
1

Topology-aware Scheduling on Blue Waters with
Proactive Queue Scanning and Migration-based

Job Placement

Kangkang Li1, Maciej Malawski1,2, and Jarek Nabrzyski1

1 University of Notre Dame, Center for Research Computing, IN, USA
2 AGH University of Science and Technology, Department of Computer Science,

Krakow, Poland {kli3,mmalawsk,naber}@nd.edu

Abstract. Modern HPC systems, such as Blue Waters, has a multidi-
mensional torus topology, which makes it hard to achieve both high sys-
tem utilization and scheduling speed. The low scheduling speed comes
from the inefficient resource allocation scheme by using a pre-defined
Shape Table, which is highly time consuming. The low system utiliza-
tion is majorly caused by system fragmentation and node drainage. Sys-
tem fragmentation includes both internal fragmentation due to convex
prism shape requirement, and external fragmentation resulted from con-
tiguous allocation strategy. The node drainage is caused by lacking of
free contiguous space for allocation upon large job’s schedule. System
drainage is due to the insufficient free contiguous space to schedule the
incoming large jobs. In this paper, with the objective of resource utiliza-
tion and scheduling speed improvement, we address the topology-aware
scheduling problem on Blue Waters. To improve the scheduling speed,
we propose an efficient free partition detection algorithm. To overcome
the system drainage by large job, we propose to use proactive queue
scanning to search for large job and gain a buffer period to prepare the
system for acceptance. With the set of jobs in the scan window and a
set of free partition in the system, we can transform the scheduling into
off-line placement, which can be modeled as multiple knapsack problem.
We design a migration-based job placement heuristic to make space for
large job and improve the system utilization. Through extensive simu-
lations of modeled trace data, we demonstrate that our approach works
well in terms of improving the system utilization and scheduling speed.

Keywords: Topology-aware scheduling, multiple-knapsack, free partition de-
tection, migration-based, job placement

1 Introduction

Many high performance systems have multidimensional torus topologies, for
example Cray XE/XK has a 3D torus communication network [1], BlueGene/Q
5D [2], and the K computer a 6D torus [3] topology. However, this large-scale
network also makes it hard to achieve both high system utilization and schedul-
ing speed. For example, on Blue Waters, jobs are allocated one by one at a

fixed rate, which is one schedule cycle. A pre-defined Shape Table is adopted
to allocate the required nodes for a job. In order to place the job, the sched-
uler has to exhaustively search the entire system to find the free space with
a matching shape, which leads to a high time complexity and low scheduling
speed. To optimize the application performance, the job shape has a form of a
convex prism, which guarantees that two jobs running in parallel do not share
the communication network and thus do not interfere with each other.

The low system utilization on Blue Waters is majorly caused by two fac-
tors: system fragmentation and node drainage. System fragmentation includes
both internal and external fragmentation. The internal fragmentation results
from the the convex prism shape allocation that allocates more nodes a job than
it requests. The external fragmentation is caused by contiguous job shape al-
location strategy that makes the free system resources separated into smaller
non-contiguous blocks and interspersed by allocated resources. This will lead
to the situation when sufficient number of free nodes cannot be contiguously
allocated for a job.

System drainage is caused by the incoming large jobs, i.e. more than 1024
nodes, as typically referred to by system administrators. To accept a large job,
the system has to drain (release nodes) until sufficient space is available for
allocation. This drainage brings the system utilization down for a long period.
There are two possible scenarios of system drainage:

– The first is that, the total free resources in the system are sufficient to accept
the large job, however, due to the system fragmentation, the scheduler is not
able to find a free contiguous space for the job.

– The second scenario is that, the remaining total free resources are not suffi-
cient.

Since the impact of large jobs on system utilization is considerable, in this
paper, we will focus on addressing the problem of efficient placement of large
jobs in these two scenarios.

For the first scenario, suppose upon the large job schedule cycle, there is a
sufficient contiguous block for allocation, there will be no obstacle to immediately
place the large job and achieve a high utilization. This gives us the intuition that,
if the system is proactively prepared with enough resources before the large job
arrives at the head of the queue, we are able to avoid the system drainage and
schedule the large job.

This proactive preparation of the system requires two measures to be taken.
The first is to scan deep into the queue to proactively search for a large job. This
will gain us a buffer period to make preparations before the large job arrival.
Once a large job is detected, the second is to make preparations by implementing
a job placement reconfiguration in the system, which allows us to make space to
place the large job.

We will reconfigure the job placement in the system once a large job is de-
tected at the tail of scan window. As all the running jobs are allocated with
convex shape, we can consider them as a set of ”allocated” bins for re-allocation.

Combing the set of free bins of partitions and the set of ”allocated” bins, we
try to place the jobs in this scan window including the large job. This can be
transformed as a multiple knapsack problem, which is NP-hard. We propose a
migration-based job placement algorithm to give a heuristic solution.

For the second scenario, we will adopt backfilling to maintain the system
utilization once the start time of the large job is determined, which requires three
steps to be taken. Firstly, in the time period before the large job, we perform
proactive queue scanning and placing jobs in the scan window as normal. If there
are new large jobs detected in this period, we will mark the first large job as the
pause job point for backfilling, where we do not select the jobs ranked after this
pause point as the candidate jobs for backfilling. Secondly, upon the schedule
of large job, we determine its start time based on the computing of current
system status. Thirdly, starting from the job immediate after the large job, we
place it into the system as normal if it is a qualified candidate for backfilling. A
qualified backfilling candidate is a job ranked before the pause point and has less
walltime than the start time. Furthermore, in order to efficiently implement the
migration and backfilling, we need to improve the scheduling speed. This requires
us to design an efficient free partition detection algorithm for job placement.

The paper is organized as follows: the problem statement is presented in
Section 2. In Section 3, we propose a scheduling scheme with queue scanning
approach. In Section 4, we present the multiple knapsack model for job placement
problem. Section 5 discusses our migration-based job placement on Blue Waters.
In Section 6, we conduct simulations to validate the efficiency of our approach.
The related work is discussed in Section 7 and we give our conclusions and future
work in Section 8.

2 Problem Statement

The topology-aware job scheduling problem for the 3D torus HPC system
is formulated as follows. The system consists of X,Y, Z dimensions with torus
interconnect. E.g. in the case of Blue Waters, each dimension has 24 Gemini
routers, making the system 24*24*24 torus interconnect topological structure.
Every Gemini router contains two compute nodes. The links in the X and Z
directions are two times faster than in the Y direction, leading to the the asym-
metric communication speed in the system.

The scheduler is in charge of job prioritizing and resource allocation. All the
jobs are assigned a priority rank and are waiting in the queue to be allocated
into the system. At each schedule cycle, the processes of each job are placed into
a subset of computing nodes of the system. Each job requires a convex prism
shape to ensure the high performance by avoiding communication interference.

The objective is to design an efficient job scheduling strategy to achieve a high
resource utilization of the entire system, namely the percentage of running nodes
in the system. As we apply migration to reconfigure the job placement, we need
also design a fast free space detection algorithm for an efficient implementation
of our approach.

Algorithm 1 Proactive Queue Scanning

1: Input: the scanning window size D, ranked waiting queue Q, current head job
priority rank r

2: Output: JD
r = {Jr, Jr+1,, Jr+D}

3: while Q is not empty do
4: scan the queue with window size D
5: obtain the job set JD

r at schedule cycle with head job rank r and scan depth D
6: r = r + 1

3 Scheduling with Proactive Queue Scanning

 … …Jr+D Jr+1Jr+2 Jr

 waiting queue

 scan depth: D

queue head

placement

Fig. 1. Proactive Queue Scanning

In this section, we discuss the method of proactive queue scanning to search
for large jobs and obtain a set of jobs for placement into the system, which can
lead to a better resource allocation.

The scheduler maintains a scan window to proactively scan the queue at each
schedule cycle. The size of the scan window is the depth of scanning from the
head of the queue. This queue scanning produces a set of ranked jobs in the scan
window, and we assume each job’s walltime is known a priori. We summarize
this process in Algorithm 1.

As described in Algorithm 1, starting from current head job ranking r, we
scan the queue with depth D, and get the set JD

r of D jobs. Once a large
job is detected at the tail of the scan window, we will try to reconfigure the job
placement for accepting the large job, which we will describe in details in Section
V. If there is not large job detected, we just place the job r into the system, and
queue head will be the job ranked r = r + 1 for next cycle schedule and scan.

4 Multiple Knapsack Model

The queue scanning produces a ranked set of jobs, which will be scheduled
into the contiguous free space of the system. The system is fragmented and has

multiple partitions of contiguous rectangular free space. These partitions can
be represented as a set of rectangular bins. These bins show, at the current
placement cycle, the set of free partitions in the system.

Similar to the model used in [6], each bin can be considered as a knapsack
and the jobs are the items waiting to be put into the knapsacks. Let JD

r =
{j1, j2,, jD} be a set of D jobs in current scan window with head job ranked
r. Each job ji has weight wi, with profit pi. The physical meaning of both
weight wi is the job size and pi is determined by specific scenario. Let K =
{K1,K2,K3, ...,Km} be a set of m knapsacks. Each knapsack Kj with the initial
capacity of Cj . We want to find a placement for the D jobs into the bins to
maximize the total profit of them. The mathematical formulation is below:

Max :

m∑
i=1

D∑
j=1

xijpi (1)

Subject to :

D∑
j=1

xij ≤ 1, ∀i = 1, 2, ...,m (2)

m∑
i=1

xijwi ≤ Cj , ∀j = 1, 2, ..., D (3)

xij ∈ {0, 1}, ∀i = 1, 2, ...,m, ∀j = 1, 2, ..., D (4)

Cj ≥ 0, ∀j = 1, 2, ..., D (5)

where xij = 1 means job i is put into knapsack j, and xij = 0 means job i is
not put into knapsack j. The remaining capacity of each knapsack can never be
negative, but it will be reduced as more jobs are put into this knapsack.

Based on this multiple knapsack model, maximizing the system utilization
can be transformed into maximizing the objective of Eq. 1, which is NP-hard
and requires a heuristic solution, which we will describe in the following section.

5 Migration-based Job Placement

In this section, we propose a migration-based job placement scheme to solve
the multiple knapsack problem. Firstly, we design an efficient free partition de-
tection algorithm to find all the bins. Secondly, we present our migration-based
job placement to solve the multiple knapsack problem. Thirdly, to deal with
large jobs, we combine migration and backfilling to produce more opportunities
to higher system utilization.

5.1 Free Partition Detection

Blue Waters currently uses a pre-defined Shape Table to allocate the required
nodes for a job. In order to place the job, the scheduler has to exhaustively search

Algorithm 2 Direct Placement

1: Input: Bins ordered with decreasing preferences; incoming job
2: for all bins ordered by preferences do
3: if remaining capacity ≥ incoming job size then
4: place the job into this bin
5: else
6: try to place the job into next-highest priority bin

the entire system to find the free space with a matching shape, which is inefficient
and leads to a high time cost.

Based on the multiple knapsack model, we need to find all the free rectangular
contiguous partitions in the system for job placement. Therefore, we propose an
efficient free partition detection algorithm for fast free space search.

The system is sliced into layers along the Y dimensions, as illustrated in
Fig. 3. Along the Y dimension, using logarithmic scale, we can divide all the
XZ layers by the power of 2. Using divide and conquer idea, we can see this
system as a binary tree, where the leaf at the bottom is each XZ layer.

Each 2D layer needs O(M2) to get the largest free rectangular block. There-
fore, it needs M ∗ O(M2) to combine the matrices of every two single layer
and calculate a free 2-layer rectangular block, which corresponds to the layer of
height of 2 in the tree.

After that, going up along with tree, each 4-layer free partition need M
2 ∗

O(M2) to calculate a 4-layer rectangular block, which which corresponds to the
layer of height of 4 in the tree. Through going to the tree root, we need the total
is (1 + 2 + 4 + . . . 2log(M)) ∗O(M2) to scan the whole system and get the largest
rectangular block. It takes 2M ∗O(M2), which is O(M3) and very efficient.

Once the free bins of partitions are detected, we will place the incoming job
into one of these bins. However, there is a preference difference in placing into
different bins. The extent of internal fragmentation (the number of idle nodes
because of convex shape) is different if we place the jobs in different bins. We
want to place each job into the best bin to minimize the internal fragmentation,
and thus improve system utilization. Fig. 2 gives a 2D example.

As shown in Fig. 2, for this incoming job J1 with 6 nodes and convex shape
requirement, we should place it in the right bin instead of the left. Since the left
bin will bring 4 idle nodes wasted if convex shape is required. However, the right
bin brings no internal fragmentation. For 3D system, if the large occupy more
than one XZ plane, we we divide the job number by the size of XZ plane to get
the number of layers it will be allocated in the bin. In that case, we will know
the number of idle nodes of the allocation if job is placed in this bin.

Based on the preference ranking of these bins, we will place the incoming job
into the bin from the highest rank bin. If that bin cannot accept the job, we will
continue trying the next priority bin until the job is allocated.

5.2 Migration-based Job Placement

 J1 J1 J1 J1

 J1 J1 Internal
 Fragmentation

 J1 J1 J1

 J1 J1 J1

Fig. 2. Illustration of best bin for job placement

L1
L2
L3
L4
...
L24

x

y

z

Fig. 3. Partitioning of the system into layers by Y axis

Due to the constraint of job priority, we have to allocate the jobs from the
waiting queue one by one according to their ranking. Even if we greedily choose
the best bin for placing each job, globally, it could not be the best allocation
for the whole placement in this scan window. For instance, if the best bin one
of the incoming job is full, we can directly place this job to the next-best bin
with enough resource as our direct placement algorithm above. However, if we
migrate one job from the best bin, and place it into another bin, we can save
space for accepting this incoming job, as shown in Fig.4.

The key for implementing this migration is to find a qualified victim job
to migrate, which is not always reachable. As each job has its own profit of
placing into one bin. Migration a job will lead to a cost of profit decrease for this
victim. Therefore, this migration process needs to have constraint. The migration
constraint is that, the total profit gained through migration must be larger than

Fig. 4. An illustration of the job placement. When using direct (greedy) placement, the
incoming job is assigned to bin 1 with the enough remaining capacity C1. When using
migration, we can find an already placed job (”a victim”) to be migrated to another
available bin with enough capacity, such as bin 2 in the picture above

Algorithm 3 Migration-based Job Placement

1: Input: a set of bins ranked from 1 to K, the incoming job
2: Output: a schedule of incoming job on the set of ranked bins
3: for each bini ranked from 1 to K do
4: for each jobj on bini with rank i do
5: if migration of jobj make sufficient space for placing incoming job then
6: try to find another host for jobj
7: if jobj can be replaced into another host then
8: if migration constraint is satisfied then
9: mark jobj as a qualfied victim

10: if more than one qualified victim exists then
11: select the best victim with the lowest migration constraint
12: proceed migration-based job placement

that without migration process. The profit will have different meaning under
different scenarios, and we will present one case in Section V.

In sum, There are three qualifications that such a qualified victim job must
meet:

1. it can save enough resources for accepting the incoming job
2. it can find a new available host with enough remaining capacity to accept

the victim job itself, and
3. the migration constraint must be satisfied.

If such a qualified victim job is found, then this migration process is viable. If
more than one qualified victim jobs exists in that bin, we choose the victim job
with the minimal idle nodes increase. However, there exists special circumstance
for a particular incoming job:

– We cannot find a qualified victim job in the best bin. In that case, we try
the next-best bin. If the incoming job still cannot be placed, we continue to

try the next-next-best bin. This search loop goes on until the incoming job
is placed, or all the bins are tried.

With M jobs to be placed and N bins available in the system, assuming
the average number of placed jobs on a bin is K, then, the time complexity of
Algorithm 2 is O(KN), which is no more than O(M). In sum, the migration-
based job placement costs only O(M2), which is very efficient.

6 Backfilling with Migration-based Job Placement

During the queue scanning, once a large job is detected and there is not
sufficient space to schedule it in any of the free partitions, we need to drain
the system and we will use backfilling to maintain high system utilization at the
same time. However, before considering backfilling, we can try to reconfigure the
job placement in the system if the total resources in the system are sufficient to
accept the large job.

As jobs are scheduled at a fixed rate, based on prediction and system scan-
ning, we can maintain a list of future running jobs in the system upon the the
schedule of large job. This list of running jobs also can be seen as a set of ”pre-
allocated” bins for re-placement. Combining this set of pre-allocated bins and
the free partition of bins, we can transform the placement to a multiple knap-
sack problem. The input is a set of running jobs and the set of jobs in the scan
window. We can still use our migration-based heuristic to solve it and the ob-
jective of is to minimize the total migration cost, which can also regarded as the
maximizing the reciprocal of migration cost.

Migration has cost of profit decrease of the victim job. The physical meaning
of migration cost is the time delay for migration. To implement the migration,
the job needs to checkpointed, transferred and re-started on different set of
resources. Considering a shorter job which almost finish and a longer job which
just starts, the former leads to more migration cost as the amount of work it
requires to transfer is larger. Furthermore, a larger job leads to more migration
cost than the smaller one, since the extra nodes bring in more amount of data for
transmission. Therefore, We define migration cost of each job as size∗walltime∗
completion ratio. In that case, a 24 hour walltime single node job which only
runs for 1 hour has less migration cost than that of a 3 hour walltime two-node
job which has run 2 hours.

For each job, we assign a priority for each of these bins. For the set of running
jobs, the priority value is the reciprocal of migration cost for re-placement. For
instance, for an allocated job Jm, its migration cost to place into the position of
another allocated job Jn is the sum of the migration cost by these two jobs as
they are both relocated. The priority of the bins of free partitions is the reciprocal
of its own migration cost. On the other hand, for the set of jobs in scan window,
the priority value of each bin is the reciprocal of its own migration cost as well.
If a bin cannot accept a job, the bin’s priority is 0. After all the bins priority
value are determined, we will apply our migration-based job placement to find

a solution. If one viable placement is found, we perform the real migration and
rearrange the job placement. If not, we will only allocate the jobs in the scan
window before the large job into the system. After that, we use backfilling process
to maintain system utilization.

In order to implement the backfilling and determine the start time of the
large job, we need three steps.

1) Based on the lists of these running jobs, we sort them increasingly by their
remaining completion time.

2) calculate the system status and the largest free partition of the system for
each job’s completion time starting from the large job schedule to the future,
and put them in the timeline

3) Go through the timeline and stop until one sufficient largest free partition
is found to to accept the large job, remark that time as the start time of the
large job, and reserve that space.

With the start time determined and space reserved, we place the qualified
backfilled jobs into the current free partitions on the system. The qualified back-
filled jobs are those have walltime time less than the start time of the large job.
This placement can be solved using our migration-based placement algorithm as
well. However, if we encounter a backfilled job which is also large job and cannot
be placed in the system, we will stop the backfilling process and wait for the
original large job to start, avoiding redundant time cost on scheduling.

7 Performance Evaluation

In this section, we describe the simulations used to evaluate our approach to
improve the system utilization. We use simulated data to show the improvement
of scheduling with proactive queue scanning and migration-based job placement
reconfigurations. To emulate an non-empty system, we start to record the result
data after the system is the first time 80% occupied.

We conduct three groups of simulations to find out the impact of the size of
scan window on the performance of our migration-based job placement.

As we can see from Fig. 5, our approach achieves the system utilization on the
level of around 90 percent. This shows that, our migration-based job placement
can improve the system utilization compared to only implementing backfilling.

Furthermore, as shown in Fig. 6, with difference size of scan window, our ap-
proach maintains similar results in terms of system utilization. This shows that,
a large size scan window, although enables us to have a long time of planning,
but does not necessarily lead to significant benefit to improve system utilization.
On the other hand, a large scan window can also bring in time cost on scheduling
computing, which is not recommended.

8 Related Work

Recent results of a collaboration between NCSA, Adaptive Computing, and
Cray, on topology-aware scheduling on Blue Waters are presented in [1]. The

system utilization %

80 85 90 95 100

nu
m

be
r

of
 it

er
at

io
ns

0

10

20

30

40

50

60

70

Fig. 5. histogram of our approach with scan window size of 100

system utilization %
80 85 90 95 100

nu
m

be
r

of
 it

er
at

io
ns

0

10

20

30

40

50

60

70

Fig. 6. histogram of our approach with scan window size of 500

first problem reported is runtime variability: e.g. PSDND application runtimes
can vary up to 4 times. The improvements of the Moab scheduler in the first
implementation enforce a strict policy prohibiting job-to-job interference. This
policy allows only node allocations which guarantee that intra-job communica-
tion would not be routed over links used by any other job. The allocations thus
have the shape of a cuboid or a rectangular prism. The experiments show that
the runtime variability is reduced considerably. Another improvement is achieved
by integrating Moab with the Topaware task mapping tool developed by Cray.
Results for synthetic 3D programs and 4D benchmark application show 2x-4x
improvement in performance.

To improve the task placement of applications with 2D, 3D and 4D Carte-
sian topologies and nearest-neighbor communication, a Topaware tool can be
used [4]. There are tools such as Caypat for profiling an MPI application and
to detect Cartesian grid communication patterns. This information can be used

system utilization %
80 85 90 95 100

nu
m

be
r

of
 it

er
at

io
ns

0

10

20

30

40

50

60

70

Fig. 7. histogram of our approach with scan window size of 1000

to provide runtime mapping of processes to the computing nodes using MPICH
node ordering. The Topaware method requires the user to specify the required
number of nodes along each torus dimension and finds the ordering by allocat-
ing nodes on subsequent XZ planes, taking into account the gaps resulting from
service nodes. For mapping the 2D virtual topology to the 3D torus, a folding
method is used. Topaware was evaluated using the WRF, VPIC, S3D and MILC
applications.

An overview process of mapping techniques and algorithms for HPC systems
is presented in [5]. It discusses algorithmic strategies for topology mapping, such
as graph partitioning, mapping enforcement techniques (resource binding and
rank reordering), as well as existing solutions and their implementations. This
provides a formal definition of the mapping as an optimization problem, and
discusses the metrics such as dilation or congestion.

The problem of scheduling jobs on BlueGene/Q system with a 5D torus inter-
connect is addressed in [2]. BlueGene allows allocating network links exclusively
to the selected jobs, which can optimize their performance, but it can leave un-
used nodes within the system partitions, which leads to lower utilization. The
shapes of partitions are the rectangular prisms. The authors use benchmarks
to evaluate the application sensitivity to network configuration and propose a
communication-aware scheduling policy that takes into account application char-
acteristics. The scheduling policies are evaluated using Qsim, which is a simulator
of the Cobalt resource management system used for BlueGene.

In another work related to BlueGene [6], window-based locality-aware job
scheduling for torus-connected system is designed to balance job performance
with system performance. While the goal is similar to ours, the torus topology
is not fully studied in the paper and the scheduler takes all the input jobs as
a one-dimensional item, along with the available slots in the torus. However, in
our work, we fully investigate torus and job geometric characteristic and propose
our topology-aware job mapping strategy.

Furthermore, bin packing [7, 8] is also a related topic. In the bin packing
problem, we have a set of bins with fixed capacity limitation and a set of items
with given size to be placed into these bins. The objective is to minimize the
number of bins used. The offline version is NP-hard as well.

[?] presents the analysis and application of scheduling algorithms that aug-
ment a baseline first come first serve (FCFS) scheduler. The author presents sim-
ulation results for migration and backfilling techniques on BlueGene/L. These
techniques are explored individually and jointly to determine their impact on the
system. An efficient Projection Of Partitions (POP) algorithm for determining
the size of the largest free rectangular partition in a toroidal system is devel-
oped. The results demonstrate that migration may be effective for a pure FCFS
scheduler but that backfilling produces even more benefits. It is also shown that
migration may be combined with backfilling to produce more opportunities to
better utilize a parallel machine.

In our work [Singapore] we address the job mapping problem improving the
utilization of a single queue HPC system with a multidimensional torus topol-
ogy, while preserving the performance of jobs and avoiding the communication
interference. We propose a simple but efficient resource allocation strategy based
on the amount of available space in the system and job packing, which models
the job mapping as a multiple knapsack problem. The main idea of our approach
is to pack several jobs together from the queue to place into the system. To re-
duce the internal fragmentation, we propose a zigzag shape allocation method
for the communication non-sensitive jobs and a bin selection algorithm for com-
munication sensitive jobs. To reduce the external fragmentation, we propose a
bi-directional allocation strategy to separate, in each bin, the spaces between
communication sensitive and non-sensitive jobs.

9 Conclusions and Future Work

In this paper, we addressed the problem of improving utilization and scheduling
speed of petascale systems with multidimensional torus topologies. To improve
the scheduling speed, we propose a free partition detection algorithm. To im-
prove the system utilization caused by large job drainage, we propose to use
proactive queue scanning to search for large job and gain a buffer period to pre-
pare the system for acceptance. With the set of jobs in the scan window and a
set of free partition in the system, we can transform the scheduling into off-line
placement, which can be modeled as multiple knapsack problem. We design a
migration-based job placement heuristic to make space for large job and improve
the system utilization. The simulations of modeled trace data demonstrate that
our approach works well in terms of improving the system utilization. In the
future work, we will conduct experiments on real trace data and evaluate the
efficiency of our approach.

Bibliography

[1] J. Enos, G. Bauer, R. Brunner, and S. Islam, “Topology-
Aware Job Scheduling Strategies for Torus Networks,” in Proceed-
ings of the Cray User Group meeting., 2014. [Online]. Available:
https://cug.org/proceedings/cug2014proceedings/includes/files/pap182 −
file2.pdf

[2] Z. Zhou, X. Yang, Z. Lan, P. Rich, W. Tang, V. Morozov, and N. Desai,
“Improving Batch Scheduling on Blue Gene/Q by Relaxing 5D Torus Network
Allocation Constraints,” in IPDPS 2015, 2015.

[3] Y. Ajima, Y. Takagi, T. Inoue, S. Hiramoto, and T. Shimizu, “The
Tofu Interconnect,” in 2011 IEEE 19th Annual Symposium on High
Performance Interconnects. IEEE, aug 2011, pp. 87–94. [Online]. Available:
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6041538

[4] R. A. Fiedler and S. Whalen, “Improving task placement for applications
with 2D, 3D, and 4D virtual Cartesian topologies on 3D torus networks
with service nodes,” in Proc. Cray User’s Group, 2013. [Online]. Available:
https://cug.org/proceedings/cug2013proceedings/includes/files/pap148.pdf

[5] T. Hoefler, E. Jeannot, and G. Mercier, “An Overview of Process
Mapping Techniques and Algorithms in High-Performance Computing,”
in High Performance Computing on Complex Environments, E. Jeannot
and J. Zilinskas, Eds. Wiley, jun 2014, pp. 75–94. [Online]. Available:
https://hal.inria.fr/hal-00921626

[6] X. Yang, Z. Zhou, W. Tang, X. Zheng, J. Wang, and Z. Lan, “Balancing job
performance with system performance via locality-aware scheduling on torus-
connected systems,” in 2014 IEEE International Conference on Cluster Comput-
ing, CLUSTER 2014, Madrid, Spain, September 22-26, 2014, 2014, pp. 140–148.
[Online]. Available: http://dx.doi.org/10.1109/CLUSTER.2014.6968751

[7] D. S. Johnson, “Near-optimal bin-packing algorithms,” Ph.D. dissertation,
1973. [Online]. Available: http://opac.inria.fr/record=b1000391

[8] M. R. Garey and D. S. Johnson, “Approximation algorithms for np-hard
problems,” D. S. Hochbaum, Ed. Boston, MA, USA: PWS Publishing Co.,
1997, ch. Approximation Algorithms for Bin Packing: A Survey, pp. 46–93.
[Online]. Available: http://dl.acm.org/citation.cfm?id=241938.241940

