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Discussing job scheduling on a parallel computer is hard because it means somany di�erent things to so many di�erent people. The large variety of parallelprogramming languages, parallel computer architectures, and parallel operatingsystems, means that there is no one ideal scheduling strategy. The problem isexacerbated by the large variety of vague goals. For example, it is not clear if theresponse time of individual jobs, i.e. the makespan, should take preference overthe overall system throughput. Also, it is hard to compare actual schedulers incommercial products handling real workloads with academic studies of idealizedschedulers exercised by synthetic workloads.The scheduling requirements depend on the environment. For parallel com-puters used as dedicated machines for solving single large applications and bench-marks or allocated to a small group of researchers for evaluation purposes, sched-ulers are not so important. But when large parallel computers are to be sharedby a wide range of users, some with large batch jobs and others with smaller in-teractive jobs, proper scheduling and resource allocation becomes a critical issue.Very few people are willing to wait a month to get one hour on a supercomputer;the application usually could be �nished sooner on a dedicated workstation. Itmay be necessary to satisfy individual job needs at the expense of total systemthroughput.This paper �rst outlines the range of objects that are to be scheduled. Asurvey of the scheduling approaches is then presented. The paper concludes withseveral comments about the requirements for job scheduling and the evaluationof scheduling schemes. Throughout, it also serves to put the other papers in thisvolume in context.2 BackgroundA major problem in talking about \scheduling on parallel machines" is thatthis expression means di�erent things to di�erent people. We therefore start bydistinguishing among the di�erent classes of objects that are to be scheduled onparallel systems. The major objects are jobs and threads. Jobs are autonomousprograms that execute in their own protection domain. One job should not beallowed to access the memory of another job nor interfere with the other job'smessage-space. A job may consist of many threads, i.e. a parallel job, and maybe batch or interactive. We use the term \thread" to specify the thing thatcan execute in parallel in a parallel program. It is synonymous with terms like\chore" or \activity" as sometimes used by others.We prefer thread rather than \task", as this latter term has been used withinnumerable conicting meanings in the literature. Furthermore, we reserve \pro-cess" to denote an autonomous execution unit. Thus in uniprocessors the termsjob and process are synonymous. In parallel systems, if the operating system isaware of the fact that multiple executing entities are parts of the same applica-tion, we call them threads and the whole thing together is a job. If, on the otherhand, the interacting entities are independent as far as the operating system isconcerned, we call them processes. For the operating system, each of these pro-



Communication patternStatic DynamicStatic DAG SPMD, HPFThreadcreation Dynamic DataowFunctional Nested parallelismUnix fork-joinFig. 1. A simple classi�cation of parallel programming styles. The range is actuallymuch more complex than what is shown here.cesses is a separate job, whereas for the user they collectively represent a singlejob.While a parallel job consists of threads whose execution is speci�ed in aparallel program, there is no single universally agreed upon parallel programminglanguage. Figure 1 gives a very broad classi�cation of parallel programminglanguages. The threads can be static or dynamic and the communication betweenthem can be static or dynamic. For example, in a Single Program, MultipleData (SPMD) language, the number of threads is �xed and is often equal to thenumber of processors, but the communication patterns between the threads canchange dynamically during the execution.Threads can be very light-weight, as in the case of dataow or functionalprogramming with very limited communication | data is passed to the threadupon its creation, and the thread passes on data when it terminates. In thiscase, there are few restrictions on where the thread can execute. On the otherhand, threads can be heavy-weight involving lots of computation and manycommunications with other threads. In a message-passing systems, such threadsoften cannot be moved once begun since most message-passing libraries usephysical processor addresses for messages to avoid a level of indirection for eachcommunication.The machine architecture thus has a serious impact on the scheduler. Figure2 gives a very coarse classi�cation. In machines in which processors are assembledin a restricted topology such as a mesh or hypercube, jobs are assigned to speci�cpartitions of the machines, e.g. subcubes. In symmetric multiprocessors withShared memory Message passingComplete UMA SMPs IBM SP2network SGI Challenge NOWsMixed KSR TMC CM-5Visible NUMA Intel Paragontopology Cm�, DASH Cray T3DHypercubesFig. 2. A simple classi�cation of parallel machine classes. \Mixed" denotes cases thathave characteristics of both complete networks and topological restrictions. (SMP =Symmetric Multiprocessor; UMA = Uniform Memory Access; NUMA = Non-UniformMemory Access)



uniform access to shared memory, it is easy to stop a thread and rescheduleit on any other processor. Some machines o�er a mixture: the KSR is billedas an UMA machine, due to the automatic migration of data to wherever it isneeded, but has a clustered structure. The CM-5 o�ers a complete-network viewin terms of message passing, but can only be partitioned according to subtreesof its fat-tree network.The following subsections review some of the classes of scheduling. Eachclass may have its own goal or be directed at a particular class of machines orlanguages.2.1 Static SchedulingIn order to understand the theoretical limitations of scheduling, a restrictedversion of parallel programs is considered in which there is nearly completeknowledge of the computation. An application is modeled as a directed acyclicgraph (DAG) where each node denotes a task and directed edges or arcs denotedependencies among the tasks: the task at the origin of the arc must completebefore the task at its end may commence. These dependencies typically representdata transfers, i.e. the task at the sink of a directed arc uses some data valuesthat are generated by the task at the source of the arc. Both nodes and arcsmay have weights attached to them. The weight of a node denotes the requiredamount of computation, while the weight of an arc denotes the amount of datathat is transferred.When the system is modeled as a set of homogeneous processors, that caneach execute one task at a time, the objective is usually to minimize the makespan[31]. In some cases, communication costs are also explicitly modeled. Thus if twoneighboring tasks are assigned to di�erent processors, the second one is delayedby an amount of time proportional to the weight of the arc between them, butif they are assigned to the same processor, there is no such delay.Many restricted cases of DAG scheduling have been shown to be NP-complete,meaning that it is impractical to look for an optimal schedule. This is true evenfor very restricted special cases, e.g. when communication is free and all taskshave unit execution times [48, 18].Many parallel programming styles are close to the DAGmodel, although withsubstantially less information. Dataow, functional programming, and otherside-e�ect free programmingmodels can be viewed as DAGs. Consequently, vari-ous heuristics have been developed to approximate good schedules. One approachis to assign priorities to nodes in the DAG according to their distance from thetermination node. Another concentrates on the critical path in the DAG. Whencommunication costs are taken into account, the main issue is how to partitionthe DAG into clusters of nodes, and then schedule these clusters on processors.This is a compromise between two conicting forces: keeping nodes separate in-creases parallelism at the cost of communication, whereas clustering them causesserialization but saves on communication [29, 34]. If the interconnection networkhas some speci�c topology, this can also be taken into account [5].



2.2 Scheduling in the Runtime SystemWhile DAG scheduling has generated a large body of research, much of it cannotbe applied to programming environments that use other representations. In manysuch environments, the programmer is actually shielded from the details of howthe program is mapped onto the machine. The details are then handled by theenvironment's runtime system.One example of this approach is the use of thread packages [33]. The appli-cation is structured as a set of interacting threads. The environment suppliesfunctions for thread creation, synchronization, and termination. The runtimesystem is responsible for implementing these functions when they are called.Another example is the use of parallelizing compilers. Parallelizing compilersusually extract parallelism from the loops of sequential programs. At runtime,the di�erent loop iterations are scheduled for execution on distinct processors[28]. A typical approach is to assign decreasing chunks of iterations to the dif-ferent processors, so as to balance the load on one hand while avoiding extracoordination on the other. Again, the programmer does not have to worry abouthow this is done.2.3 Scheduling in the Operating SystemScheduling by the programmer or runtime system aims to satisfy the individualneeds of the program in question. But when multiple programs must co-existin the same system, it is necessary to balance the needs of the individual withthose of the community in general. Such considerations and mechanisms lie inthe realm of the operating system.The fact that the mechanisms and considerations of scheduling at the oper-ating system level are sometimes very similar to those applied at the applicationand runtime level has, in our opinion, hindered progress | it is not clear whois in charge of the problem. The spectrum of opinions range from those whoclaim that most scheduling should be done at the application level, keeping theoperating system out of the loop [2], to those that prefer to let the operatingsystem do all the work [4]. Interrupts, context switches, and memory swappingare overheads that can be very costly on a parallel supercomputer. However, asparallel systems become more commonly used, there is growing recognition ofthe need for resource management at the operating system level. For example,this is where jobs can be isolated from each other, giving each the �ction of adedicated (virtual) machine, and where accounting functions should be carriedout. It is this class of scheduling that is addressed in the rest of this paper.Many requirements make scheduling di�cult. For example, it is importantthat di�erent jobs execute in di�erent protection domains. That is, one job can-not access the memory or message space of another job. A second di�culty isthat on many machines, partitions have to match the topology of the machine,e.g. only subcubes can be used on a hypercube. Yet another problem is that inmany message passing systems, source and destination addresses are hardwired



so that a thread cannot be easily migrated between processorss. Therefore mul-tiple di�erent approaches are used in di�erent systems, as described in Section3.2.4 Administrative SchedulingFinally, some scheduling decisions are made at an administrative rather than ata technical level. For example, the head of a computing facility may decide that acertain project should get exclusive access to a certain machine for three weeks,in order to achieve some project goals. Or, it may be the policy to encourageshort massively parallel jobs instead of longer jobs of smaller parallelism. Or,what should be the ratio of batch jobs to interactive ones. While no research isdone on this type of activity, it undeniably has a signi�cant e�ect on many users.Mechanisms that enable such policy control are of interest. Finally, there is theissue of accounting and how to charge users for the computational resources theyconsume.3 Current ApproachesIn order to multiprogram a parallel machine, the operating system has to decidewhen to execute each job and on which processors. In general, it is possible touse time slicing (jobs share the use of the same processors), space slicing (eachprocessor is allocated to a speci�c job until its completion), or a combinationof both. Time slicing may not always be a viable option. On some systems itmay be costly or even impossible to switch protection domains, or applicationsmay use massive amounts of physical memory that could take many minutes topage in and out. Similarly, space slicing may not be reasonable if the networkis not partitionable, protection cannot be assured, or applications require thefull parallelism of he machine. Since many parallel machines are superlinear intheir cost as a function of processors, extensive use of partitioning does not makeeconomic sense. An interesting observation is that the two sharing schemes arelargely orthogonal, so various combinations can be tried. Indeed, a remarkablevariety of approaches have been devised over the years (see Fig. 3) [11].The following subsections survey the four most popular approaches: globalqueue, variable partitioning, dynamic partitioning with two-level scheduling, andgang scheduling. Of these, two emphasize the use of space slicing (variable anddynamic partitioning), and two the use of time slicing (global queue and gangscheduling). For each, we briey identify where it is applicable (usually dependson the machine architecture), and highlight its strengths and weaknesses.3.1 Global QueuePerhaps the simplest way to implement a parallel operating system scheduler isto run a copy of a uniprocessor system on each node, while sharing the maindata structures, speci�cally the run queue. Threads that are ready to run are
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Fig. 3. Examples of systems that use di�erent combinations of space slicing and timeslicing (updated from [11]).placed in this queue. Processors pick the �rst thread from the queue, executeit for a certain time quantum, and then return it to the queue. This approachis especially common on small-scale bus-based UMA shared memory machines,such as Sequent multiprocessors [46] and SGI multiprocessor workstations [3],and is also used in the Mach operating system [4].The main merit of a global queue is that it provides automatic load sharing.No processor is idle if there is any waiting thread in the system. However, thiscomes at a price. One problem is contention for the global queue, which growswith the number of processors. Another is that threads will typically executeon di�erent processors each time they are scheduled. As a result, threads can-not stash data in local memory, and their cache state is wiped out with eachrescheduling. This e�ect is countered to a certain degree by a�nity scheduling,which attempts to re-schedule threads on the same processors they used before[47]. Alternatively, it is possible to provide global load balance with local queuesand occasional migration to overcome any imbalance [39].A third problem with a global queue is that the threads in a single applicationare scheduled in an uncoordinated manner. This may be �ne if the threads donot interact with each other. But in many parallel programs the threads do



interact and synchronize with each other. If the interaction is at a high rate (i.e.a �ne granularity), the lack of coordination in the scheduling implies that oftenthe interacting partners will not be executing at the same time. Therefore theinteractions will not be able to proceed, inducing extra context switches andoverhead [16].Finally, scheduling from a global queue has the interesting property that theservice a job receives is proportional to the number of threads that it spawns. It issubject to debate whether this is good or bad. On one hand, this is a natural wayfor jobs that require more computation to get the necessary resources. On theother hand, it impairs fairness and might be susceptible to user counter measures.These problems can probably be solved by suitable accounting practices.3.2 Variable PartitioningAnother simple approach to multiprogramming parallel machines is to partitionthe processors into disjoint sets and execute each job in a distinct partition.There are di�erent approaches to partitioning, and the following taxonomy iscommon (see Fig. 4) [11]: Fixed partitioning is when the partition sizes are set inadvance by the system administrator. Repartitioning requires a reboot. Variableis when the set of nodes are partitioned according to user requests when jobs aresubmitted. That is, a large partition can be divided into smaller partitions toallow several small jobs to execute in parallel. Partitions are fused when the jobsterminate. Adaptive is when the partitions are automatically set by the systemaccording to current load when the job is submitted. Dynamic is when the sizecan change at runtime to reect changes in requirements and load. Of these, themost popular are variable and dynamic partitioning.Parameters taken into accountScheme User request System load ChangesFixed no no noVariable yes no noAdaptive yes yes noDynamic yes yes yesFig. 4. A taxonomy of partitioning schemes.Variable partitioning is popular on distributed memorymachines, and is usedon Intel and nCUBE hypercubes, on the IBM SP2, on the Intel Paragon, on theMeiko CS-2, and on the Cray T3D. The non-uniform memory access feature orthe lack of a shared address space of these machines make the previous globalqueue approach impractical. The advantages of running a job on a dedicatedpartition with variable partitioning is that this gives a good approximation of adedicated machine. It places the needs of individual jobs over that of the system.The program has control over the distribution of data in the memories of theprocessors on which it runs. There is no cache interference, and no operating



system overheads. Depending on the system topology, there may also be nonetwork interference (in hypercubes, for example, each subcube uses a disjointset of links, but in systems that use a multistage network, such as an IBM SP2,some links may be shared by di�erent partitions).Of course, variable partitioning also has some disadvantages. These disadvan-tages stem from the possible mismatch between the available processors and theuser requests. Two distinct problems may occur. One is fragmentation, whichoccurs when the available (free) processors are insu�cient to satisfy the requestsof any submitted jobs, so these processors are left idle. The other problem isthat submitted jobs can be queued for a long time until the requested processorsbecome available. This is especially severe when big jobs are involved: a job thatrequires all the processors cannot run as long as other jobs are running, andonce it does run no other job can commence. Even if allocated processors aremomentarily idle due to an I/O operation, they cannot be given to another job.Therefore variable partitioning is more suitable for batch processing than forinteractive work. Indeed, the inability to run a program when desired sometimescauses signi�cant user frustration, especially during the program developmentphase. To reduce this e�ect, sophisticated batch systems are designed [24, 21, 27].3.3 Dynamic Partitioning with Two-Level SchedulingOne way to reduce the waiting time of queued jobs is to prevent jobs frommonopolizing too many processors when the system is heavily loaded. This isdone by adaptive partitioning schemes, and several ideas about how to allocatethe processors have been proposed [38]. The problem with adaptive partitioning,however, is that once a number of processors are allocated to a job this numberis �xed until the job terminates. It does not change in response to load changes,and cannot be changed to reect changes in the degree of parallelism in the job.Changes in allocation during execution are provided by dynamic partition-ing. To support such behavior, applications are required to use a programmingmodel that can both express changes in requirements and handle system-inducedchanges in allocation. This is typically done by using a workpile model, wherethe work to be done is represented as an unordered pile of tasks or chores, andthe computation is carried out by a set of worker threads, one per processor,that take one chore at a time from the workpile. This decouples the work (thechores) from the agents of computation (the workers), and allows for adjustmentto di�erent numbers of processors by changing the number of workers. The resultis a two-level scheduling scheme: the operating system deals with the allocationof processors to jobs, while the applications handle the scheduling of chores onthose processors.Dynamic partitioning with two-level scheduling is probably the most stud-ied parallel scheduling scheme, and has repeatedly been shown to be superiorto other schemes [30, 20] either by analytic means or through simulation withsynthetic workloads. This is due to a number of factors:{ There is no loss of resources to fragmentation.



{ There is no overhead for context switching, except that for redistributingthe processors when the load changes. The second level of scheduling withinthe application is assumed to require less overhead.{ There is no waste of CPU cycles on busy waiting for synchronization, asthread blocking incurs little overhead.{ The degree of parallelism provided to each job is automatically decreasedunder heavy load conditions, leading to better e�ciency. Programming envi-ronments may shelter the application programmer from having to deal withsuch dynamic changes explicitly.However, dynamic partitioning does have its drawbacks. It does not supportpopular programming styles such as the SPMD (used by MPI) and dataparallel(used by HPF) models. Moreover, it could lead to extensive queueing if su�cientprocessors are not available. And the overheads for repartitioning, which includeswitching processors from one protection domain to another, may negate thebene�ts that were expected [44].In addition, dynamic partitioning requires extensive coordination betweenthe operating system and the application's internal scheduler, so as to handlethe changes in processor allocation e�ciently [2]. For example, if a processoris taken away from an application, the whole application might deadlock if thethread running on that processor happened to be holding a lock. To preventsuch scenarios, the application's runtime system should be noti�ed so it can takeappropriate action. This means that the operating system and the programmingenvironment runtime systemmust be designed together, limiting their portabilityand ability to work in other environments. A possible solution is to only changethe processor allocation at certain points in the program, e.g. at the beginningof a new parallel loop [50].As a result of the above shortcomings, dynamic partitioning has so far beenused only to a very limited degree, mainly in the context of running paralleljobs on networks of workstations, where the workstation must be returned to itsowner when required [8, 36].3.4 Gang SchedulingThe only way to guarantee interactive response times is via time slicing. However,if done in an uncoordinated manner, as with a global queue, this can lead to largeine�ciencies. Rather, the context switching should be coordinated across theprocessors. Thus all the threads in the job will execute at the same time, allowingthem to interact at a �ne granularity. In addition, the threads can be mappedpermanently to processors, thus allowing them to make use of local memory andmaybe to bene�t from sustained cache state. This solution is completely general,and works for any programmingmodel. In fact, it decouples the application fromthe operating system. It is used by some vendors, e.g. the CM-5 from ThinkingMachines [26], the IRIX system on SGI multiprocessors [3], the Intel Paragon[23], and the Meiko CS-2, and has also been studied in academia and researchprototypes [32, 13, 19, 22].



An interesting variant of gang scheduling is based on the observation thatcoordinated scheduling is only needed if the job's threads interact frequently [16].Therefore the rate of interaction can be used to drive the grouping of threads intogangs [17, 43]. Other variants include coscheduling, which attempts to schedulea large subset of the gang if it is impossible to schedule all the threads at once[32], and family scheduling, which allows more threads than processors and usesa second level of internal time slicing [7].The price of gang scheduling is that the overall system performance is not al-ways optimal (although it does favor individual jobs). There is some interferencein the cache, and overhead for the context switching. In addition, there may besome processor fragmentation. However, due to the time slicing, its e�ect is lesssevere than in variable partitioning [14, 15]. Indeed, most studies �nd that gangscheduling is nearly as e�cient as dynamic partitioning [9].4 The RequirementsLiterally hundreds of papers have been written about job scheduling in parallelsystems (see [11]). However, in many respects, we are at the beginning of thebeginning. The split between the academic focus on dynamic partitioning andthe practical use of variable partitioning and gang scheduling is a symptom ofdisagreement even about the fundamental questions.System design is (or at least, should be) driven by requirements. Thus onesource of disagreement about the merits of di�erent designs is controversy overexactly what are the requirements that need to be satis�ed. Some requirementsreect �rst principles, e.g. that jobs must be isolated from each other, that anaccounting service be provided, that the scheduler be aware of the fact that mul-tiple processes belong to the same job (and all should be killed if one terminatesabnormally), and that systems where processors have somewhat di�erent con-�gurations have to be supported e�ciently [40, 37]. In addition, it is importantto understand the workload that must be supported.Obviously, the workload is related to the ultimate use of the parallel machine.It seems that parallel supercomputers are used for three main reasons:{ Short response time. Parallelism enables a computation to complete inless time, and this may make a qualitative rather than just quantitativedi�erence. For example, reducing the time to compute a 3-day forecast froma week to a day makes it relevant. At the interactive level, running a circuitsimulation in a matter of minutes rather than hours allows an engineer toiteratively tinker with parameters, leading to increased productivity.{ Large resource requirements. Parallel supercomputers allow more re-sources to be harnessed to solving the same problem than other systems.The resources in question can be both compute power and memory. An ex-ample is the GF-11, which took about a year to perform a calculation aimedat verifying the theory of Quantum Chromo-Dynamics. Of course paging canprovide large virtual memory, but for large parallel supercomputers the timepenalty for paging signi�cant amounts of memory is enormous.



{ Because it's there. Parallel processing is intriguing and challenging be-cause it is inherently di�erent from the sequential human stream of con-sciousness (as opposed to the underlying structure of the brain, which ismassively parallel). This fascinates and attracts many people. Moreover, inthe last few years, it has been the \in" thing to do. This is an importantfactor, because users are human beings who do not always perform a fullcost/bene�t analysis before choosing a course of action. The fact that manyvendors report that entry-level systems account for a large fraction of theirsales, as opposed to large-scale systems, bears testimony to the fact thatmany parallel systems are not used to solve extremely large or time-sensitiveproblems, as implied by the previous two categories.In addition, there are secondary reasons such as development and debugging ofparallel application. These activities are important because their requirementsare typically di�erent from those of the application being developed: less re-sources are needed, and an interactive response time is crucial.So what does all of this mean for parallel scheduling? Above everything else,it means that arguments to the e�ect that parallel supercomputers should onlybe used in batch mode for large problems are wrong. There is a very diverse setof requirements, spanning a spectrum from rather small interactive jobs, throughlarge but time-sensitive jobs, to very large and not-time-sensitive jobs that canbe satis�ed by a batch system [12]. The problem is that these di�erent classesmay be present on the same system at the same time, and each must be servicedaccording to its unique requirements. This wide distribution of requirementsimplies that some sort of time slicing has to be used [35].An important aspect of workload requirements that is often overlooked ismemory and secondary storage. In fact, many respectable commercial parallelsystems (e.g. the CM-5) do not support memory paging: applications are re-quired to �t into physical memory. When a machine is dedicated to executinga very large application for a very long time, the overhead of a fancy scheduleris not worthwhile and, similarly, the overhead of a paging system may not beworthwhile. If the machine is shared among a number of applications, their com-bined requirements are required to �t into memory. Many proposed schedulingschemes make the same assumption, and fall apart once memory considerationsare introduced. The simple solution adopted by some recent systems, such as theIBM SP2 and Meiko CS-2, is to have independent paging on each node. This hasthe undesirable side e�ect that processes can be blocked asynchronously for rel-atively long periods, preventing �ne-grain synchronization and communicationfrom taking place [49]. To quote a somewhat overused phrase, \there must be abetter way".The main thing to remember is that scheduling is not an isolated issue.Scheduling is but one service provided by the operating system. The solutionto the scheduling problem must be integrated with solutions to other problems,e.g. memory management and I/O. The di�erent parts of the system must worktogether to create a cohesive whole in a way that makes sense. To illustrate thepoint, here is a list of simple ideas, for the simple case of an SPMD or dataparallel



model of computation:{ The system can use collective I/O operations as collective context-switchingpoints for gang scheduling.{ The system can use a page fault by one process to trigger a prefetch for thesame page in other processes.{ Swapping can be done by collective I/O, where the program images on allprocessors are downloaded to multiple disks in parallel.Other ideas have also been proposed [10, 41]. Regrettably, many systems do nottake such a comprehensive approach. The reason is that creating a useful cohesivesystem is an order of magnitude3 harder than creating a working prototype, andthat is already hard enough. However, the fact that a cohesive system must bethe ultimate goal should not be forgotten, together with the implications of thisgoal, in terms of restrictions on the scheduling scheme so that it will not conictwith other sub-systems.In this context, it is fair to note that requirements go both ways. If the usersrequire support for both interactive and batch jobs, possibly with very largememory demands, the scheduling subsystem may respond that such support canonly be achieved if enough I/O capabilities are provided to perform swapping ata high rate. This is not always the case, as installations skimp on I/O resourcesto reduce system costs, leaving the scheduler in a no-win situation. The challengeis to design the system so that it can take advantage of such resources if theyare available, and to quantify the e�ect of doing without them if they are not,so users can make an informed choice [1]. Ignoring the issue is not a viablealternative.Finally, one should remember that the operating system is there to serveapplications, and through them, to serve users, and the client is always right.Thus the operating system should provide opportunities, not impose restrictions.In the context of scheduling, it does not do to support only certain models ofcomputation, and limit users to their use. It is hard enough to program parallelmachines e�ectively without restricting the available tools and idioms. In ad-dition, it is important to provide consistent and predictable service, includingprovisions for fairness and control [45].5 EvaluationDesigns must be evaluated carefully to gauge their e�ectiveness. For evaluationto be meaningful it should measure something meaningful. In system design,the meaningful metric is adherence to the requirements, i.e. support for the ex-pected workload. This has two aspects. The �rst is functionality (e.g. interactive3 Brooks estimates a factor of three for each of the two main hurdles, regardless of theorder in which they are undertaken; these are (1) system integration and (2) creatingproduct-quality, tested, documented, and maintainable software [6].



response time and virtual memory). The second is performance (e.g. low averageresponse time and high throughput)4.The most precise form of evaluation is to implement a full system and measureits performance when used in a production environment. However, this is nota realistic option in many cases, and misses the whole point of being able togauge the performance implications of a certain design without the expense anddelay involved in a full implementation. This does not mean that measurementsof real systems are not important | they are important, but not as a designtool, rather as a tool to assess the need for additional improvements and as ayardstick for other systems.Evaluation of designs prior to implementation therefore depends on simu-lation and analysis. Simulation often has the advantage that it can provide amore accurate characterization of the system, because any details that are feltto be important can be simulated. Analysis has the advantage that it may leadto equations that provide a concise description of system behavior as a functionof its parameters.The quality of the results of both simulation and analysis hinges on the qual-ity of the inputs that are used. In particular, the workload model must faithfullyrepresent the workload that will be imposed on the real system. Regrettably,there is very little data about real systems, and far too many papers include thephrase \due to lack of any real data, we assume...". This again points out theutility of measurements of real systems, albeit not measurements of the systemperformance per se but rather measurements of user behavior [12].The usefulness of the results obtained from simulation or analysis dependson the metrics that are used. Amazingly little work has gone into de�ning andevaluating metrics. Even the straightforward metrics such as average responsetime and throughput have problems.With response time, the question is whetherto use absolute values (which gives larger weight to large jobs) or to normalize theresponse time by the amount of work that is done, and use the slowdown as themetric. Throughput and utilization actually depend on the arrival process morethan on the system itself (unless it becomes saturated). The most meaningfulmetric also depends on the type of system. For example, response time is the mostimportant metric for interactive systems, and is largely meaningless for batchprocessing (assuming there is no starvation). On the other hand, makespan canbe used to gauge the e�ectiveness of a batch system (which often operates in ano�-line mode), but is useless for interactive systems. Finally, when combining theresults of multiple experiments, care must be taken to use the correct methodfor averaging [42].Instead of using multiple independent metrics, it has sometimes been pro-posed to combine them into a derived metric. For example, \power" is looselyde�ned as the throughput divided by the response time, so it goes up whenthroughput goes up or when response time goes down [25]. However, it is notclear that this simple equation captures the relative importance of the two orig-4 Note that we make a distinction between the qualitative requirement of interactiveresponse time and the quantitative measure of low average response time.



inal metrics. Maybe a more complicated equation would give better predictivepower.Finally, there is a whole range of metrics that are not used because theyare hard to measure and quantify | the metrics related to user satisfaction.The hidden assumption is that user satisfaction is linearly correlated with themeasured metrics, such as average response time. But this is not necessarilythe case. User perception of the quality of service may be di�erent from thatpredicted by simple algebra. For example, the di�erence between response timesof 10 seconds and 100 seconds can be very meaningful, because the �rst is barelyinteractive whereas the latter is in that inconvenient range where you cannotwork continuously but also cannot go to get co�ee. The di�erence between 10minutes and 100 minutes may be less meaningful. For humans, importantmetricsare \below a couple of seconds" and \lack of surprises" (which can be translatedas low variability).6 ConclusionsThe issue of job scheduling has su�ered due to the common lack of distinctionbetween job scheduling by the operating system and static or dynamic schedul-ing within an application by the programmer or runtime system. Nevertheless,hundreds of papers about parallel job scheduling have been published. Despitethis large body of work, we seem to be at the beginning of a long road, and muchremains to be done. Speci�c topics that cry out for further research include:{ Integration of scheduling with other system services, and most notably, withmemory management. This includes requirements that the scheduling sub-system places on the hardware and I/O sub-system, and interactions betweenthe di�erent sub-systems.{ Better characterization of the workloads that are found on general purposeparallel systems. This includes the jobs themselves (how many processorsthey use, how much memory they need, how long they run), and issues suchas the arrival process.{ Evaluation of alternatives that is both fair (i.e. use the best possible imple-mentation of each scheme) and informative (i.e. use the same workloads andmetrics, and make it the right metrics).Of course, there is also ample place for more work on scheduling schemes forboth common parallel systems and emerging new types of systems, such as mul-tithreaded architectures [1] and NOWs [36]. The future will tell which of thesesurvive the ultimate test, that of satisfying real users.References1. G. Alverson, S. Kahan, R. Korry, C. McCann, and B. Smith, \Scheduling on theTera MTA". In Job Scheduling Strategies for Parallel Processing, D. G. Feitelsonand L. Rudolph (eds.), Springer-Verlag, 1995. Lecture Notes in Computer ScienceVol. 949.
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