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Abstract

In every production parallel processing environment,
the set of resources potentially available to an applica-
tion fluctuate due to changes in the load on the sys-
tem. This is true for clusters of workstations which are
an increasingly popular platform for parallel comput-
ing. Today’s parallel programming environments have
largely succeeded in making the communication aspect
of parallel programming much easier, but they have
not provided adequate resource management services
which are needed to adapt to such changes in avail-
ability. To fill this need, we have developed CARMI,
a resource management system, aimed at ollowing a
parallel application to make use of all available com-
puting power. CARMI permits an application to grow
as new resources become available, and shrink when
resources are reclaimed. Building upon CARMI, we
have also developed WoDi which provides a simple in-
terface for writing master-workers programs in a dy-
namic resource environment. Both CARMI and WoDi
are operational, and have been used on a pool of more
than 200 workstations managed by the Condor batch
system. Fxperience with the two systems has shown
them to be easy to use, and capable of providing large
numbers of cycles to parallel applications even in o
real-life production environment in which no resources
are dedicated to parallel processing.

1 Introduction

The principle goal of a parallel application is to exe-
cute as quickly as possible. To do this, the application
must effectively exploit the capacity of the resources
it can obtain from the system scheduler. It has to
balance its urge to mobilize as many resources as pos-
sible with the cost associated with using them. In a
multi-user, production environment, it is very unlikely

that a parallel application can make a-priori assump-
tions on the availability of system resources before or
during its execution. The number, type, and capacity
of the resources that the scheduler of such a system
is willing to allocate to a given application depend on
the current job-mix in the system. Since both queuing
time and execution time contribute to overall response
time, a parallel application must be prepared to dy-
namically adjust to fluctuations in the availability of
these resources. To do so, it needs means of interact-
ing with the system scheduler at run time and utilizing
resources that are allocated to it by the scheduler.

Heterogeneous clusters of workstations are an ex-
ample of such a dynamic processing system. In re-
cent years, clusters of workstations have become an
increasingly popular source of computing resources for
sequential and parallel applications. They provide a
good cost performance ratio, have improving network-
ing technology (e.g. ATM), and are supported by a
range of parallel programming environments. In order
to provide cycles to computationally intensive appli-
cations, workstations can either be dedicated to this
task, or an opportunistic approach can be used. Op-
portunistic clusters strive to make the spare compute
cycles on desktop machines available to sequential and
parallel applications [1]. Large opportunistic clusters
that consist of a heterogeneous collection of hundreds
of desk-top workstations are commonly found in to-
day’s academic and industrial settings. By their very
nature, these clusters are highly dynamic since they
are based on a coexistence between the batch envi-
ronment and the workstation owners who can regain
control of their workstation by a single keystroke.

Whether a dedicated or opportunistic cluster is
being used, it is vital that parallel applications
have access to Resource Management (RM) services
which allow them to dynamically allocate, exploit and
query information about the system resources. Cur-



rently available parallel programming environments
for workstation clusters, such as PVM [2] and P4
[3], do not provide adequate RM services. They ei-
ther rely on the user to decide a-priori when and how
to allocate resources or provide very simplistic algo-
rithms for making RM decisions. To address this
deficiency of parallel programming environments, we
have developed a framework in which new RM services
can be easily added to an existing parallel program-
ming environment. Using this framework, we have im-
plemented the CARMI resource management system
which provides RM services to PVM applications that
run on a cluster controlled by the Condor batch sys-
tem [4]. CARMI has been operational for more than
six months and has been used by a number of real-life
applications.

The remainder of the paper is organized as follows.
In the next section, we describe CARMI and outline
its main features. Section 3 discusses WoDi, a high-
level interface based on CARMI designed for making
writing master-workers parallel applications easy. Ex-
perience using CARMI and WoDi on a production
cluster that consists of more than 200 workstations
is described in section 4, and we make conclusions in
section 5.

2 CARMI

The Condor Application Resource Management In-
terface (CARMI) provides services for writing paral-
lel applications in an environment with dynamic re-
sources. CARMI, therefore, allows an application to
exploit new resources which become available at run-
time, and aids an application in detecting and manag-
ing resource loss. These services can be used in a dedi-
cated environment to utilize resources which are freed
by other applications, or to allow a scheduling mech-
anism to revoke resources from a running application.
In an opportunistic environment, CARMI permits an
application to grow to new resources as they become
available, and cope with resources being reclaimed by
their owner.

The first implementation of CARMI uses the mes-
sage passing capability of PVM [2] for communication
among application processes, and between an appli-
cation process requesting a service, and the CARMI
implementation itself. PVM was selected for a vari-
ety of reasons. First, PVM is widely used, so we are
able to support a large number of applications under
CARMI. Second, the PVM source code is available
which makes experimentation possible. Finally, PVM
supports a dynamic resource environment. The exist-
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Figure 1: Layered Framework of CARMI

ing PVM implementation already supported resource
addition and deletion, and process creation at run-
time. We have worked closely with the PVM research
group during the development of CARMI, and all of
the changes required are integrated into the standard
release of PVM as of version 3.3. The approach used
by CARMI to support PVM applications is also used
by other resource management systems including LSF
[5] and IBM’s LoadLeveler [6].

CARMI uses resource allocation and access services
provided by the Condor distributed resource manage-
ment system [4]. Condor is an opportunistic, batch
system which schedules applications on idle worksta-
tions. When an owner returns to a machine used by
Condor, it removes all processes it has started there.
Since Condor can manage a large pool of machines,
we have an opportunity to run highly parallel appli-
cations using CARMI.

2.1 System Design

CARMI is built using a general framework for imple-
menting resource management services which is de-
scribed in [7]. In general, this framework migrates
handling of RM service requests out of a monolithic
message programming environment (MPE), and into
external RM server processes. These RM server pro-
cesses, along with an RM library which is linked into



each application process, are provided by the RM de-
veloper. Every application process is assigned to one
of the RM server processes. All RM service requests
made by a process are sent to this RM server. Systems
built using this framework have a logical layering as
shown in Figure 1.

By using this layered approach, we are able to pro-
vide support for new MPE’s simply by changing the
communication primitives used in the RM library and
in the RM implementation layer. In general, this ap-
proach allows an arbitrary collection of RM services to
be implemented by providing a custom RM library and
RM implementation layer. The layered design also al-
lows us to effectively leverage existing communication
and resource management systems.

2.2 CARMI Services

The set of services available to an application are spec-
ified in an Application Programming Interface (APT).
The goal of a resource management API, and CARMI
in particular, is to allow an application to allocate and
use as many compute cycles as possible. When decid-
ing what services to make part of an API, we must
balance the desire to provide a powerful set of ser-
vices and ease of use. A list of the services provided
by CARMI are given in Appendix A. CARMI tries to
achieve this balance by using an asynchronous inter-
face.

CARMI presents an asynchronous API in which
services are requested via procedure calls which re-
turns a service request identifier. The return of the
request identifier indicates that this request has been
registered with CARMI. When the request has been
serviced, the application receives notification via the
same communication mechanism used among pro-
cesses of the user’s application. This notification car-
ries a request identifier so the application can easily
match the notification with the request it corresponds
to. Using the same mechanism for RM service events
and application events allows the application to use a
single interface for dealing with events of either type.
Using a separate notification mechanism for comple-
tion of RM service requests would likely require the
application to continue polling for each sort of event
separately.

The procedure call interface is familiar to appli-
cation programmers, so they should be comfortable
using it. The asynchronous completion, though, is
unique and has a number of benefits. First, it allows
an application to cope with the fact that the time
required to service an RM request is unpredictable.
For example, a request for new resources may be ful-

(a) Arch == "ALPHA" && OpSys == "OSF1"

(b) (Arch == "HPPA" && OpSys == "HPUX9") &&

(Memory >= 32 && Dedicated == TRUE)

Figure 2: Sample Resource Class Definitions. In ex-
ample (a) any machine with architecture ”ALPHA”
running "OSF1” as its operating system will be a
member of this class. A machine in class (b) must
be an HP Precision- Architecture running version 9
of HP-UX. It also must have at least 32 Megabytes
of memory, and have an attribute “Dedicated” set to
TRUE.

filled quickly when resources of the desired type are
available, but may take an arbitrary amount of time
when all resources are in use. A synchronous inter-
face to resource allocation services would therefore re-
quire blocking the application program for an unpre-
dictable amount of time. Second, the asynchronous
interface allows an application process to have any
number of requests outstanding at one time. This al-
lows complex operations to be composed of collections
of simple requests which are outstanding simultane-
ously. For example, the asynchronous API allows an
application which can use a variety of resource types
to have requests for all types outstanding at the same
time. Making this type of request with a synchronous
API would require a single function which permits ar-
bitrary resource collections to be requested at once.
Such a function would likely be complex and difficult
to use. Finally, an asynchronous API provides a natu-
ral way for applications to be notified of asynchronous
events such as resources being revoked.

2.2.1 Resource Classes

For CARMI to allocate resources to an application, it
must know what type of resources are needed. To do
this, CARMI provides the resource class abstraction.
All resources used by an application must be a mem-
ber of a resource class which has been defined by the
application. These definitions are made at the time
the job is submitted to CARMI, but in the future it
will be possible to define new classes at run-time as
well. For the purpose of allocation decisions, all re-
sources within a class are considered to be the same.

Resource classes are defined using logical expres-
sions in the same way that a user specifies the desired
resource for a sequential job in Condor [8]. To deter-
mine if a given resource is a member of a class, this log-
ical expression is evaluated against a set of attributes
advertised by the resource. Examples of the attributes



advertised by resources include the instruction set ar-
chitecture (processor family), the operating system,
the amount of memory, and performance measures (as
calculated by the Dhrystone and C-LINPACK bench-
marks). The set of attributes advertised by a machine
is extensible, and can be customized by a system ad-
ministrator. Sample expressions are shown in Figure
2. These expressions have proven to be very powerful
for allocating resources to sequential jobs in Condor,
and they are proving to be even more valuable when
dealing with heterogeneous resources for a parallel ap-
plication.

2.2.2 Resource Handling

Resources are allocated to applications as the result
of requests made at submit time or at run-time. For
each of the classes defined when the job is submitted,
the user may specify a minimum and maximum count
of desired resources in the class. CARMI will start
the job when at least the minimum count is available,
but will not allocate more than the maximum count
before start-up. If the maximum count is not available
when the job is started, CARMI will continue to try
to allocate resources up to the maximum level while
the job is running. An application can request (using
CARMI function add notify()) that it be notified as
these resources are added.

The CARMI APT also provides a way for applica-
tions to request new resources at run-time (function
addhosts()). The user must specify the class identi-
fier, and the number of new resources desired. When
the resources have been allocated, the request is con-
sidered complete, and the application receives a noti-
fication message.

Applications may also request detailed information
about resources allocated to them (get_host_info()).
This information includes all the attributes advertised
by the resource which were used for matching the re-
source to a class. An application may use this informa-
tion in a variety of ways. For example, two resources
may qualify for the same class based on their instruc-
tion set architecture and operating system, but may
have very different performance characteristics. Using
the performance attributes of each resource allows the
application to make load-balancing decisions.

Finally, since CARMI runs in a dynamic (and
often opportunistic) environment, services are pro-
vided for receiving notification when resources are
lost, suspended or resumed ({delete, suspend,
resume}notify()). Suspension occurs in CARMI
when an owner first returns to a machine. Instead
of immediately evacuating the machine, Condor first

suspends all application processes running there. This
is done in hope that the user will only be active for a
short time, and the processes may be resumed without
having to be killed. If the owner remains active, the
resource must be vacated and application processes
which have requested notification will be notified.

2.2.3 Task Management

The last type of service provided by CARMI allows
applications to make use of resources which have been
allocated to them by creating processes to run there
(class_spawn()). A CARMI process creation request
can specify either a resource class or a particular re-
source on which a process should be created. Any
executable file which is not available on a resource
where the process will be executed is automatically
transfered. When a process exits, a notification mes-
sage will be sent to the process’ parent giving the exit
status of the process.

A useful service in a dynamic environment would
be process checkpointing and migration. Unfortu-
nately, supporting these services would require ex-
tensive modifications to existing MPEs. If and when
these capabilities are available in MPEs, CARMI will
support them. We are currently collaborating with a
group at the Technical University of Munich to add
such a capability to PVM.
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Figure 3: CARMI System Architecture

2.3 CARMI Implementation

Figure 3 shows the architecture of our current imple-
mentation of CARMI for PVM. Each machine is re-
quired to have a PVM daemon process which handles
communication. CARMI starts this daemon on each
machine when it is allocated to a job. CARMI also
starts the initial application process which is speci-
fied at submit time on the machine where the job is
submitted. Every machine has an RM server process



which serves two functions. One is to handle the Con-
dor related operations on the machine. These include
transferring executable files to the machine, suspend-
ing, resuming and killing application processes due to
owner activity on the machine, and cleaning after a
machine is vacated. Second, it receives all RM ser-
vice requests made by application processes on the
host. When an RM server on an executing machine
receives a request, it forwards it to the global RM
server, which runs on the submitting machine, via a
PVM message. The global RM services the request
and sends a response back to the process from which
it received the request. If the request came from a
local RM server, the local server will forward the re-
sponse on to the application process which originally
made the request. Resource allocation requires inter-
action with the Condor scheduler which is responsible
for allocating machines to applications. The global
RM translates run-time allocation requests into the
format used to describe a Condor job’s resource re-
quirements. By translating the request into a format
already understood by Condor, we avoided making
changes to Condor in order to support CARMI ap-
plications.

3 WoDi

While CARMI provides a powerful environment for
parallel programming in an environment with dynamic
resources, users still must explicitly handle resources
coming and going at run-time. One approach to paral-
lelism which works well in this environment and is also
applicable to a large number of problems is master-
workers. In a master-workers application, there is a
single master process which generates work steps to
be computed, and a collection of worker processes.
Each worker process receives a work step from the
master, computes a result, and sends the result back
to the master. This process continues until all of the
work steps have been completed. Master-workers par-
allelism works well in a dynamic environment because
when a new resource becomes available, a worker pro-
cess can be started there, and a work step given to it
to process. If a resource is lost, the master can give
the work step which was being computed there to the
next available worker.

Because master-workers is such a common approach
to parallelism, we have built an application framework
to simplify writing this type of application. We call
this framework the Work Distributor (WoDi). The
goal of WoDi is to make writing master-workers ap-
plications for a dynamic environment very easy, and

to relieve the application writer of the burden of man-
aging individual resources as they come and go. It is
the responsibility of WoDi to monitor the status of all
the resources allocated to a job, and insure that the
results of each work step are returned to the master
exactly once. In some respects, WoDi is similar to
Piranha [9] which also helps master-workers applica-
tions adapt to dynamic resources. Piranha, however,
is restricted to working with the Linda [10] tuple-space
where as WoDi is intended to work in a general mes-
sage passing environment.

An additional benefit to users is that WoDi can
monitor the history of both the resources it is using
and the work it is distributing to make intelligent work
assignments. As we gain more and more experience
with the system, WoDi will do a better job in making
these decisions. By using WoDi, users benefit from
this experience.

3.1 WoDi Services

To initialize a program using WoDi, the master pro-
cess must provide WoDi with the resource classes to
be used, and the desired number of resources in each
class. The master also provides the name of the worker
executable file, and a set of message buffers which
should be sent to each new worker for initialization
purposes. WoDi strives to maintain the desired num-
ber of resources in each class. When a new resource
is allocated, WoDi starts a worker process, and sends
the initialization messages to the new worker.

To define a work step, the master process packs
a message defining the work to be done into a PVM
buffer, and hands this buffer over to WoDi who in
turn sends this message on to a worker process when
it becomes available. When the worker completes the
work step, it sends a result message back to WoDi.
WoDi records that the work step has been completed,
collects statistics, and forwards the result on to the
master. If a worker process should fail before com-
pleting its assigned work step, WoDi will re-send that
work step to the next available worker. In this way,
WoDi guarantees that the result of every work step
will be received by the master exactly once.

We have found that in some master-workers appli-
cations, work steps come in groups, and all of the re-
sults from one group must be calculated before the
next group can be started. We refer to this group ab-
straction as a work cycle. Often the characteristics of
work steps (such as the amount of CPU time required
to compute a work step) are relatively consistent be-
tween cycles. WoDi applications may specify the be-
ginning and ending of a work cycle. When cycles are



being used, WoDi will maintain a history of the com-
putation times of all of the work steps within a cycle.
This work step history can be used in a variety of ways
to improve the performance of the application.

One use of the work history is ordering the distribu-
tion of work within a cycle. Long running work steps
will be sent to workers as early as possible to try to
avoid having workers waiting for a single long running
step to complete before the next cycle can start.

WoDi also uses the work step history when deciding
how to assign work steps to worker processes. Long
running work steps are sent to the fastest available
resources. The speed of a resource is determined in
one of three ways. First, the application master pro-
cess can assign a speed to an entire resource class. All
resources within a class are considered to be equiva-
lent. Second, WoDi can use CARMI services to get
performance data for each of the resources available
to it. Finally, WoDi can send a benchmarking work
step to each new worker process after it is created.
The benchmarking approach provides the most accu-
rate indication of a resource’s performance because
it is measured on the application itself. Benchmark-
ing also requires processor time on the new resource
which does not contribute to the completion of the
job, so when the default performance data available
from CARMI is sufficiently accurate, this method is
prefered.

A final use of the work history is for determining
desirable resource levels. In general, more resources
provide better response time for the application, but
at higher cost in terms of allocated compute cycles.
Beyond a certain level, additional resources cannot
reduce response time because work steps cannot be
sub-divided. Therefore, response time for a cycle can-
not be smaller than the time required to compute the
longest step. If the application requests, WoDi will
run a heuristic which tries to determine the fewest
resources needed for a cycle to be completed in the
minimum possible time. This goal is achieved when
there are enough resources to complete all steps ex-
cept for the longest step in the same amount of time
it takes for the longest step to be computed. The out-
put of this heuristic is used in place of the user’s initial
request for a desirable resource level.

Figure 4 is an example of a master program which
uses WoDi. The program starts by packing a PVM
buffer which is used to initialize each worker when it
is started. It then initializes WoDi, giving it the ini-
tialization buffer as well as the number of resource
classes and desired resource levels, and the name of
the worker executable file. The program then loops

main()
{
buf = pack_initialization_data();
num_classes = 2;
class_needs[0] = 10;
class_needs[1] = 5;
wodi_init (buf, num_classes, class_needs,
WORK_TAG, RESP_TAG);

for (cycle = 1; cycle <= CYCLES; cycle++) {
buf = pack_cycle_initialization_data();
wodi_begin_cycle(cycle, buf, STEPS);

for (step = 1; step <= STEPS; step++) {
buf = pack_workstep();
wodi_sendwork(step, buf);

3

for (step = 1; step <= STEPS; step++) {
wodi_recvresult();
result = unpack_result();
process_result (result);

}

buf = pack_end_of_cycle_info();
wodi_end_cycle(cycle, buf);
}

wodi_complete() ;

}

Figure 4: Sample WoDi master program

through all of the needed work cycles. At the start of
each cycle, initialization data specific to that cycle is
placed in a PVM buffer, and this buffer is passed to
WoDi to send to each worker. Next, all of the work
steps for this cycle are sent to WoDi. WoDi distributes
these to workers, and the master simply loops to col-
lect all of the result messages. When all the results are
received, the end of the cycle is signalled, and finally
the completion of the application is signalled when all
cycles have been completed.

3.2 WoDi Implementation

Figure 5 shows the structure of a WoDi program. Like
CARMI, WoDi is implemented as a combination of
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a library and a server process. The library passes
work steps and other service requests (such as begin
and end cycle requests) to the server using PVM mes-
sages. The WoDi server in turn passes work steps on
to worker processes, and forwards their results back to
the master. Because WoDi handles all resource man-
agement concerns for the application, only the WoDi
server must be linked with the CARMI library. Appli-
cation processes do not make any direct use of CARMI
services.

Implementing WoDi in a server process, as opposed
to entirely within a library, potentially increases the
amount of parallelism in the system. The applica-
tion master can do any needed processing on results
as they arrive without being concerned with having
workers block while waiting for another piece of work.
The WoDi server does very little processing of results,
so it is virtually always ready to send more work to
a worker when it becomes free. Another advantage of
this approach is that a single WoDi server may be able
to service more than one master. This could increase
resource utilization because while one application may
be in a phase where few work steps are being gener-
ated, another might be generating a lot of work. With
multiple independent WoDi servers, resources would
have to be released by one and allocated to another by
the system scheduler to adapt to this situation. With
one shared server no juggling of resources is needed
leading to higher utilization.
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4 Experience

Among the applications which we are running with
WoDi is a materials science application which is de-
signed to predict the properties of new materials based
on first principles [11]. This application was originally
written using stand alone PVM and a master-workers
approach to parallelism. Because it was written using
PVM, it assumed a constant allocation of resources.
However, it proved quite easy to convert the PVM
communication calls into WoDi requests, and by do-
ing so the application was ready to run in a dynamic
environment.

Logically, this application consists of two nested
loops in which all work for the inner loop must be
completed before any work for the next iteration of
the outer loop can be started. This structure matches
a WoDi cycle where all steps within one iteration of
the inner loop make up a cycle. The data set used for
these runs consisted of 31 steps per cycle, and a total
of 35 cycles were executed per run. Figure 6 shows
the average and standard deviation for each of the
31 steps across all cycles for one particular material.
These steps vary greatly in the length of time they re-
quire to compute, but each step varies relatively little
across cycles.
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4.1 Performance Objectives

The principle performance measures we use when eval-
uating WoDi are execution time, occupancy and effi-
ciency. We measure execution time from when the
job is first scheduled on a resource until the last step
of the last cycle has been completed. We do not in-
clude queuing time. Occupancy is the total amount
of resource time allocated to the job. Occupancy is
viewed as the cost of running an application. FEffi-
ciency measures the fraction of the allocated processor
time actually used. An efficiency of one means that
all allocated processor time was used by the applica-
tion. Two sources of efficiency loss are the required
synchronization at the end of a cycle, and latency in
communication.

In general, there is a tradeoff between efficiency and
execution time as more resources are allocated to an
application. As more resources are used, execution
time decreases, but efficiency also tends to decrease
because any time blocked at a synchronization point
forces a larger number of resources to idle. Figures
7 and 8 show the theoretical execution time and ef-
ficiency for different resource levels using the distri-
bution from Figure 6. To generate these results, we
assume that all resources are identical and that none
are lost during a cycle, and that work steps are given
to processors using a greedy approach described in
[12] in which the longest work steps are distributed
first. Each step is considered to be of constant length
equal to its average. These results show that in this
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Work Run Total | CPU | Eff.
Ordering | Length | Occupancy | Time
No 5:57 116:53 | 53:03 | 47%
Yes 4:50 84:04 | 53:31 | 67%

Table 1: The effect of ordering

ideal environment, there is no further benefit to exe-
cution time beyond 16 processors. In a real, dynamic
resource environment, however, it is not possible to
select such an ideal point because the behavior of re-
sources will greatly influence performance. The user
is therefore left with the challenge of the cost versus
execution time trade-off.

4.2 Work Step Ordering

WoDi’s primary decision making responsibility is or-
dering of work steps. Previously, we assumed a greedy
work step distribution algorithm [12], and this is ex-
actly what WoDi employs. Table 1 shows the advan-
tage of using this strategy as compared to the original
application’s approach of sending out work steps in
sequential order. Each of these sample runs was made
at night on a collection of HP workstations most of
which are in a public lab. This lab is closed at night,
so the effect of resource reclamation by owners was
reduced. They also used identical input data sets so
that the total processor time required by the job was
roughly constant. Ordering the work steps reduced
the run time by more than an hour, saved over thirty
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Figure 9: Resource utilization for one run of the materials science application
hours of resource occupancy, and increased efficiency Avg. | Std. Dev. Min. Max.
These are dramatic increases, and for this Avg. Occ. 12.5 5.3 3.9 29.3
reason ordering across cycles is always done by WoDi. Run Length | 5:07 2:37 2:31 10:35
Efficiency 82% 10.3% | 36.43% | 94.15%
. Tot. Occ. 45:37 11:23 33:34 | 100:12
4.3 Adaptability Adds 28.2 12.0 11 50
Losses 15.2 11.5 0 40

One of WoDi’s goals is to use the facilities provided
by CARMI to adapt to changes in available resources.
These changes include newly available resources, re-
source suspension and resumption, and resource fail-
ure. Figure 9 demonstrates how WoDi is able to adapt
to changes in resource availability. The lower graph
shows how many resources are available to the appli-
cation, and the top graph shows how each processor is
used. In both graphs, time goes along the horizontal
axis, and the number of processors is on the vertical
axis. The lower diagram shows the number of proces-
sors available to the application as the top of the bar,
and the bottom is the number of resources working.
Therefore, when the bar is narrow resources are being
well utilized, where lots of black appears resources are
being wasted. On the upper graph, each gray block in-
dicates one work step being completed. White spaces
occur either when resources are unavailable or when
resources are idling due to synchronization at the end
of a cycle. A black box indicates the loss of a resource.
At start-up, the application was able to quickly ac-
quire seven machines, but was then unable to acquire
additional machines to replace those which had been
reclaimed by their owners, so it dropped down to as
few as one. At approximately the two-thirds point of
the run, many new resources became available to the

Table 2: Summary statistics for 61 runs of the mate-
rials science application

job. The upper graph shows that the majority of the
work steps were actually completed in the last third
of the job’s run time. Without the ability to adapt to
changes in available resources, this job would either
have had to wait in the queue until sufficient resources
were available, or it would have had to limp along with
the few resources it was able to get about the time it
was started.

To gain a better understanding of how the dynamic
environment effects application performance, we ran
the application repeatedly on a production cluster of
Sun workstations. Over this period, our application
had to compete with other Condor users as well as
owners for access to resources. During the day, com-
petition from both sources often made it difficult to ac-
quire machines even though our pool contains around
90 machines in the desired class. At night competi-
tion from owners is very small, and we are only com-
peting against other Condor users, so resources are
more plentiful. Table 2 summarizes the results of 61
executions.
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Figure 10: Theoretical and Actual Execution Time
and Number of Resources

The top row of the table shows the average num-
ber of workstations the application was able to hold
during an entire run. As expected, this value varies
significantly because of the difference in competition
for resources during different runs. The run time also
varies due to the changes in resource availability. As
we would expect from looking at the theoretical effi-
ciency graph, the efficiency of the application does not
vary greatly. Because the amount of work to be done
is constant across runs, the steady efficiency leads to
occupancy remaining relatively constant. The same
amount of allocated processor time yields the same
amount of results, regardless of the number of re-
sources being used concurrently. Figure 10 plots the
execution time and the average number of resources
in use for each of the 61 runs. The dashed curve gives
the theoretical execution time for the entire run at dif-
ferent resource levels. The experimental results follow
the theoretical curve fairly closely. The difference is
due primarily to the effect of resource reclamation by
owners.

During an average run of about five hours, 28 re-
source allocations are performed. This corresponds
to one new resource every 10 minutes. As should be
expected, resource losses are less common, occuring
about once every 20 minutes. This is as expected be-
cause if resources were lost more frequently than they
could be added, the application would be unable to
collect a significant number of resources. The vari-
ance in these values is quite high (in fact, one run
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never had a resource reclaimed while another lost 40).
This too should be expected since the frequency of
resource gains and losses depends greatly on other ac-
tivities in the system such as owner reclamation and
competition from other Condor users.

5 Conclusions

While workstation clusters have become a popular
source of cycles for parallel applications, they are
not being fully exploited because of the lack of re-
source management services which allow applications
to adapt to this dynamic environment. CARMI pro-
vides these needed services, but the user is still re-
quired to make their application able to adapt to
these changes. WoDi uses the services provided by
CARMI to hide the dynamic nature of resources, and
makes writing master-workers style parallel programs
extremely easy. Both systems are being used in a pro-
duction environment, and they have shown to be a
plentiful source of cycles for real parallel programs.
Experimental results have shown that even when re-
sources may be revoked by their owners at least some
types of parallel applications can still perform well.

Both CARMI and WoDi are systems which are still
under development. The ability to checkpoint and
perhaps migrate processes under CARMI would be
welcome, but doing so requires significant cooperation
from the message passing environment. When MPEs
begin to support these operations, CARMI will cer-
tainly provide services to make them useful to paral-
lel programmers. CARMI currently can only allocate
resources singly to applications, but the structure of
some parallel programs causes them to perform sig-
nificantly better at distinct resource levels. Services
which provide resources in groups would therefore be
desirable.

More work also needs to be done with WoDi in a
number of areas. First, as new services are devel-
oped in CARMI, WoDi should exploit them. This
includes using a potential checkpoint and restart fa-
cility or finding resource plateaus which are desirable
for a given work distribution. Managing heterogeneity
more intelligently is also a goal. This is particularly
important because even in an environment consisting
of machines from only one vendor, resources are still
heterogeneous due to differences in processor speed,
amount of memory and other characteristics. We must
better understand how these differences influence per-
formance and how to use heterogeneous resources well.
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A CARMI API

The CARMI API adheres to the request protocol set-
up by our resource management framework. That im-
plies that every CARMI function immediately returns
a request identifier, and that every function requires
an argument which specifies the tag to be used on the
request response message. The function definitions be-
low are followed by a returns( ... ) which specifies the
data types in the response message. All of these mes-
sages are assumed to begin with a request identifier
field, which is not shown here.

A.1 Request Management

cancel request (RequestId id,
ResponseTag resp_tag)
returns (BOOLEAN success)

RequestId

Cancel the outstanding request with id. The can-
cel_request message returns false if no request with the
given id is outstanding.

A.2 Resource Handling

RequestId config( ResponseTag resp-tag)
returns(int nhost, HostId hosts[nhost])

Config returns the number of hosts currently avail-
able to the application, and a list containing the host
identifiers.

RequestId get_host_info(HostId id,
ResponseTag resp_tag)
returns (CONTEXT machine _context)

This function returns all available information con-
cerning a host. The type CONTEXT is borrowed from
Condor, and it includes information which character-
izes a particular resource. The CONTEXT structure
is extensible, but the minimum content includes infor-
mation such as processor and operating system type.
RequestId addhosts(char *class_name, int

count, int increment,
ResponseTag resp_tag)
returns(int count, HostId new_hosts[count])

Addhosts requests new hosts in class class_name.
Hosts will be added in groups of size increment un-
til the total count hosts have been added. Multi-
ple addhosts messages may be triggered from a sin-
gle addhosts request as groups of size increment are
obtained.

RequestId delhosts(int count, HostId
hosts[], ResponseTag resp_tag)
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returns(int count, HostId host_id[count])

This function requests that hosts be deallocated
from the application. The response message contains
the host identifiers of the machines successfully re-
moved. In a successful execution, this list will exactly
match the list given in the request.

RequestId addmnotify(char *class_name,
ResponseTag resp_tag)
returns (SAME as addhosts above)

Add_notify requests that messages be sent to the
application when new hosts are added to the system
due to the original set of requests in the submission file
(as opposed to a run-time addhosts() request). The
response messages are the same as those returned in
response to an addhosts request. This request is out-
standing until explicitly canceled (though after all re-
sources specified by the submit file have been granted
it will never be triggered).

RequestId deletenotify(int count, HostId
host_ids[],
ResponseTag resp_tag)

returns (SAME as delhosts above)

Delete_notify requests that messages be sent to the
application when a host is lost due to an event other
than an explicit delhosts() request (e.g. hardware fail-
ure, or host being reclaimed by its owner). The for-
mat of these notification messages is the same as the
response to a delhosts() request.

RequestId {suspend, resume}notify(int
count, HostId host_ids[],
ResponseTag resp_tag)

returns(int count, HostId host_ids[count])

These two functions request that the application
be notified whenever a host in the specified host list
is suspended or resumed by Condor.

A.3 Task Management

RequestId class_spawn(char *executable,
char **argv, char *class_name,
ResponseTag resp_tag)

returns (ProcessId id)

on process exit: returns(ProcessId id, int

status, int CPU_usage)

Class_spawn triggers the creation of a new process.
The new process will be started on a host within the
class specified. When the process has successfully been
created, a response message containing the identifier of
the next task is returned. When that process exits, the



application receives a message containing exit status
information and processor utilization.
RequestId process_info(

ResponseTag resp_tag)
returns(int nprocs, struct procinfo
proc_list [nprocs])

Task_info returns information on the process run-
ning in the system. Information included in the
procinfo structure includes the Processld, the HostId
where the process is running, the ProcessId of the pro-
cess’ parent, and the name of the executable file being
run.

A.4 Class Management

RequestId GetClassDefinitions(

ResponseTag resp_tag)
returns(int count, ResourceClass
list[count])

This returns the definition of all existing classes.
A ResourceClass definition is an expression which de-
fines the characteristics a resource must have to be
considered a member of a class.
RequestId DefineClass( ResourceClass,
ResponseTag resp_tag)
returns (BOOLEAN success)

DefineClass defines a new resource class, butdoes
not request that any hosts in this class be added. The
return value is false if a class with the same name
already exists.

RequestId RemoveClass( char *class_name,
ResponseTag resp_tag)
returns (BOOLEAN success)

This function removes the class with the given
name. RemoveClass fails if any hosts in this class are
currently allocated to the application.

13



