
Parallel Processing on Dynamic Resourceswith CARMIJim Pruyne Miron LivnyDepartment of Computer SciencesUniversity of Wisconsin{Madisonfpruyne, mirong@cs.wisc.eduAbstractIn every production parallel processing environment,the set of resources potentially available to an applica-tion 
uctuate due to changes in the load on the sys-tem. This is true for clusters of workstations which arean increasingly popular platform for parallel comput-ing. Today's parallel programming environments havelargely succeeded in making the communication aspectof parallel programming much easier, but they havenot provided adequate resource management serviceswhich are needed to adapt to such changes in avail-ability. To �ll this need, we have developed CARMI,a resource management system, aimed at allowing aparallel application to make use of all available com-puting power. CARMI permits an application to growas new resources become available, and shrink whenresources are reclaimed. Building upon CARMI, wehave also developed WoDi which provides a simple in-terface for writing master-workers programs in a dy-namic resource environment. Both CARMI and WoDiare operational, and have been used on a pool of morethan 200 workstations managed by the Condor batchsystem. Experience with the two systems has shownthem to be easy to use, and capable of providing largenumbers of cycles to parallel applications even in areal-life production environment in which no resourcesare dedicated to parallel processing.1 IntroductionThe principle goal of a parallel application is to exe-cute as quickly as possible. To do this, the applicationmust e�ectively exploit the capacity of the resourcesit can obtain from the system scheduler. It has tobalance its urge to mobilize as many resources as pos-sible with the cost associated with using them. In amulti-user, production environment, it is very unlikely

that a parallel application can make a-priori assump-tions on the availability of system resources before orduring its execution. The number, type, and capacityof the resources that the scheduler of such a systemis willing to allocate to a given application depend onthe current job-mix in the system. Since both queuingtime and execution time contribute to overall responsetime, a parallel application must be prepared to dy-namically adjust to 
uctuations in the availability ofthese resources. To do so, it needs means of interact-ing with the system scheduler at run time and utilizingresources that are allocated to it by the scheduler.Heterogeneous clusters of workstations are an ex-ample of such a dynamic processing system. In re-cent years, clusters of workstations have become anincreasingly popular source of computing resources forsequential and parallel applications. They provide agood cost performance ratio, have improving network-ing technology (e.g. ATM), and are supported by arange of parallel programming environments. In orderto provide cycles to computationally intensive appli-cations, workstations can either be dedicated to thistask, or an opportunistic approach can be used. Op-portunistic clusters strive to make the spare computecycles on desktop machines available to sequential andparallel applications [1]. Large opportunistic clustersthat consist of a heterogeneous collection of hundredsof desk-top workstations are commonly found in to-day's academic and industrial settings. By their verynature, these clusters are highly dynamic since theyare based on a coexistence between the batch envi-ronment and the workstation owners who can regaincontrol of their workstation by a single keystroke.Whether a dedicated or opportunistic cluster isbeing used, it is vital that parallel applicationshave access to Resource Management (RM) serviceswhich allow them to dynamically allocate, exploit andquery information about the system resources. Cur-1



rently available parallel programming environmentsfor workstation clusters, such as PVM [2] and P4[3], do not provide adequate RM services. They ei-ther rely on the user to decide a-priori when and howto allocate resources or provide very simplistic algo-rithms for making RM decisions. To address thisde�ciency of parallel programming environments, wehave developed a framework in which new RM servicescan be easily added to an existing parallel program-ming environment. Using this framework, we have im-plemented the CARMI resource management systemwhich provides RM services to PVM applications thatrun on a cluster controlled by the Condor batch sys-tem [4]. CARMI has been operational for more thansix months and has been used by a number of real-lifeapplications.The remainder of the paper is organized as follows.In the next section, we describe CARMI and outlineits main features. Section 3 discusses WoDi, a high-level interface based on CARMI designed for makingwriting master-workers parallel applications easy. Ex-perience using CARMI and WoDi on a productioncluster that consists of more than 200 workstationsis described in section 4, and we make conclusions insection 5.2 CARMIThe Condor Application Resource Management In-terface (CARMI) provides services for writing paral-lel applications in an environment with dynamic re-sources. CARMI, therefore, allows an application toexploit new resources which become available at run-time, and aids an application in detecting and manag-ing resource loss. These services can be used in a dedi-cated environment to utilize resources which are freedby other applications, or to allow a scheduling mech-anism to revoke resources from a running application.In an opportunistic environment, CARMI permits anapplication to grow to new resources as they becomeavailable, and cope with resources being reclaimed bytheir owner.The �rst implementation of CARMI uses the mes-sage passing capability of PVM [2] for communicationamong application processes, and between an appli-cation process requesting a service, and the CARMIimplementation itself. PVM was selected for a vari-ety of reasons. First, PVM is widely used, so we areable to support a large number of applications underCARMI. Second, the PVM source code is availablewhich makes experimentation possible. Finally, PVMsupports a dynamic resource environment. The exist-
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Phsical ResourcesFigure 1: Layered Framework of CARMIing PVM implementation already supported resourceaddition and deletion, and process creation at run-time. We have worked closely with the PVM researchgroup during the development of CARMI, and all ofthe changes required are integrated into the standardrelease of PVM as of version 3.3. The approach usedby CARMI to support PVM applications is also usedby other resource management systems including LSF[5] and IBM's LoadLeveler [6].CARMI uses resource allocation and access servicesprovided by the Condor distributed resource manage-ment system [4]. Condor is an opportunistic, batchsystem which schedules applications on idle worksta-tions. When an owner returns to a machine used byCondor, it removes all processes it has started there.Since Condor can manage a large pool of machines,we have an opportunity to run highly parallel appli-cations using CARMI.2.1 System DesignCARMI is built using a general framework for imple-menting resource management services which is de-scribed in [7]. In general, this framework migrateshandling of RM service requests out of a monolithicmessage programming environment (MPE), and intoexternal RM server processes. These RM server pro-cesses, along with an RM library which is linked into2



each application process, are provided by the RM de-veloper. Every application process is assigned to oneof the RM server processes. All RM service requestsmade by a process are sent to this RM server. Systemsbuilt using this framework have a logical layering asshown in Figure 1.By using this layered approach, we are able to pro-vide support for new MPE's simply by changing thecommunication primitives used in the RM library andin the RM implementation layer. In general, this ap-proach allows an arbitrary collection of RM services tobe implemented by providing a custom RM library andRM implementation layer. The layered design also al-lows us to e�ectively leverage existing communicationand resource management systems.2.2 CARMI ServicesThe set of services available to an application are spec-i�ed in an Application Programming Interface (API).The goal of a resource management API, and CARMIin particular, is to allow an application to allocate anduse as many compute cycles as possible. When decid-ing what services to make part of an API, we mustbalance the desire to provide a powerful set of ser-vices and ease of use. A list of the services providedby CARMI are given in Appendix A. CARMI tries toachieve this balance by using an asynchronous inter-face.CARMI presents an asynchronous API in whichservices are requested via procedure calls which re-turns a service request identi�er. The return of therequest identi�er indicates that this request has beenregistered with CARMI. When the request has beenserviced, the application receives noti�cation via thesame communication mechanism used among pro-cesses of the user's application. This noti�cation car-ries a request identi�er so the application can easilymatch the noti�cation with the request it correspondsto. Using the same mechanism for RM service eventsand application events allows the application to use asingle interface for dealing with events of either type.Using a separate noti�cation mechanism for comple-tion of RM service requests would likely require theapplication to continue polling for each sort of eventseparately.The procedure call interface is familiar to appli-cation programmers, so they should be comfortableusing it. The asynchronous completion, though, isunique and has a number of bene�ts. First, it allowsan application to cope with the fact that the timerequired to service an RM request is unpredictable.For example, a request for new resources may be ful-

(a) Arch == "ALPHA" && OpSys == "OSF1"(b) (Arch == "HPPA" && OpSys == "HPUX9") &&(Memory >= 32 && Dedicated == TRUE)Figure 2: Sample Resource Class De�nitions. In ex-ample (a) any machine with architecture "ALPHA"running "OSF1" as its operating system will be amember of this class. A machine in class (b) mustbe an HP Precision- Architecture running version 9of HP-UX. It also must have at least 32 Megabytesof memory, and have an attribute \Dedicated" set toTRUE.�lled quickly when resources of the desired type areavailable, but may take an arbitrary amount of timewhen all resources are in use. A synchronous inter-face to resource allocation services would therefore re-quire blocking the application program for an unpre-dictable amount of time. Second, the asynchronousinterface allows an application process to have anynumber of requests outstanding at one time. This al-lows complex operations to be composed of collectionsof simple requests which are outstanding simultane-ously. For example, the asynchronous API allows anapplication which can use a variety of resource typesto have requests for all types outstanding at the sametime. Making this type of request with a synchronousAPI would require a single function which permits ar-bitrary resource collections to be requested at once.Such a function would likely be complex and di�cultto use. Finally, an asynchronous API provides a natu-ral way for applications to be noti�ed of asynchronousevents such as resources being revoked.2.2.1 Resource ClassesFor CARMI to allocate resources to an application, itmust know what type of resources are needed. To dothis, CARMI provides the resource class abstraction.All resources used by an application must be a mem-ber of a resource class which has been de�ned by theapplication. These de�nitions are made at the timethe job is submitted to CARMI, but in the future itwill be possible to de�ne new classes at run-time aswell. For the purpose of allocation decisions, all re-sources within a class are considered to be the same.Resource classes are de�ned using logical expres-sions in the same way that a user speci�es the desiredresource for a sequential job in Condor [8]. To deter-mine if a given resource is a member of a class, this log-ical expression is evaluated against a set of attributesadvertised by the resource. Examples of the attributes3



advertised by resources include the instruction set ar-chitecture (processor family), the operating system,the amount of memory, and performance measures (ascalculated by the Dhrystone and C-LINPACK bench-marks). The set of attributes advertised by a machineis extensible, and can be customized by a system ad-ministrator. Sample expressions are shown in Figure2. These expressions have proven to be very powerfulfor allocating resources to sequential jobs in Condor,and they are proving to be even more valuable whendealing with heterogeneous resources for a parallel ap-plication.2.2.2 Resource HandlingResources are allocated to applications as the resultof requests made at submit time or at run-time. Foreach of the classes de�ned when the job is submitted,the user may specify a minimum and maximum countof desired resources in the class. CARMI will startthe job when at least the minimum count is available,but will not allocate more than the maximum countbefore start-up. If the maximum count is not availablewhen the job is started, CARMI will continue to tryto allocate resources up to the maximum level whilethe job is running. An application can request (usingCARMI function add notify()) that it be noti�ed asthese resources are added.The CARMI API also provides a way for applica-tions to request new resources at run-time (functionaddhosts()). The user must specify the class identi-�er, and the number of new resources desired. Whenthe resources have been allocated, the request is con-sidered complete, and the application receives a noti-�cation message.Applications may also request detailed informationabout resources allocated to them (get host info()).This information includes all the attributes advertisedby the resource which were used for matching the re-source to a class. An application may use this informa-tion in a variety of ways. For example, two resourcesmay qualify for the same class based on their instruc-tion set architecture and operating system, but mayhave very di�erent performance characteristics. Usingthe performance attributes of each resource allows theapplication to make load-balancing decisions.Finally, since CARMI runs in a dynamic (andoften opportunistic) environment, services are pro-vided for receiving noti�cation when resources arelost, suspended or resumed (fdelete, suspend,resumeg notify()). Suspension occurs in CARMIwhen an owner �rst returns to a machine. Insteadof immediately evacuating the machine, Condor �rst

suspends all application processes running there. Thisis done in hope that the user will only be active for ashort time, and the processes may be resumed withouthaving to be killed. If the owner remains active, theresource must be vacated and application processeswhich have requested noti�cation will be noti�ed.2.2.3 Task ManagementThe last type of service provided by CARMI allowsapplications to make use of resources which have beenallocated to them by creating processes to run there(class spawn()). A CARMI process creation requestcan specify either a resource class or a particular re-source on which a process should be created. Anyexecutable �le which is not available on a resourcewhere the process will be executed is automaticallytransfered. When a process exits, a noti�cation mes-sage will be sent to the process' parent giving the exitstatus of the process.A useful service in a dynamic environment wouldbe process checkpointing and migration. Unfortu-nately, supporting these services would require ex-tensive modi�cations to existing MPEs. If and whenthese capabilities are available in MPEs, CARMI willsupport them. We are currently collaborating with agroup at the Technical University of Munich to addsuch a capability to PVM.
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Figure 3: CARMI System Architecture2.3 CARMI ImplementationFigure 3 shows the architecture of our current imple-mentation of CARMI for PVM. Each machine is re-quired to have a PVM daemon process which handlescommunication. CARMI starts this daemon on eachmachine when it is allocated to a job. CARMI alsostarts the initial application process which is speci-�ed at submit time on the machine where the job issubmitted. Every machine has an RM server process4



which serves two functions. One is to handle the Con-dor related operations on the machine. These includetransferring executable �les to the machine, suspend-ing, resuming and killing application processes due toowner activity on the machine, and cleaning after amachine is vacated. Second, it receives all RM ser-vice requests made by application processes on thehost. When an RM server on an executing machinereceives a request, it forwards it to the global RMserver, which runs on the submitting machine, via aPVM message. The global RM services the requestand sends a response back to the process from whichit received the request. If the request came from alocal RM server, the local server will forward the re-sponse on to the application process which originallymade the request. Resource allocation requires inter-action with the Condor scheduler which is responsiblefor allocating machines to applications. The globalRM translates run-time allocation requests into theformat used to describe a Condor job's resource re-quirements. By translating the request into a formatalready understood by Condor, we avoided makingchanges to Condor in order to support CARMI ap-plications.3 WoDiWhile CARMI provides a powerful environment forparallel programming in an environment with dynamicresources, users still must explicitly handle resourcescoming and going at run-time. One approach to paral-lelism which works well in this environment and is alsoapplicable to a large number of problems is master-workers. In a master-workers application, there is asingle master process which generates work steps tobe computed, and a collection of worker processes.Each worker process receives a work step from themaster, computes a result, and sends the result backto the master. This process continues until all of thework steps have been completed. Master-workers par-allelism works well in a dynamic environment becausewhen a new resource becomes available, a worker pro-cess can be started there, and a work step given to itto process. If a resource is lost, the master can givethe work step which was being computed there to thenext available worker.Because master-workers is such a common approachto parallelism, we have built an application frameworkto simplify writing this type of application. We callthis framework the Work Distributor (WoDi). Thegoal of WoDi is to make writing master-workers ap-plications for a dynamic environment very easy, and

to relieve the application writer of the burden of man-aging individual resources as they come and go. It isthe responsibility of WoDi to monitor the status of allthe resources allocated to a job, and insure that theresults of each work step are returned to the masterexactly once. In some respects, WoDi is similar toPiranha [9] which also helps master-workers applica-tions adapt to dynamic resources. Piranha, however,is restricted to working with the Linda [10] tuple-spacewhere as WoDi is intended to work in a general mes-sage passing environment.An additional bene�t to users is that WoDi canmonitor the history of both the resources it is usingand the work it is distributing to make intelligent workassignments. As we gain more and more experiencewith the system, WoDi will do a better job in makingthese decisions. By using WoDi, users bene�t fromthis experience.3.1 WoDi ServicesTo initialize a program using WoDi, the master pro-cess must provide WoDi with the resource classes tobe used, and the desired number of resources in eachclass. The master also provides the name of the workerexecutable �le, and a set of message bu�ers whichshould be sent to each new worker for initializationpurposes. WoDi strives to maintain the desired num-ber of resources in each class. When a new resourceis allocated, WoDi starts a worker process, and sendsthe initialization messages to the new worker.To de�ne a work step, the master process packsa message de�ning the work to be done into a PVMbu�er, and hands this bu�er over to WoDi who inturn sends this message on to a worker process whenit becomes available. When the worker completes thework step, it sends a result message back to WoDi.WoDi records that the work step has been completed,collects statistics, and forwards the result on to themaster. If a worker process should fail before com-pleting its assigned work step, WoDi will re-send thatwork step to the next available worker. In this way,WoDi guarantees that the result of every work stepwill be received by the master exactly once.We have found that in some master-workers appli-cations, work steps come in groups, and all of the re-sults from one group must be calculated before thenext group can be started. We refer to this group ab-straction as a work cycle. Often the characteristics ofwork steps (such as the amount of CPU time requiredto compute a work step) are relatively consistent be-tween cycles. WoDi applications may specify the be-ginning and ending of a work cycle. When cycles are5



being used, WoDi will maintain a history of the com-putation times of all of the work steps within a cycle.This work step history can be used in a variety of waysto improve the performance of the application.One use of the work history is ordering the distribu-tion of work within a cycle. Long running work stepswill be sent to workers as early as possible to try toavoid having workers waiting for a single long runningstep to complete before the next cycle can start.WoDi also uses the work step history when decidinghow to assign work steps to worker processes. Longrunning work steps are sent to the fastest availableresources. The speed of a resource is determined inone of three ways. First, the application master pro-cess can assign a speed to an entire resource class. Allresources within a class are considered to be equiva-lent. Second, WoDi can use CARMI services to getperformance data for each of the resources availableto it. Finally, WoDi can send a benchmarking workstep to each new worker process after it is created.The benchmarking approach provides the most accu-rate indication of a resource's performance becauseit is measured on the application itself. Benchmark-ing also requires processor time on the new resourcewhich does not contribute to the completion of thejob, so when the default performance data availablefrom CARMI is su�ciently accurate, this method isprefered.A �nal use of the work history is for determiningdesirable resource levels. In general, more resourcesprovide better response time for the application, butat higher cost in terms of allocated compute cycles.Beyond a certain level, additional resources cannotreduce response time because work steps cannot besub-divided. Therefore, response time for a cycle can-not be smaller than the time required to compute thelongest step. If the application requests, WoDi willrun a heuristic which tries to determine the fewestresources needed for a cycle to be completed in theminimum possible time. This goal is achieved whenthere are enough resources to complete all steps ex-cept for the longest step in the same amount of timeit takes for the longest step to be computed. The out-put of this heuristic is used in place of the user's initialrequest for a desirable resource level.Figure 4 is an example of a master program whichuses WoDi. The program starts by packing a PVMbu�er which is used to initialize each worker when itis started. It then initializes WoDi, giving it the ini-tialization bu�er as well as the number of resourceclasses and desired resource levels, and the name ofthe worker executable �le. The program then loops

main(){ buf = pack_initialization_data();num_classes = 2;class_needs[0] = 10;class_needs[1] = 5;wodi_init(buf, num_classes, class_needs,WORK_TAG, RESP_TAG);for (cycle = 1; cycle <= CYCLES; cycle++) {buf = pack_cycle_initialization_data();wodi_begin_cycle(cycle, buf, STEPS);for (step = 1; step <= STEPS; step++) {buf = pack_workstep();wodi_sendwork(step, buf);}for (step = 1; step <= STEPS; step++) {wodi_recvresult();result = unpack_result();process_result(result);}buf = pack_end_of_cycle_info();wodi_end_cycle(cycle, buf);}wodi_complete();} Figure 4: Sample WoDi master programthrough all of the needed work cycles. At the start ofeach cycle, initialization data speci�c to that cycle isplaced in a PVM bu�er, and this bu�er is passed toWoDi to send to each worker. Next, all of the worksteps for this cycle are sent to WoDi. WoDi distributesthese to workers, and the master simply loops to col-lect all of the result messages. When all the results arereceived, the end of the cycle is signalled, and �nallythe completion of the application is signalled when allcycles have been completed.3.2 WoDi ImplementationFigure 5 shows the structure of a WoDi program. LikeCARMI, WoDi is implemented as a combination of6
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a library and a server process. The library passeswork steps and other service requests (such as beginand end cycle requests) to the server using PVM mes-sages. The WoDi server in turn passes work steps onto worker processes, and forwards their results back tothe master. Because WoDi handles all resource man-agement concerns for the application, only the WoDiserver must be linked with the CARMI library. Appli-cation processes do not make any direct use of CARMIservices.Implementing WoDi in a server process, as opposedto entirely within a library, potentially increases theamount of parallelism in the system. The applica-tion master can do any needed processing on resultsas they arrive without being concerned with havingworkers block while waiting for another piece of work.The WoDi server does very little processing of results,so it is virtually always ready to send more work toa worker when it becomes free. Another advantage ofthis approach is that a single WoDi server may be ableto service more than one master. This could increaseresource utilization because while one application maybe in a phase where few work steps are being gener-ated, another might be generating a lot of work. Withmultiple independent WoDi servers, resources wouldhave to be released by one and allocated to another bythe system scheduler to adapt to this situation. Withone shared server no juggling of resources is neededleading to higher utilization.
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Figure 6: Average time and standard deviation by stepnumber4 ExperienceAmong the applications which we are running withWoDi is a materials science application which is de-signed to predict the properties of new materials basedon �rst principles [11]. This application was originallywritten using stand alone PVM and a master-workersapproach to parallelism. Because it was written usingPVM, it assumed a constant allocation of resources.However, it proved quite easy to convert the PVMcommunication calls into WoDi requests, and by do-ing so the application was ready to run in a dynamicenvironment.Logically, this application consists of two nestedloops in which all work for the inner loop must becompleted before any work for the next iteration ofthe outer loop can be started. This structure matchesa WoDi cycle where all steps within one iteration ofthe inner loop make up a cycle. The data set used forthese runs consisted of 31 steps per cycle, and a totalof 35 cycles were executed per run. Figure 6 showsthe average and standard deviation for each of the31 steps across all cycles for one particular material.These steps vary greatly in the length of time they re-quire to compute, but each step varies relatively littleacross cycles.7
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Figure 7: Execution Time for one work \cycle"4.1 Performance ObjectivesThe principle performance measures we use when eval-uating WoDi are execution time, occupancy and e�-ciency. We measure execution time from when thejob is �rst scheduled on a resource until the last stepof the last cycle has been completed. We do not in-clude queuing time. Occupancy is the total amountof resource time allocated to the job. Occupancy isviewed as the cost of running an application. E�-ciency measures the fraction of the allocated processortime actually used. An e�ciency of one means thatall allocated processor time was used by the applica-tion. Two sources of e�ciency loss are the requiredsynchronization at the end of a cycle, and latency incommunication.In general, there is a tradeo� between e�ciency andexecution time as more resources are allocated to anapplication. As more resources are used, executiontime decreases, but e�ciency also tends to decreasebecause any time blocked at a synchronization pointforces a larger number of resources to idle. Figures7 and 8 show the theoretical execution time and ef-�ciency for di�erent resource levels using the distri-bution from Figure 6. To generate these results, weassume that all resources are identical and that noneare lost during a cycle, and that work steps are givento processors using a greedy approach described in[12] in which the longest work steps are distributed�rst. Each step is considered to be of constant lengthequal to its average. These results show that in this
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Figure 8: E�ciency for one work \cycle"Work Run Total CPU E�.Ordering Length Occupancy TimeNo 5:57 116:53 53:03 47%Yes 4:50 84:04 53:31 67%Table 1: The e�ect of orderingideal environment, there is no further bene�t to exe-cution time beyond 16 processors. In a real, dynamicresource environment, however, it is not possible toselect such an ideal point because the behavior of re-sources will greatly in
uence performance. The useris therefore left with the challenge of the cost versusexecution time trade-o�.4.2 Work Step OrderingWoDi's primary decision making responsibility is or-dering of work steps. Previously, we assumed a greedywork step distribution algorithm [12], and this is ex-actly what WoDi employs. Table 1 shows the advan-tage of using this strategy as compared to the originalapplication's approach of sending out work steps insequential order. Each of these sample runs was madeat night on a collection of HP workstations most ofwhich are in a public lab. This lab is closed at night,so the e�ect of resource reclamation by owners wasreduced. They also used identical input data sets sothat the total processor time required by the job wasroughly constant. Ordering the work steps reducedthe run time by more than an hour, saved over thirty8



Figure 9: Resource utilization for one run of the materials science applicationhours of resource occupancy, and increased e�ciencyby 20%. These are dramatic increases, and for thisreason ordering across cycles is always done by WoDi.4.3 AdaptabilityOne of WoDi's goals is to use the facilities providedby CARMI to adapt to changes in available resources.These changes include newly available resources, re-source suspension and resumption, and resource fail-ure. Figure 9 demonstrates how WoDi is able to adaptto changes in resource availability. The lower graphshows how many resources are available to the appli-cation, and the top graph shows how each processor isused. In both graphs, time goes along the horizontalaxis, and the number of processors is on the verticalaxis. The lower diagram shows the number of proces-sors available to the application as the top of the bar,and the bottom is the number of resources working.Therefore, when the bar is narrow resources are beingwell utilized, where lots of black appears resources arebeing wasted. On the upper graph, each gray block in-dicates one work step being completed. White spacesoccur either when resources are unavailable or whenresources are idling due to synchronization at the endof a cycle. A black box indicates the loss of a resource.At start-up, the application was able to quickly ac-quire seven machines, but was then unable to acquireadditional machines to replace those which had beenreclaimed by their owners, so it dropped down to asfew as one. At approximately the two-thirds point ofthe run, many new resources became available to the

Avg. Std. Dev. Min. Max.Avg. Occ. 12.5 5.3 3.9 29.3Run Length 5:07 2:37 2:31 10:35E�ciency 82% 10.3% 36.43% 94.15%Tot. Occ. 45:37 11:23 33:34 100:12Adds 28.2 12.0 11 50Losses 15.2 11.5 0 40Table 2: Summary statistics for 61 runs of the mate-rials science applicationjob. The upper graph shows that the majority of thework steps were actually completed in the last thirdof the job's run time. Without the ability to adapt tochanges in available resources, this job would eitherhave had to wait in the queue until su�cient resourceswere available, or it would have had to limp along withthe few resources it was able to get about the time itwas started.To gain a better understanding of how the dynamicenvironment e�ects application performance, we ranthe application repeatedly on a production cluster ofSun workstations. Over this period, our applicationhad to compete with other Condor users as well asowners for access to resources. During the day, com-petition from both sources often made it di�cult to ac-quire machines even though our pool contains around90 machines in the desired class. At night competi-tion from owners is very small, and we are only com-peting against other Condor users, so resources aremore plentiful. Table 2 summarizes the results of 61executions.9
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Figure 10: Theoretical and Actual Execution Timeand Number of ResourcesThe top row of the table shows the average num-ber of workstations the application was able to holdduring an entire run. As expected, this value variessigni�cantly because of the di�erence in competitionfor resources during di�erent runs. The run time alsovaries due to the changes in resource availability. Aswe would expect from looking at the theoretical e�-ciency graph, the e�ciency of the application does notvary greatly. Because the amount of work to be doneis constant across runs, the steady e�ciency leads tooccupancy remaining relatively constant. The sameamount of allocated processor time yields the sameamount of results, regardless of the number of re-sources being used concurrently. Figure 10 plots theexecution time and the average number of resourcesin use for each of the 61 runs. The dashed curve givesthe theoretical execution time for the entire run at dif-ferent resource levels. The experimental results followthe theoretical curve fairly closely. The di�erence isdue primarily to the e�ect of resource reclamation byowners.During an average run of about �ve hours, 28 re-source allocations are performed. This correspondsto one new resource every 10 minutes. As should beexpected, resource losses are less common, occuringabout once every 20 minutes. This is as expected be-cause if resources were lost more frequently than theycould be added, the application would be unable tocollect a signi�cant number of resources. The vari-ance in these values is quite high (in fact, one run

never had a resource reclaimed while another lost 40).This too should be expected since the frequency ofresource gains and losses depends greatly on other ac-tivities in the system such as owner reclamation andcompetition from other Condor users.5 ConclusionsWhile workstation clusters have become a popularsource of cycles for parallel applications, they arenot being fully exploited because of the lack of re-source management services which allow applicationsto adapt to this dynamic environment. CARMI pro-vides these needed services, but the user is still re-quired to make their application able to adapt tothese changes. WoDi uses the services provided byCARMI to hide the dynamic nature of resources, andmakes writing master-workers style parallel programsextremely easy. Both systems are being used in a pro-duction environment, and they have shown to be aplentiful source of cycles for real parallel programs.Experimental results have shown that even when re-sources may be revoked by their owners at least sometypes of parallel applications can still perform well.Both CARMI and WoDi are systems which are stillunder development. The ability to checkpoint andperhaps migrate processes under CARMI would bewelcome, but doing so requires signi�cant cooperationfrom the message passing environment. When MPEsbegin to support these operations, CARMI will cer-tainly provide services to make them useful to paral-lel programmers. CARMI currently can only allocateresources singly to applications, but the structure ofsome parallel programs causes them to perform sig-ni�cantly better at distinct resource levels. Serviceswhich provide resources in groups would therefore bedesirable.More work also needs to be done with WoDi in anumber of areas. First, as new services are devel-oped in CARMI, WoDi should exploit them. Thisincludes using a potential checkpoint and restart fa-cility or �nding resource plateaus which are desirablefor a given work distribution. Managing heterogeneitymore intelligently is also a goal. This is particularlyimportant because even in an environment consistingof machines from only one vendor, resources are stillheterogeneous due to di�erences in processor speed,amount of memory and other characteristics. We mustbetter understand how these di�erences in
uence per-formance and how to use heterogeneous resources well.10
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A CARMI APIThe CARMI API adheres to the request protocol set-up by our resource management framework. That im-plies that every CARMI function immediately returnsa request identi�er, and that every function requiresan argument which speci�es the tag to be used on therequest response message. The function de�nitions be-low are followed by a returns( ... ) which speci�es thedata types in the response message. All of these mes-sages are assumed to begin with a request identi�er�eld, which is not shown here.A.1 Request ManagementRequestId cancel request(RequestId id,ResponseTag resp tag)returns(BOOLEAN success)Cancel the outstanding request with id. The can-cel request message returns false if no request with thegiven id is outstanding.A.2 Resource HandlingRequestId config( ResponseTag resp tag)returns(int nhost, HostId hosts[nhost])Con�g returns the number of hosts currently avail-able to the application, and a list containing the hostidenti�ers.RequestId get host info(HostId id,ResponseTag resp tag)returns(CONTEXT machine context)This function returns all available information con-cerning a host. The type CONTEXT is borrowed fromCondor, and it includes information which character-izes a particular resource. The CONTEXT structureis extensible, but the minimum content includes infor-mation such as processor and operating system type.RequestId addhosts(char *class name, intcount, int increment,ResponseTag resp tag)returns(int count, HostId new hosts[count])Addhosts requests new hosts in class class name.Hosts will be added in groups of size increment un-til the total count hosts have been added. Multi-ple addhosts messages may be triggered from a sin-gle addhosts request as groups of size increment areobtained.RequestId delhosts(int count, HostIdhosts[], ResponseTag resp tag)

returns(int count, HostId host id[count])This function requests that hosts be deallocatedfrom the application. The response message containsthe host identi�ers of the machines successfully re-moved. In a successful execution, this list will exactlymatch the list given in the request.RequestId add notify(char *class name,ResponseTag resp tag)returns(SAME as addhosts above)Add notify requests that messages be sent to theapplication when new hosts are added to the systemdue to the original set of requests in the submission �le(as opposed to a run-time addhosts() request). Theresponse messages are the same as those returned inresponse to an addhosts request. This request is out-standing until explicitly canceled (though after all re-sources speci�ed by the submit �le have been grantedit will never be triggered).RequestId delete notify(int count, HostIdhost ids[],ResponseTag resp tag)returns(SAME as delhosts above)Delete notify requests that messages be sent to theapplication when a host is lost due to an event otherthan an explicit delhosts() request (e.g. hardware fail-ure, or host being reclaimed by its owner). The for-mat of these noti�cation messages is the same as theresponse to a delhosts() request.RequestId fsuspend, resumeg notify(intcount, HostId host ids[],ResponseTag resp tag)returns(int count, HostId host ids[count])These two functions request that the applicationbe noti�ed whenever a host in the speci�ed host listis suspended or resumed by Condor.A.3 Task ManagementRequestId class spawn(char *executable,char **argv, char *class name,ResponseTag resp tag)returns(ProcessId id)on process exit: returns(ProcessId id, intstatus, int CPU usage)Class spawn triggers the creation of a new process.The new process will be started on a host within theclass speci�ed. When the process has successfully beencreated, a response message containing the identi�er ofthe next task is returned. When that process exits, the12



application receives a message containing exit statusinformation and processor utilization.RequestId process info(ResponseTag resp tag)returns(int nprocs, struct procinfoproc list[nprocs])Task info returns information on the process run-ning in the system. Information included in theprocinfo structure includes the ProcessId, the HostIdwhere the process is running, the ProcessId of the pro-cess' parent, and the name of the executable �le beingrun.A.4 Class ManagementRequestId GetClassDefinitions(ResponseTag resp tag)returns(int count, ResourceClasslist[count])This returns the de�nition of all existing classes.A ResourceClass de�nition is an expression which de-�nes the characteristics a resource must have to beconsidered a member of a class.RequestId DefineClass( ResourceClass,ResponseTag resp tag)returns(BOOLEAN success)De�neClass de�nes a new resource class, butdoesnot request that any hosts in this class be added. Thereturn value is false if a class with the same namealready exists.RequestId RemoveClass( char *class name,ResponseTag resp tag)returns(BOOLEAN success)This function removes the class with the givenname. RemoveClass fails if any hosts in this class arecurrently allocated to the application.
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