
Scheduling on the Tera MTA

�

Gail Alverson Simon Kahan Richard Korry Cathy McCann Burton Smith

Tera Computer Company

Seattle, Washington USA

Abstract

This paper describes the scheduling issues speci�c to the Tera MTA high performance shared mem-

ory multithreaded multiprocessor and presents solutions to classic scheduling problems. The Tera MTA

exploits parallelism at all levels, from �ne-grained instruction-level parallelism within a single processor

to parallel programming across processors, to multiprogramming among several applications simulta-

neously. Consequently, scheduling of resources occurs at many levels, and managing these resources

poses unique and challenging scheduling concerns. This paper outlines the scheduling algorithms of the

user level runtime and operating system and describes the issues relevant to each. Many of the issues

encountered and solutions proposed are novel, given the multithreaded, multiprogrammed nature of our

architecture. In particular, we present an algorithm for swapping a set of tasks to and from memory

that achieves minimal overhead, largely independent of the order in which tasks are swapped.

1 Introduction

Scheduling on the MTA involves managing a wide range of resources. The MTA supports a multi-

user system, where many parallel jobs execute concurrently. Each multi-threaded processor can

support up to 16 jobs simultaneously that compete for the processor's instruction streams. In

addition, memory must be scheduled because of the potentially broad spectrum of job memory

requirements.

Most parallel systems are composed of two levels of scheduling [16, 24, 23, 9]. A kernel or low

level scheduler divides the system resources among competing jobs, and a user level scheduler

divides the parallel work among the job's available processing resources. Like other systems,

the Tera MTA supports this division. The operating system scheduler manages processing and

memory resources at a gross level. It determines which jobs are loaded in memory and how

those jobs are scheduled on the processors. Once loaded onto a processor, each job competes

with other jobs on the same processor for instruction streams, without intervention from the

operating system. The competition is guided by runtime systems, one per job, that request and

release streams in response to their job's parallel workload. In addition to managing resource

acquisition, the runtime works in concert with the compiler to schedule both automatically-

generated and user-generated parallelism within a job.

The workload anticipated for the MTA is varied. We expect most sites to have large, par-

allel jobs intermixed with interactive work. The operating system scheduler must excel in this

environment. Large parallel jobs require high throughput, while short, interactive jobs require

�

This research was supported by the United States Advanced Research Projects Agency Information Science and

Technology O�ce ARPA Order No. 6512/2-4; Program Code No. OT10 issued by ARPA/CMO under Contract

MDA972-90-C-0075. The views and conclusions contained in this document are those of Tera Computer Company

and should not be interpreted as representing the o�cial policies, either expressed or implied, of ARPA or the U. S.

Government.

1

quick response. Also, the scheduler must prevent starvation and ensure some measure of fair-

ness among jobs of similar characteristics; to facilitate this, we provide a mechanism for job

di�erentiation.

This paper describes the scheduling issues speci�c to our unique architecture. We outline

both the scheduling policies of the operating system and the user level runtime. Section 2

familiarizes the reader with the Tera MTA architecture. Section 3 describes the programming

environment made available to the user. Section 4 describes the scheduling decisions made by

the user level runtime system on behalf of user programs. Section 5 describes the overall goals

of operating system schedulers that manage the allocation of processors and memory resources.

Section 6 describes the issues and policies involved in memory scheduling, and Section 7 discusses

the processor scheduler. Conclusions are provided in section 8.

2 Tera MTA System Architecture

The Tera MTA architecture[1] implements a physically shared-memory multiprocessor with

multi-stream processors and interleaved memory units interconnected by a packet-switched in-

terconnection network. The network provides a bisection bandwidth that supports a request

and a response from each processor to a random memory location in each clock tick.

Each processor of the Tera has support for 16 protection domains and 128 instruction

streams. Each protection domain implements a memory map with an independent set of regis-

ters holding stream resource limits and accounting information. Consequently, each processor

can be executing 16 distinct applications in parallel. Although fewer than 16 applications are

likely necessary to attain peak utilization of the processor, the available domains allow the oper-

ating system
exibility in mapping applications to processors. While two or three parallel jobs

may sustain a high average parallelism executing on a processor, so may a mixture of parallel

and sequential jobs.

Each stream has its own register set and is hardware scheduled. On every tick of the clock,

the processor logic selects a stream that is ready to execute and allows it to issue its next

instruction. Since instruction interpretation is completely pipelined by the processor, and by

the network and memories as well, a new instruction from a di�erent stream may be issued

in each tick without interfering with its predecessors. Provided there are enough instruction

streams in the processor so that the average instruction latency is �lled with instructions from

other streams, the processor is fully utilized. Similar to the provision of protection domains,

the hardware provision of 128 streams per processor is more than is necessary to keep the

processor busy at any one time. The many streams enable running jobs to fully utilize the

processor while other jobs are swapped in and out independently; they enable a processor to

remain saturated during periods of higher latency (for example, due to synchronization waits

and memory contention).

Tera's memory is distributed and shared. All memory units are addressable by each proces-

sor.

Several architectural features are especially useful for scheduling. A stream limit counter is

associated with each protection domain. It allows the operating system to pre-impose an upper

limit on the stream resources acquired by each job; the limit is enforced by the hardware, so

jobs can self-schedule their stream acquisitions without incurring operating system overhead.

Tera provides three user level instructions to acquire and release instruction streams on the pro-

cessor of the invoking stream: stream reserve, stream create, and stream quit. The novel

reserve instruction was introduced to assist with the automatic parallelization of programs.

The instruction reserves the right to issue create instructions, which activate idle streams and

assign them program counters and data environments. By �rst issuing a reserve instruction,

compiler generated scheduling code is able to compute a division of parallel work appropriate

for the exact number of streams available or requested | before those streams begin consum-

ing processor resources and without synchronization overheads. The quit instruction returns a

stream to the idle state and decreases the reservation count.

2

3 Programming Environment

Programs for the Tera are written in Tera C, C++ and Fortran. Parallelism can be expressed

explicitly and implicitly.

Explicit parallel programming is assisted through the use of future variables and future

statements. A future variable describes a location that will eventually receive the result of a

computation. A future statement is used to create a new parallel activity and direct its result

to a future variable.

When a future statement starts, the future variable is marked as unavailable, causing any

subsequent reads of the unavailable value to block. When the future completes, the appropriate

value is written to the future variable and the location is marked available. Any parallel activities

that are blocked waiting for the future may now proceed.

1

The user runtime is responsible for

scheduling and executing future bodies [Section 4].

Implicit parallelism is identi�ed by Tera's parallelizing compiler. The majority of paral-

lelism exploited is loop level parallelism: parallelism obtained by executing separate iterations

of a loop concurrently. Other forms exploited include block level parallelism, obtained by ex-

ecuting separate blocks of code concurrently, and data pipelining, achieved only when explicit

synchronization is included.

The compiler schedules resources for much of the parallelism it generates. It generates

user level instructions, stream reserve and stream create, to allocate hardware streams. It

then schedules the work among the streams statically or using a self-scheduling approach. The

compiler generates instructions to release the streams, stream quit, when the work is complete.

For example, a strategy for a simple parallel loop is to request up to 30 streams

2

and divide

the loop evenly among however many streams are acquired. If the processor is busy and no

additional streams are available, then the loop executes serially with one stream after only a

few instructions of overhead.

When the compiler exposes a large amount of parallelism it may acquire stream resources

across a set of protection domains on distinct processors. To do so it generate calls to the user

runtime (which in turn may call the operating system) to create the �rst stream in each of the

protection domains. Compiler-generated instructions then acquire and release streams in each

domain based on the parallelism exposed.

In summary, the user level runtime schedules resources in response to explicit parallelism;

compiler generated code adaptively schedules resources wherever implicit parallelism is detected.

4 User Level Runtime System

The runtime represents a user's program in much the same way a lawyer represents her client:

it is responsible for obtaining the best response time for the user's program while ensuring that

(1) the program abides by rules imposed to ensure equitable access to processing resources and

(2) the program responds to anomalies (signals, traps) without endangering its own correctness.

Here, we describe features of the runtime pertaining only to the �rst constraint. That is, we

describe the structure and policies of the runtime that support fast response to changes in

parallelism without signi�cantly reducing overall machine throughput.

4.1 Software Architecture

The software architecture of the runtime consists of a hierarchy of objects animating the pro-

cessing behavior of the Tera. Many objects parallel those of the operating system [Section

5].

1

The Tera MTA has full/empty bits on every word of memory, which support the e�cient implementation of futures.

2

As few as 20 or as many as 80 streams could be needed to saturate the processor, depending on the program.

3

A user program is represented as a task. A task's computing resources is a collection of

teams, each of which occupies a protection domain. The operating system promises that teams

of the same task are on distinct processors, as long as the number of teams of the program is

less than the number of processors of the machine. Practically speaking, it serves no purpose

to put two teams of the same program on the same processor: the stream limit imposed by the

operating system is large enough to enable a parallel team to more than saturate the processor.

Each team includes a set of virtual processors (vps), each of which is a process bound to a

hardware stream. Note the distinction between a stream and a vp: every vp has a dedicated

stream, but each stream does not necessarily have an associated vp. A stream can belong to

a team without being a vp: compiler generated parallelism makes use of such streams. Or a

stream may simply be unused. Unless speci�ed di�erently at startup, the task initially starts

with one team and one vp. The runtime is responsible for acquiring more resources if there is

parallelism in the program and resources are available.

The collection of tasks active on the machine at any given time is under the control of

the operating system. The runtime systems representing each of these tasks compete with one

another for resources.

4.2 Scheduling Work

Work appears in two types of queues in the runtime. New futures are spawned into the ready

pool of the task. The ready pool is a parallel FIFO based on fetch&add [8]. Futures that had

blocked and are now ready to run again are placed in the unblocked pool of the team on which

they blocked. Distributed unblocked pools serve as a convenient means to direct special work,

such as a command to exit, to a particular team.

The runtime uses a self-scheduling strategy for executing work from the ready and unblocked

pools. Vps from every team repeatedly select and run work from the pools. A vp's unblocked

pool is given precedence because we would like to complete old work before starting new work.

Executing work can result in the allocation of additional instruction streams for compiler gen-

erated, �ner grain parallelism; in the creation of new work; and in the blocking of work. The vp

executing work that creates new work or unblocks old work is responsible for placing the work

on the ready or on the unblocked pool. If the work blocks, the vp searches immediately for

other work on the unblocked and ready pools; that is, blocking does not lead to busy-waiting.

Some programs, especially those using divide-and-conquer algorithms, may do better with

an ordering di�erent from FIFO. Tera provides the user with a language extension, touch (-

future), to assist with the e�ective execution of those programs. Wagner and Calder[22], outline

a more general version of touch, called leapfrogging. When touch is applied to a future variable,

the vp stops executing its current work and executes instead the work associated with the

future variable, unless it has already started. Thus, the vp executes the work on which its work

is waiting. The policy saves blocking overhead at the expense of a few extra instructions of

overhead when the work is already started and touch is not used. The use of touch makes the

default FIFO ordering of work more LIFO in character.

In practice, the user need not explicitly touch futures in divide-and-conquer programs to

achieve the e�ciency provided by the mechanism. The compiler is able to infer divide-and-

conquer recursive structure when it discovers the storage class of a future variable is automatic;

it then generates code to perform the touch. The result is breadth-�rst scheduling of subproblems

until vp creation lags subproblem creation; at that point the scheduling becomes depth-�rst.

This dynamic schedule is both e�cient regarding overheads and reactive to changes in the vp

workforce.

4.3 Scheduling Stream Resources

The runtime is responsible for dynamically increasing and decreasing the number of vps it

employs to execute the user program. This functionality is important because the average size

of the ready pool can vary signi�cantly over the lifetime of the program. Reasonably, a large

4

ready pool merits more vps than a small ready pool for its timely execution, and vps acquired

for periods of high parallelism should be released during periods of low parallelism to improve

e�ciency.

The goals of the virtual processor strategy of the runtime mirror those of the runtime itself:

an increase in the number of vps is attempted whenever it might reduce response time of

the program, subject to the constraint that overall throughput of the machine should not be

signi�cantly reduced. Were acquisition and release of streams instantaneous, a policy of creating

a new vp for each and every future would ensure minimum response time and retirement of vps

whenever pools emptied would minimize impact on throughput. But there are overheads, and

the runtime cannot foresee how pool sizes will change and how much computation any piece of

work will demand. Nor does it have information regarding the behavior of the other programs

with which it is competing. So there is an inherent tradeo� between minimizing response

time, through zealous resource acquisition with delayed release, and maximizing throughput |

assuming resources lag demand | through conservative acquisition with immediate release.

Growth Policy. Because we wish to minimize the overhead involved when a vp adds work to

the ready pool, the growth policy is implemented not by those vps but by a daemon mechanism

that periodically assesses growth based on idleness and work available. The daemon creates

twice the number of vps previously created whenever (1) there is any work to be done, and (2)

no vps were idle since the last acquisition. For example, if there is initially one vp, after one

period another will be created; after two periods, assuming both vps were kept busy, two more

will be created; after three periods, supposing one of the four vps found nothing to do, even for

a moment, no vps will be created; and after four periods, assuming all four vps were this time

kept busy, one more vp will be created. If an acquisition request fails, in whole or in part, it is

repeated after the next period has elapsed.

Our intention is to achieve a compromise in which the total overhead is at most a small

constant fraction of the work intrinsic to the program, and the response time is similarly bounded

from above by at most a small constant factor multiplied by the minimal response time, were

all streams requested actually available. (For response time, an additive lower order term

proportional to the logarithm of the maximum parallelism persists in our scheme, due to the

delay of exponential growth versus instantaneous growth.) Such worst-case bounds should be

achieved only when the parallelism is highly erratic in just the wrong way: we expect typical

performance to be much closer to optimal.

Retirement Policy. Just as important as the acquisition policy is the release policy: idle

vps are released according to a schedule that inverts the acquisition schedule. That is, were

a large number of vps to become idle at once, one would disappear after one period, two

more after a second period, and so on unless work appeared to interrupt the process. This is

necessary to avoid the anomalous behavior that would result were there to be brief sequential

periods separating slightly longer but highly parallel periods at just the right frequency to

cause repeated rapid growth and collapse. Were idle streams released after a constant period

of time independent of their number, the constant factor in the response time bound becomes

logarithmic in the maximum parallelism.

Because idle vps on the Tera consume as much processing power as vps performing memory-

bound computations, our implementation never really allows more than one vp per team to

be idle concurrently: within a period, additional idle vps are killed, but remembered, and

replaced the instant work appears. Creation and retirement within a team is through user level

instructions, and so is fast enough to justify such a reactionary policy. Typically, this should

make our upper bound for total work particularly pessimistic. A drawback is that streams, once

released, may be acquired by competing teams and thus be unavailable when work reappears:

when this happens, our bound for response time becomes arbitrarily optimistic. An alternative

is to exploit the afore unmentioned stream quit preserve instruction which causes a stream

to stop executing but does not release it.

5

Team Growth and Retirement. As mentioned previously, the runtime can indepen-

dently acquire more stream resources | up to a limit imposed by the operating system | on

any team belonging to its task. Interaction with the operating system is required, however, when

the runtime seeks to add new streams running in a di�erent protection domain (on a di�erent

processor). This is because team creation requires resources other than streams: resources such

as text memory and protection domains must be globally controlled and initialized. The runtime

interaction takes the form of an operating system call whose return value, like stream reserve,

must be checked for degree of success. Parameters to the call include the number of teams

desired, a start-up function for each team's �rst vp (the operating system creates only the �rst

stream on each team), and whether or not the teams are to be added before continuing execution

(swapping the job if the teams are not available) or whenever they become available.

The runtime must decide when it is pro�table to get a new team instead of creating more

vps on existing teams. It currently bases its decision on the processor utilitization of one of

the teams of the task (extrapolating that utilization to all processors of the whole task). If the

utilization is above some threshold, the runtime requests a new team.

The primary mechanism for team retirement is that a vp discovers it is the only vp on its

team and that there is no work to do; it then waits for a period of time before relinquishing the

team to the operating system and retiring itself.

If it improves performance, we may coalesce small teams.

5 Processor and Memory Scheduling Overview

The operating system allocates the processing and memory resources of the system among tasks

competing for these resources. The memory scheduler determines which subset of the ready

tasks to load into memory. The processor scheduler then determines from the set of in-memory

tasks, which tasks to load onto available protection domains.

Each task is composed of one or more teams, and each team executes within a single pro-

tection domain. Generally, each team within a task executes on a separate processor unless the

number of processors available is less than the number of teams, due to hardware failure. In

order to execute a task, its data and program address space must be loaded into memory. Once

loaded in memory, its teams must be loaded into protection domains on separate processors.

There are two types of swapping that occur, swapping between the I/O system and memory,

and context switching of tasks in memory among the available protection domains. We use two

letters to denote the direction and type of swapping. When a task is brought into memory, it

is im-swapped, meaning it is brought in from I/O (i) to memory (m). When a task is swapped

out of memory, it is mi-swapped. A memory-resident task is mp-swapped when it is loaded into

a protection domain, and pm-swapped when it is unloaded from the protection domain. A task

must be im-swapped before it can be mp-swapped, and it must be pm-swapped before it can be

mi-swapped.

Workload. The operating system schedulers distinguish between large, parallel, computa-

tionally intense workloads and small, interactive jobs. Large memory tasks have the following

characteristics: they execute for a long time, can tolerate being swapped out for long periods

of time, are usually submitted via a remote job entry batch system such as Network Queueing

System (NQS), and, overall, use a lot of resources. Generally, they contain a large amount

of parallelism. The higher overhead and general non-interactive nature of large memory tasks

points to infrequent processor and memory swaps.

Small tasks have the inverse characteristics: they are short-lived or use resources in bursts

(interactive), have small memory requirements, are not very parallel, do not tolerate being

swapped out for long, are usually submitted from a command shell, and, overall, do not consume

a large amount of resources. Small memory tasks may be swapped in and out of memory more

frequently. However, for interactive computing, the user expects an immediate response to a

keystroke. These tasks require frequent access to processors to enjoy good interactive response.

6

Based on our understanding of exploitable parallelism found in most large tasks, it is expected

that multi-team (large) tasks impose a far greater demand for streams on processors than single-

team (small) tasks. Meanwhile, at sites that allow interactive connections, we expect to see a

large number of single team tasks. Each of these single-team tasks requires a tiny fraction of

the machine's resources for short periods of time.

Because large memory and highly parallel tasks have very di�erent characteristics from small

memory interactive tasks, we propose mechanisms for scheduling memory and processors that

di�erentiate these two classes of workload. Studies of interactive and batch workloads by Ashok

and Zahorjan [2] support this di�erentiation. The memory and processing resources are thus

divided between large, batch oriented tasks and short, interactive tasks.

Memory and Processor Schedulers. Two memory schedulers are employed, the MB-

scheduler for large (big) memory tasks and the ML-scheduler for small memory (little) tasks.

Data memory is statically partitioned at boot time into two parts; one part for each scheduler.

There is one MB-scheduler and one ML-scheduler per machine.

The protection domains of each processor are divided among single-team and multi-team

tasks. A big job processor scheduler (called the PB-scheduler) schedules multi-team tasks, while

a small job scheduler (PL-scheduler) schedules single-team tasks. As multi-team tasks execute

on multiple processors, a single PB-scheduler using global knowledge of processor utilization

is required per machine. The PB-scheduler co-schedules [16] multi-team tasks on the set of

protection domains it controls on all processors. Since single-team tasks execute on a single

processor, each processor runs its own copy of the PL-scheduler.

A new task is scheduled by the MB-scheduler if its memory requirement exceeds a site

de�nable value, otherwise it is scheduled by the ML-scheduler. When a task is im-swapped, it

is assigned to a processor scheduler. If the task is a multi-team task or the task is a single-

team task but its stream reservation counter (which maintains a count of the number of streams

reserved by the task when last active), is above a site de�nable parameter, the task is assigned to

the PB-scheduler with the expectation that the task imposes a signi�cant amount of parallelism

on the processor. Otherwise, the task is assigned to the PL-scheduler with the shortest queue.

If a task scheduled by the ML-scheduler requests more memory than a site settable threshold,

it is handed over to the MB-scheduler when it is next mi-swapped. A task scheduled by the

MB-scheduler whose memory requirements drop below the threshold remains under the control

of the MB-scheduler. This avoids thrashing between memory schedulers.

Each memory scheduler selects a PL-scheduler for a newly im-swapped single-team task.

3

Using the memory scheduler as a dispatcher provides a mechanism for load balancing and control

over which processors receive new work.

All schedulers are event driven and similar in design to the Unix Esched scheduler [19] and

its improved variants [20] [7]. These schedulers loop forever processing events as they arrive

on their event queue. The scheduler receives an event and creates a kernel privileged stream,

known as a kernel daemon, to examine the event and take the appropriate action. The scheduler

removes the next event from the queue and continues spawning daemons to process the events

until the queue is empty. Events are IPC messages sent using the privileged IPC mechanism.

Waiting for IPC messages uses a mechanism that does not consume system resources.

Sections 6 and 7 describe the memory and processor schedulers.

6 Memory Schedulers

Despite its size

4

, memory will be a scarce resource (possible the scarce resource) on the machine,

given the execution of large memory applications. Therefore, good performance requires e�cient

3

Unless the team requires a reservation of a large number of streams.

4

The Tera MTA has 1-2 GB memory per-processor.

7

memory utilization. Starvation avoidance is also important, especially for tasks with large

memory requirements.

As discussed in the previous section, memory is controlled by two schedulers - the MB-

scheduler for tasks with large memory requirements and the ML-scheduler for small interactive

tasks with small memory requirements. We assume large memory tasks have long execution

times and can tolerate long periods of time of being swapped out. We assume small memory

tasks are of a class of interactive jobs that require frequent access to processor resources, and

therefore, cannot be swapped out for extended periods of time. Each site designates what

portion of memory is controlled by which scheduler. Generally, most memory will be given to

the MB-scheduler. Both schedulers execute the same algorithm to schedule the memory within

their domains.

The memory scheduler algorithm in general must divide available memory among the set of

tasks over time. Thus the scheduling space can be represented in two dimensions, with memory

on the x axis and time on the y axis. A schedule consists of a partitioning of memory over time

among a subset of ready tasks in the system. An allocation to task j consists of assigning some

m(j) units of memory for t(j) time. A valid schedule ensures that the total memory allocated

at any one time does not exceed system capacity. The goals of the memory scheduler are to

minimize the total unallocated memory over time and to ensure high task throughput.

Both memory schedulers maintain a ranking of tasks within their domain. A ranking or

priority of tasks is commonly used in schedulers to provide a way for users to specify the

relative importance of task resource allocation decisions and to avoid starvation by changing a

task's ranking as it acquires resources. The memory schedulers use the ranking to determine

the order in which tasks are considered for scheduling. The manner in which task ranking is

de�ned is discussed in Section 6.2.

A memory schedule de�nes a set of tasks that will be resident at any one time. For each

task, the scheduler determines when the task is scheduled to be in memory and for how long.

The time during which a task is in memory is called its dwell time. The length of time tasks

are in memory is dependent in part upon the overhead cost of swapping the task.

The Tera MTA requires that the entire address space of a task be resident while the task

is executing. It is strictly a swapping system and provides no support for demand paging.

Thus, our model of I/O assumes that no task can start executing until its entire address space is

swapped in, and no tasks can continue to make progress once any of its address space is swapped

out.

Before describing the memory scheduling policy, we de�ne a model for swapping overhead

applicable to the MTA and many other parallel systems and use this model to de�ne the cost

of swapping overhead. We show that based on the overhead of swapping, it is appropriate for a

task's dwell time to be set in proportion to the amount of memory the task requires.

6.1 Swapping Overhead

Periodically, the memory scheduler will reassign a subset of memory to a di�erent set of tasks.

The cost of memory scheduling is determined by the cost of swapping out a set of tasks and

swapping in another set of tasks at these memory quantum intervals.

We use a simple model of I/O that de�nes a constant available swapping bandwidth r, and

computes the time to swapmmemory units asm=r. Thus, we assume large memory tasks utilize

all the I/O bandwidth that is available for swapping if there are no other swapping activities in

progress simultaneously. We de�ne the overhead of swapping out a set of tasks and swapping

in another set of tasks as the total space-time (e.g., byte-seconds) that memory is not available

for execution.

We de�ne the following swapping algorithm for swapping out a set of tasks and swapping

in another set of tasks. Choose the �rst task to be swapped in (inTask) and the �rst task

to be swapped out (outTask), arbitrarily. Begin swapping out outTask until either: (1) there

is enough room for inTask or (2) outTask is fully swapped out. Now swap part or all of

inTask in to �ll the memory vacated by outTask. If inTask is fully swapped in, notify its

8

processor scheduler that it is ready to begin execution, and choose another inTask. In any

event, continue swapping out outTask. When outTask �nishes swapping out, choose another

outTask and continue. Alternate in this fashion between inTask and outTask to: (1) start

each inTask as early as possible, and (2) stop each outTask as late as possible.

The overhead of the swapping algorithm is depicted in Figure 1. Tasks a1, a2, and a3 are

to be swapped in and tasks d1,d2,and d3 are to be swapped out. For this example, the memory

size of a1 is equal to d1, the size of a2 equals that of d2, and the size of a3 equals d3.

Figure 1(a) illustrates the overhead of swapping when these tasks are chosen for swapping (in

or out) in ascending order of size. The total space-time overhead required to start a task consists

of the time to swap out the task or tasks currently allocated the memory and the time to swap

in the new task. For example, to swap out task d1 of size m requires m=r time during which m

units of memory is unavailable. Each swap (in or out) of size m consumes an overhead depicted

as a lightly-shaded rectangle of width m and heightm=r for a total memory-time overhead area

of m

2

=r. To swap in task a1 of size m requires additional overhead of m

2

=r for a total overhead

cost of 2m

2

=r to swap out one task for another of the same size. The total overhead cost of

swapping is the summation of the individual swapping events.

Figure 1(b) illustrates the swapping overhead for a di�erent ordering of tasks swapped in.

Each partial swap out is accompanied by a partial swap in of the same size. The lightly shaded

rectangles in Figure 1 depict the overhead of these swapping events. As before, the combined

time space-time for a partial swap out/swap in pair of m memory is 2m

2

=r, but total cost of

this overhead is di�erent from that in Figure 1(a), since the values of m re
ect a partial swap-in

or out of a task. The partial swap-out/swap-in pairs occur sequentially. The northeast and

southwest vertices of the swap-in/swap-out rectangles form a line with a slope of 2=r. The dark-

shaded area above this line represents the time during which a portion of memory is allocated

to an incoming task, but the memory is not utilized, because the entire task is not memory

resident. Similarly, the dark-shaded area below the line represents the time during which a

portion of memory is allocated to an outgoing task, but the memory is not utilized, because the

task is suspended while it is being swapped out. The arrows indicate the time at which a task

is entirely swapped in (and can start execution) or the time at which a task to be swapped out

stops executing. The total overhead of swapping is the summation of the space-time overhead

above and below the line. This space pictorially forms a staircase shape, in which the width of

each step is the size of memory for the incoming or outgoing task. The height of each step can

be computed from the slope of the line. In general, let I be the set of tasks to be swapped in

and D be the set of tasks to be swapped out. The total area representing the overhead above

the line is

P

8i2I

m(i)

2

=r, where m(i) is the size of task i. Similarly, the area below the slope is

P

8j2D

m(j)

2

=r. Thus, the total overhead incurred is:

X

8k2I[D

m(k)

2

=r (1)

It is easy to see that this algorithm achieves the minimal swapping overhead. Certainly,

there is no bene�t in discontinuing swapping out one task in order to swap out another, or

discontinuing swapping in one task in order to swap in another; these actions only increase

the overhead. Also, no bene�t is gained by swapping multiple tasks simultaneously. (In fact,

although our simple I/O model does not re
ect it, additional overhead would be incurred from

contention between two simultaneous swapping events.) Our policy, which completes the swap-

in of one task before starting the swap-in of another and completes the swap-out of one task

before suspending another task to be swapped out minimizes the time during which memory is

not utilized. Furthermore, our swapping algorithm yields the same overhead for any sequential

ordering of jobs to be swapped out and any ordering of jobs to be swapped in.

In summary, the swapping is simpli�ed since the overhead of swapping is independent of

the order with which tasks are swapped in or out. Memory scheduling is also simpli�ed since

the overhead of swapping out tasks whose dwell times expire concurrently is the same as the

cumulative overhead of a schedule that staggers the expiration of dwell times. Furthermore, a

task's contribution to the swapping overhead grows quadratically with its size. To maintain a

9

a1

a2
a3

d1

d2

d3
m/r

m/r

m
Memory

T
im

e

(a) Memory

T
im

e

a1

a2

a3

d1

d2

d3

(b)

overhead due to swapping overhead due to unutilized memory

Slope 2/r

Slope 2/r

Figure 1: Overhead of Swapping Algorithm

constant percentage overhead per task, the dwell time of a task should be proportional to its

size.

Finally, our I/O model assumes that an entire task's address space must be resident in

memory before a task can execute. While other systems may provide a memory replacement

policy that allows tasks to continue executing with a partially resident working set, we believe

the working set for large, memory intensive applications is quite large. Thus, the swapping

overhead for paging systems is similar. Furthermore, demand paging in distributed memory

systems can severely degrade performance [4].

6.2 User Demand

Typically, a task's importance is represented by the priority level it is assigned. Tasks at

higher priority levels receive preferential consideration in the allocation of resources. On the

Tera MTA, the task's priority is expressed in terms of the desired performance of the task

in the system. The user de�nes a demand of resource consumption for a task, in units of

space-time memory residency per unit time. Presumably, higher demands justify increased

monetary charges. If the system is saturated or underutilized, the demand will overestimate

or underestimate, respectively, the average memory occupied by the task. The purpose of the

demand parameter is to permit a quanti�able di�erentiation among tasks that is tied to system

performance. The memory scheduler uses this demand to determine the order in which tasks

are considered for execution.

Tasks are ordered by rank. The memory scheduler de�nes a task's rank as a linear function

of the ratio between its demand of memory consumption and its achieved consumption. A task's

rank is re-evaluated as it accumulates time in memory. Let demand(i) be the demand for task

i. Then the rank of task i at a time t is de�ned as the sum of two terms:

rank(i; t) = timeAtCross(i; t) + (dwellT ime(i) �memory(i))=demand(i) (2)

timeAtCross(i; t) for task i is the time at which the memory resource consumption acquired so

far matched its demand:

timeAtCross(i; t) = totalConsumption(i; t)=demand(i) (3)

10

where totalConsumption(i; t) is the total memory consumption acquired by task i up to time

t. dwellT ime(i) is the dwell time for task i, and memory(i) is the size of task i. timeAtCross

for a new task is the current time. timeAtCross(i; t) only needs to be updated when a task is

swapped out.

To illustrate this ranking, Figure 2(a) shows an example memory schedule for two tasks.

The shaded areas represent allocations to other tasks not of interest in this example. Figure

2(b) shows the resource consumption pro�le for tasks 1 and 2 as a result of the schedule. For

example, after Task 1 executes for time t, it has acquired m � t memory resources where m is its

size. Task 2 has acquired m � t=4 of memory-time by the same time, t.

Figure 2(b) illustrates pictorially the computation of rank for Tasks 1 and 2 after the execu-

tion of the memory schedule. A task's demand is represented by a sloped line. Conceptually, the

�rst term of rank, timeAtCross, attempts to order tasks according to their urgency in acquiring

memory resources to meet their desired rate. This is determined by a horizontal line from the

tasks memory consumption pro�le to its demand slope. Tasks with a earlier timeAtCross are

considered more crucial. Note that timeAtCross can be either in the past or in the future.

The second term of rank compensates for the di�erent rate at which tasks acquire resources

during a quantum (dwellT ime) and their di�erent resource demands. The shaded rectangles

have height dwellT ime(i) � memory(i), and thus width dwellT ime(i) � memory(i)=demand(i).

Given two tasks with the same timeAtCross, the task with the higher ratio of per-quantum

memory consumption to demand will be considered less crucial. It can wait longer before

being scheduled and still achieve its demand. From this example, after the current schedule is

complete, the rank for task 2 is less than the rank for task 1, indicating that task 2 will be

considered for scheduling before task 1.

6.3 Memory Scheduling Policy

Both the MB-scheduler and the ML-scheduler use the same algorithm for allocating memory

to the set of tasks under its control. Each scheduler decides which tasks to move in or out of

memory based on a ranking of the tasks in the system, where the ranking re
ects the ratio of

Memory

T
im

e

Task 1 Task
 2

Task
 2

Task 1

t

m

m x t

t

Task
 2

Memory Consumption ProfileMemory Schedule

m
em

or
y

 x
 ti

m
e

Task 1 profile
Task 2 profile

Time Task 1 Rank

Task 2 Rank

Task 1 timeAtCross
Task 2 timeAtCross

Slope Demand (1)

Slope Demand (2)

Figure 2: Task Ranking Strategy

11

the task's demand and the achieved rate of memory consumption. The goal of the memory

scheduler is primarily to provide high memory utilization while achieving the overall goal rate

of execution for the tasks.

We de�ne a minimum dwell time t

min

as the miniminum dwell time for the smallest task.

As discussed in Section 6.1, a task's memory dwell time depends on its size; the larger the task

the longer the dwell time. Speci�cally, the dwell time for a task with memory requirement m is

de�ned as 2

dlog

2

me

� t

min

where 2

dlog

2

me

is the smallest power of two greater than its memory

requirement. Requiring dwell times to step by powers of two allows for buddy-style coalescing

of memory-time allocations between small tasks allocations and large task allocations.

The scheduler uses a �rst-�t strategy for scheduling available memory. The scheduler is

invoked whenever a block of memory becomes available. A list of ready-to-run mi-swapped

tasks is maintained, sorted by rank, where tasks with a lower rank are considered �rst. The

scheduler selects the �rst task to be scheduled. If the memory available is greater than the

task's memory requirement, the task is scheduled to be swapped in, the available memory is

reduced by the size of the task, and the task's rank is updated to re
ect its current residency.

Otherwise, the next task in the list is examined. This procedure continues until either all the

memory is scheduled or the available memory is less than the size of the smallest task. Thus

the scheduler's job can be thought of as packing rectangular boxes along a single dimension M

wide, where M is the amount of memory available. The scheduler sorts the scheduled tasks

by dwell time expiration. When the dwell time expires for a set of tasks, a memory quantum

has expired. At each quantum expiration, the scheduling algorithm is repeated to allocate the

available memory to a (possibly) new set of tasks. The algorithm also ensures that the currently

executing tasks are not mi-swapped if no higher ranking tasks is waiting to be scheduled.

The memory scheduler is noti�ed when an executing task blocks. If the task's memory

residence time exceeds a minimum residency requirement, the task is mi-swapped and placed

on a blocked list. When the task is unblocked, it is inserted in the ready-to-run task list.

Figure 3 illustrates an example schedule for 7 tasks. The 7 tasks are listed in rank order

by their sizes. The x axis represents memory, and the y axis represents time. Each rectangle

represents an allocation of memory to a task. The duration of the schedule varies with the dwell

times of the tasks scheduled. Note that task 6 cannot be scheduled initially, since its size is

greater than the memory available after tasks 1 through 5 are scheduled. Also, even though

task 4 requires only slightly more memory than task 5, the dwell time of task 4 is twice the

Task
 2

Memory

T
im

e

Task 1 Task 4

Task 5
Task
 2 3

Task
 7

3

3

3

Task 6

Task
 2

Task
 7

Task
Size

1 2 3 4 5 6 7
4 2 9 8 41421

2

4

6

8

8 16 24 32 40

Figure 3: Example Memory Schedule

12

dwell time of task 5, since a task's dwell time is a factor of the lowest power of two greater than

its size.

Each horizontal line in Figure 3 represents a quantum expiration time at which a set of

tasks becomes eligible to be swapped out of memory. At this time, the scheduling algorithm is

repeated. Task 3's quantum expires �rst. Assuming there are no other tasks in the system, task

3 will be rescheduled (this is represented in the �gure by a shaded rectangle). Similarly, tasks

2 and 7 will be rescheduled until time 4. At that time, assuming tasks 3 and 5 drop in rank

below task 6, tasks 3,5, and 7 will be swapped out, and task 6 will be scheduled.

When a new task arrives, it is placed in the task list in sorted order using its assigned rank.

When a task exits, the scheduler tries to �ll the task's memory with another task on the task

list if the remaining dwell time is long enough to support the overhead of swapping the new

task into memory.

The memory schedulers must also handle requests by the tasks for dynamic memory alloca-

tion. A subset of the available memory is reserved to handle these requests. Still, if a task's

remaining dwell time is short or if the memory is not available, the task's memory allocation

request fails. A message is sent to the task's processor scheduler to pm-swap the task. Once

the task is pm-swapped, it is mi-swapped, and if it had su�cient remaining dwell time, another

task from the task list is chosen, if possible, to occupy the vacated memory for the remaining

dwell time. The total memory requirements for the task is incremented so that the next time

the task is swapped in, it receives the larger allocation. If a small memory task requests a total

allocation in excess of the class of tasks handled by the ML-scheduler, then the task is placed

under the control of the MB-scheduler.

When memory becomes available, either through a task's exiting or freeing memory, the

MB-scheduler looks at the remaining dwell time of the freed memory. If a large fraction of the

dwell time remains, the scheduler looks for an appropriately-sized task in the swapped-out task

list.

6.4 Starvation Avoidance

The scheduler's �rst-�t scheduling strategy is a straightforward and simple policy designed to

provide high memory utilization. However, this simple strategy alone is not su�cient to avoid

starvation, since there is no guarantee that a large enough block of memory will eventually

become available to schedule a large memory task.

In order to avoid large task starvation, when the available memory is not su�cient to schedule

the next task on the swapped-out task list, the earliest possible time is determined at which

enough memory will be available to schedule the task, given the current schedule. The scheduler

will refuse to schedule subsequent tasks that do �t in available memory if their dwell time would

result in the higher ranking task not being schedulable at the later time. This gives huge jobs

a chance to run within a time interval corresponding to their rank.

6.5 Extensions

The memory schedulers do not consider a task's processor requirements when scheduling tasks

to be swapped in. An extension could consider the number of teams required by the task as

well as the task's memory to try to schedule sets of jobs in memory concurrently that don't

overutilize or underutilize the processing resources.

Currently, memory is statically divided between the MB-scheduler and the ML-scheduler.

To increase the utilization of memory, the MB-scheduler could release unallocated memory

to the ML-scheduler for use until the next MB-scheduler quantum expires. Similarly, a more

exible partition could be implemented, where the amount of memory reserved for the small

memory tasks varies with the changing load exerted on the system by the batch and interactive

tasks. However, research by Ashok and Zahorjan [2] suggest that the bene�ts of such dynamic

partitions are not easily attained.

13

7 Processor Scheduler

Early research on processor scheduling for parallel machines highlighted the need for co-scheduling

[16]; that is, ensuring that all parallel activities of a job execute at once. This avoids ine�ciencies

due to synchronization losses when some activities are blocked waiting for progress from another

parallel activity that is not scheduled. On traditional multiprocessors, scheduling requires that

either a processor be allocated to a single job or that context switching among multiple jobs

assigned to a processor be globally coordinated. The former strategy is known as space sharing,

in which the processors are partitioned among the jobs in the system [21]. The latter strategy

is generally realized by round-robin scheduling policies that rotate possession of the processors

among the jobs in the system in a coordinated manner [11]. Studies comparing the perfor-

mance of space-sharing and time-sharing systems [25, 17] conclude that space sharing policies

make more e�cient use of processors that might otherwise be idle when running a single job.

However, in dividing the processors among multiple jobs, space sharing policies often allocate

fewer processors to jobs than the job's parallelism may allow. Tucker and Gupta [21] describe

\process-control", an approach that adapts a job's parallelism to the processors available to it.

Also, e�cient space sharing policies must be able to adapt the partition sizes and con�gurations

based on the changing system load [25, 12, 13, 15, 14, 15, 18].

Tera's multi-threaded architecture makes it possible to combine space-sharing and time-

sharing and realize the bene�ts of both. Multiple tasks execute simultaneously on a single

processor. Thus, there is no need for global coordination of context switching. The operating

system space shares or partitions the available protection domains among the tasks in the

system. Since each processor has multiple protection domains, space-sharing is accomplished

on the basis of a protection domain rather than a processor. A task is never allocated fewer

protection domains than it has teams. Time-sharing is performed at a very �ne-grained level.

Teams from di�erent tasks executing on a single processor compete for hardware streams on

the processor. The scheduling of streams is controlled by the hardware and directed by user

level instructions. The operating system is not involved in hardware stream allocation within a

processor.

The goals of the Tera processor schedulers are: (1) e�cient use of processing resources; (2)

fairness and starvation avoidance; (3) good interactive response time; and (4) mechanisms for

job di�erentiation.

Achieving high processor utilization requires between 20 and 80 active streams. Teams from

single-team tasks typically have few streams (normally one or two), while teams from multi-

team tasks have many more streams (usually between 20 to 40). Given 16 protection domains

per processor, a processor containing only single-team tasks likely would not have enough active

streams to keep the processor fully utilized. Thus, keeping a processor busy requires some

number of teams from multi-team tasks.

To obtain the desired mix of teams from multi-team and single-team tasks, the protection

domains on each processor are divided between the multi-team task scheduler (PB-scheduler)

and the per-processor single team task scheduler (PL-scheduler). Based on our understanding of

exploitable parallelism found in large tasks, we expect a processor to be able to service somewhere

between two to three teams from multi-team tasks. Call this number the target-mt-per-proc.

The PB-scheduler places target-mt-per-proc teams from multi-team tasks on each processor

while the per-processor PL-scheduler uses the remaining protection domains. If the PB-scheduler

requires an additional protection domain, it requests it from the PL-scheduler. The PL-scheduler

responds by swapping out a single-team task from a protection domain of its choice and fur-

nishing it to the PB-scheduler. Similarly, when the PB-scheduler has an unneeded protection

domain, it can return it to the PL-scheduler.

5

When a task changes from single team to a

multi-team task, the task migrates from its PL-scheduler to the PB-scheduler. The converse

5

This behavior can be changed by per-site parameters, letting system administrators tune their systems for their

local requirements.

14

does not occur because we expect the multi-team task to continue to exhibit a need for large

numbers of streams and teams in the future.

The processor schedulers do not look at utilization explicitly. The load of a team (number

of streams) varies so dynamically with respect to the frequency at which the operating system

makes scheduling decisions, that the information can't be used as a valid predictor of utilization.

As a result, we assume that the teams from multi-team tasks exert equivalent loads on the

processors. Similarly, the load from single team tasks is assumed to be uniform. The runtime

system can adjust its load based on total processor utilization since it makes these decisions

with much greater frequency.

The overhead of mp-swaps and pm-swaps is on the order of a traditional context switch

and of a much smaller magnitude than memory swapping. When a pm-swap occurs, the user

runtime noti�es all executing streams to save their register state in parallel. When completed,

the runtime hands control to the operating system, which saves a handful of registers comprising

the privileged protection domain state. When a mp-swap occurs, the operating system initializes

the privileged protection domain state and starts a single user stream; the user stream arranges

for the remaining streams to restore their register state in parallel and resume execution. Loading

and unloading of individual teams also proceeds in parallel, in a data
ow fashion. In general,

mp/pm-swaps are fast and don't require the movement of memory.

Thus a single stream, single team task has very low overhead while a very parallel task will

We �rst describe the single-team processor scheduler, then the multi-team processor scheduler.

7.1 Single-Team Task Processor Scheduler (PL-scheduler)

Since single-team tasks execute in a single protection domain, their scheduling does not require

global knowledge or coordination between di�erent processors. This allows scheduling of single-

team tasks on a per processor basis by independent instances of the PL-scheduler.

The PL-scheduler uses a priority mechanism for job di�erentiation of memory resident tasks

that follows the Unix standard [3] rather than the ranking mechanism used in scheduling mem-

ory. A newly created task is given a high priority. When a task's processor quantum expires, its

priority is decremented. A task's priority rises when it unblocks (e.g. I/O occurs) or it has not

received service for a long time (anti-starvation). Site administrators can modify the amount

the priority changes for each of these events.

As discussed in Section 5, each memory scheduler selects a PL-scheduler for a newly im-

swapped single-team task. Once a task has been assigned to a PL-scheduler it remains there

until mi-swapped, the task exits, or the PL-scheduler explicitly sends it to another PL-scheduler.

When a new task is assigned to the PL-scheduler, the scheduler allocates a protection domain

and mp-swaps the task. If no protection domains are available, it places the task on its Ready

queue.

After mp-swapping a task, the PL-scheduler sets an alarm for a task quantum. If the task

quantum alarm expires, the PL-scheduler reduces the priority of the task, and sees if any other

ready tasks have a higher priority. If another task is eligible and the loaded task is swappable,

6

it pm-swaps the task and places it on the Ready queue (assuming it is not blocked on I/O).

The PL-scheduler then mp-swaps the higher priority task.

When a task unblocks, e.g. due to I/O completing, the PL-scheduler mp-swaps the task if

a protection domain is available; otherwise the scheduler moves the task onto the Ready queue

and increases its priority.

Task suspension involves an external agent, such as Unix job control, requesting the task

to be removed from the processor. When the PL-scheduler receives a suspension event, it pm-

swaps the task but does not place it on the Ready queue; the task remains suspended until it

is explicitly resumed. Meanwhile, the PL-scheduler loads in the highest priority task from the

Ready queue. When the PL-scheduler get a resume event for the suspended task, it allocates a

protection domain and loads the task or, failing that, puts it on the Ready queue.

6

For example, not exiting, suspending, etc.

15

Having memory schedulers select processors seeks to maintain a balanced load when single

team tasks are im-swapped. In the absence of memory swapping, load imbalances could occur.

Based on previous research [5] [6], PL-schedulers migrate work in two situations. When a new

task is created (normally as part of the Unix fork() system call), the PL-scheduler selects another

PL-scheduler at random and checks the length of that scheduler's Ready queue. If the queue is

empty, the child is sent to that processor; otherwise it remains on the current queue. Similarly,

when the length of a PL-scheduler's Ready queue exceeds some site settable maximum, the

scheduler checks a randomly selected PL-scheduler. If the queue is empty, the PL-scheduler

migrates tasks from its Ready queue. The number of tasks that migrate depends on the amount

of available protection domains on the recipient.

To prevent the starvation of tasks, the PL-scheduler periodically sweeps its Ready queue and

increases the priority of tasks that have not run since the last check. This allows lower priority

tasks to rise in the queue and eventually get a chance at the processor.

7.2 Multi-Team Task Processor Scheduler - The PB-scheduler

Scheduling multi-team tasks presents the problem of allocating protection domains on multiple

unique processors in order to co-schedule the task's teams. The PB-scheduler allocates target-

mt-per-proc protection domains on each processor to the multi-team tasks.

The primary goal of the PB-Scheduler is high processor utilization. The scheduler also

ensures that: (1) every processor has at least one and no more than target-mt-per-proc teams

from multi-team tasks; (2) teams from the same task will be on di�erent processors except when

the number of teams is greater than the number of processors; and (3) every multi-team task

runs at least once during its memory dwell time (the allotted time the task is memory resident).

This last goal seeks to minimize wasted system overhead that results when a task is im-swapped

then mi-swapped without executing.

The decision whether or not to put fewer than the target-mt-per-proc teams on each pro-

cessor, goal (1), relates to the operation of the user runtime. The user runtime may request

a team during the execution of its program, due to the program's increasing parallelism. If

the PB-scheduler packs each processor to its maximum, each such request would cause the PB-

scheduler to refuse the request or pm-swap the job until resources came available. By leaving

some protection domains available, the scheduler can service these requests promptly. New do-

mains being freed when the program's parallelism diminishes can also be used to service growth

of other programs. Determining the correct balance of how full to pack the processor is di�cult,

and is a parameter that will be tuned with experience.

To accomplish goal (3), the PB-scheduler uses round robin scheduling with a processor quan-

tum small enough in comparison with the memory dwell time used by with the MB-scheduler

to ensure every task runs at least once while memory resident. Each round of the round robin

is called a cycle.

7.2.1 Bin Packing Algorithm

Assigning teams to protection domains can be thought of as a bin packing problem. The target-

mt-per-proc can be thought of as the number of bins available while the number of processors is

the size of each bin. Let D be the number of protection domains allocated to the PB-scheduler

per-processor and P be the number of processors. Each task is represented by the number of

protection domains it requires.

The goal is to �t the tasks into the minimum number of bins. Since the problem is NP-

complete [10], a standard heuristic solution uses a decreasing �rst �t algorithm (see Standard

Algorithm in Figure 4a). Sort the tasks by decreasing number of teams. Let x

i

be the number

of teams in task

i

. For each i, put x

i

in the �rst bin that has room for it. If all the bins are full,

skip to the next task. To improve this algorithm, lay the bins end to end and allow a task to

span bins. In e�ect, there is one bin of size D times P. This change allows tasks larger than the

16

number of processors P to be loaded; such situations can result from running a checkpoint �le

on a degraded system (see Improved Algorithm in Figure 4b).

One problem of the traditional �rst-�t algorithm is that it only allocates contiguous

7

pro-

tection domains to a single task. This becomes a problem as tasks exit and new ones arrive.

Under the improved algorithm, if exiting tasks free up non-contiguous protection domains (for

example, Task 1 and 3 in Figure 4), an arriving Task 4 with four teams that could �t into free

domains still would not be scheduled (see Figure 5a).

We modify the algorithm to remove that restriction (See Figure 4c). We use a bit vector

to represents all the protection domains in the system; high bits indicate available protection

domains The algorithm iterates through the bit vector selecting free protection domains that

are also on unique processors. This allows Task 4 to be loaded in our example (see Figure 5b).

7.2.2 Scheduling a Cycle

At the start of a cycle, all tasks have equal opportunity to be scheduled. Tasks waiting to run

reside in the Waiting queue. The PB-scheduler assigns as many tasks that �t into available

protection domains and sets an alarm for the processor quantum. All the tasks run for the same

amount of time.

When the processor quantum expires, the PB-scheduler conceptually removes the loaded

tasks and attempts to schedule tasks in the following order:

1. tasks in the anti-starvation queue (described below)

2. tasks that recently arrived and were scheduled in the previous quantum (described below)

3. tasks waiting to run in this cycle (waiting queue)

T2 T2 T2

1 10 02 23 3Proc:

PD: 0 0 0 0 1 1 1 1

T2 T2

1 10 02 23 3Proc:

PD: 0 0 0 0 1 1 1 1

Improved Algorithm

Tera Algorithm

T1 T1 T1 T3T3

T3T3T1 T1 T1T2

PD: 0 0 0 0 1 1 1 1

10 2 3 10 2 3Proc:

Standard Algorithm

T1 T1 T1 T2 T2 T2

a.

b.

c.

T1 = Team from Task 1

Figure 4: Examples of Bin Packing Algorithm

7

Bins span processors so that each bin consists of the same numbered protection domain. By contiguous we mean

that the task is assigned to protection domains next to each other in the bin.

17

a.

T2 T2 T2

1 10 02 23 3Proc:

PD: 0 0 0 0 1 1 1 1

T2 T2

1 10 02 23 3Proc:

PD: 0 0 0 0 1 1 1 1

Improved Algorithm

Tera Algorithm

T4 T4T4T4

T4 T4 T4 T4 Task 4 unable to run

T2

b.

Figure 5: Bins after Task 1 and 3 Exit and Task 4 Arrives

4. tasks that have already run in this cycle (ran queue)

5. tasks currently loaded

For tasks that are currently loaded and scheduled again for the next quantum, the scheduler

makes an e�ort to rearrange protection domain assignments to allow the loaded task to remain in

the same protection domains. If this succeeds, the loaded task will continue to execute without

any interruptions. If it fails, the task incurs the overhead of a pm-swap followed by a mp-swap.

After scheduling the next quantum, daemons pm-swap those tasks not scheduled for the

next quantum and mp-swap the new ones in parallel. Pm-swapped tasks are placed in the ran

queue. When the waiting queue is empty, the cycle is complete and the ran queue becomes the

waiting queue.

The PB-scheduler tries to assign protection domains to newly arriving tasks regardless of

how much time remains in this processor quantum. Since the new task will, on average, only

receive a half of a quantum, the PB-scheduler places the task in a list to be scheduled before

those on the waiting queue.

Starvation of tasks in the waiting queue is possible using this scheme. Suppose task A in

the waiting queue needs protection domains on all the processors and task B needs half of the

processors and is currently loaded. Task C, which also needs half of the processors, arrives,

gets loaded and scheduled for the next quantum. Meanwhile, task B exits and the quantum

expires. Task C is scheduled again while task A continues to wait. This pattern of arrivals and

departures, however unlikely, could continue inde�nitely, and task A would starve.

To avoid starvation, the PB-scheduler periodically checks tasks in the waiting queue for

starvation. Any tasks that have not received service since the last check are placed in a starvation

queue. This queue is �rst in line for scheduling in the next quantum.

8 Conclusions

Scheduling appears at all levels in a Tera System: in compiler generated code, in the runtime

system, and in the operating system. The overall goal of our design e�orts has been to ensure

that these three major scheduling systems work e�ectively and e�ciently both within their

respective domains and in their interactions with one another.

The compiler schedules instructions. It also acquires and schedules stream resources for the

implicit parallelism of a program. The overheads involved in scheduling done by the compiler

18

are typically negligible, and the time frame of a compiler's schedule is normally shortest of all.

The runtime acquires and schedules stream resources for executing explicit program par-

allelism. It also imposes an order on the execution of parallel work. There is slightly more

overhead associated with this kind of parallel work than that scheduled by the compiler. Ap-

propriately, the granularity of the work is expected to be somewhat larger, and the scheduling

time frame, too, is greater than that considered by the compiler.

The operating system schedules memory and protection domain resources among jobs con-

tending for the system. The time frame considered by the processor scheduler is much greater

than that of the runtime; and, again, this is natural since each piece scheduled may consist of

many futures or compiler scheduled parallel loops. And the time frame of the memory scheduler

is still larger: the overhead of swapping large jobs in and out of memory is the greatest overhead

of all.

Utilizing schedulers, each speci�cally designed for a particular level in a hierarchy of time

frames and work granularities, is a natural approach for scheduling parallel work on a multi-

programmed machine. We expect our designs to be particularly e�cient, however, because

they are able to execute almost independently of each other: Interactions between the memory

scheduler and processor scheduler are minimal. Between the operating system and the run-

time systems, typical interactions are limited to occasional requests for additional protection

domains; creation of additional streams, trap handling, and load estimations are handled by

the runtimes independently. Compiler generated code, once assigned by the runtime to speci�c

teams, operates independently of the runtime, reserving, creating and destroying streams im-

mediately, via hardware instructions. We believe the decomposition of scheduling obligations in

this way will lead to negligible overheads and very high processor utilizations.

This paper discussed several notable, even novel, characteristics of our schedulers: The

memory scheduler distinguishes jobs by rank, where a job's rank is a function of its demand for

memory and its current allotment. We described an algorithm for swapping jobs that minimizes

the memory overheads and showed that swapping overhead grows quadratically with the size

of jobs being swapped. Surprisingly, the algorithm's performance is independent of the order

of swapping events: this means we can alter the order, should the need arise, without incurring

additional overheads or computation. The processor schedulers use e�cient mechanisms for bit

vector iteration provided by the Tera MTA to e�ciently co-schedule jobs onto protections do-

mains. The runtime growth policy is based on relatively recent competitive-style algorithms, and

is extremely simple while still promising robust adherence to predictable performance bounds.

Our schedulers appear reasonable in simulation, though due to the relatively slow speed of

simulation, we can run only small workloads. We expect to re�ne our algorithms with experience

on the real machine: we eagerly await the arrival of the Tera MTA prototype.

References

[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porter�eld, and B. Smith. The

Tera computer system. In 1990 International Conference on Supercomputing, June 1990.

[2] I. Ashok and J. Zahorjan. Scheduling a mixed interactive and batch workload on a paral-

lel,shared memory supercomputer. In Supercomputing 1992, Nov 1992.

[3] M. J. Bach. The Design of the Unix Operating Systems. Prentice-Hall, Inc., 1986.

[4] D. Burger, R. Hyder, B. Miller, and D. Wood. Paging tradeo�s in distributed-shared-

memory multiprocessors. In Supercomputing '94, November 1994.

[5] D.L. Eager, E.D. Lazowska, and J. Zahorjan. Adaptive load sharing in homogeneous dis-

tributed systems. IEEE Transactions on Software Engineering, May 1986.

[6] D.L. Eager, E.D. Lazowska, and J. Zahorjan. A comparison of receiver-initiated and sender-

initiated adaptive load sharing. Performance Evaluation, March 1986.

[7] R. Essick. An event-based fair share scheduler. InWinter 90 USENIX Conference, January

1990.

19

[8] A. Gottleib, B. Lubachevsky, and L. Rudolph. Basic techniques for the e�cient coordi-

nation of very large numbers of cooperating sequential processors. ACM Transactions on

Programming Languages and Systems, 5(2), April 1983.

[9] A. Gupta, A. Tucker, and S. Urushibara. The impact of operating system scheduling

policies and synchronization methods on the performance of parallel applications. In ACM

SIGMETRICS Conference, May 1991.

[10] Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Alhorithms. Computer Science

Press, 1984.

[11] S. Leutenegger and M. Vernon. The performance of multiprogrammed multiprocessor

scheduling policies. In ACM SIGMETRICS Conference, May 1990.

[12] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for mul-

tiprogrammed, shared memory multiprocessors. ACM Transactions on Computer Systems,

May 1993.

[13] C. McCann and J. Zahorjan. Processor allocation policies for message-passing parallel

computers. In ACM SIGMETRICS Conference, May 1994.

[14] V. Naik, S. Setia, and M. Squillante. Performance analysis of job scheduling policies in

parallel supercomputing environments. In Supercomputing 1993, November 1993.

[15] V. Naik, S. Setia, and M. Squillante. Scheduling of large scienti�c applications on dis-

tributed memory multiprocessor systems. In 6th SIAM Conference on Parallel Processing

for Scienti�c Computation, March 1993.

[16] J. Ousterhout. Scheduling techniques for concurrent systems. In 3rd International Confer-

ence on Distributed Computing, Oct 1982.

[17] S. Setia, M. Squillante, and S. Tripathi. Processor scheduling on multiprogrammed, dis-

tributed memory parallel systems. In ACM SIGMETRICS Conference, May 1993.

[18] K. Sevcik. Characterization of parallelism in applications and their use in scheduling. In

ACM SIGMETRICS Conference, May 1989.

[19] J. H. Straathof, A. A. Thareja, and A. K. Agrawala. Unix scheduling for large systems. In

Denver USENIX Conference, January 1986.

[20] J. H. Straathof, A. A. Thareja, and A. K. Agrawala. Methodology and results of per-

formance measurements for a new unix scheduler. In Washington USENIX Conference,

January 1987.

[21] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed

shared-memory multiprocessors. In 12th ACM Symposium on Operating System Principles,

December 1989.

[22] D. Wagner and B. Calder. Leapfrogging: A portable technique for implementing e�cient

futures. In Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, May 1993.

[23] J. Zahorjan, E. Lazowska, and D. Eager. Spinning versus blocking in parallel systems

with uncertainty. In International Sympossium on Performance of Distributed and Parallel

Systems, December 1988.

[24] J. Zahorjan, E. Lazowska, and D. Eager. The e�ects of scheduling discipline on spin

overhead in shared memory parallel systems. IEEE Transactions on Parallel and Distributed

Systems, April 1991.

[25] J. Zahorjan and C. McCann. Processor scheduling in shared memory multiprocessors. In

ACM SIGMETRICS Conference, May 1990.

20

