
A Microeconomic Schedulerfor Parallel ComputersIon Stoica, Hussein Abdel-Wahab, Alex Pothen ?Department of Computer Science,Old Dominion University, Norfolk VA 23529-0162, USAe-mail: fstoica, wahab, potheng@cs.odu.eduAbstract. We describe a scheduler based on the microeconomic paradigmfor scheduling on-line a set of parallel jobs in a multiprocessor system.In addition to increasing the system throughput and reducing the re-sponse time, we consider fairness in allocating system resources amongthe users, and provide the user with control over the relative perfor-mances of his jobs. Every user has a savings account in which he receivesmoney at a constant rate. To run a job, the user creates an expense ac-count for that job to which he transfers money from his savings account.The job uses the funds in its expense account to obtain the system re-sources it needs. The share of the system resources allocated to the useris directly related to the rate at which the user receives money; the rateat which the user transfers money into a job expense account controlsthe job's performance.We prove that starvation is not possible in our model. Simulation resultsshow that our scheduler improves both system and user performancesin comparison with two di�erent variable partitioning policies. It is alsoe�ective in guaranteeing fairness and providing control over the perfor-mance of jobs.1 IntroductionWe describe a microeconomic approach for scheduling on-line a set of jobs in aparallel system with identical processors. This approach exploits the followingsimilarity between the scheduling and the resource allocation problems in a com-puter system, and in a real economic system: Each system involves independentagents that compete for common resources in pursuing their goals. We adoptan open-market strategy which has proved to be successful in dealing with theenormous complexity of real economical environments.The microeconomic approach has several advantages over other algorithmsthat have been developed for this scheduling problem [5]. The usual formulationsof this problem seek to maximize the system throughput and minimize the userresponse time, but, in practice there are additional requirements that schedules? Also a�liated with ICASE, MS 132C, NASA Langley Research Center, HamptonVA 23681-0001, USA. This author was supported by NSF grant CCR-9024954, byU. S. DOE grant DE-FG05-94ER25216, and by NASA Contract NAS1-19480.

must satisfy. The �rst of these is to ensure fairness in resource allocation amongthe users. A second requirement is to give the user
exibility in controlling therelative share of resources allocated among his jobs. We show that both thesefeatures can be incorporated into the microeconomic approach in a very naturalway, while this is not true of many of the earlier scheduling algorithms.Scheduling problems are usually formulated as optimization problems of min-imizing the maximum completion time or the maximum lateness [1, 8, 9, 17].Since even simpli�ed formulations of scheduling problems are NP-hard in gen-eral [1, 8, 17], many sub-optimal algorithms have been proposed [3, 9]. The morecomplex scheduling problem considered here is also NP-hard, and the microe-conomic approach leads to a heuristic algorithm for the problem. We show bysimulation that this algorithm improves both system and user performances rel-ative to two di�erent variable partitioning policies [5].The microeconomic paradigm has been applied to the resource allocationproblem by Miller and Malone from MIT, Drexler and Huberman from Xerox,and others [4, 14, 15] at the end of the eighties. In the last few years, severalschedulers based on this paradigm have been proposed [4, 19]. These schedulersuse the auction mechanism to allocate resources among competing users. Atthe beginning of every time-slice, the resource initiates an auction in whichthe interested users participate by bidding monetary funds that increase overtime. The client that o�ers the highest bid acquires the resource for the nexttime-slice. The price per time-slice is directly related to the level of competitionfor that resource; if the competition increases, the price also increases. In thisway, as in real economic environments, the users are encouraged to maximizetheir pro�t, i.e., to devote their funds to resources that are more important forthem. These schedulers were intended more for distributed systems in whichresources are allocated in an un-correlated manner. Therefore, these systemswere suited more for coarse grained asynchronous parallel applications, suchas Monte-Carlo simulations [19]. In contrast, the majority of parallel scienti�capplications are highly synchronous, in that an application requires a speci�ednumber of processors to be available during the same interval of time. Anotherproblem with these schedulers is that holding an auction at the beginning ofevery time-slice incurs a high overhead.A microeconomic algorithm for balancing the load in distributed systemswas suggested by Ferguson et al. [7]. Jobs are assumed to arrive independentlyat every processor in the system. Upon arrival, each job evaluates the cost to runlocally or to migrate and execute on another processor. If a job migrates, it hasto pay for the communication bandwidth required. Their experiments show thatthe algorithm is e�ective in allocating processors and communication resources.A market-based approach was proposed by Cheriton and Harty [2] for systemmemory allocation. In their system, the memory manager deposits money in aprocess account, proportional to the share of the resources that process hasto receive. Unlike a real market, the resource prices are assumed to be �xed.When it has enough money in its account, the process \leases" the requiredamount of memory for a bounded interval of time. At the application level, this

approach proved to be e�ective in controlling the amount and the interval oftime for which the memory is allocated, on uniprocessor and shared-memorymultiprocessor systems.The remainder of the paper is organized as follows. In the next section wepresent the model in detail. In Section 3, we prove that the starvation is not pos-sible in our model. Section 4 describes the simulation results. Finally, in Section5 we summarize our results and indicate some future directions for extendingour work.2 The ModelWe consider a parallel computer consisting of N identical processors intercon-nected by a general communication network. We assume that the communicationparameters for any pair of processors do not depend on their relative position, 2and therefore the system may be arbitrarily partitioned. Every job speci�es,upon its arrival, the number of processors p it needs, and the estimated compu-tation time. Once processors are allocated, they are guaranteed to be exclusivelyused by the job for the entire duration of its execution. Also, the job is assumedto acquire or release all p processors at the same time.The computation system is modeled as a microeconomic environment inwhich di�erent users compete for obtaining system resources in order to runtheir jobs. To get the requested resources the user has to pay the price asked bythe system. As in real life, the buyers (users) and the sellers (system) have antag-onistic goals; the users wish to run their jobs as fast as possible with minimumexpenses, while the system wants to maximize its income.The
ow of currency in the system is depicted in Figure 1. Every user has asavings account in which he receives money at a constant rate, as long as he hasless than a speci�ed amount of funds. Whenever a user decides to run a job, hecreates an expense account for that job to which money from his savings accountis transferred. The job uses this account to buy the resources it needs. Once thejob is scheduled for execution, all of its money (and depending on the strategy,possibly all the money it receives until it terminates) is transferred to the systemaccount. In order to maximize the system income, the scheduler applies a simplestrategy: it allocates available resources to the job that o�ers the best price. Ina loaded system, it is possible that not all p processors that were requested by ajob become available at the same time. In this case, when the job is scheduled itis asked to pay for the wasted resources also. In this way resource fragmentationis discouraged.For convenience, throughout this paper we refer to the monetary-unit as adollar and to the time-unit as a minute. The notations used in this paper aresummarized in Table 1.2 This is a reasonable assumption for many modern multiprocessor architectures (e.g.,IBM SP-1/2, Intel Paragon).

System account

transfer
(variable rate)

payments

income
(constant rate)

Job ‘expense’
account

User ‘savings’
account

Fig. 1. The currency
ow.2.1 The User Savings AccountEvery user has a savings account in which he accumulates funds for buyingresources required by his jobs. The maximum amount of money the user i candeposit in his savings account is bounded by Mi. While the user has less thanMi dollars, he receives money at a constant rate Ri. Intuitively, this can bevisualized as a system in which every user has a tank with capacity Mi wherehe saves his earnings for future consumption. While the tank is not full, theinlet-valve is open and the tank is �lled at a constant rate Ri; once the tank isfull, the inlet-valve is closed.Limiting the maximum funds in a user's savings account is necessary to avoiddisruption in system utilization. Suppose a user does not use the computer fora long period of time (e.g., during his holiday). Without this limitation it ispossible for the user to acquire enough money to monopolize the system for anappreciable interval of time (e.g., several hours) when he returns, which willpreclude other users from running their jobs.During a time interval �t, user i receives at most Ri�t dollars and spendsat most Mi + Ri�t dollars (provided he has Mi dollars at the beginning of thetime interval, and spends all his savings and earnings during the interval �t).Notice that for a su�ciently large interval of time (�t!1) the amount Ri�tis the dominant term in the money spent by user i. Thus, over large intervalsof time, Ri dictates how much money the user i can spend on the average for

Mi The maximum amount of funds user i can have in his savings account.Ri The rate at which user i receives income, when he has less thanMi dollars in his savings account.mi(t) The amount of money user i has in his savings account at time t.R The income rate over all users in the system; R =Pmi=1 Ri.Jik The kth job started by user i.rik(t) The rate at which user i transfers money into job Jik'sexpense account at time t.mik(t) The amount of money job Jik has in its expense account at time t.Nik The number of processors requested by Jik.Tik The estimated service time required by job Jik when Nikprocessors are used.Eik The estimated cumulative computation time for Jik, i.e., Eik = NikTik.Table 1. The notations used in this paper.acquiring system resources.Next, notice that Ri is directly related to the share of the system resourcesthat user i receives; the higher Ri is, the more resources the user can buy.Moreover, if two users compete for resources at the same time, they will get ashare that is roughly proportional to their expenditures (since the resource priceswill be the same). If both users spend at the same rate as they receive money,then the ratio of their share of the resources would be roughly proportional totheir income rates. This discussion of \fairness" assumes that users compete atthe same time. Otherwise, it is possible for a user with less money to buy moreresources than another user with more money. Consider the user who runs hisjobs at night, when the system is lightly loaded and resource prices are low,rather than during the day when the system is heavily loaded.Although the income rate Ri determines the maximum spending rate overlarge intervals of time, a user with a lower income rate should be able to executeurgent tasks when needed. This is possible in our model since for short intervals oftime a user can spend much more than his income. Speci�cally, let mi (mi �Mi)be the amount of funds user i has in his savings account at the beginning of thetime interval dt. Then, the user can spend mi +Ridt dollars during the intervaldt, and therefore the average spending rate (mi=dt) +Ri could be much higherthan Ri.2.2 The Job Expense AccountWhen a user wants to run a job he has to specify its estimated running time andthe number of processors needed. At the same time, for every job he wishes torun, the user creates an expense account to which he begins to transfer funds fromhis savings account. In contrast with the user's income rate which is constant, therate at which money is transferred into the savings account of a job is variable,

and is speci�ed by the user. These funds are used to buy the resources required bythe job. In this way, the user has the
exibility to adjust his expenses accordingto the number and relative importance of his jobs. This is similar to the real-lifesituation in which people receive a �xed salary per month but have the freedomto spend their money according to their needs.When a user submits a job to be executed, an expense account is createdfor it, and the job is inserted into a list called the ready-list. Whenever a set ofprocessors becomes idle, the scheduler scans the ready-list and selects the jobthat o�ers the best price (see the next section for details). If there are enoughidle processors available, then the selected job could be executed immediately.Two approaches are possible for the manner in which the scheduler computesthe funds that a job could a�ord to spend for acquiring the resources at a timet (denoted by m0ik(t)). In one, it considers only the current funds in the expenseaccount of the job; in the other, it considers the future earnings of the job also.More speci�cally, let Jik be a job in the ready-list, belonging to the user i, thatat time t has mik(t) dollars in its expense account and receives money at a raterik(t). Then, in the �rst approach, the scheduler evaluates Jik to have mik(t)dollars. In the second approach, the scheduler �nds that the job can spendm0ik(t) = mik(t) + Z tft rik(t0)dt0; (1)where tf is Jik's estimated �nishing time (tf is the current time t plus theestimated waiting time plus the estimated running time). Equation (1) has onlya theoretical importance, since in practice it is hard to estimate how rik willvary in the future. This depends both on the user's strategy and the current setof jobs he has to run. A guaranteed lower bound r0ik on the rate at which Jik willreceive money in its expense account could be used to obtain a simple estimateof the future income. Then, at time t, the scheduler can assume that Jik canspend at least m0ik(t) = mik(t) + r0ik(tf � t) dollars. Notice that if r0ik = 0 (useri does not guarantee any future money transfer for the job), then this reducesto the �rst approach since m0ik(t) = mik(t).For simplicity, the transfer of money between a user's savings account andthe job expense account is unidirectional in that money cannot be transferredback into the savings account. For example, if a job buys some resources fora certain interval of time but �nishes earlier than predicted, then the balancecannot be returned back to the user. On the other hand, if a job fails to �nish atthe predicted time, then it will be allowed to continue for some time while beingcharged for the additional time, as long as the user can a�ord to pay; otherwiseit will be terminated. This simple solution motivates the user to provide accurateestimates for the job service time.2.3 The Price of ComputationWe have considered two strategies for establishing the price of computation.The �rst approach is similar to the one used in other microeconomic sys-tems [4, 19]. In this approach, time is assumed to be divided into intervals called

1

time

pr
oc

es
so

rs

2

0 4 8

1

time

pr
oc

es
so

rs

2

0 4 8

1

time

pr
oc

es
so

rs

2

0 4 8 12

A A

B B

(b)(a) (c)Fig. 2. The execution time diagram for two processors. The shaded area next to aprocessor indicates that the processor is free while the white area indicates that it isbusy. At time 0 (Figure (a) processor 1 is free while processor 2 is busy for 4 minutes.Also, at time 0 there are two jobs A and B in the ready-list; A needs one processorfor 5 minutes, while B requires two processors for 4 minutes. Figures (b) and (c) showtwo possible schedules.time-slices. At the beginning of every time-slice the scheduler computes the priceso�ered by all the jobs in the ready-list. If the job that uses the resource has not�nished yet, then it is allowed to execute for the current time-slice if it can con-tinue to pay at the current price; otherwise the job that has o�ered the highestprice is scheduled to run for the current time-slice. Since the price is evaluatedat every time-slice, this scheme accurately re
ects the market trends in prices(e.g., when competition increases, the price also tends to increase). Unfortu-nately, this approach has several drawbacks. First, evaluating the highest o�erat every time-slice incurs a high overhead. Second, a job would not know at thebeginning how much it has to pay to complete execution, and could run out ofmoney before termination due to unexpected price changes.The second strategy is to negotiate a price that is constant for the entireperiod of the computation. The main disadvantage of this strategy is that forlarge intervals of time the price may no longer re
ect the level of competitionfor the resources. For example, if a user starts several jobs early in the morningbefore other users submit their jobs, he can get all the resources at zero costsince there is no competition. But, if his jobs take several hours to complete,then no other user can run jobs during this time. This would compromise ourobjective to ensure fairness. A common solution to this problem is to gatherstatistics and predict the price per minute for future process utilization. Sincethe prediction is more accurate over large intervals of time, we use a weightedfunction in order to establish the price for the next �t minutes at time t. Moreprecisely, p(t), the price at time t, isp(t) = pe(t;�t) + (pa(t)� pe(t;�t))e���t; (2)where pa(t) represents the current highest o�er at time t, pe(t;�t) is the esti-mated price for the next �t minutes and � is a positive constant. When �t! 0the price p(t) goes to pa(t), while for large values of �t (�t ! 1) the pricep(t) tends to the estimated value pe(t;�t). Thus, every job that is scheduled to

start at time t and run for the next �t minutes is asked to pay at least p(t)dollars/minute.We chose the second approach for two reasons: �rst, the completion time forcomputation bounded jobs can be predicted with good accuracy; and second,the algorithm is simpler and more e�cient to implement.When the scheduler scans the ready-list, it computes the price per minuteo�ered by every job Jik as a function f of: the predicted service time Tik, thenumber of requested processors Nik, and the estimated expenses m0ik(t). Wedescribe the details in the next two paragraphs.First, consider a job Jik that needs only one processor (Nik = 1). In this case,the price o�ered by Jik is computed as f(1; Tik;m0ik(t)) = m0ik(t)Tik . Next, consider ajob Jik that requires Nik processors, where 1 < Nik � n. If at leastNik processorsbecome free at the same time then the price o�ered by Jik is computed asf(Nik ; Tik;m0ik(t)) = m0ik(t)NikTik = m0ik(t)Eik . When the �rst Nik processors to becomefree �nish at di�erent times (as is more probable), deciding what job to runnext in order to maximize the system income is di�cult. To see why, considerthe example shown in Figure 2(a). The system consists of two processors suchthat when the �rst processor becomes free, the second one requires 4 minutesto process its current task. Now, assume that there are two jobs: A requiresone processor for 5 minutes and o�ers 3 dollars/minute and B requires twoprocessors for a total of 8 minutes (4 minutes on each processor) and o�ers topay 4 dollars/minute. What job must be scheduled �rst in order to maximizethe system income ? The second job o�ers a higher price per minute but cannotstart as long as the second processor is busy, while although the �rst job o�ersa lower price, it can start immediately. The following examples show that thereis no unique answer. If the next job to be executed requests two processors,then clearly, scheduling A �rst (Figure 2(b)) is better since both processorsare free after 9 minutes. On the other hand, if the next job to be executedarrives at t = 1, requires exactly 3 minutes, and pays 6 dollars/minute, then itcan be immediately scheduled on processor 1, and therefore scheduling B �rstmaximizes the system income (Figure 2(c)).Our solution to this problem is the following. In computing the price for a job,the scheduler takes into account not only the e�ective cumulative computationtime (Eik), but also the computation time that is wasted while waiting for otherprocessors (requested by the job) to be available. In the example, when B isscheduled it wastes four minutes of processor 1 unless there is another job in theready-list that can �t in the space. Consequently, the scheduler asks the job topay also for the potentially wasted four minutes and B is estimated to require12 minutes (= 4 minutes � 2 processors + 4 wasted minutes). Hence, the realprice per minute o�ered by B is scaled proportionally, i.e., 4 � 812 = 2:66::: . Withthis modi�cation, the scheduling algorithm will continue to select the job thato�ers the highest real price per minute (in this example, A). Thus, in this casewe compute the price o�ered by Jik as being

f(Nik; Tik;m0ik(t)) = m0ik(t)Wik +NikTik = m0ik(t)Wik + Eik ; (3)where Wik is the wasted computation time in scheduling Jik to run on the �rstNik processors that become available. Notice that asking parallel jobs to pay forpotentially wasted resources discourages fragmentation in processor allocation.2.4 The User StrategyGenerally, the user can implement any mechanism for allocating funds to hisjobs in our model. Unfortunately, this freedom makes it very hard to analyzeand even simulate such a model. Hence we propose a simple strategy that weconsider to be
exible enough for practical use. As in other scheduling policies,the idea is to group jobs into di�erent classes. But, while in other policies thisclassi�cation is done at the central level from the system point of view (e.g.,based on the resource requirements), in our case the classi�cation is done at theuser level. For example, the user can classify his jobs based on their urgency,their resource requirements, etc.Let Ci1; Ci2; : : :Cis be s classes to which the jobs of user i may belong. Weassociate a coe�cient �il with each job class Cil, chosen such thatPsl=1 �il = 1.Recall that Eik is the cumulative computation time requested by a job Jik andlet Ei be weighted sum over all the estimated cumulative computation times ofall jobs of user i that are in the ready-list. Hence we haveEi = sXl=1 �il(XJik2CilEik): (4)Then the transfer rate to the expense account of Jik is given by the followingformula: rik = �ilRiEikEi : (5)Notice that if user i has at least one job, then the sum of the transfer rates intothe expense accounts of his jobs is equal to his income rate Ri.In this strategy the classi�cation re
ects the importance of the jobs; thehigher the coe�cient �il, the higher the price increase a job belonging to theclass Cil can a�ord to pay.This strategy can be further re�ned by allowing the coe�cients to be dynam-ically changed in order to achieve certain objective functions (see Section 4 fordetails).

2.5 Implementation IssuesThe overhead introduced by the scheduler is as important as the scheduler perfor-mance itself. Therefore, in this section we brie
y describe some implementationissues.The information in the ready-list is modi�ed in one of the following cases: anew job arrives in the list, a job terminates and its processors become available,and the rate rik (at which a job receives money from its user) changes. Since the�rst case is trivial (the job is appended to the ready-list), we discuss only theother two.When a subset of processors becomes free and there is no other job thatis scheduled to be executed, the job in the ready-list that o�ers the highestprice is scheduled. If there are enough available processors, the job is executedimmediately; otherwise it has to wait until enough processors become free. If ajob is already scheduled for execution, then the scheduler checks whether thereare enough free processors for that job. If so, the job is loaded, and the schedulerscans the ready-list to schedule a new job. The complexity of �nding the nextjob to schedule is linear in the number of jobs in the ready-list, since the list isscanned only once to schedule a job.When rik(t), the rate at which user i transfers money into Jik's expenseaccount, changes, the amount of money in the account, mik(t), is updated. Forsimplicity of exposition, assume that rik(t) is constant between two subsequentchanges (the case when rik(t) is an arbitrary function can be treated similarly).Suppose that at t = t1, the rate rik(t) was changed and the expense accountwas updated accordingly. Then, when rik(t) is changed again at t = t2, we havemik(t2) = mik(t1) + rik(t1)(t2 � t1). Thus the scheduler can compute mik(t) atany future time t > t2 before the rate changes again. Recall from the previoussection that in our scheme the rate rik(t) is changed only when a new job arrivesin the ready-list, or a job �nishes execution. Then the rates are changed for alljobs belonging to user i. In the worst case all the jobs in the ready-list belongto user i, and hence the complexity of the updates caused by a change in thesetransfer rates is linear in the number of jobs in the list.If the ready-list is too large for an algorithm that is linear in the number ofjobs to be satisfactory, then a variant of the algorithm in which only the �rst njobs from the list are considered for scheduling can be implemented, where n isa parameter that can be speci�ed.3 Non-StarvationEvery scheduling algorithm has to address the fundamental problem of starva-tion, the situation where a job waits inde�nitely to acquire the resources it needsto run. In this section we prove that starvation is not possible in our model. Wemake two assumptions: �rst, the running time of every job is bounded above byTmax, and second, there exists a lower bound rmin on the transfer rate from the

user savings account to every job's expense account. Also, we assume that thenumber of users m is bounded. 3Let us consider a job J that requires p processors for an estimated servicetime T on a parallel computer with N identical processors. For conveniencedenote the time at which J enters the ready-list by t = 0. After �t minutes,J has in its expense account at least rmin�t dollars. In order to be scheduled,a job has to o�er the highest price per minute during the sum of the requiredcomputation time pT and the time the job spends in waiting for p processorsto become free. The largest amount of money that job J has to pay is whenthere are p � 1 free processors and the remaining N � p + 1 processors �nishafter exactly Tmax minutes. Therefore, to be scheduled the job J has to pay forat most pT + (p � 1)Tmax minutes. Let �t1 be the time interval at which thefollowing equality is true: rmin�t1pT + (p� 1)Tmax = RN � p+ 1 + �; (6)where R represents the sum over all the income rates received by all users and� is an arbitrary positive constant. In words, Equation (6) says that after �t1minutes the job J can pay at least RN�p+1 +� dollars/minute. Next, let t1 be thetime at which Equation (6) becomes true. Clearly, at some time between t = t1and t = t1 + Tmax all the jobs that were running at t1 will �nish and thereforeother jobs will be scheduled to run. If J is not scheduled in this interval thenthere are at least N � p + 1 processors that receive more dollars/minute thanwhat J could o�er.Let M =Pmi=1Mi denote the total funds that all users have in their savingsaccounts at time t1. Then between t1 and some future time t2 all the other jobs,excepting J , can spend at mostM +(R� rmin)(t2� t1) dollars for acquiring theresources. As observed before, if J is not scheduled by t1+Tmax, then there areother jobs that have paid a higher price for at least N � p + 1 processors. Let�t2 be the time interval such thatM + (R� rmin)�t2(N � p+ 1)�t2 = M(N � p+ 1)�t2 + R� rminN � p+ 1 = (7)= RN � p+ 1 + �:Since the �rst term on the left-hand side monotonically decreases with the in-terval �t2, this interval represents the maximum interval of time for which the(N�p+1) processors can be paid at a rate greater than RN�p+1+� dollars/minute.Hence the job J will be scheduled by t = �t1 + Tmax + �t2, since then it canpay more than RN�p+1 + � dollars/minute (from Equation (6)).3 This is a realistic assumption since the total number of active users is bounded bythe total number of users who have accounts on that computer.

4 Experimental ResultsWe have implemented a simple simulator in which we consider a parallel com-puter with N = 128 identical processors and 10 independent users, to validateour model. We assume that jobs of any user belong to only one of three classes(see Table 2). The jobs are assumed to come from a single Poisson source withmean arrival rate � (measured in jobs/minute). By the decomposition propertyof a single Poisson process into m output streams ([18], Sec. 6.4), we can dividethe initial job stream into ten independent streams, and therefore every user ican be modeled as an independent Poisson source from which jobs arrive with amean rate pi� (where pi is the probability that a job comes from user i). Further,we denote by qi1, qi2 and qi3 the probability that a job that comes from useri belongs to class 1, 2 and 3, respectively. Thus, the mean arrival rate of a jobfrom user i belonging to class j is qijpi�.The job service time is assumed to have a biphase hyperexponential distri-bution [13]. The relative values for the average service time and coe�cient ofvariation for each class (see Table 2) are derived from the observed workloadon an Intel iPSC/860 hypercube at NASA Ames, reported by Feitelson andNitzberg [6]. 4In the following discussion, for ease of notation, we number all the jobs inthe system during the simulation from J1 to Jn. Let Ti represent the executiontime of Ji, using the number of processors requested by the job. Let si representthe system response time for job Ji, the di�erence between the time when thejob completes execution and the time when the job is submitted by the user.Thus si = Ti + wi, where wi is the time the job Ji waits before it is executed.Denote the ratio between the system response time and the service time for jobJi by ui = si=Ti. Observe that ui is greater than or equal to one.Following Naik, Setia and Squillante [16], we use two performance metrics inanalyzing the model: the mean system response time S, and the mean ratio of ajob's system response time to its service time U (we call this mean user responsefor short): S = limn!1 1n nXi=1 si; U = limn!1 1n nXi=1 ui: (8)Note that S measures the performance from the system's point of view, while Umeasures the performance from the user's point of view [16].4 Since we consider a more general architecture than an iPSC/860 hypercube, weassume that the number of processors that a job requests is uniformly distributed.For example, a job that takes 64 processors on a hypercube is assumed to requestany number of processors between 32 and 64, with equal probability. Also, we haveomitted the very large jobs that request all 128 processors in Feitelson and Nitzberg'sdata, since these jobs are run at night, when the load is light. Finally, we have notused the absolute values for service-times as given in [6]; instead we have chosenvalues that approximate the ratios between the service-times of di�erent classes.

Let E be the mean of the cumulative computation time over all jobs submit-ted to the system. Then, we de�ne the system load � as the fraction betweenthe total demand received by the system in one time unit (�E), and the avail-able computation time per time unit (N , since there are N processors); i.e.,� = �E=N . Class Number of Service Coe�cient of qijtype processors time variation1 1-16 50 4 0.72 16-32 100 2.5 0.23 32-64 200 1.8 0.1Table 2. The workload characteristics.In the �rst experiment we compare the microeconomic scheduling policy(ECON) with two di�erent variable-partitioning (VP) policies ([5], Sec. 3.2.3).A VP policy allocates to each job the exact number of processors it requests;the processors are not partitioned into predetermined subsets. The two policieswe consider are the following:{ FCFS|This is the simplest policy. The jobs are placed in a �rst-come �rst-served (FCFS) queue; if there are enough free processors then the �rst jobfrom the queue is scheduled for execution. If not, the job waits till the re-quested number of processors becomes free.{ RES|In this case, if a su�cient number of processors are not available torun the next job from the queue, the scheduler reserves processors for thisjob for the earliest time in the future when the required number of processorsare available. Further, to make use of the idle processors until that time, thescheduler searches the queue and schedules the earliest jobs whose requestscan be satis�ed before these processors need to be dedicated to the job withthe reservation.The FCFS policy is expected to perform the worst among these policies, since ittends to heavily penalize small jobs when the system load is high. For, supposethe �rst job in the queue asks for a large number of processors and its requestcannot be satis�ed. Then, subsequent jobs have to wait, even if there are enoughfree processors in the system to satisfy their needs. The RES policy eliminatesthis problem; if a large job cannot run immediately, the scheduler searches forsubsequent jobs whose requests can be satis�ed. Notice that the RES policy isa special case of the ECON policy in which the income rate of every user is zero(if we assume that the scheduler selects the job that arrives �rst among jobsthat o�er the same price).In the ECON policy we assume that that every user has the same income rateequal to 100 dollars/minute. We also assume that a user distributes his income

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

System Load

M
ea

n
S

ys
te

m
 R

es
po

ns
e

T
im

e

ECON −−o−−

RES − .−+−. −

FCFS − −x− −

(a)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

System Load

M
ea

n
S

ys
te

m
 R

es
po

ns
e

T
im

e

FCFS − −x− −

RES − .−+−. −

ECON −−o−−

(c)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

System Load

M
ea

n
S

ys
te

m
 R

es
po

ns
e

T
im

e

RES − .−+−. −

FCFS − −x− −

ECON −−o−−

(b)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

800

900

1000

System Load

M
ea

n
S

ys
te

m
 R

es
po

ns
e

T
im

e
FCFS − −x− −

ECON −−o−−

RES − .−+−. − (d)Fig. 3. The mean system response time S for: (a) all jobs, (b) jobs in class 1, (c) jobsin class 2, and (d) jobs in class 3.equally between jobs from di�erent classes, and thus the coe�cient associatedwith each class is equal to 1=3. In each of the following experiments, we generatea system load � between 0.1 and 0.9, by suitably varying �. To attain steadystate we run each experiment (for every value of �) for 500,000 time-units. 5Figure 3(a) shows the mean system response time, S, for all three policiesfor values of � between 0.1 and 0.9. When � � 0:3, all the policies o�er almostthe same performance. In this regime, there are few jobs in the system and thereare enough processors to satisfy all the incoming requests. Next, for � � 0:3the mean response time for the FCFS policy begins to increase sharply. Thisis because the large jobs monopolize the resources at the expense of small jobs.Finally, when � exceeds 0.4, the ECON begins to outperform the RES policy.5 In the current implementation we have not changed the price of computation overtime as described in Equation (2); since we consider only constant workloads (� is�xed), we assume that the price is also constant in the steady state.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

System Load

M
ea

n
U

se
r

R
es

po
ns

e

ECON −−o−−

RES − .−+−. −

FCFS − −x− −

(a)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

System Load

M
ea

n
U

se
r

R
es

po
ns

e

FCFS − −x− −

ECON −−o−−

RES − .−+−. −

(c)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

System Load
M

ea
n

U
se

r
R

es
po

ns
e

ECON −−o−−

RES − .−+−. −

FCFS − −x− −

(b)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

12

14

16

18

20

System Load

M
ea

n
U

se
r

R
es

po
ns

e

RES − .−+−. −

ECON −−o−−

FCFS − −x− −

(d)Fig. 4. The mean user response U for: (a) all jobs, (b) jobs in class 1, (c) jobs in class2, and (d) jobs in class 3.The improvement in S obtained with ECON over RES is signi�cant: When� = 0:9, S decreases by more than 34%. Figures 3(b), 3(c) and 3(d) comparethe system response times for each class of jobs. As expected, the biggest gain isfor small and medium jobs (classes 1 and 2). This is because the ECON policyasks a job to pay not only for the computation time it needs, but also for thewasted time. This favors smaller jobs, since we expect that the larger the numberof processors a job requests, the greater is the wasted time for which the job hasto pay. Next, Figures 4(a), 4(b), 4(c) and 4(d) show the mean user response(U) for the three policies; �rst, for all jobs combined, and next, for each class ofjobs. The behavior of the mean user response as a function of the arrival rate,and as a function of the job class, is quite similar to the behavior of the systemresponse time; the advantage of the ECON policy relative to the other policiesis even greater.In the next experiment we study how the user income rate in
uences the

user performances. For this experiment we consider three di�erent income ratesfor the �rst user, 50, 100 and 200 dollars/minute, while the income rates forall other users remain unchanged at 100 dollars/minute. Let W (Ri) denote themean user waiting time for user i when his income rate is Ri. Figure 5 showsthat the waiting time for the �rst user is inversely proportional to his incomerate, when the mean job arrival rate is su�ciently large. For instance, when� = 0:9 and R1 = 50 dollars/minute, the mean user waiting time is 186% of thevalue when R1 = 100 dollars/minute, while for R1 = 200 dollars/minute it is55% of this value. To see why this happens, consider the case when R1 = 200dollars/minute. Since the �rst user receives twice as much income as the others,he can transfer money to his jobs roughly twice as fast. Therefore the price perminute o�ered by his jobs increases proportionally faster, and consequently themean waiting time of these jobs reduces by approximately a half.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

System Load

M
ea

n
W

ai
tin

g
T

im
e

income rate 200 − −x− −

income rate 100 −−o−−

income rate 50 −.−+−.−

Fig. 5. The mean waiting time for user 1 for three income rates 50, 100 and 200dollars/minute. All other users have an income rate of 100 dollars/minute.In the last experiment we evaluate an adaptive strategy that controls therelative user response for each class. More speci�cally, let U1, U2, U3 be themean user responses for jobs in class 1, class 2 and class 3, respectively. Ourgoal is to enforce certain ratios between the mean user responses for each classof jobs, i.e. U1 : U2 : U3 = a1 : a2 : a3, where a1, a2 and a3 are prede�nedconstants. In other words, we would like each class to satisfyU iU1 + U2 + U3 = aia1 + a2 + a3 ; for 1 � i � 3:To achieve this objective, the user periodically adjusts the coe�cients associatedwith every class (see Section 2.4) according to the following equations:�ki = �k�1i U k�1iU k�11 + U k�12 + U k�13 � a1 + a2 + a3ai ;

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

10

System Load

M
ea

n
U

se
r

R
es

po
ns

e

class 2 −.−+−.−

class 3 − −x− −

class 1 −−o−−

(a) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

10

System Load

M
ea

n
U

se
r

R
es

po
ns

e

class 3 − −x− −

class 1 −−o−−

class 2 −.−+−.−

(b)Fig. 6. The measured mean user responses for each class: U 1; U2; U 3. The desired ratiosare: (a) U1 : U2 : U3 = 1 : 2 : 2, and (b) U1 : U2 : U 3 = 1 : 1 : 2.where U ki represents the mean user response for jobs belonging to class i at thekth iteration. Obviously, we have U i = limk!1 U ki . Notice that whenever U kiis larger than expected, i.e., U ki =(U k1 + U k2 + U k3) > ai=(a1 + a2 + a3), then �kiincreases and therefore the jobs in class i will receive a larger share of the userincome. Conversely, if U ki is smaller than expected, then the user decreases theshare of the income allocated to jobs in class i. We update the coe�cients every2; 000 time-units in our experiment.Figure 6(a) shows the mean user response for each class of jobs when a1 = 1and a2 = a3 = 2. Again, when the system load is low there is not much thealgorithm can do, since there are few jobs in the system and the resources areplentiful. On the other hand, adaptive control becomes increasingly e�cientwhen the system load increases. For example, when � = 0:9, the measured meanuser response ratios are U1 : U2 : U3 = 1 : 1:97 : 2:06, which is close to theprescribed ratios 1 : 2 : 2. Finally, Figure 6(b) show the mean user responses fora di�erent set of ratios: a1 = a2 = 1 and a3 = 2. In this case, when � = 0:9, themeasured ratios U1 : U2 : U3 = 1 : 1:04 : 2:08 are again close to the prescribedratios.5 Conclusions and Future WorkWe have applied the microeconomic paradigm to schedule computation-boundedjobs on parallel systems. Our simulation results show that the microeconomicscheduler compares favorably with other variable partitioning policies both interms of system and user performances. Additionally, the scheduler guaranteesan adequate level of fairness in allocating resources among the users. Finally,by using a simple adaptive mechanism that adjusts the rate at which money is

transferred from the user savings account to a job expense account, the schedulercontrols the relative job performances.Many open problems remain.We are currently extending the model to schedule jobs that specify a mini-mum and a maximumnumber of processors, and which can be allocated a num-ber of processors within this interval at load-time. (We intend also to considerjobs that can dynamically change the number of processors during execution).The idea is to study the trade-o� between the number of processors a job re-quests and the price it has to pay. Notice that if a job Jik reduces the numberof processors it requests, then the price it pays decreases for two reasons: First,the wasted time a job pays for decreases with fewer processors. Second, the cu-mulative computation time (Eik) decreases if the job's speedup is sub-linear.Moreover, when requesting fewer processors, the waiting time is also likely todecrease. Therefore it would be possible for a job to obtain a better responsetime using fewer processors and paying less (if the decrease in the waiting timeo�sets the increase in the service time Tik)!A second area for future work is to extend the model to other system re-sources such as memory and I/O bandwidth. One di�culty here is correlatingthe allocation of the various resources. For example, when a job buys computa-tion time it has also to buy enough memory; otherwise instead of computing, ithas to wait for the memory pages to be swapped in and out.Third, it will be interesting to explore other policies for transferring fundsfrom a user's savings account to a job expense account. It might be worth con-sidering variable user income rates. The idea would be to allocate a share ofthe system resources to every user and then to dynamically adjust the incomerate in order to ensure that every user receives his share. Here, the trade-o� isbetween increasing algorithm overhead and increasing accuracy of control.We believe that the microeconomic paradigm may serve as a unifying themefor multiprocessor scheduling. We have seen that the variable partitioning schemewith job reservations is a special case of the microeconomic scheduler (when theincome rates are zero). We hope to show in future work that other schedul-ing policies might also be obtained by suitably choosing the parameters in themicroeconomic paradigm.References1. J. Blazewicz, M. Dror and J. Weglarz, \Mathematical Programming Formulationsfor Machine Scheduling: A Survey", European Journal of Operational Research,No. 51, 1991, pp. 283-300.2. D. R. Cheriton and K. Harty, \A Market Approach to Operating System MemoryAllocation", URL page: http://www-dsg.stanford.edu/Publications.html, StanfordUniversity.3. E. G. Co�man, M. R. Garey, D. S. Johnson, R. E. Tarjan, \Performance Boundsfor Level-Oriented Two-Dimensional Packing Algorithms", SIAM Journal of Com-puting, Vol. 9, No. 4, November 1980, pp. 808-826.

4. K. E. Drexler and M. S. Miller, \Incentive Engineering for Computational ResourceManagement", in [11], pp. 231-266.5. D. G. Feitelson, \A Survey of Scheduling in Multiprogrammed Parallel Systems",Research Report RC 19790, IBM T.J. Watson Research Center, 1994.6. D. G. Feitelson and B. Nitzberg, \Job Characteristics of a Production ParallelScienti�c Workload on the NASA Ames iPSC/860", D. G. Feitelson and L. Rudolph(eds.), Lecture Notes in Computer Science, Vol. 949, Springer-Verlag, 1995.7. D. Ferguson, Y. Yemini and C. Nikolau, \Microeconomic Algorithms for LoadBalancing in Distributed Systems", Proc. of the 8th International Conference onDistributed Computer Systems, IEEE, 1988, pp. 491-499.8. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to theTheory of NP-Completeness, Freeman, San-Francisco, 1979.9. R. L. Graham, \Bounds on Multiprocessing Timing Anomalies", SIAM Journal ofApplied Mathematics, Vol. 17, No. 2, March 1969, pp. 416-428.10. J. L. Hellerstein, \Achieving Service Rate Objectives with Decay Usage Schedul-ing," IEEE Transactions on Software Engineering, Vol. 19, No. 8, August 1993,pp. 813-825.11. B. Huberman (ed.), The Ecology of Computation, North-Holland, 1988.12. J. Kay and P. Lauder, \A Fair Share Scheduler", Communication of the ACM, Vol.31, No. 1, January 1988, pp. 44-45.13. S. Majumdar, D. L. Eager, and R. B. Bunt, \Scheduling in Multiprogrammed Par-allel Systems", Proceedings of the 1988 ACM SIGMETRICS Conference on theMeasurement and Modeling of Computer Systems, pp. 104{113.14. T. W. Malone, R. E. Fikes, K. R. Grant and M. T. Howard, \Enterprise: A Market-Like Task Scheduler for Distributed Computing Environments", in [11], pp. 177-205.15. M. S. Miller and K. E. Drexler, \Markets and Computation: Agoric Open Systems",in [11], pp. 133-176.16. V. K. Naik, S. K. Setia and M. S. Squillante, \Performance Analysis of Job Schedul-ing in Parallel Supercomputing Environments", Research Report RC 19138, IBMT.J. Watson Research Center, 1993.17. M. G. Norman and P. Thanisch, \Models of Machines and Computation for Map-ping in Multicomputers", ACM Computing Surveys, Vol. 25, No. 3, September1993, pp. 263-302.18. K. S. Trivedi, Probability and Statistics with Reliability, Queuing and ComputerScience Applications, Prentice-Hall, 1982.19. C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart and W. S. Stornetta,\Spawn: A Distributed Computational Economy", IEEE Transactions on SoftwareEngineering, Vol. 18, No. 2, February 1992, pp. 103-117.

