The ANL/IBM SP Scheduling System
David A. Lifka

Mathematics and Computer Science Division
Argonne National Laboratory
lifka@mes.anl.gov

Abstract

During the past five years scientists discovered that modern UNIX
workstations connected with ethernet and fiber networks could provide
enough computational performance to compete with the supercomputers
of the day. As this concept became increasingly popular, the need for
distributed queuing and scheduling systems became apparent. Systems
such as DQS from Florida State were developed and worked very well.
Today, supercomputers, such as Argonne National Laboratory’s IBM SP
system, can provide more CPU and networking speed than can be obtained
from these networks of workstations. These modern supercomputers look
like clusters of workstations, however, so developers felt that the scheduling
systems that were previously used on clusters of workstations should still
apply. After trying to apply some of these scheduling systems to Argonne’s
SP environment, it became obvious that these two computer environments
have very different scheduling needs. Recognizing this need and realizing
that no one has addressed it, I developed a new scheduling system. The
approach taken in creating this system was unique in that user input and
interaction were encouraged throughout the development process. Thus,
a scheduler was built that actually "worked" the way the users wanted it
to work.

1 Background

The Mathematics and Computer Science Division of Argonne National Labo-
ratory acquired a 128-node SP system in order to study parallel computing,
scalable /O, and several other advanced computing areas. The SP system has
many types of users, whose various jobs often have conflicting requirements.
In order to come up with a "fair" way to schedule these different jobs, several
popular scheduling systems were considered. After studying these scheduling
systems and actually trying a few, it was determined that none of them could
actually suit the needs of our user community. The problem was that these sys-
tems had been developed for clusters of high-end workstations connected by fast
networks. The authors of these systems had considered all the "best" ways to
schedule jobs on such a distributed system, including scheduling I/O-intensive
jobs with CPU-intensive jobs, and many other popular, optimistic scheduling
schemes. These schedulers can do all sorts of complex things but not the sim-
ple things that our users wanted! This situation was quite disturbing, and my
task was to find a scheduling system that could satisfy our user community or
schedule their jobs by hand round-the-clock! Not being much of a night person,

I opted to write my own scheduling system in which the user community could
define its requirements.

2 In Search of the Ultimate Scheduler

Before beginning to write a new scheduler, a lot of thought went into what ex-
actly it was a scheduling system should provide. There were three basic goals
that almost any scheduling system strives for: fairness, simplicity (easy to un-
derstand), and efficient use of the available resources. These three goals are
obviously in conflict, so there had to be some compromise that would make the
users happy. After a fair amount of research, we developed a list of features that
an "Ultimate Scheduler" should:

e Provide optimum performance (e.g., I/O-bound and CPU-bound jobs to-
gether)

e Be fair (whatever that means...)

e Support different job classes (e.g., interactive vs. batch)

e Support various message-passing libraries

e Use static or dynamic partitioning of the machine

e Utilize time or space slicing, gang scheduling, or sign-up sheet mechanisms
e Schedule different computation models (task farm vs. parallel processing)
e Manage other system resources (e.g., I/O subsystems)

e Provide priority scheduling for special jobs

Several of these items really depend upon how the users of a machine expect to
be able to use it. There are several very nice scheduling systems available today
that try to address these issues. A few of the more popular are

e DQS from Florida State
e Condor from University of Wisconsin

IBM LoadLeveler

e NQS

The problem with these systems i1s that they all primarily focus on managing
multiple queues of non-parallel jobs for networks of workstations. They were
developed in the age of the "free supercomputing'" movement. This was not too
long ago when high-end workstations connected by fast networks could provide
as much computational power as the super-computers of the day at a fraction of
the cost. Many of these scheduling systems do more than scheduling. Figure 1

shows the main pieces of a complete scheduling system. Several of the available
scheduling systems have implemented the various pieces of this diagram in a
tightly coupled fashion. This implementation greatly reduces the extensibility
of the system. For this reason a scheduling system that would meet the ANL
goals addresses only "Scheduling" and attempts to get the other pieces from
either the machine vendors or other developers wherever possible.

Dynamic Process Allocation

Resource Scheduling Job User
Management Starter Processes
Security
Figure 1

3 The ANL Scheduler Requirements

Argonne’s users and management had their own set of requirements that these
systems couldn’t quite address. The first was that users had to be able to request
a set of nodes for any type of use. ANL users have several different modes of
operation. Some need to be able to do task farming, where the SP is used as if it
were a large collection of unconnected workstations; others want to run parallel
jobs using various message-passing libraries. They need to be able to run jobs
interactively and in batch mode. Interactive use allows users to actually log
onto the nodes and run their codes by hand. This facilitates debugging and
simple use of the machine for less sophisticated users. Batch use allows for large
production runs and unattended runs during the night or weekends. Because of
these different job types it was important not to statically partition the machine
into different-size "pools" of nodes. A 127-node job should be able to run with
a 1-node job, as should a 65-node job with a 63-node job. These different jobs
have equal importance so the number of requested resources and duration or
usage had drive the queuing policy, not the "types" of jobs.

4 Addressing Requirements

Several of the members of the Mathematics and Computer Science Division at
ANL are researching new message-passing systems, so the scheduler had to be
able to make use of any of them. Addressing this requirement was difficult be-
cause of a software limitation but led to one of the key concepts of the scheduler.

To use the IBM SP high-performance switch, the users must have exclusive ac-
cess to it. At the same time, there had to be a fair alternative for SP users
who weren’t necessarily using the switch, or even doing parallel programming.
It turned out the only fair thing to do was to provide any user exclusive access
to any number of nodes requested. For several reasons this turned out to be an
advantage in the scheduler development. Exclusive access meant that any user
would have optimal cache performance, access to all the memory, and access to
the full CPU and I/0O potential of each node for benchmarking performance.

This "great" idea of exclusive access has a major drawback. If users have ex-
clusive access, what is to keep them from holding the resource and not letting
other jobs on the system? There had to be a way to provide exclusive access to
the machine and still provide a deterministic run-time for any given job. This
is the other key concept in the ANL scheduling system. Users have to provide a
run-time in wall-clock node/minutes (like in the days of mainframe computing).
Having exclusive access to the nodes allows them to do this, since they will be
able to better predict the run-time of their jobs. These key concepts — exclu-
sive access and user-provided run-times — allow for this different approach to
scheduling.

There 1s still one other problem with this idea. What prevents a user from
scheduling a job that requires all the resources for a very long time. It quickly
became apparent that a new resource-accounting mechanism was needed. Us-
ing the system-generated accounting statistics of CPU and I/O usage was not
sufficient. Users who "forgot'" to use exclusively scheduled time would not be
"charged" anything since they consumed no resources. The accounting system
had to be based on wall-clock time scheduled, not resources used. When users
are given their account, they are given a number of resource-units to use on
the machine, in the case of ANL wall-clock minutes. Once they have used all
their units, they are not allowed to submit any more jobs to the queue. This
effectively prevents users from asking for more time on the machine than they
actually need.

5 An Attempt at Fairness

Based on the two key scheduler concepts, a FIFO queue was the first queuing
method that was implemented. The ANL users ran a variety of jobs on the
system. Figure 2 shows the typical resource requirements that were observed.

Required Nodes Required Time
1 - 8 nodes 8 - 48 hours
16 - 32 nodes 1 - 8 hours
64 - 128 nodes | 30 minutes - 3 hours

Figure 2

Realizing the limitations of a FIFO queue, the scheduler was designed to be very
modular so that new or different user requirements could drive the scheduling
policy without requiring a complete rewrite of the code. This also provided the
capability to plug in different queuing algorithms. Another important differ-
ence between the ANL SP Scheduler and others is that users were involved in
the development and creating the scheduler policy from the beginning. Rather
than try to come up with the optimal computer-science solution, a simple FIFO
solution was applied, and users were encouraged to make suggestions for its im-
provement. To do this was actually simple. Users simply needed to be able to
see the current scheduling algorithm and job queue, and to watch the queuing of
jobs in operation. This approach allows the users to quickly become acquainted
with the problems the scheduler is trying to solve and to suggest improvements
in its operation. Having this user interaction allowed the users to help debug
the scheduler, and thus its development became a community project.

It quickly became apparent to all that a FIFO queue was extremely inefficient.
What typically would happened was that on a 128-node system a job requiring
only a few nodes would start and the next job in the queue would require 128
nodes. Hence, a large number of nodes would remain idle until the first job
finished and the second job could start. A new scheme was quickly devised. It
was dubbed FIFO with backfilling. Backfilling provides a way to fill in the idle
nodes caused by the situation just described with other jobs further down the
queue, provided that they do not cause the first job in the queue to wait any
longer for the nodes they require. Here i1s an example of a typical queue of jobs
and backfilling in action:

Step 1: 128 nodes are idle with the following queue of jobs. User A needs 32
nodes and there are 128 available so it 1s allowed to start.

User Number Number Job
Name | of Nodes | of Minutes Status
User A 32 120 Startable
User B 64 60 Waiting
User C 24 180 Waiting
User D 32 120 Waiting
User E 16 120 Waiting
User I 10 480 Waiting
User G 4 30 Waiting
User 32 120 Waiting

Step 2: 96 nodes are idle and 32 are in use with the following queue of jobs.
User B needs 64 nodes and there are 64 available so it 1s allowed to start.

User Number Number Job
Name | of Nodes | of Minutes Status
User A 32 120 Running
User B 64 60 Startable
User C 24 180 Waiting
User D 32 120 Waiting
User E 16 120 Waiting
User I 10 480 Waiting
User G 4 30 Waiting
User 32 120 Waiting

Step 3: 32 nodes are idle and 96 are in use with the following queue of jobs.
User C needs 24 nodes and there are 32 available so it 1s allowed to start.

User Number Number Job
Name | of Nodes | of Minutes Status
User A 32 120 Running
User B 64 60 Running
User C 24 180 Startable
User D 32 120 Waiting
User E 16 120 Waiting
User I 10 480 Waiting
User G 4 30 Waiting
User 32 120 Waiting

Step 4: 8 nodes are idle and 120 are in use with the following queue of jobs. User
D needs 32 nodes and there are only 8 nodes available so it is not able to start.
Now the backfill algorithm has to determine how long User D is blocked, or in
other words how long it will be before enough nodes will be available for User D
to run. To do this, the scheduler looks at the list of running jobs and determines
how long it will be until enough have them have finished for User D to start.
User A will be finished in 120 minutes, User B will finished in 60 minutes, and
User C 180 minutes. From this list the algorithm determines that when User B
finishes in 60 minutes, there will be enough nodes available for User D to start;
therefore, User D should have to wait for 60 minutes at the longest. With this
information the algorithm now looks at the queue of jobs looking for a job that
can use the 8 available nodes for 60 minutes or less. Users E and F require too
many nodes so they cannot backfill. User G requires 4 nodes for 30 minutes,
which will not delay the start of User D, so it is allowed to start.

User Number Number Job
Name | of Nodes | of Minutes Status
User A 32 120 Running
User B 64 60 Running
User C 24 180 Running
User D 32 120 Blocked
User E 16 120 Ineligible
User I 10 480 Ineligible
User G 4 30 Startable
User 32 120 Waiting

Now suppose that User F needs 8 nodes instead of 10. Eight nodes are idle and
120 are in use with the following different queue of jobs. User D needs 32 nodes
and there are only 8 nodes available, so it 1s not able to start. Now the backfill
algorithm has to determine how long User D is blocked, or in other words how
long it will be before enough nodes will be available for User D to run. To do
this, it looks at the list of running jobs and determines how long it will be until
enough have them have finished for User D to start. User A will be finished in
120 minutes, User B will finished in 60 minutes, and User C 180 minutes. From
this list the algorithm determines that when User B finishes in 60 minutes there
will be enough nodes available for User D to start; therefore, User D should have
to wait for 60 minutes at the longest. With this information the algorithm now
looks at the queue of jobs looking for a job that can use the 8 available nodes
for 60 minutes or less. User E requires too many nodes, so it cannot backfill.
User F requires 8 nodes for 480 minutes, which is longer than the time User D
is blocked for; but when User B finishes, it will release 64 nodes, which is more
than User D needs. The backfill algorithm determines that there will still be
enough nodes for User D to start in 60 minutes if it starts User F, so it is started.

User Number Number Job
Name | of Nodes | of Minutes Status
User A 32 120 Running
User B 64 60 Running
User C 24 180 Running
User D 32 120 Blocked
User E 16 120 Ineligible
User F 8 480 Startable
User G 4 30 Waiting
User 32 120 Waiting

6 Keep It Simple

Another drawback to many of the available scheduling systems is that they can
be quite complicated to use and, for naive users, quite intimidating. To avoid
this problem, I desgined a minimal set of commands, with functions similar to

the UNIX commands they mimic or to their names. These simple commands
can be used to build up more elaborate tools if the users wish to do so. The
following list shows the complete set of user commands and a brief explanation
of their functionality:

sphelp list user commands
and their functions
spfree return the number

of free nodes

sppause pause a job waiting in
the queue so that it
will not be started

spunpause unpause a job waiting
in the queue

spq show the jobs currently
on the system and
waiting in the queue

sprelease release a node back
to the free pool

spsubmit submit a job to queue

spusage return a current
snap-shot of the
resource file

spwait block until a specific
job has completed
spwhat return what type of

job could be run if
submitted now
spwhen tell when a specific
job will start given
the current queue
getjid return the user job 1D
on a scheduled node.

7 Summary

The key design features of the ANL SP scheduler are that it provides exclusive
access to the nodes the user 1s allocated and that users provide run-times in wall-
clock minutes so that anyone can determine when a job will start. Providing
users with enough information to understand the queuing mechanism and the
tools to follow its progress in real time allows the users to help in the debugging
and enhancement of the scheduler. By using user requirements as design points,
a very simple scheduler was able to be developed to satisfy their needs. Although
these requirements are seemingly simple, it was surprising to find that many of
today’s advanced scheduling systems do not support them. More information on
the Argonne SP scheduling system and how it addresses IBM SP-specific issues

is available in the Users Guide to the Argonne SP Scheduling System [1].

References

1. Lifka, D., Henderson, M.,and Rayl, K., ANL/MCS-TM-201, Users Guide
to the Argonne SP Scheduling System, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, IL (1995)

