This is in contrast to[19].) However, as we have seen, load-imbalance is probably partially responsi-ble for the poor performance of the blocked placement policies in cholesky-tq.Likewise, a�nity based placement policies improve performance only marginallyor not at all (this is in contrast to [6] and [14]). Both results are due to the na-ture of the DSM target architecture we simulate, which allows pages of memoryto be cached automatically when referenced.LOCAL. As anticipated, LOCAL performs relatively well, in terms of exe-cution time, for barnes-tq (11% faster than RAND) and mp3d-tq (178% faster).Surprisingly, it also performs well for water-tq (10% faster than RAND), butis slightly slower than RAND for cholesky-tq. We note that the in the initialphase of cholesky-tq, LOCAL results in all tasks being enqueued on node 0,causing queue contention and task fragmentation, while the large amount of20

task stealing in the latter portion of cholesky-tq makes task placement virtuallyuseless.To understand why LOCAL performs better for water-tq than HOME, whichhas 15% less memory tra�c (TQ and application combined), consider the man-ner in which tasks are created and enqueued by the master process. UnderLOCAL all tasks are enqueued on the master's ready queue. A copy of thisqueue is likely to reside on the master's node. Enqueuing a large number oftasks will cause other instances of the queue to be invalidated. When the slaveprocesses begin to look for tasks, each will fault in parallel on the master's taskqueue. After an initial period of contention for the single queue, the slave pro-cesses become staggered, and contention is reduced. Since slave page transfersare serviced in parallel, most of this transfer time is not spent on the criticalpath.6 In fact, the master process is likely to be working during this time sinceit should not fault on its own queue. In contrast, under HOME, the master pro-cess must enqueue most tasks on remote ready queues which are not likely to beresident on the master node since they have presumably been heavily utilizedby their owners during the previous computational phase. Thus, the masterprocess will likely stall repeatedly while each queue is transfered in. Each ofthese transfers will be on the critical path since the master generates all tasksbefore starting the slaves. In addition, enqueuing tasks will result in the orig-inal copy of the queue becoming stale on the remote node, and another pagetransfer will be necessary when each slave process attempts to access its locallist7. Assuming 31 (remote queue) page transfers per phase, four phases pertime step, and 4 time steps over the course of the application, we estimate thatHOME will incur roughly 500 more critical path page transfers than LOCAL,resulting in a 2,500,000 cycle performance hit.HOME. Both HOME and LOCAL address the goals of load distributionand establishing task state over several time steps. HOME addresses load dis-tribution explicitly, while LOCAL addresses it implicitly. A side e�ect of theHOME strategy is that processes often attempt to enqueue tasks on remotenodes and must wait for the remote queue object to be transfered in. Whilethis may not increase total tra�c, it does tend to move page transfers ontothe critical task create and dequeue paths and thus increase execution time.This can be seen in barnes-tq, mp3d-tq, and water-tq. The lone exception ischolesky-tq, in which HOME results in much better load distribution duringthe initial phase of computation (recall that a single process creates the initialthird of all tasks). In this case, reductions in worker-set fragmentation seem tocompensate for critical path page transferring.6Whether interconnection bandwidth is high enough to service a large number of pagetransfers in parallel is another matter. We note that in this case, all the slave processes arerequesting copies of the same page, so an intelligent operating system should be able to handlethe tra�c.7Although these transfers may be serviced in parallel, getting copies from the masterprocess may be a bottleneck. 21

BLOCK-HOME andBLOCK-LOCAL.Our observations concerning LO-CAL and HOME also hold for BLOCK-LOCAL and BLOCK-HOME. We notethat cholesky-tq runs slightly faster under BLOCK-LOCAL than BLOCK-HOME(while the opposite was true under LOCAL and HOME) because task blockingprevents the worker-set fragmentation that resulted in poor performance forLOCAL. (Note however that due to the overhead of searching additional queuesfor a small number of tasks, unblocked policies outperform blocked policies forcholesky-tq.) Likewise, water-tq performs slightly better under BLOCK-HOMEthan under BLOCK-LOCAL. This results from the need to search a large num-ber of empty queues on other nodes in order to �nd ready tasks on node 0.Figure 6 shows that there is a tremendous increase in task-queue page transfersunder BLOCK-LOCAL; however, the performance impact is much smaller sincemost queue searching is done in parallel.6 ConclusionsWe used simulations of real programs to examine the e�ect of task placementon memory coherence overhead and application performance. Our results showthat the appropriate task placement policies can result in signi�cant reductionsin application-level coherency tra�c and moderate improvements in run time.We were able to observe improvements of up to 11% in execution time and 25%in application memory coherence tra�c. For mp3d-tq, even larger improvementswere observed. In addition we conclude:� Decoupling logical tasks from the processes that execute them can reducedata sharing. In most cases, just porting the workload to a task-queueenvironment resulted in reductions in worker-set size. Using appropriatetask placement policies can sometimes further reduce sharing, dependingon an application's data access patterns.� Very simple policies such as LOCAL are surprisingly robust. Our resultsshow that even when this policy causes all tasks to be enqueued on a singlenode, the application is still competitive with other policies.� Task blocking seems to o�er promise as a way to reduce application co-herency tra�c, but only if it can be implemented with low overhead. Intwo of our applications, cholesky-tq and water-tq, task blocking resultedin signi�cant reductions in application coherency tra�c. However, task-queue layer coherency tra�c was high enough in these cases that totaltra�c was no lower than for unblocked policies. Separately tuning task-queue and application parameters should allow task-queue tra�c to bereduced while keeping application tra�c low. In addition, applicationswhose task creation behavior evolves over the course of application life-time (e.g. cholesky) may bene�t from self-tuning placement policies: a22

blocked policy may be appropriate for the initial phase of task generation,while an unblocked policy may be more appropriate later.� The interaction of task generation policies and memory coherence policiescan have a large and sometimes counter-intuitive impact on performance.For instance, attempting to distribute load evenly by enqueuing tasks onremote nodes can force page transfers onto the critical path and degradeperformance.� Worker-set volatility either limits a task's ability to accumulate state ona particular node, or makes such state accumulation into a small fractionof total data tra�c. This may indicate signi�cant migratory sharing, orit may indicate page bouncing.Finally, we believe that our results are conservative in several importantrespects. First, better tuning of the task-queue layer will make the modestgains we observed more signi�cant as overhead is reduced. Second, moving toa task-queue model facilitates the use of techniques such as First-Class threads[1, 16] which can further reduce execution time. Third, given the reductionsin memory tra�c we achieved, we speculate that as internode communicationcontinues to become more expensive relative to processor speed, our policies willachieve better performance.References[1] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, andHenry M. Levy. Scheduler activations: E�ective kernel support for theuser-level management of parallelism. In Proceedings of the ACM Sympo-sium on Operating Systems Principles, October 1991.[2] BBN. The Uniform System approach to programming the butter
y parallelprocessor. Technical Report Number 6149, Bolt Beranek and Newman Adv.Computers Inc., October 1985.[3] B. Bershad, E. Lazowska, and H. Levy. PRESTO: A system forobject-oriented parallel programming. Software: Practice and Experience,18(8):713{732, August 1988. TR 87-09-01.[4] W. Bolosky, M. Scott, and R. Fitzgerald. Simple but e�ective techniquesfor NUMA memory management. In Proceedings of the ACM Symposiumon Operating Systems Principles, pages 19{31, December 1989.[5] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and MendelRosenblum. Scheduling and page migration for multiprocessor computeservers. In Proceedings, Sixth International Conference on Architectural23

Support for Programming Languages and Operating Systems, pages 12{24,1994.[6] Rohit Chandra, Anoop Gupta, and John L. Hennessey. Integrating con-currency and data abstraction in the COOL programming language. IEEEComputer, 27(2), February 1994.[7] Christopher Connelly and Carla S. Ellis. Workload characterization andlocality management for coarse grain multiprocessors. Technical ReportCS-1994-30, Duke University, September 1994.[8] Christopher Connelly and Carla S. Ellis. A workload characterization forcoarse grain multiprocessors. In International Parallel Processing Sympo-sium, April 1995. To appear.[9] Helen Davis, Stephen R. Goldschmidt, and John Hennessy. Multiprocessorsimulation and tracing using tango. In Proceedings of the 1991 InternationalConference on Parallel Processing, volume 2, pages 99{107, 1991.[10] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-nessey. Memory consistency and event ordering in scalable shared-memorymultiprocessors. In Proceedings of the 17th Annual International Sympo-sium on Computer Architecture, pages 15{26, May 1990.[11] Rick LaRowe and Carla Ellis. Experimental comparison of memory man-agement policies for NUMA multiprocessors. ACM Transactions on Com-puter Systems, 9(4):319{363, November 1991.[12] R. P. LaRowe Jr., C. S. Ellis, and L. S. Kaplan. The robustness of NUMAmemory management. In Proceedings of the Thirteenth ACM Symposiumon Operating Systems Principles, pages 137{151, October 1991.[13] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. Thedirectory-based cache coherence protocol for the DASH multiprocessor. InProceedings of the 17th Annual International Symposium on Computer Ar-chitecture, pages 148{159, May 1990.[14] E. Markatos and T. LeBlanc. Load balancing versus locality managementin shared memory multiprocessors. Technical Report 399, University ofRochester, October 1991.[15] Evangelos Markatos. Scheduling for locality in shared-memory multipro-cessors. Technical Report 457, University of Rochester, May 1993.[16] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P.Markatos. First-class user-level threads. In Proceedings of 13th ACM Sym-posium on Operating Systems Principles, pages 110{21. Association forComputing Machinery SIGOPS, October 1991.24

[17] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH:Stanford parallel applications for shared-memory. Computer ArchitectureNews, 20(1):1{44, 1992.[18] M. S. Squillante and E. D. Lazowska. Using processor-cache a�nity in-formation in shared memory multiprocessor scheduling. Technical Report89-06-01, Department of Computer Science and Engineering, Universityof Washington, 1889. To Appear IEEE Transactions on Parallel and Dis-tributed Systems.[19] Radhika Thekkath and Susan J. Eggers. Impact of sharing-based threadplacement on multithreaded architectures. In Proceedings of the 21st An-nual International Symposium on Computer Architecture, pages 176{186,April 1994.[20] A. Tucker and A. Gupta. Process control and scheduling issues for multi-programmed shared-memory multiprocessors. In Proceedings of the ACMSymposium on Operating Systems Principles, pages 159{166, December1989.[21] Raj Vaswani and John Zahorjan. The implications of cache a�nity on pro-cessor scheduling for multiprogrammed, shared memory multiprocessors.In Proceedings of 13th ACM Symposium on Operating Systems Principles,pages 26{40. Association for Computing Machinery SIGOPS, October 1991.[22] Andrew Wilson, Marc Teller, Thomas Probert, Dyung Le, and RichardLaRowe. Lynx/Galactica Net: A distributed, cache coherent multiprocess-ing system. In Proceedings of the 25th Hawaii International Conference onSystem Sciences, volume 1, pages 416{426, 1992.[23] Andrew W. Wilson and Richard P. LaRowe. Hiding shared memory ref-erence latency on the galactica net distributed shared memory arcitecture.Journal of Parallel and Distributed Computing, to appear.[24] Andrew W. Wilson Jr., Richard P. LaRowe Jr., Robert J. Ionta, Ralph P.Valentineo, Beeching Hu, Peter R. Breton, and Pocheong Lau. Updatepropagation in the Galactica Net distributed shared memory architecture.Technical Report CHPC TR 93-007, Center for High Performance Com-puting, Worcester Polytechnic Institute, 1993.
25

