
2nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, March 1990.

[Sha90] L. Sha, R. Rajkumar, J. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization”, IEEE Transactions
on Computers, Vol. 39, No. 9, September 1990.

[TuGu89] A. Tucker, A. Gupta, “Process Scheduling Issues for Multipro-
grammed Shared Memory Multiprocessors”, ACM Symposium on
Operating System Principles, December 1989.

[VaZa91] R. Vaswani, J. Zahorjan, “The Implications of Cache Affinity on
Processor Scheduling for Multiprogrammed, Shared Memory
Multiprocessors”, ACM Symposium on Operating System Princi-
ples, October 1991.

[VaRo88] M. Vandervoorde, E. Roberts, “WorkCrews: An Abstraction for
Controlling Parallelism”, International Journal of Parallel Pro-
gramming, August 1988.

[Wald94] C. Waldsburger, W. Weihl, “Lottery Scheduling: Flexible Propor-
tional-Share Resource Management”, USENIX Symposium on
Operating Systems Design and Implementation, November 1994.

[Zaho90] J. Zahorjan, C. McCann, “Processor Scheduling in Shared Memory
Multiprocessors”, SIGMETRICS May 1990.

[Zaho91] J. Zahorjan et al., “The Effect of Scheduling Discipline on Spin
Overhead in Shared Memory Multiprocessors”, IEEE Transac-
tions on Distributed Systems, April 1991.



[Bach86] M. Bach, “The Design of the UNIX Operating System”, Prentice
Hall, 1986.

[BaWa88] J. Barton, J. Wagner, “Beyond Threads: Resource Sharing in
UNIX”, USENIX Winter Conference, February 1988.

[Blac90] D. Black, “Scheduling Support for Concurrency in the Mach Oper-
ating System”, IEEE Computer, May 1990.

[CaSm89] D. Callahan, B. Smith, “A Future-Based Parallel Language for a
General Purpose Highly Parallel Computer”, Proceedings of the
2nd Workshop on Languages and Compilers for Parallel Comput-
ing, MIT Press, Cambridge, MA, 1989.

[Cray85] Cray Computer Systems, “Multitasking User Guide”, Technical
Note SN-0222, January 1985.

[DiIy90] R.T. Dimpsey, R.K. Iyer, “Performance Degradation due to Multi-
programming and System Overheads in Real Workloads”, Pro-
ceedings of the 1990 ACM International Conference on
Supercomputing, Amsterdam, Holland, June 1990.

[Drav91] R. Draves, et al., “Using Continuations to Implement Thread
Management and Communication in Operating Systems”, ACM
Symposium on Operating System Principles, October 1991.

[Edle88] Edler et al., “Process Management for Highly Parallel UNIX Sys-
tems”, USENIX Workshop on UNIX and Supercomputers, Sep-
tember 1988.

[EaZa93] D. Eager, J. Zahorjan, “Chores: Enhanced Run-time Support for
Shared-Memory Parallel Computing”, ACM Transactions on Com-
puter Systems, February 1993.

[GiPo92] M. Girkar, C.D. Polychronopoulos, “Functional Parallelism in Or-
dinary Programs”, IEEE Transactions on Parallel and Distributed
Computing, March 1992.

[Leff89] S. Leffler, M.K. McKusick, M.J. Karels, J.S. Quarterman, “The De-
sign and Implementation of the 4.3 BSD UNIX Operating Sys-
tem”, Addison-Wesley, 1989.

[LoGl87] S.P. Lo, V. Gligor, “A Comparative Analysis of Multiprocessor
Scheduling Algorithms”, 7th International Conference on Distrib-
uted Computing Systems, September 1987.

[Poly89] C.D. Polychronopoulos, “Multiprocessing vs. Multiprogramming”,
Proceedings of the 1989 International Conference on Parallel Pro-
cessing, St. Charles, IL, August, 1989.

[Poly90] C.D. Polychronopoulos, “Control Flow and Data Flow Come To-
gether”, Technical Report, Center for Supercomputing Research
and Development, University of Illinois, November 1990.

[Poly94] C.D. Polychronopoulos, N. Bitar, S. Kleiman, “Nanothreads: A
User-level Threads Architecture”, Technical Report #1295, Center
for Supercomputing Research and Development, University of Il-
linois.

[Scot90] M. Scott et al., “Multi-model Parallel Programming in Psyche”,



provided user-level schedulers to schedule the process’s threads. To facili-

tate this, a high speed two-way communication mechanism between the

user-level scheduler and the kernel scheduler, similar to the PRDA, will be

provided. This arena will allow the user-level scheduler to communicate its

needs to the kernel and allow the kernel scheduler to indicate certain

events such as processor allocation, processor preemption, and thread

blocking to the user-level.

The new scheduler will also provide a new batch mechanism for sci-

entific users. The existing batch policy of only scheduling a process when

no real-time or timesharing band process is runnable will be maintained. A

new band will allow users to utilize their machine in a fashion that pro-

vides greater importance to specific batch jobs. In particular, in exchange

for information about how much cpu time, memory and I/O bandwidth a

job requires and a desired completion time, the kernel scheduler will allo-

cate processors to optimize job completion time rather than throughput,

providing the requests are reasonable (possible). Requests that cannot be

satisfied because they are unreasonable or conflict with previous requests

will be rejected. Processes that exceed their specified user cpu time will be

relegated to the timesharing band to fend for themselves. This mechanism

allows scientific users to achieve a predictable number of runs of a large

parallel application within a particular timeframe.

Finally, the new scheduler will provide a memory affinity scheduling

mechanism to better support new machines with NUMA memory charac-

teristics.

6. Concluding Remarks

The scheduling system described in this paper was introduced with

Version 5 of the IRIX operating system, initially shipped as IRIX 5.0 and

5.0.1 on the Challenge line of multiprocessors in March of 1993. This was

followed in August of 1993 by IRIX 5.1 on the Indy desktop workstation. As

of the date of this writing, this scheduler is running on over 2000 Chal-

lenge multiprocessors and 10000 uniprocessor Indy workstations and runs

on all existing MIPS-based Silicon Graphics computers including the Pow-

erSeries multiprocessors. It has satisfied the needs of Silicon Graphics

real-time, media, scientific, database, and general-purpose customers.

REFERENCES

[AnLa89] T. Anderson, E. Lazowska, H. Levy, “The Performance Implica-
tions of Thread Management Alternatives for Shared Memory
Multiprocessors”, IEEE Transactions on Computers, December
1989.

[AnBe91] T. Anderson, B. Bershad, “Scheduler Activations: Effective Kernel
Support for the User-Level Management of Parallelism”, ACM
Symposium on Operating System Principles, October 1991.



gang timeslice. On expiration of the gang timeslice the gang becomes inac-

tive and gang members are captured and held by the gang squeue until

shutdown is complete. When the inactive state is entered the gang control

block is moved to the end of the gang queue allowing round-robin schedul-

ing of gangs.

4.3.3  The Inactive State

In this state the gang squeue collects members of the gang. This hap-

pens quickly since the timeslice has been carefully controlled. Within the

precision of the IRIX fast timeout mechanism (typically 1 ms), all gang

members will be queued on the gang control block. Once all gang members

have been captured the gang enters the queued state.

5.  Future Work

The current IRIX Version 5 scheduler uses a decay-usage priority

mechanism in the timesharing band in order to select the next process to

dispatch. While priorities in the real-time band indicate a strict relative

order of importance of processes, priorities in the timesharing band are

intended to be an indication of how much cpu time processes acquire rela-

tive to each other. The priorities are, therefore, decayed with cpu time accu-

mulation in order to approximate this behavior. This is an ad hoc approach

at best. The next generation IRIX scheduler will treat the timesharing

band differently. In particular, all priorities will be non-degrading and in

the timesharing band the priorities will be a precise indication of how

much cpu time processes will accumulate relative to each other. The sched-

uler will implement a space-sharing earnings based policy where the prior-

ity of a process will indicate the rate at which cpu time is accumulated

[Zaho90][Poly94]. Processes with high earnings will be scheduled ahead of

processes with lower earnings and processes will be charged for their cpu

usage when it occurs. The earnings value is an accurate indication of what

a particular process’s fair share of the machine, denominated in cpu micro-

seconds, is at any point in time. This value will feed into an additive func-

tion whose result will be the final scheduling criterion. This function will

take into account cache affinity, interactive response, boosts for new jobs

and other factors - the original earnings will remain unchanged pending

cpu usage. This mechanism allows for flexibility in short term scheduling

decisions in order to improve throughput or response time, while maintain-

ing fairness over the long term.

In addition, the new scheduler will provide support for user-level

scheduling of threads [AnBe91][Poly94]. The kernel scheduler has little

understanding of an application’s topology and cannot be all things to all

processes. As such, the scheduler will be a resource arbiter, allocating pro-

cessors to processes (effectively scheduling single-threaded or share group

processes) and allowing multi-threaded processes with user- or compiler-



the gang squeue there is currently no way to change their settings. Future

versions of IRIX may allow this.

Once enough processes from the share group are queued the gang

can become active if the lowest priority member of the gang has a higher or

equal priority to the highest priority process on the time-sharing squeue.

This ensures that time-sharing processes are not starved by the gang

squeue; the gang squeue will not starve itself since it ages the priority of

the processes on its queue every second. The priority check is made using

the time-sharing squeue pointer saved in the Runq data structure.

4.3.2  The Active State

When a gang becomes active the gang control block is moved to the

front of the gang squeue so that it is checked first on each dispatch cycle.

Gangs are not necessarily activated in order: for instance, if a gang has

become inactive a successor gang on the list will be checked. As soon as the

first gang enters the queued state it would preempt the processors from a

previously activated gang, causing starvation. Upon activation, the gang

squeue initializes a time slice counter to zero and dispatches the first pro-

cess on the gang control block process queue. From this point until the

timeslice expires the gang squeue will dispatch processes from the gang to

any eligible processor. Queue ordering effectively boosts the gang priority

for a short period of time, allowing parallel dispatch of the gang members

as processors perform a dispatch cycle.

Since there is no knowledge of when a processor may request a dis-

patch cycle it may take up to the default timeslice (30 ms) before another

processor scans the gang squeue once the gang has been activated. This

can subvert the intended parallelism. One solution to this problem is to

make the gang timeslice significantly larger than normal so that gang

members actually run in parallel for a useful length of time. However, since

it is important to preserve normal behavior of other processes on the sys-

tem this is unacceptable. Another solution would check for active gangs on

each UNIX clock tick on every eligible processor. The current process would

be preempted and a dispatch cycle started immediately. This ameliorates

the problem but up to 10 ms may still pass before the gang is running fully

in parallel and thus the startup window must be made even tighter.

To that end, when the first gang member is dispatched the gang

squeue scans the processors available to the gang squeue (up to the num-

ber of queued gang members) and each one that is running a process of

equal or lower priority to the gang is interrupted to request a dispatch

cycle. This closes the start-up window to a few tens of microseconds. While

the gang is active, processes in the gang come and go from the gang control

block queue continuously. For instance, it may be necessary to service a

page fault which may cause one of the processes to block briefly. Once

requeued it will be dispatched immediately. Each time a process is dis-

patched from the gang its timeslice is set to the amount of time left in the



The gang control block includes a pointer to the share group control

block which is used for access to share group state. The gang squeue is

actually formed from a list of these control blocks; each control block in

turn acts as a queue for the processes in the gang. The gang squeue treats

gang control blocks much as other queues treat individual processes.

4.3.1  The Queued State

In the queued state, the gang control block exists and processes

which belong to the gang are captured after yielding and placed on the end

of the queue associated with the corresponding control block. If the gang

has returned to free mode then the gang squeue will reject gang members.

The gang control block continues to exist for the life of the share group,

however. The equal and single modes are handled in the squeue _putq  rou-

tine. In equal mode, if a process from the gang is currently running, no

other process from the gang will be dispatched; otherwise, the first queued

member of the gang is dispatched, resulting in a round-robin effect. In sin-

gle mode, if the master process is on the queue, then it is dispatched; other-

wise the gang is ignored. If the gang is in gang mode then the more

complex mechanisms of the squeue are invoked. Two parameters control

process dispatch. The first indicates the minimum number of processes

which must currently be queued on the gang control block before activating

the gang and is set to one by default. The second indicates the maximum

number of processes to run in parallel. This is set to the minimum of the

number of processes in the share group and the number of processors avail-

able to the gang squeue by default. Although these variables are used by

Active

Queued Inactive

Priority?
Time-Slice
End

All Processes
Queued

Yield

FIGURE 8:  Gang State Diagram



4.3  The Gang Squeue
The gang squeue is used to schedule multiple related processes as if

they were a single unit, that is, to schedule multiple processes to proces-

sors at the same time. A gang is a group of shared processes (a share group)

derived from a common ancestor (the master process) for which gang sched-

uling has been requested. Given the fully distributed nature of the sched-

uler this is not as easy as it first appears. The various gangs that may be

active must be round-robined and other work in the system must not be

significantly disrupted by the presence of a gang.

Version 4 of IRIX included a different implementation of gang sched-

uling. This new version maintains the semantics and user-level interface of

that version while contributing a completely new implementation. This

was necessary for several reasons. IRIX Version 4 supported only the Pow-

erSeries multiprocessor systems which scale to 8 processors. Users would

run only a few (mostly one) gangs and little provision for impact on other

work was taken into account. With the Challenge series of machines many

gangs may be active at once in addition to typical timesharing, batch, dead-

line, and realtime processing. The Version 4 mechanism also relied strictly

on probability for getting the members of the gang to run in parallel and

this probability would decrease in a busy system.

There are four gang scheduling modes that may be requested by the

process: gang, free, single and equal. By default, a share group is in the free

mode. As long as the group remains in free mode the processes are ignored

by the gang squeue. In single mode the master process of the group is dis-

patched normally while all other group members are blocked. In equal

mode the members of the group are scheduled in a round-robin fashion

with only one group member executing at any one time. In gang mode the

processes in the group are dispatched in parallel.

A compiler generating parallel code breaks the execution up into a

sequence of parallel and serial sections. For instance, the setup for a For-

tran DO loop would be done serially by the master process, the proper

number of threads would then be released to run in parallel to perform the

work of the loop and finally cleanup and setup of the next loop would again

be done by the master process. This means that the usual usage of the

scheduler would be to flip between gang mode and single mode quite often.

In fact, this is the preferred usage since it avoids having the other threads

simply spin waiting for the serial section to complete - instead, they are

held back by the scheduler until it is appropriate for them to run.

A gang exists in one of three states: queued, active, and inactive. Only

if there are gangs in the active state will the squeue attempt to dispatch

processes from the gangs. Figure 8 shows the simple state diagram.

The actions in each of these states are described below. The algo-

rithms described rely on the information contained in a gang control block,

which is automatically created when the share group leaves free mode for

the first time.



size and added to the amount already allocated. If that amount exceeds the

limits, the deadline is rejected. This algorithm treats the scheduler as if it

had its own deadline and allocates time to processes from its own alloca-

tion.

The squeue maintains the list of processes to run as a single queue,

ordered on time-to-deadline. Dispatching of a process can then simply take

the first on the queue. Each process is allowed a maximum time to execute

limited by the allocation still undelivered and the default system time-slice

interval meaning deadline tasks will execute in a round-robin fashion. The

squeue will set a timeout for the undelivered allocation so that it regains

control of the process when the allocation is finished. If there is still time

left in the interval the process is released to the time-sharing squeue (or

other squeues, as specified by the process) for ongoing execution. When a

process is released in this fashion the squeue sets another timeout such

that it can regain control of the process when a new interval begins.

The process may request certain variations to the above scenario. For

example, it may request that when the allocation is finished that the pro-

cess simply not run until the next interval begins. Such behavior crosses

interval boundaries and persists until cancelled. Another alternative is for

the process to request that it be blocked until the next interval or that any

remaining allocation be released until the next interval begins. These

requests only apply to the current interval. Figure 5 shows the state dia-

gram that applies to a process in the deadline squeue.

Awaiting

Allocation

Blocked until

Interval
Released until

Interval

Interval

Explicit
Release

Interval

Explicit
Block

Allocation End
(if autoblock)

Allocation End

Time-slice or
Preemption

FIGURE 7:  Deadline State Diagram

TimeoutTimeout



another local queue quickly. Carefully constructed pathological cases can

exact poor performance from this scheme, but in all cases examined so far

this algorithm provides good scaling up to the 36 processors in the Chal-

lenge design.

4.2  The Deadline Squeue
The deadline squeue provides periodic deadline scheduling services

to a process. A periodic deadline consists of two values: the interval (or

period), which is the basic clock, and the allocation which is the guaranteed

amount of execution time desired within each interval. The deadline

squeue will ensure that the allocation is given to the process before the end

of each interval. There is no assurance that the allocation will be delivered

at any particular point in the interval nor that the allocation will be deliv-

ered as a single chunk of time. Delivery before the next interval begins is

the only guarantee. Figure 7 illustrates this.

This style of deadline scheduling is useful for various continuous

media handling applications such as constant-bit-rate delivery of video

(e.g., MPEG at a 1.5Mbit/s rate), continuous audio and others. In essence,

while the function of realtime scheduling is to manage latency and

response time, the function of deadline scheduling is to manage through-

put. Since these two goals tend to be opposed for any one process they can-

not both be used at the same time (it is easy to see from the global

scheduling policy that real-time processes have higher priority than dead-

line processes).

Since the deadline squeue guarantees an allocation, it must keep a

notion of how much execution is available overall and enforce limits on

allocation. Three limits are defined: runq_dl_refframe ,

runq_dl_nonpriv , and runq_dl_maxuse . The runq_dl_refframe variable

specifies the largest period which can be requested, runq_dl_nonpriv speci-

fies the maximum amount of processor time which can be allocated by non-

privileged users and runq_dl_maxuse specifies the overall maximum which

can be allocated. The amount of time available is calculated based on the

reference frame size multiplied by the number of processors which can

schedule deadline processes. When a request is made for a new deadline

the requested interval must be less than or equal to the frame size. The

allocation is scaled up by the ratio of the requested interval to the frame

Period

Allocation

Time

FIGURE 6:  Deadline Scheduling



20 millisecond range1. Given this, every process on the local queue is exam-

ined on every dispatch cycle. Since the affinity check is cheap, affinity is

checked for every process and those not selected but whose affinity is

expired are moved to the global queue immediately. Note that a processor

only examines its own local queue; this implies that the queue data will

tend to be exclusively owned by the processor cache and immediately avail-

able.

This solution implies, however, that the maximum time that a pro-

cess may be blocked from running on a local queue will be the maximum

time-slice that is allowed - typically 30 milliseconds in IRIX by default.

With modern high-speed processors, 30 milliseconds is a very long time

and can waste much of the system throughput. To address this issue the

scheduler takes advantage of the well-known UNIX clock-tick mechanism

which is 10 ms in IRIX. The scheduler has a global entry point which is

called on every clock-tick and the ordered squeue supplies the _timeq
method to be invoked when this occurs. When a clock-tick occurs for the

processor it examines the local queue and moves any expired affinity jobs

to the global queue making them visible to other processors for dispatch-

ing. This reduces the load-balancing penalty to the basic clock frequency as

in other implementations of UNIX.

Unfortunately, it is possible for a processor to get limited to only

examining its local queue. For example, consider a situation where several

processes run for a short period, are briefly blocked, and then run again. A

processor ends up running all these processes and, because of affinity, they

all remain tied to that processor and its caches. This processor may never

examine the global queue and higher priority processes may fail to dis-

patch while low priority work continues unabated.

To solve this problem the priority of the process that has been

selected from the local queue is compared with the highest priority process

on the global queue. If the global queue has a higher priority process it is

selected instead without perturbing the local queue.

The architecture now provides a reasonable balance between single

queue and distributed queue characteristics. Processes initially arrive on

the global queue - some processor chooses the process and runs it giving

the process affinity for that processor. If the process is CPU bound it will

queue on the local queue of that processor pending dispatch. If it is I/O

bound it is likely that the process affinity will expire and it will be queued

on the global queue when it is unblocked. Essentially, CPU bound work

will be distributed among various local queues while I/O bound work will

be queued on the global queue and be immediately serviced with high prob-

ability. Load balancing will occur in parallel since expired processes will

tend to move from one local queue, through the global queue, and onto

1. It is also assumed that it is atypical for a large number of processes to be

restricted to a particular processor.



how often to examine other processors’ queues will require walking a fine

line between load balancing and queue interference. Furthermore, with

large numbers of processors the question of which queues to look at

becomes significant. In general, this type of solution will result in exactly

the problem that the design was attempting to address.

The Ordered squeue addresses these problems by combining affinity

management and distributed queueing. This algorithm is used only for

ordered squeues which are non-realtime and will have heavy traffic (Ker-

nel, Time-Share, Batch). Each processor is allocated a local queue on which

processes with affinity to that processor will be queued1. All other pro-

cesses are queued on the queue contained within the squeue object. Figure

6 illustrates this.

When dispatching from an squeue the processor first examines the

local queue; if no runnable processes are found then the global queue is

examined.

It is assumed that the local queues never get very long. This is rea-

sonable as the maximum affinity value for a process is typically in the 10-

1. Restricted processes are also queued on the local queue as there is no

reason to have any other processor look at them. This allows optimization

of performance in certain applications.

Local Queue

Local Queue

Local Queue

Global Queue

Processor 0

Processor 1

Processor N

Mustrun: 1

Affinity: 0

Mustrun: -1

Affinity: 105

Mustrun: -1

Affinity: 0

Mustrun: -1

Affinity: 0

Processor 0

Information

Squeue

FIGURE 5:  The Distributed Version of the Ordered Queue



Gang: A gang squeue maintains a queue of gangs, which are groups

of shared processes (sproc(2)) [BaWa88] descended from a common

parent. In principle, the members of a gang share an address space

and must physically run in parallel to achieve good performance.

This squeue attempts to run the processes of a gang in parallel

while maintaining fairness among gangs and with other processes

on the system. (Gang TS, Gang Batch).

4.1  The Ordered Squeue
The most heavily used squeue type is the ordered squeue. A modern

shared-memory symmetric multiprocessor of the SGI Challenge class pre-

sents significant obstacles to efficient process dispatching. All communica-

tion between processors is handled by moving cache lines of data which are

128 bytes in length. Unlike the previous SGI PowerSeries multiprocessors

there is no separate synchronization bus, so each synchronization transac-

tion requires a complete memory bus cycle. Efficiency is improved due to

the shared-read behavior of the cache system in that waiting on a spinlock

is all contained within the processor-cache subsystem. However, when

another processor invalidates the line by freeing the spinlock every proces-

sor waiting for that lock will immediately attempt to re-acquire the cache

line causing a burst of bus traffic that degrades performance.

As the number of processors increases, this problem is exacerbated.

In a busy system the scheduler is typically the most often executed piece of

code and therefore its spinlocks are the most heavily used. If a single queue

was used for all work, the multiprocessor performance of the system would

degrade quickly. If cache affinity management is imposed on this structure

the situation becomes much worse as a processor may have to examine

many processes before finding a process which it can run and, in fact, some

processors may not dispatch any process on a scan because of affinity for

other processors. Empirical evidence shows that performance of the sched-

uler begins to degrade above eight processors when a simplistic queueing

scheme is used even though the algorithms were designed to be indepen-

dent of the number of processors.

The obvious solution to these problems is to use distributed queueing

- allocating a queue for each processor. Distributed queueing has its own

set of well-known problems especially in the area of load-balancing. For a

general-purpose multiprocessor, automatic load-balancing is an important

feature and distributed queuing makes this quite difficult. One solution is

to decide the processor a process will run on at queue time. Since it is not

known a priori how long a process will execute, many processors will

invariably idle while others have long queues of work waiting. This situa-

tion can be ameliorated by allowing a processor with an empty queue to

service other processor queues. Unfortunately a new set of problems are

created since interference between processors will arise and the question of



4.  Squeues

The runqueue is composed of a list of squeues. The scheduler includes

a small internal table which describes the squeues to be created, their

types, and other ancillary information. This table is the main point at

which the global policy of the scheduler can be modified. It is read when

the scheduler is first initialized and the information is used to build the

runqueue and each of the squeues which comprises it. Conceptually, each

squeue is an independent object with the following methods: _putq ,

_getq , _timeq , _exitq , _forkq , _delq , _infoq , _endshaddrq ,

_joinq , and _leaveq . Initialization consists of plugging the appropriate

entry points and calling the _joinq  method to allow the squeue to initial-

ize itself. In a multiprocessor, additional processors may come and go arbi-

trarily (from the scheduler’s point of view). Each new processor calls the

_joinq  method for each squeue which allows the squeue to update any

internal state that is processor dependent. Conversely, a processor which is

ceasing scheduling will call the _leaveq  method for each squeue. Exter-

nally, actions such as enabling or disabling processors, restricting or isolat-

ing processors, or binding queues to processor sets will cause appropriate

calls to the _joinq  or _leaveq  methods to allow state information to

remain accurate.

For example, each squeue maintains a concept of the number of pro-

cessors available to the squeue and the number which are implicitly avail-

able for process dispatching. If the implicitly available processors fall below

a certain level it may be appropriate to provide an alternative scheduling

behavior. In the gang scheduling squeue, a new gang will not be started if

the number of available processors is less than the number of members of

the gang.

For all the methods in an squeue, the global framework provides a

single entry point called from other parts of the kernel. When invoked, this

entry point in turn calls each squeue that has defined a method for that

entry. The fork entry point, for example, first allocates the scheduler infor-

mation data structure for the process and then calls each squeue _fork
method in turn.

There are three basic types of squeue object defined. Each of these

squeue types will be described in detail later in the paper. The seven con-

figured squeues are derived from these three types. The types are:

Ordered: This is the simplest type, maintaining a single, priority

ordered queue. On a multiprocessor this type applies affinity

checks to each process. In addition, an ordered squeue may be con-

figured as a distributed queue. (Kernel, Real-Time, Time-Share,

Batch).

Deadline: A deadline squeue maintains a single, time-to-deadline

ordered queue. (Deadline).



time has been spent running other tasks, then the process may be dis-

patched anywhere, otherwise the scheduler will only make it runnable for

the processor it last ran on. This strategy makes affinity independent of

how long a process was waiting or queued; on a moderately loaded multi-

processor it is quite possible that cached data may stay useful for many

seconds.

Each scheduling squeue applies affinity as needed. The global frame-

work provides a simple pair of routines for managing affinity: set the affin-

ity value, which is called when a process yields the processor; and check the

affinity value, which is called before every runnable check on the process.

When checking affinity, this function will not return OK unless the affinity

has expired or the checking processor is the last processor the process ran

on. Cache affinity must be checked at this time because it is a constantly

degrading value - the expiration of cache affinity should be noticed as

quickly as possible to achieve good load-balancing.

Currently, affinity only lasts across a single trip to the runqueue. It is

possible to carry affinity information across multiple trips, but that has not

yet been implemented. It is not clear that the incremental gain in perfor-

mance is worth the additional overhead, especially without hardware sup-

port for determining cache occupancy.

3.5  Runnable
There are a number of conditions which determine whether or not a

process can be dispatched at any given instant in time. These conditions

may change arbitrarily outside the control of the scheduler - thus, they

must be checked each time a process becomes a candidate for dispatching.

Each squeue typically requests the runnable state of several processes

each time it is scanned.

Grouping of conditions is supported using disciplines. A discipline is

defined to the scheduler as a callout routine whose return value specifies

whether the process can run or not. The scheduler is set up to accept an

arbitrary number of disciplines, however only a few are currently defined.

In fact, only the gfx discipline, which checks whether or not a process can

access the graphics head, is currently handled this way. Two other implicit

disciplines are subsumed into the scheduler for optimal performance since

the checks are almost always performed: normal UNIX handling (swapped

processes, user areas, etc.) and processor set checking.

When a process is queued, the global framework initializes a bit vec-

tor indicating which disciplines are active for a process. In this case, the

UNIX discipline is not included as it is always checked. For a normal UNIX

process which is not bound to a processor set and is not a graphics process,

this bit vector is zero. Each time the runnable check is performed, the

heavier-weight checking of gfx and processor sets is only performed on

exception (i.e., if the bit vector is non-zero), improving performance overall.



some point the amount of time it takes to re-fetch lost cache data will be

less than the time to handle cache affinity.

The amount of good data associated with a process in a particular

cache degrades as that processor performs other work. Depending on how

much other work has been performed, it may or may not be advantageous

to force a process to dispatch on the last processor it ran on. There is cur-

rently no hardware support for knowing the actual cache occupancy for a

particular process, so it is estimated. The cache size for each processor and

the state times for each process are known and thus the cache miss over-

head can be calculated. Using these parameters and the running time,

cache occupancy can be estimated. For simplicity, the scheduler assumes a

linear relationship between running time and cache occupancy. Figure 4

gives a pictorial view of this assumption.

Affinity is captured when a process yields the processor; if the pro-

cess has not run at least as long as the warm time, affinity handling is dis-

abled for this dispatch cycle. The affinity of the process for the processor is

capped at the affinity value and will range between the warm time and the

affinity value based on the time spent last running.

To estimate the effect of running other processes on cache occupancy,

each processor maintains a counter of the time spent running processes.

When a process yields a processor, a snapshot of this counter is saved. The

next dispatch decision to favor this process causes this snapshot to be com-

pared with the current value of the counter for that processor. If enough

100% Occupancy

Warm Time

Affinity Value

Time ->

Process Stops Running

Process Starts Running

“Cold Time” -
Occupancy fell too low

If runnable, dispatch to same processor

FIGURE 4:  Occupancy Versus Time Assumption



entered. The mechanism is very lightweight, assuming that a counter roll-

over means “too long to worry about”; this is sensible as the scheduler typi-

cally deals in terms of 100’s or 1000’s of microseconds spent in various

states. This finely-tracked time is the basis for proper operation of the

scheduler and will be referred to as run time, queue time, and wait time.

Timeouts are sometimes used to control the time spent in a state.

The typical usage is for managing time-slicing in sophisticated squeues

such as the deadline or gang squeue. Internally, the scheduler manages

timeouts in terms of the basic state timer and translates this to the units

needed by the standard IRIX timeout mechanism. One interesting feature

of the timeout algorithm is that it is processor-independent; that is, a time-

slice-end timeout may fire on any processor but will cause an interrupt to

be sent to the processor running the target process. This was necessitated

by the IRIX timeout design which uses a master timing processor for fast

timeouts.

The code is written to be independent of the clock frequency of the

basic state timer; however, the use of the fastest timer available implies

that the scheduler timing accuracy scales with the speed of the machine.

For instance, a 100MHz R4000 class machine gives the scheduler a funda-

mental accuracy of 20 nanoseconds. Clearly, such accuracy is swamped by

instruction overhead but realistic accuracy of a few microseconds is

achieved. This accuracy is important to processor cache affinity calcula-

tions (see below), but is not available in general due to IRIX timeout gran-

ularity and system call interface limitations. As these limitations are

removed the full accuracy of the scheduler can be exposed.

3.4  Processor Cache Affinity
Processor cache affinity is a mechanism which attempts to take

advantage of data which a process may have fetched into a local processor

cache last time it was running. This is important with modern caches; the

largest caches currently supported by Silicon Graphics are four megabytes

in size; sixteen megabyte caches will arrive soon. If processes are randomly

assigned to processors on each dispatch cycle, there is a high probability

that a process would spend much of its time-slice refetching data into the

cache, rather than performing real work [VaZa91]. Affinity should not

always be applied, however. For example, real-time or deadline processes

are more interested in reducing latency and thus should always be dis-

patched immediately to any available processor.

The affinity mechanism implemented by the scheduler is based on

the following model. It assumes that time spent in the running state accu-

mulates good data in the cache, up to some limit defined by a combination

between cache size and cache miss time. This limit is called the affinity

value. There is also a minimum time, the warm time, which must be spent

running to cause the affinity mechanism to activate. This minimum is nec-

essary because affinity management creates additional overhead and at



basic state timing and timeout management. In most traditional UNIX

implementations very little tracking is done of the time spent in each of the

basic process states. In general, a 100Hz counter is used to statistically

track time spent running (split into user and kernel portions), with no

tracking done of other states. Time slice management is performed using

the same clock. In order to provide more precise timing for process control,

visual simulation and other similar applications, the concept of high-accu-

racy timing has been introduced in previous versions of IRIX.

These timing mechanisms are based on keeping tight track of time

based on the fastest available clock in a given system. For older IRIX sys-

tems without high resolution clocks, the basic kernel clock frequency is

increased to 1000Hz or more, giving about one millisecond resolution. In

Version 5 of IRIX, a new clock abstraction was introduced, allowing more

accurate timing. On uniprocessor systems based on the R4000 architec-

ture, the cycle counter provided by the microprocessor is used while on the

Challenge multiprocessor system, the shared-memory bus clock is used.

Both of these clocks provide accuracy on the order of 20 nanoseconds.

Higher level kernel mechanisms use this clock to perform accurate

tracking of the total time a process spends in various states. Because of the

long life of many processes, these mechanisms are somewhat heavyweight

since they must carefully account for counter rollover and must keep the

data in a form that performance monitoring tools can use. On the other

hand, the IRIX scheduler needs to track a process at a much finer granu-

larity - the amount of time a process last spent running or waiting is much

more important. To this end, the scheduler tracks process state transitions

directly. The time spent in the previous state is saved when a new state is

A Set

A Set

Processor

Squeue
A Set

Process

A Set

System set with only this
processor in it

Eligible

Runnable

Discipline

FIGURE 3:  Applying Processor Sets



user area, current processor not in the processor set for a process,

inability to access the graphics head, locked to a different proces-

sor, etc. When an squeue wishes to select a process, it must first

check if it is runnable. A discipline is a conceptual grouping of such

checks, for instance the gfx discipline performs checks necessary to

determine if the process requires, and can access, the graphics

head.

The following sections describe each of these utility functions in

detail.

3.2  Processor Sets
A processor set is a named bit vector. The name is a 4-byte signed

integer for storage and code efficiency. A user-level utility (pset(1m)) main-

tains a mapping of symbolic names to integer names known by the sched-

uler.

Like compiled languages, there is a distinct difference between

manipulating a processor set and binding it to an object. A processor set is

manipulated using a new command to the sysmp(2) system call, supporting

actions such as creation, deletion, modification or query. A processor set is

bound (or unbound) to an object using a new command to the schedctl(2)

system call, supporting binding to processes, scheduling queues and disci-

plines.

Each processor set has a reference count, indicating the number of

active bindings. A set cannot be deleted if the reference count is greater

than zero. Certain processor sets may be marked as system sets, meaning

that they are internally used by the scheduler and may not be modified or

deleted. For example, each processor is assigned a processor set with only

itself in it. This set can thus be used for fast set operations. Other system

sets include all processors and all currently active processors.

Internally, the scheduler manipulates pointers to a descriptive struc-

ture for a processor set, rather than the sets themselves. This improves

efficiency and modularity, while eliminating any size restrictions on the

sets. A small set of processor set functions are provided, e.g., AND, OR,

INTERSECTION, SET, CLEAR. Figure 3 shows the relationships among

bound objects.

As described, there are three points at which processor sets may be

bound: first, a squeue will not be examined for processes if the scanning

processor is not in the squeue set; second, a process will not be examined

unless the scanning processor is in its set; and finally, a process is not run-

nable if it requires a discipline and the scanning processor is not in the dis-

cipline set.

3.3  Timing
The timing services provided by the framework cover two areas:



do for each squeue {
if (processor is not in squeue’s processor set)

try next squeue;
if (squeue provides a process to run) then

quit loop;
}
initialize scheduler state for running;
if (squeue did not setup time-slice-end)

setup time-slice-end to defaults;
switch timing state for new process to “running”;
return selected process;
End

The top level of the scheduler is conceptually quite simple. The actual

queueing policy has been delegated to each squeue to determine. This top

level algorithm provides some hooks that the various squeues may rely on.

For instance, a squeue may specify that a particular routine (a “callout”) is

to be invoked when the process stops running. This can be used to main-

tain state information within a particular squeue.

Global routines also record all timing information and perform tim-

ing state changes. This information is then available to an squeue if

needed. Also, an squeue may wish to control time-slice handling itself; if it

does not, then the global routines will provide default time-slicing services.

Finally there are a number of utility functions that an squeue may

call on to maintain state or make policy decisions. These are:

Processor Sets: The global framework provides a sophisticated

mechanism for managing processor set information. An interface is

provided for user-level programs to create, delete, and modify pro-

cessor sets and their association with processes. No squeue cur-

rently deals explicitly with processor set information; instead,

processor set checking is handled as part of the runnable utility.

Timing: The framework provides fundamental state timing services,

as well as timeout management. These services are provided at the

level of the fundamental hardware clock available, which is the

R4000 counter register (external clock frequency on a uniprocessor)

or the CC chip system clock (backplane clock frequency on a multi-

processor).

Processor Cache Affinity: The global framework provides a small

set of routines for managing cache affinity.

Runnable: A process, even though queued, may not be runnable at

any particular moment in time. Restrictions include a swapped



cessor running the lowest priority process is tracked. This processor may

be immediately preempted if a real-time process is queued.

When a newly-created process is presented to the scheduler for the

first time, the scheduler allocates a scheduling control block for the process.

The control block holds all information needed to make scheduling deci-

sions for a process, including state timing information. When a process

exits, the scheduler is called to destroy this control block and free the allo-

cated memory. The state timing information is sufficient to record the pre-

vious state, the current state, the time spent in the last state, a timestamp

for the beginning of the current state, and a snapshot of the current UNIX

seconds clock for rollover detection.

3.1  Control Framework
The main function of the scheduler is best described by the following

pseudo-code for its two central functions: put a process on the queue and

get the best process for the calling processor to run next.

Put a process on the scheduler queue
Begin
record time spent in previous state;
switch timing state for this process to “queued”;
if (callout on yield) then

perform callout;
if (last state was running)

cancel any pending timeouts;
record exception conditions;
do for each squeue {

if (process pri within squeue priority limits)
then

if (squeue accepts process) then
quit loop;

}
assert(process was accepted by an squeue);
if (some processor is idle) then

wake it up;
End

Get a process to run from the scheduler queue
Begin
if (calling process has yielded the processor) {

set timing state of current process to “waiting”;
if (callout on yield) then

perform callout;
}



to obtain automatic load-balancing with a fully distributed algorithm.

The central data structure contains the main scheduling queues and

is called the runqueue. The runqueue is arranged as a linked list of sub-

queues, called squeues. Each squeue object is responsible for managing its

own list of runnable processes, including addition, deletion, and selection of

a candidate process to run and implementing a queueing policy most

appropriate for the type of scheduling requested. The ordering of the

squeues on the runqueue list determines the overall scheduling policy of

the system. The time-share and batch squeues work as “catch-all” squeues

for processes within their priority range.

The scheduler is anchored by a data structure called Runq, which

contains all global information used by the scheduler. Separate pointers

are kept to certain key squeues to aid other squeues in making local policy

decisions. For instance, the gang scheduling squeue will not start a gang if

there is a higher priority time-share process queued (see the section on

gang scheduling). A list of pointers to the PDA of each processor is also

maintained and allows the distributed scheduling algorithms to directly

access key data for another processor, such as its current running time

accumulation. To provide rapid scheduling of real-time processes, the pro-

Kernel

Real-Time

Deadline

Gang TS

Time-Share

Gang Batch

Batch

Control
Block

Control
Block

Control
Block

Main Scheduling Queues:

Scheduling Sub_Queue

Process Control Block

Processor Control Block

Process

Processor ‘N’

Search
Order

Processor Set Processor Set

Active Processor Set List

The “RunQueue”

Pri 1 - 39

Pri 30 - 39

Pri 40 - 127

Pri 40 - 127

Pri 40 - 127

Pri 128 - 255

Pri 128 - 255

Runq: Global
Data Structure

PRDA

FIGURE 2:  Overall Scheduler Architecture

Control Block Control Block



cesses that are restricted to run on it. Restriction is used both by the kernel

and by processes themselves. For instance, a single-threaded device driver

may be allowed to run on only a single processor, while a real-time applica-

tion may wish to dedicate processors for certain uses.

A clock tick is the basic heartbeat of a UNIX system. Its frequency

depends on the underlying hardware; for all SGI systems, it is 100Hz. Each

processor in the system has its own 100Hz clock, which is not necessarily

synchronized with other processor clocks. When a clock tick occurs, the pro-

cessor performs certain low-level maintenance actions, including executing

any local timeouts that may have been queued. A timeout is a request to

run a particular routine at some point in the future. In IRIX, one processor

is termed the master clock processor and performs system-wide operations.

This processor is responsible for maintaining the fast clock, which typically

runs at 1000Hz, and the resulting fast timeouts, which have ten times the

resolution of local timeouts. The resolution of the fast clock is configurable

subject to the limitations of the underlying hardware.

The process priority is a small integer which indicates the impor-

tance of a process. Priority ranges from 1 to 255, with lower numbers indi-

cating higher priority. IRIX attaches meaning to certain priority bands,

indicating special dispatching features:

1 - 39 kernel-mode processes

30 - 39 user-mode real-time

40 - 127 general time-shared work

128 - 255 background processing

Note that in order to avoid the priority inversion problem IRIX imple-

ments the basic priority inheritance protocol as defined in [Sha90]. IRIX

adds some additional non-priority mechanisms such as gang scheduling for

distinguishing processes for special scheduling treatment.

Finally, the scheduler is mostly transparent to user-level processes.

There are two distinct ways in which the process may request different

scheduling behavior. The first of these is through the system call interface.

The UNIX nice(2) call works as expected, while more sophisticated

requests may be made through the schedctl(2) interface. The second

method for communicating with the scheduler consists of a memory seg-

ment that is shared with the scheduler, called the Private Data Area

(PRDA). Certain requests can be made simply by changing a variable in

the PRDA.

3.  Scheduler Architecture

A pictorial overview of the scheduler is given in Figure 2. Conceptu-

ally, this architecture provides the equivalent of a single, ordered list of

processes waiting to run, with the first process on that list being the high-

est priority process in the system. This strategy makes it relatively simple



ple in a computer which includes processors with different instruction sets

and tasks. Each processor has a data structure associated with it called the

private data area (PDA) which records data that are local and unique to a

processor, and includes data that are used to make scheduling decisions.

The lifetime of every process in the system can be described with the

simple state diagram shown in Figure 1. The queued state indicates that

the process is waiting to run on a processor. Processes in this state are kept

in the runqueue. When a processor has finished with a previous process

and is looking for more work to do, it queries the runqueue and picks the

“best” process to run next. This process is then said to have been dis-

patched to a processor and it enters the running state. The waiting state

indicates that the process has blocked waiting for some event to occur. A

process will stay in this state until explicitly queued by some other process.

The running state indicates that the process is currently in control of a pro-

cessor. The process may either block and enter the waiting state, or can

preempt itself (at time slice end, for instance) and enter the queued state.

In either case, the process is said to yield the processor. A dispatch cycle

occurs when one of the processors in the system initiates a scan of the run-

queue to find a new process to run. During a dispatch cycle, each process on

the runqueue will be checked to determine if it is runnable and the first

runnable process found is dispatched to the processor. The runnable

attribute is an instantaneous condition which indicates if the process can

enter the running state. For example, access to the graphics head is a run-

nable condition which may change moment to moment and thus must be

checked every time an attempt is made to dispatch a process.

A real-time process gets special attention from the scheduler as it

must get the best response possible from the entire system, that is, the

scheduling latency of such a process must meet certain worst-case criteria.

A process is said to be restricted if it can only run on a specific proces-

sor; alternately, a processor is said to be restricted if it can only run pro-

Waiting

Queued Running

New Process Process Exit

Preemption

Dispatch

BlockedUnblocked

Domain of the Scheduler

FIGURE 1:  Process State Diagram



must operate have become much more complex. The operating system

must support various forms of real-time (guaranteed response) applica-

tions, multiprocessors, massively parallel supercomputers, multi-media

desktops, mainframe OLTP applications and departmental minicomputers.

Aside from the increasing breadth of computing applications to support,

the scheduler must also consider the major features of modern computing

architectures: extensive cache hierarchies combined with large numbers of

processors in a shared-memory environment.

There are two fundamental approaches to dealing with this complex-

ity. One is to create new application-specific versions of the operating sys-

tem for each environment. For example, there are several commercial

“real-time” versions of UNIX for process control. Vendors of database sys-

tems typically optimize the scheduler for the bursty transaction-oriented

nature of OLTP work. Vendors of UNIX-based supercomputers will make

modifications to improve scheduling behavior for large numbers of parallel

processors. Unfortunately, optimization is often achieved at the cost of poor

performance in other domains.

The other approach is to design a single scheduling system which

produces near-optimal results in a large number of different environments,

potentially all active at the same time. Such a general-purpose system is

more difficult to construct and can take additional memory and processor

cycles to implement. The payoff for careful design is the development of a

single body of efficient source code, a highly scalable operating system, and

a very high degree of compatibility between machines in very different

application areas.

The IRIX scheduler is an example of the latter approach. The

remainder of this paper discusses its features, architecture and implemen-

tation.

2.  Principles of IRIX Process and Processor Scheduling

An IRIX process is a collection of resources within the computer sys-

tem. In general, a process is responsible for managing itself and its

resources. This is accomplished by splitting each process into two pieces,

the kernel portion and the user portion. While in the user portion, the pro-

cess may only execute unprivileged code; to access a system resource the

process executes a trap and enters the kernel portion of the process. This

trap mechanism ensures that the process always executes kernel code as a

trusted entity. The kernel portion of a process may access all parts of ker-

nel memory.

A processor is the basic scheduling entity on the system and there

may be any number of them present. The scheduler is fully distributed:

that is, each processor is responsible for its own scheduling decisions based

on information kept in a global information structure called the runqueue.

All processors are assumed to be identical. The scheduler is designed, how-

ever, to allow future implementations where this is not the case, for exam-



A Scalable Multi-Discipline, Multiple-Processor
Scheduling Framework for IRIX

James M. Barton

Nawaf Bitar

Silicon Graphics Computer Systems

Mountain View, California

ABSTRACT

This document describes the processor scheduling framework

implemented in the Silicon Graphics IRIX Version 5 operating sys-

tem. This framework provides the standard features and behavior

expected of any UNIX time-sharing system, while adding support

for four additional disciplines: a fast-response scheme for low-

latency real-time computing, a time-based regime for throughput-

oriented real-time computing, a multi-thread scheme for parallel

computing applications, and several flavors of batch processing. In

addition, the scheduling framework adds the notions of processor

cache affinity, which attempts to take advantage of data already

fetched into a particular processor cache, and processor sets, which

allow an additional level of scheduling control on a per-processor

basis. These features have been successfully deployed in production

environments on machines ranging from single-processor desktop

workstations to high-performance supercomputing multiproces-

sors.

1.  Introduction

As a UNIX-based operating system, IRIX has a unique heritage.

UNIX was originally designed as a reaction to large-scale mainframe oper-

ating systems which were perceived to be difficult to use, slow, and overly

complex. The processor scheduling theory used was that of time-sharing:

preemptive multi-tasking using multi-level feedback with aging; essen-

tially, a priority-based scheduling regime where priorities degrade with

increasing CPU utilization.

Such a scheme was sensible for the envisioned use of UNIX: depart-

mental level minicomputers serving many users through low-speed termi-

nals and peripherals. The number of runnable processes was never

expected to be large, so a singly-linked list of runnable processes was used.

New processes were inserted at the end of the list and the list was com-

pletely searched for the best candidate on every scheduling cycle. This

method has actually worked quite well for twenty years and is still the

basis of many modern UNIX schedulers [Bach86] [Leff89].

However, the environments in which a UNIX-based operating system


