Parallel Job Scheduling: Issues and Approaches

Dror G. Feitelson! and Larry Rudolph?*

' IBM T. J. Watson Research Center
P. O. Box 218, Yorktown Heights, NY 10598
feit@watson.ibm.com
2 Institute of Computer Science
The Hebrew University, 91904 Jerusalem, Israel
rudolph@theory.lcs.mit.edu

Abstract. Parallel job scheduling is beginning to gain recognition as an
important topic that is distinct from the scheduling of tasks within a par-
allel job by the programmer or runtime system. The main issue is how to
share the resources of the parallel machine among a number of compet-
ing jobs, giving each the required level of service. This level of scheduling
is done by the operating system. The four most commonly used or ad-
vocated techniques are to use a global queue, use variable partitioning,
use dynamic partitioning, and use gang scheduling. These techniques
are surveyed, and the benefits and shortcomings of each are identified.
Then additional requirements that are not addressed by current systems
are outlined, followed by considerations for evaluating various scheduling
schemes.

1 Introduction

Parallel supercomputers are an expensive, scarce resource that often must be
shared among a large community of users. But, the successful scheduling schemes
for uniprocessors do not readily translate to address the challenges posed by par-
allelism. This paper examines some of these challenges, surveys current solutions,
and points to future areas of research.

Although parallel computers are more difficult to use effectively than their
sequential counterparts, many people are willing to pay the price because their
applications need the additional resources. An application executed on a parallel
computer can potentially complete in a shorter time, and make use of much larger
aggregate cache capacity, physical memory size, and I/O bandwidth. Of course,
when an application must compete for a share of these resources, the payoff
becomes far less attractive.

Resource allocation to competing jobs is done by the system scheduler.
Scheduling on a parallel computer is complex since it involves scheduling over
two dimensions, time and space, and at two levels, jobs and threads. There are
a number of different approaches to job scheduling. The processors can be par-
titioned to allow several jobs to execute in parallel. In addition, when a job is
running, its constituent threads may also need to be scheduled.
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Discussing job scheduling on a parallel computer is hard because it means so
many different things to so many different people. The large variety of parallel
programming languages, parallel computer architectures, and parallel operating
systems, means that there is no one ideal scheduling strategy. The problem is
exacerbated by the large variety of vague goals. For example, it is not clear if the
response time of individual jobs, i.e. the makespan, should take preference over
the overall system throughput. Also, it is hard to compare actual schedulers in
commercial products handling real workloads with academic studies of idealized
schedulers exercised by synthetic workloads.

The scheduling requirements depend on the environment. For parallel com-
puters used as dedicated machines for solving single large applications and bench-
marks or allocated to a small group of researchers for evaluation purposes, sched-
ulers are not so important. But when large parallel computers are to be shared
by a wide range of users, some with large batch jobs and others with smaller in-
teractive jobs, proper scheduling and resource allocation becomes a critical 1ssue.
Very few people are willing to wait a month to get one hour on a supercomputer;
the application usually could be finished sooner on a dedicated workstation. It
may be necessary to satisfy individual job needs at the expense of total system
throughput.

This paper first outlines the range of objects that are to be scheduled. A
survey of the scheduling approaches is then presented. The paper concludes with
several comments about the requirements for job scheduling and the evaluation
of scheduling schemes. Throughout, it also serves to put the other papers in this
volume in context.

2 Background

A major problem in talking about “scheduling on parallel machines” is that
this expression means different things to different people. We therefore start by
distinguishing among the different classes of objects that are to be scheduled on
parallel systems. The major objects are jobs and threads. Jobs are autonomous
programs that execute in their own protection domain. One job should not be
allowed to access the memory of another job nor interfere with the other job’s
message-space. A job may consist of many threads, i.e. a parallel job, and may
be batch or interactive. We use the term “thread” to specify the thing that
can execute in parallel in a parallel program. It is synonymous with terms like
“chore” or “activity” as sometimes used by others.

We prefer thread rather than “task”, as this latter term has been used with
innumerable conflicting meanings in the literature. Furthermore, we reserve “pro-
cess” to denote an autonomous execution unit. Thus in uniprocessors the terms
job and process are synonymous. In parallel systems, if the operating system is
aware of the fact that multiple executing entities are parts of the same applica-
tion, we call them threads and the whole thing together is a job. If, on the other
hand, the interacting entities are independent as far as the operating system is
concerned, we call them processes. For the operating system, each of these pro-
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Fig.1. A simple classification of parallel programming styles. The range is actually
much more complex than what is shown here.

cesses is a separate job, whereas for the user they collectively represent a single
job.

While a parallel job consists of threads whose execution is specified in a
parallel program, there is no single universally agreed upon parallel programming
language. Figure 1 gives a very broad classification of parallel programming
languages. The threads can be static or dynamic and the communication between
them can be static or dynamic. For example, in a Single Program, Multiple
Data (SPMD) language, the number of threads is fixed and is often equal to the
number of processors, but the communication patterns between the threads can
change dynamically during the execution.

Threads can be very light-weight, as in the case of dataflow or functional
programming with very limited communication — data is passed to the thread
upon its creation, and the thread passes on data when it terminates. In this
case, there are few restrictions on where the thread can execute. On the other
hand, threads can be heavy-weight involving lots of computation and many
communications with other threads. In a message-passing systems, such threads
often cannot be moved once begun since most message-passing libraries use
physical processor addresses for messages to avoid a level of indirection for each
communication.

The machine architecture thus has a serious impact on the scheduler. Figure
2 gives a very coarse classification. In machines in which processors are assembled
in a restricted topology such as a mesh or hypercube, jobs are assigned to specific
partitions of the machines, e.g. subcubes. In symmetric multiprocessors with
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Fig.2. A simple classification of parallel machine classes. “Mixed” denotes cases that
have characteristics of both complete networks and topological restrictions. (SMP =
Symmetric Multiprocessor; UMA = Uniform Memory Access; NUMA = Non-Uniform
Memory Access)



uniform access to shared memory, it is easy to stop a thread and reschedule
it on any other processor. Some machines offer a mixture: the KSR is billed
as an UMA machine, due to the automatic migration of data to wherever it is
needed, but has a clustered structure. The CM-5 offers a complete-network view
in terms of message passing, but can only be partitioned according to subtrees
of its fat-tree network.

The following subsections review some of the classes of scheduling. Each
class may have its own goal or be directed at a particular class of machines or
languages.

2.1 Static Scheduling

In order to understand the theoretical limitations of scheduling, a restricted
version of parallel programs is considered in which there is nearly complete
knowledge of the computation. An application is modeled as a directed acyclic
graph (DAG) where each node denotes a task and directed edges or arcs denote
dependencies among the tasks: the task at the origin of the arc must complete
before the task at its end may commence. These dependencies typically represent
data transfers, i.e. the task at the sink of a directed arc uses some data values
that are generated by the task at the source of the arc. Both nodes and arcs
may have weights attached to them. The weight of a node denotes the required
amount of computation, while the weight of an arc denotes the amount of data
that is transferred.

When the system is modeled as a set of homogeneous processors, that can
each execute one task at a time, the objective is usually to minimize the makespan
[31]. In some cases, communication costs are also explicitly modeled. Thus if two
neighboring tasks are assigned to different processors, the second one is delayed
by an amount of time proportional to the weight of the arc between them, but
if they are assigned to the same processor, there is no such delay.

Many restricted cases of DAG scheduling have been shown to be NP-complete,
meaning that it is impractical to look for an optimal schedule. This is true even
for very restricted special cases, e.g. when communication is free and all tasks
have unit execution times [48, 18].

Many parallel programming styles are close to the DAG model, although with
substantially less information. Dataflow, functional programming, and other
side-effect free programming models can be viewed as DAGs. Consequently, vari-
ous heuristics have been developed to approximate good schedules. One approach
is to assign priorities to nodes in the DAG according to their distance from the
termination node. Another concentrates on the critical path in the DAG. When
communication costs are taken into account, the main issue is how to partition
the DAG into clusters of nodes, and then schedule these clusters on processors.
This is a compromise between two conflicting forces: keeping nodes separate in-
creases parallelism at the cost of communication, whereas clustering them causes
serialization but saves on communication [29, 34]. If the interconnection network
has some specific topology, this can also be taken into account [5].



2.2 Scheduling in the Runtime System

While DAG scheduling has generated a large body of research, much of it cannot
be applied to programming environments that use other representations. In many
such environments, the programmer is actually shielded from the details of how
the program is mapped onto the machine. The details are then handled by the
environment’s runtime system.

One example of this approach is the use of thread packages [33]. The appli-
cation 1is structured as a set of interacting threads. The environment supplies
functions for thread creation, synchronization, and termination. The runtime
system is responsible for implementing these functions when they are called.

Another example is the use of parallelizing compilers. Parallelizing compilers
usually extract parallelism from the loops of sequential programs. At runtime,
the different loop iterations are scheduled for execution on distinct processors
[28]. A typical approach is to assign decreasing chunks of iterations to the dif-
ferent processors, so as to balance the load on one hand while avoiding extra
coordination on the other. Again, the programmer does not have to worry about
how this 1s done.

2.3 Scheduling in the Operating System

Scheduling by the programmer or runtime system aims to satisfy the individual
needs of the program in question. But when multiple programs must co-exist
in the same system, it 1s necessary to balance the needs of the individual with
those of the community in general. Such considerations and mechanisms lie in
the realm of the operating system.

The fact that the mechanisms and considerations of scheduling at the oper-
ating system level are sometimes very similar to those applied at the application
and runtime level has, in our opinion, hindered progress — it is not clear who
is in charge of the problem. The spectrum of opinions range from those who
claim that most scheduling should be done at the application level, keeping the
operating system out of the loop [2], to those that prefer to let the operating
system do all the work [4]. Interrupts, context switches, and memory swapping
are overheads that can be very costly on a parallel supercomputer. However, as
parallel systems become more commonly used, there is growing recognition of
the need for resource management at the operating system level. For example,
this 1s where jobs can be 1solated from each other, giving each the fiction of a
dedicated (virtual) machine, and where accounting functions should be carried
out. It is this class of scheduling that is addressed in the rest of this paper.

Many requirements make scheduling difficult. For example, it is important
that different jobs execute in different protection domains. That is, one job can-
not access the memory or message space of another job. A second difficulty is
that on many machines, partitions have to match the topology of the machine,
e.g. only subcubes can be used on a hypercube. Yet another problem is that in
many message passing systems, source and destination addresses are hardwired



so that a thread cannot be easily migrated between processorss. Therefore mul-
tiple different approaches are used in different systems, as described in Section

3.

2.4 Administrative Scheduling

Finally, some scheduling decisions are made at an administrative rather than at
a technical level. For example, the head of a computing facility may decide that a
certain project should get exclusive access to a certain machine for three weeks,
in order to achieve some project goals. Or, it may be the policy to encourage
short massively parallel jobs instead of longer jobs of smaller parallelism. Or,
what should be the ratio of batch jobs to interactive ones. While no research is
done on this type of activity, it undeniably has a significant effect on many users.
Mechanisms that enable such policy control are of interest. Finally, there 1s the
issue of accounting and how to charge users for the computational resources they
consume.

3 Current Approaches

In order to multiprogram a parallel machine, the operating system has to decide
when to execute each job and on which processors. In general, it is possible to
use time slicing (jobs share the use of the same processors), space slicing (each
processor is allocated to a specific job until its completion), or a combination
of both. Time slicing may not always be a viable option. On some systems it
may be costly or even impossible to switch protection domains, or applications
may use massive amounts of physical memory that could take many minutes to
page in and out. Similarly, space slicing may not be reasonable if the network
1s not partitionable, protection cannot be assured, or applications require the
full parallelism of he machine. Since many parallel machines are superlinear in
their cost as a function of processors, extensive use of partitioning does not make
economic sense. An interesting observation is that the two sharing schemes are
largely orthogonal, so various combinations can be tried. Indeed, a remarkable
variety of approaches have been devised over the years (see Fig. 3) [11].

The following subsections survey the four most popular approaches: global
queue, variable partitioning, dynamic partitioning with two-level scheduling, and
gang scheduling. Of these, two emphasize the use of space slicing (variable and
dynamic partitioning), and two the use of time slicing (global queue and gang
scheduling). For each, we briefly identify where it is applicable (usually depends
on the machine architecture), and highlight its strengths and weaknesses.

3.1 Global Queue

Perhaps the simplest way to implement a parallel operating system scheduler is
to run a copy of a uniprocessor system on each node, while sharing the main
data structures, specifically the run queue. Threads that are ready to run are
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Fig. 3. Examples of systems that use different combinations of space slicing and time
slicing (updated from [11]).

placed in this queue. Processors pick the first thread from the queue, execute
it for a certain time quantum, and then return it to the queue. This approach
is especially common on small-scale bus-based UMA shared memory machines,
such as Sequent multiprocessors [46] and SGI multiprocessor workstations [3],
and is also used in the Mach operating system [4].

The main merit of a global queue is that it provides automatic load sharing.
No processor is idle if there is any waiting thread in the system. However, this
comes at a price. One problem is contention for the global queue, which grows
with the number of processors. Another is that threads will typically execute
on different processors each time they are scheduled. As a result, threads can-
not stash data in local memory, and their cache state is wiped out with each
rescheduling. This effect is countered to a certain degree by affinity scheduling,
which attempts to re-schedule threads on the same processors they used before
[47]. Alternatively, it is possible to provide global load balance with local queues
and occasional migration to overcome any imbalance [39].

A third problem with a global queue 1s that the threads in a single application
are scheduled in an uncoordinated manner. This may be fine if the threads do
not interact with each other. But in many parallel programs the threads do



interact and synchronize with each other. If the interaction is at a high rate (i.e.
a fine granularity), the lack of coordination in the scheduling implies that often
the interacting partners will not be executing at the same time. Therefore the
interactions will not be able to proceed, inducing extra context switches and
overhead [16].

Finally, scheduling from a global queue has the interesting property that the
service a job receives 1s proportional to the number of threads that it spawns. It is
subject to debate whether this is good or bad. On one hand, this is a natural way
for jobs that require more computation to get the necessary resources. On the
other hand, it impairs fairness and might be susceptible to user counter measures.
These problems can probably be solved by suitable accounting practices.

3.2 Variable Partitioning

Another simple approach to multiprogramming parallel machines is to partition
the processors into disjoint sets and execute each job in a distinct partition.
There are different approaches to partitioning, and the following taxonomy is
common (see Fig. 4) [11]: Fizred partitioning is when the partition sizes are set in
advance by the system administrator. Repartitioning requires a reboot. Variable
is when the set of nodes are partitioned according to user requests when jobs are
submitted. That is, a large partition can be divided into smaller partitions to
allow several small jobs to execute in parallel. Partitions are fused when the jobs
terminate. Adaptive is when the partitions are automatically set by the system
according to current load when the job is submitted. Dynamic is when the size
can change at runtime to reflect changes in requirements and load. Of these, the
most popular are variable and dynamic partitioning.

Parameters taken into account

Scheme User request | System load Changes
Fixed no no no
Variable yes no no
Adaptive yes yes no
Dynamic yes yes yes

Fig.4. A taxonomy of partitioning schemes.

Variable partitioning is popular on distributed memory machines, and 1s used
on Intel and nCUBE hypercubes, on the IBM SP2, on the Intel Paragon, on the
Meiko CS-2, and on the Cray T3D. The non-uniform memory access feature or
the lack of a shared address space of these machines make the previous global
queue approach impractical. The advantages of running a job on a dedicated
partition with variable partitioning is that this gives a good approximation of a
dedicated machine. It places the needs of individual jobs over that of the system.
The program has control over the distribution of data in the memories of the
processors on which it runs. There is no cache interference, and no operating



system overheads. Depending on the system topology, there may also be no
network interference (in hypercubes, for example, each subcube uses a disjoint
set of links, but in systems that use a multistage network, such as an IBM SP2,
some links may be shared by different partitions).

Of course, variable partitioning also has some disadvantages. These disadvan-
tages stem from the possible mismatch between the available processors and the
user requests. Two distinct problems may occur. One is fragmentation, which
occurs when the available (free) processors are insufficient to satisfy the requests
of any submitted jobs, so these processors are left idle. The other problem is
that submitted jobs can be queued for a long time until the requested processors
become available. This is especially severe when big jobs are involved: a job that
requires all the processors cannot run as long as other jobs are running, and
once it does run no other job can commence. Even if allocated processors are
momentarily idle due to an I/O operation, they cannot be given to another job.
Therefore variable partitioning is more suitable for batch processing than for
interactive work. Indeed, the inability to run a program when desired sometimes
causes significant user frustration, especially during the program development
phase. To reduce this effect, sophisticated batch systems are designed [24, 21, 27].

3.3 Dynamic Partitioning with Two-Level Scheduling

One way to reduce the waiting time of queued jobs is to prevent jobs from
monopolizing too many processors when the system is heavily loaded. This is
done by adaptive partitioning schemes, and several ideas about how to allocate
the processors have been proposed [38]. The problem with adaptive partitioning,
however, is that once a number of processors are allocated to a job this number
is fixed until the job terminates. It does not change in response to load changes,
and cannot be changed to reflect changes in the degree of parallelism in the job.

Changes in allocation during execution are provided by dynamic partition-
ing. To support such behavior, applications are required to use a programming
model that can both express changes in requirements and handle system-induced
changes in allocation. This is typically done by using a workpile model, where
the work to be done is represented as an unordered pile of tasks or chores, and
the computation is carried out by a set of worker threads, one per processor,
that take one chore at a time from the workpile. This decouples the work (the
chores) from the agents of computation (the workers), and allows for adjustment
to different numbers of processors by changing the number of workers. The result
is a two-level scheduling scheme: the operating system deals with the allocation
of processors to jobs, while the applications handle the scheduling of chores on
those processors.

Dynamic partitioning with two-level scheduling is probably the most stud-
ied parallel scheduling scheme, and has repeatedly been shown to be superior
to other schemes [30, 20] either by analytic means or through simulation with
synthetic workloads. This is due to a number of factors:

— There is no loss of resources to fragmentation.



— There is no overhead for context switching, except that for redistributing
the processors when the load changes. The second level of scheduling within
the application is assumed to require less overhead.

— There 18 no waste of CPU cycles on busy waiting for synchronization, as
thread blocking incurs little overhead.

— The degree of parallelism provided to each job is automatically decreased
under heavy load conditions, leading to better efficiency. Programming envi-
ronments may shelter the application programmer from having to deal with
such dynamic changes explicitly.

However, dynamic partitioning does have its drawbacks. It does not support
popular programming styles such as the SPMD (used by MPI) and dataparallel
(used by HPF) models. Moreover, it could lead to extensive queueing if sufficient
processors are not available. And the overheads for repartitioning, which include
switching processors from one protection domain to another, may negate the
benefits that were expected [44].

In addition, dynamic partitioning requires extensive coordination between
the operating system and the application’s internal scheduler, so as to handle
the changes in processor allocation efficiently [2]. For example, if a processor
is taken away from an application, the whole application might deadlock if the
thread running on that processor happened to be holding a lock. To prevent
such scenarios, the application’s runtime system should be notified so it can take
appropriate action. This means that the operating system and the programming
environment runtime system must be designed together, limiting their portability
and ability to work in other environments. A possible solution is to only change
the processor allocation at certain points in the program, e.g. at the beginning
of a new parallel loop [50].

As a result of the above shortcomings, dynamic partitioning has so far been
used only to a very limited degree, mainly in the context of running parallel
jobs on networks of workstations, where the workstation must be returned to its
owner when required [8, 36].

3.4 Gang Scheduling

The only way to guarantee interactive response times is via time slicing. However,
if done in an uncoordinated manner, as with a global queue, this can lead to large
inefficiencies. Rather, the context switching should be coordinated across the
processors. Thus all the threads in the job will execute at the same time, allowing
them to interact at a fine granularity. In addition, the threads can be mapped
permanently to processors, thus allowing them to make use of local memory and
maybe to benefit from sustained cache state. This solution is completely general,
and works for any programming model. In fact, it decouples the application from
the operating system. It is used by some vendors, e.g. the CM-5 from Thinking
Machines [26], the TRIX system on SGI multiprocessors [3], the Intel Paragon
[23], and the Meiko CS-2, and has also been studied in academia and research
prototypes [32, 13, 19, 22].



An interesting variant of gang scheduling i1s based on the observation that
coordinated scheduling is only needed if the job’s threads interact frequently [16].
Therefore the rate of interaction can be used to drive the grouping of threads into
gangs [17, 43]. Other variants include coscheduling, which attempts to schedule
a large subset of the gang if it is impossible to schedule all the threads at once
[32], and family scheduling, which allows more threads than processors and uses
a second level of internal time slicing [7].

The price of gang scheduling is that the overall system performance is not al-
ways optimal (although it does favor individual jobs). There is some interference
in the cache, and overhead for the context switching. In addition, there may be
some processor fragmentation. However, due to the time slicing, its effect is less
severe than in variable partitioning [14, 15]. Indeed, most studies find that gang
scheduling is nearly as efficient as dynamic partitioning [9].

4 The Requirements

Literally hundreds of papers have been written about job scheduling in parallel
systems (see [11]). However, in many respects, we are at the beginning of the
beginning. The split between the academic focus on dynamic partitioning and
the practical use of variable partitioning and gang scheduling is a symptom of
disagreement even about the fundamental questions.

System design is (or at least, should be) driven by requirements. Thus one
source of disagreement about the merits of different designs is controversy over
exactly what are the requirements that need to be satisfied. Some requirements
reflect first principles, e.g. that jobs must be isolated from each other, that an
accounting service be provided, that the scheduler be aware of the fact that mul-
tiple processes belong to the same job (and all should be killed if one terminates
abnormally), and that systems where processors have somewhat different con-
figurations have to be supported efficiently [40, 37]. In addition, it is important
to understand the workload that must be supported.

Obviously, the workload is related to the ultimate use of the parallel machine.
It seems that parallel supercomputers are used for three main reasons:

— Short response time. Parallelism enables a computation to complete in
less time, and this may make a qualitative rather than just quantitative
difference. For example, reducing the time to compute a 3-day forecast from
a week to a day makes it relevant. At the interactive level, running a circuit
simulation in a matter of minutes rather than hours allows an engineer to
iteratively tinker with parameters; leading to increased productivity.

— Large resource requirements. Parallel supercomputers allow more re-
sources to be harnessed to solving the same problem than other systems.
The resources in question can be both compute power and memory. An ex-
ample is the GF-11, which took about a year to perform a calculation aimed
at verifying the theory of Quantum Chromo-Dynamics. Of course paging can
provide large virtual memory, but for large parallel supercomputers the time
penalty for paging significant amounts of memory is enormous.



— Because it’s there. Parallel processing is intriguing and challenging be-
cause 1t is inherently different from the sequential human stream of con-
sciousness (as opposed to the underlying structure of the brain, which is
massively parallel). This fascinates and attracts many people. Moreover, in
the last few years, it has been the “in” thing to do. This is an important
factor, because users are human beings who do not always perform a full
cost/benefit analysis before choosing a course of action. The fact that many
vendors report that entry-level systems account for a large fraction of their
sales, as opposed to large-scale systems, bears testimony to the fact that
many parallel systems are not used to solve extremely large or time-sensitive
problems, as implied by the previous two categories.

In addition, there are secondary reasons such as development and debugging of
parallel application. These activities are important because their requirements
are typically different from those of the application being developed: less re-
sources are needed, and an interactive response time is crucial.

So what does all of this mean for parallel scheduling? Above everything else,
it means that arguments to the effect that parallel supercomputers should only
be used in batch mode for large problems are wrong. There is a very diverse set
of requirements, spanning a spectrum from rather small interactive jobs, through
large but time-sensitive jobs, to very large and not-time-sensitive jobs that can
be satisfied by a batch system [12]. The problem is that these different classes
may be present on the same system at the same time, and each must be serviced
according to its unique requirements. This wide distribution of requirements
implies that some sort of time slicing has to be used [35].

An important aspect of workload requirements that 1s often overlooked is
memory and secondary storage. In fact, many respectable commercial parallel
systems (e.g. the CM-5) do not support memory paging: applications are re-
quired to fit into physical memory. When a machine is dedicated to executing
a very large application for a very long time, the overhead of a fancy scheduler
i1s not worthwhile and, similarly, the overhead of a paging system may not be
worthwhile. If the machine is shared among a number of applications, their com-
bined requirements are required to fit into memory. Many proposed scheduling
schemes make the same assumption, and fall apart once memory considerations
are introduced. The simple solution adopted by some recent systems, such as the
IBM SP2 and Meiko CS-2, is to have independent paging on each node. This has
the undesirable side effect that processes can be blocked asynchronously for rel-
atively long periods, preventing fine-grain synchronization and communication
from taking place [49]. To quote a somewhat overused phrase, “there must be a
better way”.

The main thing to remember is that scheduling is not an isolated issue.
Scheduling is but one service provided by the operating system. The solution
to the scheduling problem must be integrated with solutions to other problems,
e.g. memory management and I/0O. The different parts of the system must work
together to create a cohesive whole in a way that makes sense. To illustrate the
point, here is a list of simple ideas, for the simple case of an SPMD or dataparallel



model of computation:

— The system can use collective I/O operations as collective context-switching
points for gang scheduling.

— The system can use a page fault by one process to trigger a prefetch for the
same page in other processes.

— Swapping can be done by collective 1/O, where the program images on all
processors are downloaded to multiple disks in parallel.

Other ideas have also been proposed [10, 41]. Regrettably, many systems do not
take such a comprehensive approach. The reason is that creating a useful cohesive
system is an order of magnitude® harder than creating a working prototype, and
that is already hard enough. However, the fact that a cohesive system must be
the ultimate goal should not be forgotten, together with the implications of this
goal, in terms of restrictions on the scheduling scheme so that it will not conflict
with other sub-systems.

In this context, it 1s fair to note that requirements go both ways. If the users
require support for both interactive and batch jobs, possibly with very large
memory demands, the scheduling subsystem may respond that such support can
only be achieved if enough 1/0O capabilities are provided to perform swapping at
a high rate. This is not always the case, as installations skimp on I/O resources
to reduce system costs, leaving the scheduler in a no-win situation. The challenge
is to design the system so that it can take advantage of such resources if they
are available, and to quantify the effect of doing without them if they are not,
so users can make an informed choice [1]. Ignoring the issue is not a viable
alternative.

Finally, one should remember that the operating system is there to serve
applications, and through them, to serve users, and the client is always right.
Thus the operating system should provide opportunities, not impose restrictions.
In the context of scheduling, it does not do to support only certain models of
computation, and limit users to their use. It is hard enough to program parallel
machines effectively without restricting the available tools and idioms. In ad-
dition, it 1s important to provide consistent and predictable service, including
provisions for fairness and control [45].

5 Evaluation

Designs must be evaluated carefully to gauge their effectiveness. For evaluation
to be meaningful it should measure something meaningful. In system design,
the meaningful metric is adherence to the requirements, i.e. support for the ex-
pected workload. This has two aspects. The first is functionality (e.g. interactive

® Brooks estimates a factor of three for each of the two main hurdles, regardless of the
order in which they are undertaken; these are (1) system integration and (2) creating
product-quality, tested, documented, and maintainable software [6].



response time and virtual memory). The second is performance (e.g. low average
response time and high throughput)*.

The most precise form of evaluation is to implement a full system and measure
its performance when used in a production environment. However, this is not
a realistic option in many cases, and misses the whole point of being able to
gauge the performance implications of a certain design without the expense and
delay involved in a full implementation. This does not mean that measurements
of real systems are not important — they are important, but not as a design
tool, rather as a tool to assess the need for additional improvements and as a
yardstick for other systems.

Evaluation of designs prior to implementation therefore depends on simu-
lation and analysis. Simulation often has the advantage that it can provide a
more accurate characterization of the system, because any details that are felt
to be important can be simulated. Analysis has the advantage that it may lead
to equations that provide a concise description of system behavior as a function
of its parameters.

The quality of the results of both simulation and analysis hinges on the qual-
ity of the inputs that are used. In particular, the workload model must faithfully
represent the workload that will be imposed on the real system. Regrettably,
there is very little data about real systems, and far too many papers include the
phrase “due to lack of any real data, we assume...”. This again points out the
utility of measurements of real systems, albeit not measurements of the system
performance per se but rather measurements of user behavior [12].

The usefulness of the results obtained from simulation or analysis depends
on the metrics that are used. Amazingly little work has gone into defining and
evaluating metrics. Even the straightforward metrics such as average response
time and throughput have problems. With response time, the question is whether
to use absolute values (which gives larger weight to large jobs) or to normalize the
response time by the amount of work that is done, and use the slowdown as the
metric. Throughput and utilization actually depend on the arrival process more
than on the system itself (unless it becomes saturated). The most meaningful
metric also depends on the type of system. For example, response time is the most
important metric for interactive systems, and is largely meaningless for batch
processing (assuming there is no starvation). On the other hand, makespan can
be used to gauge the effectiveness of a batch system (which often operates in an
off-line mode), but is useless for interactive systems. Finally, when combining the
results of multiple experiments, care must be taken to use the correct method
for averaging [42].

Instead of using multiple independent metrics, it has sometimes been pro-
posed to combine them into a derived metric. For example, “power” is loosely
defined as the throughput divided by the response time, so it goes up when
throughput goes up or when response time goes down [25]. However, it is not
clear that this simple equation captures the relative importance of the two orig-

* Note that we make a distinction between the qualitative requirement of interactive
response time and the quantitative measure of low average response time.



inal metrics. Maybe a more complicated equation would give better predictive

power.
Finally, there is a whole range of metrics that are not used because they
are hard to measure and quantify — the metrics related to user satisfaction.

The hidden assumption is that user satisfaction is linearly correlated with the
measured metrics, such as average response time. But this is not necessarily
the case. User perception of the quality of service may be different from that
predicted by simple algebra. For example, the difference between response times
of 10 seconds and 100 seconds can be very meaningful, because the first is barely
interactive whereas the latter is in that inconvenient range where you cannot
work continuously but also cannot go to get coffee. The difference between 10
minutes and 100 minutes may be less meaningful. For humans, important metrics
are “below a couple of seconds” and “lack of surprises” (which can be translated
as low variability).

6 Conclusions

The issue of job scheduling has suffered due to the common lack of distinction
between job scheduling by the operating system and static or dynamic schedul-
ing within an application by the programmer or runtime system. Nevertheless,
hundreds of papers about parallel job scheduling have been published. Despite
this large body of work, we seem to be at the beginning of a long road, and much
remains to be done. Specific topics that cry out for further research include:

— Integration of scheduling with other system services, and most notably, with
memory management. This includes requirements that the scheduling sub-
system places on the hardware and 1/O sub-system, and interactions between
the different sub-systems.

— Better characterization of the workloads that are found on general purpose
parallel systems. This includes the jobs themselves (how many processors
they use, how much memory they need, how long they run), and issues such
as the arrival process.

— Evaluation of alternatives that is both fair (i.e. use the best possible imple-
mentation of each scheme) and informative (i.e. use the same workloads and
metrics, and make it the right metrics).

Of course, there 1s also ample place for more work on scheduling schemes for
both common parallel systems and emerging new types of systems, such as mul-
tithreaded architectures [1] and NOWs [36]. The future will tell which of these
survive the ultimate test, that of satisfying real users.
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