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Abstract

Some Distributed Shared Memory (DSM) and Cache-Only Memory
Architecture (COMA) multiprocessors keep processes near the data they
reference by transparently replicating remote data in the processes’ lo-
cal memories. This automatic replication of data can impose substantial
memory system overhead on an application since all replicated data must
be kept coherent. We examine the effect of task scheduling on data repli-
cation and memory system overhead due to coherency requirements. We
show that simple policies using programmer hints can reduce memory
coherence overhead in our workload applications.

1 Introduction

Recent work has shown that the efficiency of shared memory, NUMA (Non-
Uniform Memory Access) multiprocessors can be improved considerably by
keeping threads and data near each other. This can be accomplished by one of
several mechanisms: the OS can migrate or replicate an application’s data pages
[4, 5, 11, 12]; the OS or user-level thread scheduler may attempt to schedule
threads on processors where they have previously executed and built up a certain
amount of memory or cache state (e.g. affinity scheduling [15, 18, 21]); or pro-
grammer hints for task scheduling may be embedded in an object’s specification
in an object-oriented, task-queue based parallel language [6]. The task-queue
model is widely used for parallel programming and is well suited for dynamically
changing environments [20].

In contrast to NUMA multiprocessors, some machines based on Distributed
Shared Memory (DSM) or Cache-Only Memory Architectures (COMA) guar-
antee that threads and their data are kept close together by automatically repli-
cating shared pages and requiring memory references to be satisfied from local
memory. While this policy helps keep threads and data on the same node,
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we speculate that it can also lead to increases in memory traffic if threads are
scheduled without regard to the location of the data they access.

In this paper we examine the effect of task placement on memory system
overhead on DSM platforms. Previous work has shown that even under optimal
conditions applications implemented with heavy-weight threads benefit very lit-
tle from sharing-based placement policies [19, 7]. However, previous work has
also shown that applications based on a task-queue model can show appreciable
performance gains from policies that place tasks near the data they reference
or near other tasks that reference the same data [6, 15]. We have therefore
restricted our work to applications conforming to a task-queue model.

Using a task-queue model in a DSM or COMA environment raises several
questions that previous work has not addressed:

1. Do task scheduling policies affect an application’s data sharing patterns?
Do some task placement policies cause data to be more widely shared than
others? Does this in turn increase memory system overhead?

2. Is there a role for the operating system in strengthening worker-data lo-
cality? For example, can threads be scheduled in such a way as to limit
the number of processors sharing a data object?

3. Will increases in worker-data locality translate into reductions in memory
coherence overhead, and thus into improvements in application perfor-
mance?

In the following sections we will address these questions. The remainder of
this paper is structured as follows. Section 2 discusses related work. Section 3
discusses the methodology and metrics we use in our experiments. Section 4 es-
tablishes workload parameters. Results are presented in Section 5, and Section 6
concludes the paper.

2 Related Work

Several recent papers have explicitly or implicitly addressed the impact of task
scheduling on multiprocessor memory system overhead, application performance,
and data sharing. Thekkath and Eggers [19] use trace-driven simulation to
examine the effect of data-sharing based placement on the execution time of
applications from the SPLASH [17] and the PRESTO [3] suites running on
a multithreaded, multiprocessor architecture. Threads scheduled on the same
processor share a cache, and the authors hypothesize that by placing threads
sharing large amounts of data on the same processor, cache misses (compul-
sory and invalidate) and coherency overhead can be decreased and performance
improved. However, after using off-line analysis to determine optimal thread
placements, the authors observe no significant improvements. They conclude



that sharing-based placement does not improve either execution time or cache
performance, and that the determining factor in application performance is load
balance, even in the presence of infinite caches. The authors attribute this to
the uniform access to shared data by application threads and the small fraction
of total references that are to shared data.

Stanford’s COOL project [6] and Markatos and LeBlanc [14] examine the
effect of task placement on performance for applications running in a task-queue
environment. COOL, a parallel object-oriented environment, uses application
hints to the run-time scheduler to enqueue a task on a node for which it has
affinity. Markatos and LeBlanc simulate synthetic task-queue programs under a
range of architectural parameters. Both papers report substantial performance
gains when tasks are scheduled on compute nodes already containing data that
they reference. Although both [6] and [14] allow for the caching of remote data,
both platforms implement a fixed home node for VM pages, meaning that pages
neither migrate nor are replicated. In this context, the ability to place a task on
the home node of its data can eliminate a substantial number of remote cache
misses and greatly improve execution times.

Chandra et al. [5] have investigated the effect of OS scheduling and page
migration policies on the cache behavior and execution time of applications
running on the Stanford DASH [13], thus examining the interaction between
data sharing patterns and locality management policies. They do not investigate
the interaction of page migration or replication (which is under implementation)
and the task scheduling policies of COOL (also implemented on the DASH).

Our work differs from the previous work in that we examine a DSM multipro-
cessor in which data is migrated and replicated automatically, and all memory
references are satisfied from local memory. In this context, the question of
keeping threads near the data they reference becomes a question of managing
memory coherence overhead.

3 Methodology

In the following sections we will attempt to answer the questions outlined in the
introduction. To examine the role of the OS in task placement and determine
if task placement affects the sharing of data objects, we measure the number
of processors mapping a data page, the worker-set size, at a large number of
post-initialization sample points under each placement policy. Results are pre-
sented as a series of worker-set size distribution plots. To examine the effect of
task placement on memory coherence overhead, we measure coherency traffic
(bytes transfered in update messages to maintain internode coherency and page
transfers to replicate data) under each policy. Finally, we look at the impact of
task placement on parallel execution time.

All results presented in this paper were obtained using a generic DSM mem-
ory hierarchy simulator running with Stanford’s Tango multiprocessor simulator



[9].

3.1 Task-queue model

Our programming model is loosely modeled after the Uniform System [2] and
assumes that an application spawns a single, non-migratory server process for
each processor assigned to the application. Each server process executes for
the duration of the application, fetching tasks from user-level ready queues,
executing them, and searching for new tasks. These tasks tend to be short and
are run to completion. Tasks may create new tasks, and may be nested.

To minimize contention, task queues are distributed throughout the multi-
processor. Each processor has both private and public task queues. Tasks in
the private queue are always executed before tasks in the public queue, and are
guaranteed to be executed by the owner of the private queue. Private-queue
tasks may be enqueued by any process. Load balance is maintained by allow-
ing idle server processes to steal tasks from the public queues of other server
processes. To reduce the overhead of fetching a potentially large number of
short-lived tasks individually, a server-process may dequeue several tasks at a
time. The number of tasks dequeued in a single fetch operation is known as the
chunk size, and is a function of application characteristics and task placement
policy (see Section 4.1).

3.2 Workload applications

The target workload consists of four applications from Stanford’s SPLASH suite
rewritten to conform to a task-queue environment. Barnes, mp3d and water are
large-scale scientific applications, while cholesky is a scientific kernel. Barnes
is an implementation of the Barnes-Hut algorithm for an n-body gravitational
problem; mp3d simulates rarefied fluid flow; and water is an n-body molecular
dynamics application. Cholesky performs parallel Cholesky factorization on a
sparse matrix. Detailed descriptions of each application are available in [17].

The difficulty of porting the workload to a task-queue environment varied
widely from application to application. On the one hand, the SPLASH version
of cholesky already conformed to our model, so we were able to simply replace
calls to the cholesky task management functions with calls to our more general
functions. On the other hand, the original versions of water and mp3d both
statically partition work, so rewriting them to conform to a task-queue model
required somewhat more work.

To avoid confusion concerning application versions, the original versions of
each application are hereafter referred to with the suffix “-splash” (e.g. barnes-
splash), while the task-queue versions are referred to with the suffix “-tq” (e.g.
barnes-tq).



3.2.1 Important application characteristics

Barnes. Two types of tasks are used in the barnes-tq application. First, the
master thread creates a single “top-level”task for each processor in the partition;
these tasks run for the duration of the application. Each of the top-level tasks is
responsible for moving a set of bodies through a gravitational n-body simulation
through a time-step consisting of several distinct phases. Approximately 90% of
parallel execution time is spent in the force computation phase [17]. Top-level
tasks generate a new task to correspond to the force computation for each body
in each time step. A 4096 byte VM page will hold data structures corresponding
to approximately 40 tasks. Since each top-level task creates a force-computation
task for each body in its set and these bodies reside in contiguous portions of
the virtual address space, we expect placement policies that enqueue tasks on
the generating node to work relatively well.

Cholesky. Tasks in the cholesky-tq application have been optimized to
increase the amount of work done between task fetch operations, at the expense
of some potential load imbalance [17]. Tasks may create one or more new
tasks, though unlike barnes-tq, these are not executed until the creator task
has terminated. Because a new task often shares data with its creator task, we
expect local task placement policies to work fairly well.

Mp3d. As with barnes-tq, two types of tasks are used to implement mp3d-
tq: a top-level task running for the duration of the application, and a large
number of short-lived tasks used to implement the move phase of each time
step, which accounts for roughly 90% of execution time [17]. We expect policies
that place tasks on the generating node to perform relatively well.

Water. Water-tq uses a master-slave task queue model in which a single
“master” thread creates all tasks, and many “slave” server processes fetch the
tasks and execute them. The master process also executes tasks, in addition
to controlling the flow of computation. Because water-tq contains a relatively
small number of tasks, this model achieves acceptable performance. However,
unlike cholesky-tq and barnes-tq, we expect local placement policies to create
load imbalance and large worker-set sizes as all tasks are enqueued on a single
node. On the other hand, policies that distribute the tasks more evenly and
allow tasks to build state on a given node may achieve better performance.

All the applications from the SPLASH suite were originally written for small-
scale UMA multiprocessors. Though this limits their scalability, especially for
the large scale multiprocessors which we study, the UMA programming model
is widely viewed as the most convenient model for parallel programming. Pro-
viding the appearance of an UMA environment on NUMA, DSM and COMA
machines is the goal of much current research. We acknowledge the likelihood
of artifact due to the small-scale nature of the original target; however, more
contemporary benchmarks are not widely available or accepted.



3.3 The target architecture

We simulate a generic DSM multiprocessor based loosely upon the Galactica Net
[22]. We assume the multiprocessor consists of a number of compute nodes con-
nected by a high speed network. Compute nodes consist of a memory module,
network interface, and a processor. Internode data consistency is maintained
with a distributed directory update protocol: for each shared page in a node,
the interface module maintains a pointer to the next node in a wvirtual sharing
ring of processors with copies of the page. When a shared page is written, a copy
of the new value is sent around the ring to all participating nodes [23]. Release
consistency [10] is supported to reduce update latency. A competitive update
policy is used to invalidate stale pages: when the number of remote updates to
a particular page between local references exceeds a threshold value, the local
copy of the page is invalidated and the node is removed from the virtual sharing
ring for that page. Pages are assumed to be 4096 bytes.

We model a write-update protocol with competitive invalidation to minimize
the effect of the particular memory coherence policy on our results. Specifically,
previous work has shown that a write-invalidate policy can make worker-sets
appear artificially small, while a pure write-update policy can make worker-sets
appear artificially large, especially if data tends to migrate from processor to
processor [8]. A write-update, competitive invalidate policy will allow data to
be actively shared, but prevent stale data from lingering on a node where it is
no longer needed. It should prevent any gross distortions of worker-set size.

Communication and CPU timings are based on Galactica Net prototype
figures [24]. Page invalidation thresholds and task chunk size are set on a per-
application basis such that execution time is minimized for each application (see
Section 4 and [8]).

3.4 Task placement policies

The placement policies we evaluate fall in two principal categories, depending
on the structure of task queues. Policies which are unblocked associate a single
public task queue with each processor; tasks assigned to the processor are simply
enqueued in FIFO order. Blocked policies associate an array of queues with
each processor. Under a blocked policy, a particular queue within the array
of queues is chosen in such a way as to group a certain set of tasks together
(e.g. tasks operating on a certain object). The difference between blocked and
unblocked policies is important given that tasks can be stolen or fetched in
chunks, rather than individually. This means that an unblocked chunk of tasks
is likely to contain a number of unrelated tasks, while tasks in a blocked chunk
are more likely to share data or contend for certain objects. We hypothesize
that by executing related tasks on a single processor, data replication and the
related coherency overhead can be reduced.

Task placement policy determines which processor will receive a newly gen-



erated task. If an array of queues is used, the placement policy also determines
which of the processor’s queues receives the task. The placement policies that
we investigate in this paper are:

¢ Random (RAND): a new task is placed on a queue chosen at random.
This serves as a baseline for our other placement policies.

¢ Round Robin (RR): task queues are selected in a round robin fashion.
If more than one process creates tasks, then each creator maintains a
separate pointer indicating the next queue to receive a task. This policy
tends to balance computational load, and will schedule iterative tasks (e.g.
time stepping a body) on the same processor over several time steps if the
number of tasks in each time step is divisible by the number of processors.
However, RR will spread tasks in a single coherency block over a large
number of processors, so we expect worker-set sizes to be relatively large.

¢ Memory Affinity (MEM): task queues are chosen based on an applica-
tion hint indicating the address of an object for which the task has affinity
(e.g. a data structure the task references). An attempt is made to place
the task on a node possessing a local copy of the object. (Full queues
cause a task to be placed elsewhere.) This policy can reduce unnecessary
data replication by placing tasks near the data they will use, and will
allow data sharing patterns to evolve gracefully over time. When several
nodes are found to possess copies of the affinity page, an attempt is made
to balance load by distributing tasks among all such nodes. This policy
requires a programmer hint in the form of a pointer to the affinity object,
and the ability to query the OS for the location of a copy of the page
containing the affinity object.

e Local Affinity (LOCAL): all tasks are placed on the queue of the
processor that generates them. For applications such as barnes-tq and
cholesky-tq, where tasks can create new tasks, we intuitively expect this
policy to perform competitively. For applications such as water-tq, where
a single master process creates all tasks, we expect this policy to lead to
load imbalance.

¢ Home Node Affinity (HOME): application provides affinity hints, as
in memory affinity placement, but tasks are placed on the “home node”
of the object for which they have affinity.! Although this policy does not
ensure that the affinity object is present on the selected node, it will allow
iterative applications to build up state on a particular node. Home node
affinity tends to schedule tasks on nodes where they previously executed,

IThe concept of a home node on a DSM platform may correspond to the node maintain-
ing directory and state information for a particular coherency block, or it may simply be a
convenient way to distribute load.



and will balance computational load if affinity objects are uniformly dis-
tributed.

¢ Blocked Home Node Affinity (BLOCK-HOME): task queues are
implemented as an array of queues. Like home node affinity, tasks are
scheduled on the “home node” of the affinity object. Furthermore, tasks
with affinity to objects in the same coherency block are placed on the same
queue. This policy requires a programmer hint in the form of a pointer to
the affinity object.

¢ Blocked Memory Affinity (BLOCK-MEM): as with memory affinity
placement, tasks are scheduled on a node with a local copy of the affinity
object. As with blocked policies, tasks operating on objects in the same
coherency block are placed on the same queue. This policy requires a
programmer hint in the form of a pointer to the affinity object, and the
ability to query the OS for the location of a copy of the page containing
the affinity object.

e Blocked Local Affinity (BLOCK-LOCAL): tasks are placed on the
local queues. If an affinity hint is available, tasks are further grouped
according to affinity object.

4 Setting parameters

Results in [8] show that for our architectural parameters, the most appropriate
multiprocessor sizes for simulations of SPLASH suite applications are 32 proces-
sors for barnes-splash and water-splash, and 16 processors for cholesky-splash
and mp3d-splash. The applications do not scale well on the target architecture
for larger partitions. In the following sections, we focus on simulation results
for these machine sizes.

Results in [7] show that finding an appropriate value for the page invalidation
threshold is important for two reasons. First, the invalidation threshold can
impact performance. If the threshold is too low, application pages will tend
to be invalidated while they are still in use, and performance will suffer as
the application spends cycles refetching pages. Conversely, a threshold that
is too high will allow stale pages to linger on nodes where they are no longer
used, imposing unnecessary coherency overhead on tasks that are using them.
Second, the threshold value affects worker-set distribution, our primary metric
for data sharing. Low thresholds make worker-sets appear artificially small
while high thresholds make worker-sets appear artificially large. The threshold
values used in this paper have been determined empirically such that execution
time is minimized and worker-set sizes are stable. Invalidation thresholds for
the workload applications are summarized in Table 1.
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Figure 1: Execution times for workload, as a function of task chunk size.

4.1 Task chunk size

Chunk size refers to the number of tasks that may be dequeued by a server pro-
cess in a single fetch operation. Server processes may want to fetch several tasks
at a time to amortize the cost of shared queue operations, to reduce contention
for shared queues, and to avoid splitting up groups of tasks with affinity for
the same object. However, large chunk sizes may lead to load imbalance since
fetched but unexecuted tasks cannot be stolen by idle server processes.

Figure 1 shows execution time for the workload applications as a function
of chunk size. Times are normalized for each application with respect to the
execution time at chunksize = 1. For reasons of clarity, a single placement
policy is presented for each application; other policies do not differ qualitatively.
Task chunking works well for barnes-tq, mp3d-tq, and water-tq, which have
small tasks. Execution times decrease markedly as chunk size increases from one
to four. At this point execution time increases for water-tq, due to increasing
load imbalance, levels off for barnes-tq, and continues to fall for mp3d-tq. This
is largely due to differences in the granularity of the applications: water-tq
generates 512 tasks for each phase of computation (for our problem sizes), while
barnes-tq and mp3d-tq generate 4096, and 64K, respectively. Task chunking
performs poorly for cholesky-tq, which suffers from increasing load imbalance
as chunk sizes grow.
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Figure 2: Barnes-tq: worker set size distribution versus task placement policy.

4.1.1 Summary of application parameters

Values for page invalidation threshold and task chunk size were determined
empirically on a per application, per placement basis. Table 1 summarizes
parameter values assumed in the remainder of this paper.

5 Results

In this section we analyze results from our process placement study. In Figures 2
— 5 we present worker-set size distribution graphs for the workload applications
and also for the original SPLASH implementations. In the discussion below we
will focus on worker-set size distribution of application pages, excluding pages
used by the task-queue layer in order to separate the implementation specific
effects of the latter.”

20ur shared memory allocation routines guarantee that task-queue and application pages
do not overlap.
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placement inval. | chunk
app n | policy thresh. size
RAND 152 8
RR 152 8
MEM 304 8
barnes 32 | LOCAL 152 8
HOME 152 8
BLOCK-HOME 152 8
BLOCK-MEM 225 8
BLOCK-LOC 76 8
RAND 76 1
RR 76 1
MEM 152 1
cholesky | 16 | LOCAL 76 1
HOME 76 1
BLOCK-HOME 76 1
BLOCK-MEM 76 1
BLOCK-LOC 76 1
RAND 608 128
RR - -
MEM 608 64
mp3d 16 | LOCAL 608 128
HOME 608 128
BLOCK-HOME 608 128
BLOCK-MEM - -
BLOCK-LOC 608 128
RAND 76 4
RR 76 4
MEM 152 4
water 32 | LOCAL 76 4
HOME 76 4
BLOCK-HOME 38 8
BLOCK-MEM 38 8
BLOCK-LOC 38 4

Table 1: Summary of parameters used in evaluating task placement policies. n
indicates the number of processors simulated for each application. No param-
eters were set for mp3d-tq under RR or BLOCK-MEM because simulations of
these policies did not complete.
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5.1 Worker-set size and task placement

Barnes. Results are summarized in Figure 2. As expected, local and blocked-
local placement policies work relatively well, due to the static assignment of
bodies to processes. Somewhat surprisingly, round-robin and random place-
ment policies perform better (in terms of worker-set sizes) than memory affinity
placements. RR placement tends to inflate worker-set sizes by placing adjacent
tasks on adjacent processors rather than on the same processor. However, be-
cause the number of tasks generated by each top-level task is divisible by the
number of processors, RR also places tasks on the same processor on successive
time steps.® Random placement results in slightly smaller worker-set sizes than
RR because tasks in the same coherency block are more often mapped to the
same processor. MEM placement results in large worker-set sizes because it
attempts to balance computational load by distributing tasks among all nodes
with valid copies of the affinity page, rather than attempting to localize all tasks
with affinity for a certain page on a single node. In addition, MEM uses a higher
page invalidation threshold, which tends to inflate worker-set sizes. (We’ll say
more about this in the Section 5.2.) In contrast, local and home placement
policies attempt to allow tasks to accumulate state on a particular node by
scheduling tasks on the same node over several successive time steps. LOCAL
placement causes tasks to be enqueued on the generating node. In the case of
barnes-tq, each top-level task resides on a fixed processor, time-steps a fixed
set of contiguous (in memory space) bodies, and generates force-computation
tasks for each of its bodies. Thus, LOCAL placement results in tasks being
enqueued with other tasks from the same coherency block, on a node that is
likely to have a copy of the block. Likewise, HOME placement attempts to
schedule all tasks associated with a given coherency block on the same node,
though not necessarily on the originating node, and to distribute these blocks
of tasks evenly throughout the multiprocessor. These two policies and their
blocked versions result in large worker-set size decreases relative to RR, MEM,
and RAND placement policies, and also relative to barnes-splash.

Cholesky. Unlike barnes-tq, cholesky-tq shows very little variability in
worker-set size as a function of task placement policy. All placement policies
result in roughly the same worker-set size distribution. As previously mentioned,
blocked policies have little effect due to the dynamic nature of task generation.
This also affects unblocked policies. Because of the small number of ready tasks
at any time, tasks tend to be executed by the first idle server process rather
than by the owner of the queue on which they are placed. Our statistics show
that under HOME task placement, for instance, of 564 tasks generated, 395 are
executed by remote server processes.

We note that the SPLASH version of cholesky uses a shared task-queue

3Placing tasks in the same coherency block on different processors is inherent to the round-
robin policy while placing tasks on the same processor over multiple time steps is a coincidence
of this particular problem size. RR placement does not do this for mp3d-tq, for instance.
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implemented as part of the application module. Results for cholesky-splash
presented in Figure 3 include task-queue pages in the computation of worker-
set size distribution, while data for cholesky-tq does not. Including the task-
queue pages in results for cholesky-tq does not change median or lower-quartile
worker-set sizes for any of the placements examined, although it increases upper-
quartile size for four placements (MEM and all blocked placements), and 95th
percentile size for all placements except RAND. For all placements, worker-set
sizes are still smaller for cholesky-tq than for cholesky-splash.

Mp3d. Mp3d-tq shows the highest sensitivity to placement of the four
applications. In part this is due to the fine granularity of tasks. Random
placement causes nearly every page to be shared by every processor, while local
placements result in much smaller worker-sets (median size of three on a sixteen
processor partition). Unlike the other applications, memory-affinity placement
performs significantly better than random, although random has particularly
large worker-sets. In terms of execution time, RAND in fact outperforms MEM.
RR and BLOCK-MEM performed so poorly that they caused the simulation
time counter to overflow. Both policies would tend to spread related tasks over
a large number of nodes. No results are presented for these two policies.

Water. Water-tq, unlike barnes-tq and cholesky-tq, uses a master process
to generate all application tasks, so we would expect local placement policies to
lead to large worker sets. However, Figure 5 shows that LOCAL and BLOCK-
LOCAL perform quite similarly to other policies. In effect, distributing tasks
on the master’s ready queues by coherency block (as in BLOCK-LOCAL) seems
to mitigate the effect of placing all tasks on a single node by allowing blocks of
related tasks to be fetched by remote server processes, and preventing unnec-
essary replication of data. And because tasks which are adjacent in memory
space are enqueued consecutively, a sort of de facto task blocking exists under
the LOCAL policy as well: remote server processes are likely to dequeue a group
of tasks with affinity for the same coherency block.

Surprisingly, the median worker-set size for the MEM policy is larger than for
LOCAL. As with barnes-tq, this seems to result from distributing load among
all the nodes in the target worker-set, as well as from higher invalidation thresh-
olds. In addition, the difference may be reinforced by the master-slave imple-
mentation of water-tq: consecutive tasks will correspond to adjacent (in memory
space) data structures, and a chunk of tasks on the local (master’s) queue will
tend to operate on a small number of coherency blocks.* In contrast, the un-
blocked memory affinity policy will tend to spread tasks from a single block
among all nodes with a copy of the block, and because the tasks are spread
around, they will also tend to be more finely interleaved with tasks from other
coherency blocks. This can lead to the replication of several coherency blocks
when chunks of remote tasks are fetched. Worker-set sizes under BLOCK-MEM
are comparable to other blocked policies, presumably because this task inter-

4The precise number will depend on chunk size and alignment.
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leaving is avoided by blocking tasks, and because invalidation thresholds are
lower.

For all applications we were able to improve worker-set size distribution
over the original SPLASH versions. Most, of the SPLASH applications already
showed good worker-data locality, as evidenced by their generally small median
worker-set sizes. Still, in most cases, median worker-set size was reduced just
by moving to a task-queue environment, and in many cases it was reduced even
further by the appropriate task placement policies. For instance, the median
worker-set size for water-splash with 32 processors is three. Median worker-set
size for water-tq is three or less for all but the worst placement policies. Likewise,
median worker-set size for cholesky-splash is two for 16 processors, while median
worker-set size for cholesky-tq is one for all placements. Much more variation
is seen in the results for barnes-tq, which has the largest worker-set sizes of any
of the SPLASH applications. Several placement policies result in significantly
larger median worker-set sizes than the original SPLASH version, but several
policies show significant improvement over barnes-splash. In particular, the
local and block-local policies perform well.

5.2 Task placement and memory coherence overhead

Memory coherence traffic consists of data sent between nodes in the form of
updates, page transfers, and remove-node-from-sharing-ring messages in order
to maintain a consistent view of system state.® In this section we will examine
the effect of task placement on the number of pages transfered and updates
delivered.

Figure 6 shows total coherency traffic for the workload applications under
the eight placement policies. We assume that each page transfer sends 4096
data bytes plus 8 address bytes, and each update message sends 8 data bytes
and 8 address bytes. Update traffic counts the number of update bytes received
(an update on a four-node sharing ring results in 16 bytes being received by
four nodes—the sender receives a copy of the update as an acknowledgment—
for a total of 64 update bytes). We note that with the exception of barnes-tq,
placement policy seems to have only a small effect on application page transfers.
In particular, policies designed to allow tasks to build up state on a given node
perform comparably to random or round-robin policies. This would seem to
indicate that tasks are unable to accumulate any significant amount of state
on a node over successive iterations of an algorithm. Perhaps pages are shared
widely enough that even when most tasks from a given page are scheduled on
the same node, the affinity page will become stale on its home node and be
invalidated over the course of most iterations. Alternatively, it could indicate
that page transfers due to initial references to data structures by the “owning”

5Page invalidation signals arise from a local update counter, and so are not counted as part
of the coherency traffic; however, when a page is invalidated, a message must be sent around
the virtual sharing ring to prevent updates from being sent to the removed node.
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Figure 6: Memory coherence traffic as a function of task placement policy.
Traffic consists of update messages and page transfers for both application and
task-queue data. Data is normalized with respect to each application’s total

traffic under random task placement.
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task (the task currently in charge of time stepping the data structure) comprise
a small fraction of the total page transfers for the page containing the object.
Either case would indicate high worker-set volatility as a possible performance
bottleneck.

For barnes-tq MEM and BLOCK-MEM result in significantly fewer page
transfers than other policies (roughly 69% and 55% fewer transfers, respectively,
than RAND). In fact, the difference is caused primarily by differences in page
invalidation threshold and only indirectly by task placement policy. Recall
that page invalidation threshold is determined empirically such that application
execution time is minimized (Section 4). From Table 1 we see that under MEM
applications tend to run faster with higher invalidation thresholds than under
other unblocked policies. In this case, the higher threshold makes it less likely
that a page for which an unexecuted task has affinity will be invalidated before
the task is executed. Application coherency traffic under BLOCK-MEM and
BLOCK-HOME is comparable to unblocked policies. We note that task blocking
is designed to minimize task fragmentation (spreading tasks operating on the
same coherency block over several nodes); with median worker-set size in excess
of 20 nodes for all policies, task fragmentation accounts for only a small fraction
of coherency traffic. In general, we note that barnes-tq shows little sensitivity
(in terms of coherency traffic) to placement policy. We attribute this to the wide
sharing of application pages: reducing worker-set size by one or two processors
simply does not have much of an impact on total traffic.

For cholesky-tq and water-tq, application coherency traffic is minimized by
the three blocked placement policies (though total coherency traffic is relatively
high for these policies). Because these applications have good worker-data lo-
cality, as indicated by their small median worker-set sizes, task blocking is able
to reduce coherency traffic by keeping tasks from the same coherency block to-
gether in the presence of task stealing. Although the dynamic nature of task
creation in cholesky limits the effectiveness of all placement policies, blocked
policies are able to take advantage of the initial surplus of ready tasks to fetch
chunks of related tasks, while unblocked policies cannot. Note that because the
initial third of cholesky-tq tasks are created by processor 0, and have affinity for
processor 0, almost all of these tasks are enqueued on node 0 under BLOCK-
LOCAL and BLOCK-MEM.

Mp3d-tq and water-tq show somewhat more sensitivity to task placement
than barnes-tq or cholesky-tq. Both have small median worker-set sizes (though
mp3d-tq’s vary considerably), so increases in worker-set size often results in a
noticeable increase in coherency traffic. For instance, RR tends to distribute
tasks from the same coherency block on a large number of processors, and results
in a significant increase in coherency traffic for water-tq (31% more traffic than
RAND and 69% more than HOME). Results are equally striking for mp3d-tq:
under RAND the application requires 35% more coherency traffic than under
LOCAL.
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Figure 7: Execution times for workload applications versus task placement pol-
icy. Times are normalized with respect to each application’s execution time
under RAND.

5.3 Task placement and execution time

RAND, RR, MEM, and BLOCK-MEM. Execution times for the workload
applications under the various placement policies are summarized in Figure 7.
For all applications except cholesky-tq, random task placement results in slightly
better performance than round-robin placement, indicating that load balancing
is not the determining factor in application performance. (This is in contrast to
[19].) However, as we have seen, load-imbalance is probably partially responsi-
ble for the poor performance of the blocked placement policies in cholesky-tq.
Likewise, affinity based placement policies improve performance only marginally
or not at all (this is in contrast to [6] and [14]). Both results are due to the na-
ture of the DSM target architecture we simulate, which allows pages of memory
to be cached automatically when referenced.

LOCAL. As anticipated, LOCAL performs relatively well, in terms of exe-
cution time, for barnes-tq (11% faster than RAND) and mp3d-tq (178% faster).
Surprisingly, it also performs well for water-tq (10% faster than RAND), but
is slightly slower than RAND for cholesky-tq. We note that the in the initial
phase of cholesky-tq, LOCAL results in all tasks being enqueued on node 0,
causing queue contention and task fragmentation, while the large amount of
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task stealing in the latter portion of cholesky-tq makes task placement virtually
useless.

To understand why LOCAL performs better for water-tq than HOME, which
has 15% less memory traffic (TQ and application combined), consider the man-
ner in which tasks are created and enqueued by the master process. Under
LOCAL all tasks are enqueued on the master’s ready queue. A copy of this
queue is likely to reside on the master’s node. Enqueuing a large number of
tasks will cause other instances of the queue to be invalidated. When the slave
processes begin to look for tasks, each will fault in parallel on the master’s task
queue. After an initial period of contention for the single queue, the slave pro-
cesses become staggered, and contention is reduced. Since slave page transfers
are serviced in parallel, most of this transfer time is not spent on the critical
path.5 In fact, the master process is likely to be working during this time since
it should not fault on its own queue. In contrast, under HOME, the master pro-
cess must enqueue most, tasks on remote ready queues which are not likely to be
resident on the master node since they have presumably been heavily utilized
by their owners during the previous computational phase. Thus, the master
process will likely stall repeatedly while each queue is transfered in. Each of
these transfers will be on the critical path since the master generates all tasks
before starting the slaves. In addition, enqueuing tasks will result in the orig-
inal copy of the queue becoming stale on the remote node, and another page
transfer will be necessary when each slave process attempts to access its local
list”. Assuming 31 (remote queue) page transfers per phase, four phases per
time step, and 4 time steps over the course of the application, we estimate that
HOME will incur roughly 500 more critical path page transfers than LOCAL,
resulting in a 2,500,000 cycle performance hit.

HOME. Both HOME and LOCAL address the goals of load distribution
and establishing task state over several time steps. HOME addresses load dis-
tribution explicitly, while LOCAL addresses it implicitly. A side effect of the
HOME strategy is that processes often attempt to enqueue tasks on remote
nodes and must wait for the remote queue object to be transfered in. While
this may not increase total traffic, it does tend to move page transfers onto
the critical task create and dequeue paths and thus increase execution time.
This can be seen in barnes-tq, mp3d-tq, and water-tq. The lone exception is
cholesky-tq, in which HOME results in much better load distribution during
the initial phase of computation (recall that a single process creates the initial
third of all tasks). In this case, reductions in worker-set fragmentation seem to
compensate for critical path page transferring.

SWhether interconnection bandwidth is high enough to service a large number of page
transfers in parallel is another matter. We note that in this case, all the slave processes are
requesting copies of the same page, so an intelligent operating system should be able to handle
the traffic.

7Although these transfers may be serviced in parallel, getting copies from the master
process may be a bottleneck.
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BLOCK-HOME and BLOCK-LOCAL. Our observations concerning LO-
CAL and HOME also hold for BLOCK-LOCAL and BLOCK-HOME. We note
that cholesky-tq runs slightly faster under BLOCK-LOCAL than BLOCK-HOME
(while the opposite was true under LOCAL and HOME) because task blocking
prevents the worker-set fragmentation that resulted in poor performance for
LOCAL. (Note however that due to the overhead of searching additional queues
for a small number of tasks, unblocked policies outperform blocked policies for
cholesky-tq.) Likewise, water-tq performs slightly better under BLOCK-HOME
than under BLOCK-LOCAL. This results from the need to search a large num-
ber of empty queues on other nodes in order to find ready tasks on node O.
Figure 6 shows that there is a tremendous increase in task-queue page transfers
under BLOCK-LOCAL; however, the performance impact is much smaller since
most queue searching is done in parallel.

6 Conclusions

We used simulations of real programs to examine the effect of task placement
on memory coherence overhead and application performance. Our results show
that the appropriate task placement policies can result in significant reductions
in application-level coherency traffic and moderate improvements in run time.
We were able to observe improvements of up to 11% in execution time and 25%
in application memory coherence traffic. For mp3d-tq, even larger improvements
were observed. In addition we conclude:

e Decoupling logical tasks from the processes that execute them can reduce
data sharing. In most cases, just porting the workload to a task-queue
environment resulted in reductions in worker-set size. Using appropriate
task placement policies can sometimes further reduce sharing, depending
on an application’s data access patterns.

e Very simple policies such as LOCAL are surprisingly robust. Our results
show that even when this policy causes all tasks to be enqueued on a single
node, the application is still competitive with other policies.

e Task blocking seems to offer promise as a way to reduce application co-
herency traffic, but only if it can be implemented with low overhead. In
two of our applications, cholesky-tq and water-tq, task blocking resulted
in significant reductions in application coherency traffic. However, task-
queue layer coherency traffic was high enough in these cases that total
traffic was no lower than for unblocked policies. Separately tuning task-
queue and application parameters should allow task-queue traffic to be
reduced while keeping application traffic low. In addition, applications
whose task creation behavior evolves over the course of application life-
time (e.g. cholesky) may benefit from self-tuning placement policies: a
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blocked policy may be appropriate for the initial phase of task generation,
while an unblocked policy may be more appropriate later.

The interaction of task generation policies and memory coherence policies
can have a large and sometimes counter-intuitive impact on performance.
For instance, attempting to distribute load evenly by enqueuing tasks on
remote nodes can force page transfers onto the critical path and degrade
performance.

Worker-set volatility either limits a task’s ability to accumulate state on
a particular node, or makes such state accumulation into a small fraction
of total data traffic. This may indicate significant migratory sharing, or
it may indicate page bouncing.

Finally, we believe that our results are conservative in several important

respects. First, better tuning of the task-queue layer will make the modest
gains we observed more significant as overhead is reduced. Second, moving to
a task-queue model facilitates the use of techniques such as First-Class threads
[1, 16] which can further reduce execution time. Third, given the reductions
in memory traffic we achieved, we speculate that as internode communication
continues to become more expensive relative to processor speed, our policies will
achieve better performance.
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