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Abstract Processor time-sharing is the most com-
mon way to increase the overall system utilization for
shared-memory multiprocessor systems. However, the
performance of individual applications maight be sacri-
ficed due to the high overhead of context switching, due
to the processing power wasted by busy-waiting syn-
chronization and locking operations, and due to poor
cache memory utiization. In this paper, we propose
a stmple and effective processor allocation scheme,
called Loop-Level Process Control (LLPC), for multi-
programmed multiprocessors. At the beginning of each
parallel section of each application program, LLPC
uses the current system load to determine an upper
lhimit on the number of processes the application can
create for that parallel section. Preliminary simula-
tion results using the Perfect Club Fortran benchmarks
show that this loop-level process control scheme can
produce a high system utilization while maintaining
high performance for the indwidual applications. An-
other advantage of this strategy s that it is transparent
to the programmer and does not require any modifica-
tions to the operating system. Consequently, the ap-
plication can remain portable and compatible.

1 Introduction

Many of today’s multiprocessor machines are mul-
tiprogrammed in which several applications execute
simultaneously while sharing the processors and other
system resources. These multiprogrammed multipro-
cessor systems usually use a time-sharing policy to
multiplex the processors among processes from several
different applications. Often implemented as an ex-
tension of the traditional Unix operating system, this
time-sharing processor allocation policy provides easy
portability and compatibility for the applications from
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their uniprocessor counterparts. Examples of this type
of multiprocessor system include the Alliant FX [1],
Silicon Graphics Onyx [15], and Cray C90 [4]. How-
ever, multiplexing the processors can severely degrade
the performance of the individual applications. For
instance, it has been reported that 10 to 23% of the
processing power in an Alliant FX/8 system is spent
on multiprogrammed overhead [5].

Several solutions to the multiprogrammed multi-
processor scheduling problem have been proposed,
such as space sharing or space partitioning the proces-
sors, gang scheduling the related tasks [13], dynamic
process control [11, 16], non-blocking synchronization
[8], and policies that prevent tasks that hold a lock
from being swapped out [18]. However, these solu-
tions either need to sacrifice the overall system uti-
lization for the improvement of an individual appli-
cation’s performance, or they require modifications to
the existing operating system combined with a special
programming model.

This paper proposes a new policy for processor al-
location that maintains a high system utilization with
only a small degradation in all individual applications’
performance. Our strategy is designed with the follow-
ing goals in mind:

e It is transparent to the programmer and requires
no special programming language or paralleliza-
tion model, instead working with the traditional
fork-join parallel programming model.

e It is implemented at the user level to maintain
high portability and compatibility with no modi-
fications to the operating system.

e The possibility of a scheduling bottleneck is mini-
mized by using a distributed scheme with no cen-

tralized agent or server.

e It is fair to all applications in the system.



e It is simple and straightforward, so that it can be
easily implemented and optimized.

The remainder of the paper is organized as follows:
Section 2 provides further background information on
the multiprogrammed multiprocessor scheduling prob-
lem and describes the existing solutions. Our pro-
gramming model and system architecture are also de-
scribed. Section 3 presents our proposed processor
allocation scheme, while Section 4 presents our simu-
lation methodology. Preliminary results are discussed
in Section 5. The final section concludes the paper
and discusses future work.

2 Background

This section discusses the targeted system architec-
ture and the programming model. It also provides ad-
ditional details on the performance issues in multipro-
grammed multiprocessor systems and reviews existing
strategies. Although this discussion can be applied to
other types of architectures, our focus is mainly on
shared-memory multiprocessor systems.

To clarify the terminology, an application is an exe-
cuting user program, either sequential or parallel. It is
also known as a job. During its execution, an applica-
tion (or a job) creates parallel sub-tasks, simply called
tasks, which are then assigned to the processors for
execution. We use the terms task, process, and thread
interchangeably.

2.1 System Architecture and Program-
ming Model

Because the memory of a shared-memory multipro-
cessor is equally accessible by all processors, these sys-
tems have a programming model that is similar to tra-
ditional uniprocessor systems. Consequently, shared-
memory multiprocessors have been widely commer-
cialized and are often used as a high-performance gen-
eral purpose machine. Figure 1 shows a diagram of
a shared-memory multiprocessor system in which a
number of processors are connected together with the
main memory through a high-speed network. In this
system, all processors run at the same speed and each
of the processors executes its instructions indepen-
dently of the others. Some shared-memory systems
also have a local cache memory in the processor mod-
ule to improve the average memory access time.

One of the common programming models for
shared-memory multiprocessor systems is the fork-join
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Figure 1: Shared memory multiprocessor architecture.

model. A programmer or compiler parallelizes an ap-
plication with this model by recognizing the indepen-
dent sections of the application and partitioning them
into parallel tasks. For example, each iteration of a
parallel loop can be partitioned into an independent
task and executed concurrently with other iterations
[10, 17].

Figure 2 shows the task graph of a typical fork-
join parallel application. At the start of a parallel
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Figure 2: Task graph of a typical fork-join program.

section of the program, sub-processes will be spawned
out, similar to creating child processes using the fork
command in the Unix operating system. Since the
sub-processes are independent, they can be executed
concurrently. At the end of a parallel section, all of
the sub-processes will be synchronized. Some sys-
tems or programming language implementations de-
stroy the sub-processes after the synchronization com-
pletes, similar to the Unix join command. New pro-
cesses are then created when the next parallel section
begins executing. An alternative strategy is to put
the processes to sleep until they are needed for the
next parallel section. Depending on the characteris-



tics of an application, the number of processes required
for each parallel section might be different. Lock and
unlock operations are used to coordinate accesses to
shared variables, and to maintain the correctness of
the program execution.

To share the processors efficiently, some scheduling
strategy is needed to allocate the tasks to the proces-
sors for execution. The most commonly used strat-
egy is the traditional single work queue time-sharing
approach, which is also used in the Unix operating
system for uniprocessor systems. With this strategy,
tasks that are ready for execution are put into the
ready queue. Whenever a processor is idle, it removes
the first task from the ready queue and begins exe-
cuting it. If the task is not completed before the time
shice expires, the task is returned to the end of the
ready queue. The processor then begins executing the
next task from the beginning of the queue.

2.2 Performance Issues

The time-sharing processor allocation policy has
been used in uniprocessor systems for decades and it
has proven to be a fair and efficient system for shar-
ing the single processor among several applications.
Although this policy can improve the system utiliza-
tion in multiprogrammed multiprocessor systems, it
can significantly degrade the performance of individ-
ual applications.

One problem with the time-sharing policy occurs
when the total number of application program pro-
cesses is greater than the total number of physical pro-
cessors. Since the processors must multiplex among
several processes, the context switching overhead can
be very high, which will degrade the performance of
all of the applications. Another problem is that data
cache locality cannot be efficiently utilized since, at
the end of the time slice, the current task will be
switched out and a new task will be switched in. The
new task must reload its working set into the cache,
limiting the performance advantage of the cache. The
problem of high context switching overhead and poor
cache utilization also occurs in time-sharing unipro-
cessor systerns.

Multiplexing the processors among several pro-
cesses not only creates context switching overhead and
degrades the cache utilization, but it may also waste
processing power due to busy-waiting. When a par-
allel application executes on a shared-memory multi-
processor system, it requires a lock operation to obtain
exclusive access to shared variables. While a process
holds a lock, other processes which need to access the
same data must wait. In a multiprogrammed envi-

ronment, processes will be swapped out when their
time quantum expires. If a process that holds a lock
is context-switched out, other processes that are wait-
ing for the lock will not be able to proceed until that
process again has its turn for another processor allo-
cation. Those processes that are waiting for the lock
will be idle busy-waiting, thereby wasting the system’s
processing power [18]. A similar scenario called pro-
cess thrashing may also occur because of the active
processes being context-switched [13].

There are several existing solutions that can be used
to prevent the above situations from occurring. The
simplest solution to prevent active processes from idly
waiting for some inactive processes is to prevent the
scheduler from deallocating a process that holds an
active lock [9]. Also, processes that are waiting for
a lock can be put into a sleep state and their unused
time slice can be allocated to other processes to per-
form some useful work [8, 12]. Similar techniques for
synchronization operations have also been proposed to
eliminate the problem of process thrashing. However,
these solutions have no impact on the context switch-
ing overhead, and they might be unfair to the waiting
processes.

To decrease the context switching overhead, space
sharing, also called space partitioning, can be used in-
stead of time-sharing. This policy evenly divides the
number of processors among the applications and lim-
its the total number of processes that the applications
can create to be less than or equal to the total number
of physical processors. As a result, context switch-
ing is eliminated. However, the system might not be
fully utilized since the number of processors needed
by an application varies over the course of its execu-
tion. Limiting the number of processes an application
can create will limit the parallelism that can be ex-
ploited by the application even though there may be
idle processors available in other partitions.

Coscheduling has been proposed to eliminate the
problem of process thrashing by allocating processors
to all of the related tasks of an application all at the
same time [13]. If a parallel application has a set
of processes that are closely interacting during exe-
cution, they should be scheduled for execution simul-
taneously. When an application is ready for execu-
tion, its processes are appended to the system work
queue. Scheduling is performed by moving a window,
whose length is equal to the number of processors in
the system, over the queue. Tasks or processes that
are in the queue and within the window are removed
from the queue and a processor is allocated to each
task. If a task is not runnable, because it is related to



tasks that are still in the queue, for instance, it will
not be scheduled and the available processor will be
allocated to the next runnable task. At the end of
the time quantum, all the allocated tasks will be put
at the end of the queue, and the processors will be
scheduled to run the next window of runnable tasks.
A similar strategy called gang scheduling has been im-
plemented on some existing operating systems, such
as the Silicon Graphics IRIX operating system [2].

Coscheduling avoids process thrashing since all the
processes of a job are scheduled at the same time. Pro-
cessor fragmentation can occur, however, when an ap-
plication does not require all of the processors in the
system, and it does not leave enough processors for
another application’s processes [8]. It has been shown
that this processor fragmentation might cause as much
as a 25% loss in the computing resources [6]. Although
gang scheduling can improve the performance for fine-
grained synchronization [7], it might not reduce the
number of context switches, and thus can still cause
poor cache performance [8].

The goal of dynamic partitioning is to minimize
context switching by controlling the total number of
processes in the system, which in turn preserves the
processor caches [11, 16]. Each job in the system is
allocated an equal fraction of the processors unless a
job has a smaller amount of available parallelism. For
instance, if there are three applications competing for
20 processorsin a system, and the applications request
4, 10, and 20 processors each, the first job will be allo-
cated 4 processors while the other two will be allocated
8 processors each. If another application requiring 4
processors arrives, 4 processes from the executing ap-
plications are suspended and their processors are re-
leased and reassigned to the new application. When
an application terminates, its processors will be allo-
cated to the other applications’ suspended processes.

Although dynamically adjusting the processor allo-
cation can improve system utilization and can reduce
the context switching rate, the scheduler and the ap-
plications require precise coordination. In addition,
a special programming model may be needed to ac-
commodate this coordination. Moreover, since pro-
cessor reassignment requires suspension of some exe-
cuting processes, some critical processes may be sus-
pended, which could affect other dependent processes.
Finally, dynamically suspending and reallocating pro-
cessors can increase the system overhead, which can
degrade the performance of the applications. A sim-
ilar policy called adaptive partitioning has also been
proposed [11].

3 Loop Level Process Control

Dynamic partitioning [11], process control [16], and
adaptive partitioning [11] have been shown to be effec-
tive methods for minimizing multiprogramming over-
head and thereby improving the performance of the in-
dividual application programs. However, these meth-
ods require modifications to the programming model
and to the operating system. Thus, they might not be
readily adopted in existing systems. In this section,
we present a new allocation policy called Loop-Level
Process Control (LLPC) which is an extension of pre-
vious process control policies that works with existing
operating systems and the traditional fork-join pro-
gramming model.

With a parallelizing compiler, the loop-level par-
allelism of many existing application programs can
be exploited without rewriting the sequential code
[10, 17]. Although this approach might not be able to
exploit the maximum inherent parallelism in an ap-
plication, it can increase the portability of the code
and can lessen the programmer’s burden in developing
new parallel algorithms. Our loop-level process con-
trol strategy targets this type of programming model
to help improve the performance of these applications
in a time-shared, multiprogrammed multiprocessor en-
vironment.

The philosophy behind the loop-level process con-
trol strategy is to utilize as many processors as pos-
sible without overloading the system. When the sys-
tem load is high, LLPC tries to minimize the context
switching rate by allowing the applications to create
only a small number of processes instead of the maxi-
mum number of processes that they may like to create.
As a result, execution can still proceed for all appli-
cations while no single application monopolizes all of
the processors.

The loop-level process control strategy is outlined
in the following steps:

1. At the beginning of the execution of a parallel
section, check the system load.

2. Based on the system load, determine the number
of processors, no_processes, available for the ex-
ecution of this particular parallel section.

3. Create no_processes processes and append them
to the system work queue.

4. When a processor is allocated to a process, the
process executes its share of the parallel work.

5. When all parallel tasks have completed, synchro-
nize the processes and release them to the system.



no_processes = max[1, min(no_needed,
total_physical P - system_load)];

Figure 3: LLPC heuristic for determining the number
of processes an application is allowed to create when
executing a parallel section of code, such as a parallel
loop.

6. Continue the execution of the next sequential por-
tion of the application using only a single proces-
SOr.

The above steps are executed for each parallel section.
These steps can be directly inserted into the generated
object code by the parallelizing compiler when a par-
allel section is detected in the code.

There are several issues that need to be considered
when implementing LLPC. The most important issue
is how to determine the current system load with min-
imum overhead. We define the system load to be the
number of busy processors plus the total number of
processes waiting in the work queue. Fortunately, this
information is already available from the Unix oper-
ating system making this information easily accessible
to the applications.

The second issue is determining how many pro-
cesses an application should create to prevent de-
grading the performance of the system. We use
the heuristic shown in Figure 3 where variable
total_physical_Pis the total number of physical pro-
cessors in the system, system_load is the load of the
system at that moment, no_processes is the number
of processes an application is allowed to create for the
execution of that particular loop, and no_needed is
the the number of processes that loop requires to at-
tain maximum parallelism. This heuristic allows the
parallel loop to create as many processes as there are
available processors. If the system is completely busy,
LLPC allows an application to create at least one pro-
cess. Although this approach introduces some context
switching, it still allows the application to make some
progress in its execution.

A third important issue is the fairness of the pol-
icy. LLPC seems to favor applications that are ready
to run first allowing them to create as many processes
as they require, while late arrivals might not be al-
lowed to create enough processes to achieve their best
performance. Moreover, LLPC does not suspend any
process once it has been created which may cause one
application to monopolize the entire system. However,

the parallelism within an application varies during its
execution. So, although it might not be allowed to
create as many processes as it desires for this parallel
loop, an application program may be allowed to create
more processes when it begins executing its next par-
allel loop since the system load most likely will have
changed by then. Therefore, the overall performance
of an application is not dependent on its order of ar-
rival.

Unlike other dynamic process control schemes [11,
16], LLPC does not suspend any active processes even
when the system load is high. Schemes that dynami-
cally suspend processes usually require a scheduler to
check if the target process is safe to be suspended with
no dependence between the target process and other
active processes. Although LLPC might not be able to
adapt to changes in the system load instantaneously,
processes are automatically suspended at the end of
each parallel loop, and the processor allocation is re-
vised at each loop entry. As a result, this strategy
will adjust to the system load within a period time.
Moreover, not allowing dynamic suspension simplifies
the implementation of the policy and does not require
any changes to the operating system scheduler, which
is an important advantage for existing systems.

The following sections discuss the methodology we
used to evaluate the performance of our strategy and
how our strategy performs compared to others.

4 Simulation Methodology

Our simulation consists of two modules: a trace
generator and a multiprogrammed multiprocessor sim-
ulator. The trace generator is used to generate mem-
ory reference traces from the benchmark programs
while the simulator simulates the performance of the
different schemes based on these traces. The mem-
ory traces characterize the benchmark programs and,
by creating and suspending processes based on these
traces, these traces mimic a dynamic workload. This
section discusses the methodology in detail.

4.1 Trace Generation

The application programs we used for this study
are from the Perfect Club Fortran benchmarks [3]. A
modified version of the Parafrase-2 parallelizing com-
piler [14] is used to parallelize the benchmark pro-
grams. In addition to parallelizing the application, the
compiler inserts memory trace generation calls into the
Fortran source code to annotate each memory access
with the type of reference (a read or a write), a unique



identifier for each parallel loop, and the iteration in-
dex if the access is inside a parallel loop. An estimate
of the execution time required for each section of an
application is determined by counting the number of
memory references within the section, where we as-
sume that each memory access requires one cycle. Al-
though this approximation does not give us the ezact
execution time for each section, it does gives a rea-
sonable ratio of the execution times between different
sections and between applications. At the beginning
of a parallel section, a marker with the number of it-
erations of the loop is inserted to notify the simulator
to create sub-processes. Also, at the end of a parallel
section, a marker is inserted to notify the simulator to
synchronize the processes.

Because of the length of the traces, we used only
four representative applications from the benchmarks
in this preliminary study. ADM and TRACK are
used as applications with a small degree of parallelism,
while DYFESM and TRFD are used as applications
with a high degree of parallelism. These applications
are modified to reduce their execution time and the
size of the memory traces. We reduce only the num-
ber of time steps of the programs so that the memory
access behavior remains approximately the same as
the original programs. The outer loop is reduced from
720 to 2 for ADM; from 62 to 11 for TRACK; from 40
to 15 for TRFD; and from 1000 to 4 for DYFESM.

Table 1 shows the characteristics of the traces from
the benchmark programs. The maximum possible
speedup values are obtained by calculating the best
possible parallel execution time for the benchmark ex-
ecuting on a dedicated 16-processor system.

Table 1: Characteristics of the benchmark programs.

Parallel | No. of iterations Max.

loops within a loop possible

Benchmark | executed | mean | std dev. | speedup
adm (apsi) 2155 30.3 49.8 1.104
dyfesm (sdsi) 13385 33.4 29.6 2.134
track (mtsi) 4374 16.1 19.2 1.102
trfd (tisi) 83352 8.9 4.7 4.545
4.2 Multiprogrammed Multiprocessor

Simulator

This module simulates a 16-processor multipro-
grammed shared-memory system at the clock level. A
processor can be in either a busy state or an idle state.

The status of the processors is represented by an ar-
ray structure and, at each cycle, the status of each
processor is updated accordingly. Multiple traces are
read into the simulator concurrently to mimic multi-
programming. The simulator generates tasks based
on these traces. A first-come-first-serve work queue is
used to for these ready tasks. This approach mimics
the implementation of many existing systems.

When a processor is idle, it removes the first pro-
cess from the system work queue and begins execut-
ing. Only one processor can access the work queue
at a time. Other idle processors must wait. When a
processor finishes its assigned task, it obtains another
process from the head of the queue. If the time quan-
tum expires, however, the processor stops executing
the current task and returns it to the end of the queue.
A time penalty is added to that processor’s overhead
time to account for the context switching overhead.
A new task is then obtained from the beginning of
the queue. In this study, we set the time quantum to
100000 cycles. An overhead penalty of 100 cycles is
incurred for swapping out a process.

When an active process must create sub-processes
to execute the parallel loop iterations, the sub-
processes are created sequentially with an overhead
penalty of ten cycles per subprocess. Simple chunk
scheduling [17] is used to evenly divide the iterations of
the loop among the sub-processes by assigning [N/
iterations to each process, where IV is the number of
iterations, and T is the number of sub-tasks or pro-
cesses created for the loop execution. The newly cre-
ated processes are then appended to the system work
queue. At the end of a parallel loop, all sub-processes
from that loop must be synchronized. When a pro-
cess reaches a synchronization point, it checks if other
processes that belong to the same application are ac-
tive and have reached the same point. If so, all pro-
cesses are released and can continue their execution.
Otherwise, the process must busy-wait for the other
processes.

For gang scheduling, the simulator keeps track of
the number of idle processors and the size of the gang
for each application. As with a time-sharing policy,
all the ready processes are waiting in the system work
queue, but the allocation is done as a gang instead of
one process at a time. Therefore, a process is assigned
to a processor only if there are enough idle processors
for the entire gang. This implementation is similar to
the one used in the SGI IRIX operating system [2].

For space sharing, each application can create a
maximum of [P/J] processes for its execution of a
parallel loop, where P is the total number of physi-



cal processors and J is the total number of concurrent
jobs.

When our loop level process control policy is used,
the simulator operation is the same as with time-
sharing except that, at the beginning of each paral-
lel loop, an upper limit on the number of processes
for the current parallel loop is determined before the
processes are created (see Figure 3). The new pro-
cesses are appended to the system queue where a time-
sharing scheme is then used to schedule these processes
for execution.

At the end of the simulation, the simulator reports
the speedup value for each application and the to-
tal system utilization, distinguishing between the time
used for the applications, and the system overhead. It
also produces a trace of the number of busy processors
versus the execution time.

5 Simulation Results

This section presents and discusses the simulation
results. First, the performance of the different poli-
cies are presented when executing multiple copies of
the same application. This allows us to compare the
basic behavior of the policies. Then the performance
is compared with a combination of different applica-
tions.
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Figure 4: CPU status graph for a single copy of
TRACK executing on a dedicated machine.

Figure 4 shows the change in the number of busy
processors during the execution of a single copy of the
TRACK application on a dedicated machine. Because
of the large data set and the limited resolution of the
graph, we averaged the number of busy processors
within the range of 100000 cycles and treated that
as one data point. This figure confirms that the par-
allelism of an application varies during its execution.
This figure also demonstrates that many processors

are idle most of the time which makes many proces-
sors available for multiprogramming. While we do not
show it in this paper, the other application programs
show similar behavior.

To compare the performance of the schemes un-
der different system loads, we varied the number of
concurrent applications in the system and measured
the speedup of the applications and the overall sys-
tem utilization. The performance of multiple execu-
tions of TRACK and TRFD are shown in Figure 5
and Figure 6, respectively. Figure 5 shows that LLPC
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Figure 5: Performance comparison when executing

multiple copies of TRACK.
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Figure 6: Performance comparison when executing
multiple copies of TRFD.

performs as well as the space-sharing policy (s-s), in
terms of both speedup of the application and the over-
all system utilization, for an application with a small
degree of parallelism. The figure also shows that both
space-sharing and LLPC maintain a constant speedup
for the application when the number of concurrent ap-
plications increases.

On the other hand, the performance of the appli-
cation under time sharing (t-s) and gang scheduling
(gang) degrades rapidly, with gang scheduling slightly
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outperforming time-sharing. For an application with
a high degree of parallelism, space-sharing performs
the best, followed by LLPC (Figure 6). Since this
application requires more processors on average than
TRACK, more context switches are needed to share
the system. As a result, the speedup of TRFD under
all the schemes decreases as the number of concurrent
copies increases.

In Section 3, we claim that LLPC allocates the pro-
cessors fairly among several applications. To validate
this claim, we compare the execution times of four
copies of the TRFD benchmark program when they
are executing concurrently. Table 2 shows the execu-
tion time in number of cycles required by each copy
under different scheduling policies with their means
and variances. Since space-sharing evenly divides the

Table 2: Fairness comparison of the different polices.

250

App. Time S. | Gang Sch. Space S. LLPC
1 83531121 80260361 | 53721381 | 64543401

2 84036061 80470991 | 53721381 | 64783441

3 | 84626191 81307611 | 53721381 | 64836561

4 | 84920471 82434731 | 53721381 | 64892961
mean | 84278461 | 81118423.5 | 53721381 | 64864091
var. | 536275.58 854970.32 0.0 | 133170.0

number of processors among the applications, all the
applications have the same share of the processing
power and, therefore, have the same execution time.
Compared to time-sharing and gang scheduling, LLPC
achieves a shorter execution time and a smaller vari-
ance. Therefore, LLPC not only performs better than
time-sharing and gang scheduling, it is also a fair al-
location scheme.

In addition to using multiple copies of the same ap-
plication, we study the performance of the policies in
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graphs for multiprogramming using different allocation policies.

a more practical environment by simultaneously exe-
cuting applications with different characteristics. We
chose four of the benchmark applications, two with
small degrees of parallelism (TRACK and ADM) and
two with higher degrees of parallelism (DYFESM and
TRFD), to evaluate the performance of the different
policies.

Figure 7 shows the change in the number of busy
processors when all four applications are executed con-
currently. Each data point in these graph represents
the average number of busy processors within a range
of 500000 cycles. Again, time-sharing has the longest
execution time and generates a very high system load
most of the time. Gang scheduling requires a shorter
execution time, but it does not fully utilize the sys-
tem. Space-sharing produces a much shorter execu-
tion time than either time-sharing or gang scheduling
since it decreases the rate of context switching. How-
ever, LLPC improves the performance even further. It
requires a shorter execution time and produces higher
system utilization than space-sharing.

Figures 8 and 9 compare the performance in more
detail. They also compare the performance to the case
when the applications are executed on a dedicated ma-
chine (single). In terms of the speedup of the appli-
cations (Figure 8), both time-sharing (t-s) and gang
scheduling (gang) perform badly, performing worse
than if the applications were executed in a uniproces-
sor system. Gang scheduling performs well only for
TRFD, which is the application with the highest de-
gree of parallelism. Both space sharing (s-s) and loop
level process control (LLPC) perform well. Space-
sharing performs slightly better for applications with
low degrees of parallelism, while LLPC performs bet-
ter for applications with higher available parallelism.
Moreover, LLPC maintains about 67-97% of the per-
formance the applications obtained when executed on
a dedicated system.
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To compare the system utilization, we divided the
cpu time into two categories: processing and owver-
head. The processing time is the total of all the
useful computation time, while the overhead time in-
cludes all multiprocessing overhead, such as process
creation and synchronization overhead, and multipro-
gramming overhead, such as context switching. Fig-
ure 9 compares the system utilization of the four poli-
cies when the four applications are executing simulta-
neously. Also shown in Figure 9 is the system utiliza-
tion of the applications when they are executed on a
dedicated system.

According to this figure, multiprogramming
clearly utilizes more processing power than single-
programming, with time-sharing having the highest
system utilization and LLPC the next highest. How-
ever, most of the processing power with time-sharing
is wasted in overhead. Although gang scheduling has a
much smaller overhead, it does not utilize much more

processing power for useful computation than time-
sharing. Space sharing has the lowest overall system
utilization but it produces the smallest overhead. It
also utilizes more than 25% of the total processing
power for useful computation. Although LLPC re-
quires a larger overhead than space-sharing, it pro-
duces the highest system utilization (29%) in terms of
useful computation.

Figure 10 shows how the individual processors are
utilized under the different schemes. Again, time-
sharing utilizes all the processors, but most of the
processing time is spent in overhead. Gang schedul-
ing significantly reduces the overhead, but it does not
fully utilize all of the processors. Space sharing utilizes
most of the processors for useful computation but it
still has some idle time. LLPC requires less overhead
than time-sharing or gang scheduling and it utilizes
more processors than space sharing.

6 Conclusions and Future Work

In this paper, we have proposed a processor al-
location scheme, called loop-level process control
(LLPC), for multiprogrammed shared-memory mul-
tiprocessors. LLPC uses the system load to limit the
number of processes an application can create for each
parallel loop. This policy minimizes the number of
context switches, which in turn eliminates the pro-
cess thrashing problem, improves the efficiency of syn-
chronization operations, and better utilizes the cache
memory. The preliminary simulation results show that
our scheme performs better than both time-sharing
and gang scheduling. It works as well as space-sharing
scheme in terms of the speedup of individual applica-
tions while attaining higher system utilization than all
of the other schemes. Moreover, LLPC does not re-
quire any special programming model or modifications
to the operating system, and it can be transparent to
the programmer. It also has better portability and
compatibility with existing systems. Therefore, it is
a simple and effective method to achieve high system
utilization without degrading the performance of indi-
vidual applications.

In this study, we used simple chunk scheduling in-
side LLPC to assign iterations to the processes. How-
ever, this may cause imbalances among the proces-
sors’ workloads. It has been shown that the perfor-
mance of an application can be further improved by
using dynamic loop scheduling to balance the work-
load [17]. We are planning to incorporate this type
of loop scheduling into the loop level process control
policy.
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