Automatic co-scheduling based on main memory
bandwidth usage

Jens Breitbart, Josef Weidendorfer, and Carsten Trinitis

Department of Informatics, Chair for Computer Architecture,
Technical University Munich, Munich, Germany
{j.breitbart, josef.weidendorfer, carsten.trinitis}@tum.de

Abstract. Most applications running on supercomputers achieve only
a fraction of a system’s peak performance. It has been demonstrated
that co-scheduling applications improves overall system utilization. In
this case, however, applications being co-scheduled need to fulfill certain
criteria such that mutual slowdown is kept at a minimum. In this paper
we present a set of libraries and a first HPC scheduler prototype that
automatically detects an application’s main memory bandwidth utiliza-
tion and prevents the co-scheduling of multiple main memory bandwidth
limited applications. We demonstrate that our prototype achieves almost
the same performance as we achieved with manually tuned co-schedules
in previous work.

1 Introduction

Most applications running on supercomputers achieve only a fraction of a sys-
tem’s peak performance, even though carefully optimized applications are able
to get close to the this limit. It seems unlikely that code written by non-experts
will provide higher system utilization in the foreseeable future, especially with
computer architecture permanently evolving, making it a moving target for op-
timizations. Furthermore, expected trends such as increased core counts, spe-
cialization and heterogeneity will make it even more difficult to exploit available
resources.

A possible way to increase overall system utilization without optimizing the
code itself is co-scheduling, i.e., running multiple applications with different
resource demands on the same node!. Such an approach may reduce single ap-
plication performance. However, it increases overall application throughput of
the whole system and thereby produces more results with a given time frame or
energy budget. A major challenge for efficient co-scheduling is the detection of an
application’s resource requirements and predicting the applications performance
when co-scheduled with another application.

It is obviously not feasible for HPC compute centers to run every possible ap-
plication combination to decide on optimal co-schedules. As a possible solution,

! A node is one endpoint in the network topology of an HPC system. It consists of
general purpose processors with access to shared memory. Optionally, a node may
be equipped with accelerators such as GPUs).



we present a mechanism to detect application memory bandwidth requirements
at runtime and use Linux control groups (cgroups) to suspend applications if
multiple applications require a high amount of main memory bandwidth. These
mechanisms are implemented in a prototype application scheduler. We present
a set of schedules with various applications and benchmarks and demonstrate
that for these applications our scheduler works as expected and co-scheduling
can increase performance and save energy. For energy measurements we present
measurements of a whole node using a node-external power distribution unit
(PDU). The PDU, a MEGWARE? Clustsafe unit, takes the complete system
power consumption including power supply into account. The results are almost
identical to manually tuned co-scheduling results we presented previously [1].

The paper is organized as follows: First, Sect. 2 gives a detailed overview of
the hardware used for our measurements, followed by an introduction to our test
applications in Sect. 3. Section 4 analyzes the used applications and shows that
depending on the application characteristics using all cores does not necessar-
ily guarantee an optimal result. The following section (Sec. 5) discusses shared
hardware resources in an HPC node. Sections 6 and 7 introduce our new library
and scheduler. The next section discusses the results achieved with our sched-
uler. The paper finishes with an overview of related work and conclusions, in
Sects. 9 and 10, respectively.

2 Hardware overview

In this section we give a brief overview of the hardware used in this paper and
how energy consumption measurements were carried out.

All benchmarks were run on a 2 socket NUMA system. The system is equipped
with two Intel Xeon E5-2670% CPUs, which are based on Intel’s Sandy Bridge
architecture. Each CPU has 8 cores, resulting in a total of 16 CPU cores in the en-
tire system. One CPU core has support for two hardware thread contexts (HTC,
often called Hyperthreading) resulting in a total of 32 HTCs for the whole sys-
tem. The L3 cache is shared among all CPU cores. The base frequency of the
CPU is 2.6GHz, however, the CPU typically changes the frequency of its cores
based on the load of the system. Therefore, clock frequencies can vary between
cores at the same time. When a core is idle, the OS puts it into sleep state, which
significantly reduces power consumption. In case only a fraction of its cores are
used, the CPU can increase core clock frequencies (Intel Turbo Boost) up to
3.3 GHz. This is typically done to increase the performance of applications not
being able to utilize all available CPU cores, as the CPU is power efficient at
higher frequencies. The so-called thermal design power (TDP) of each CPU in
our system is 115 W, i.e. the CPU consumes about 115 W on average when all
8 cores are active and measured for a reasonably long time frame.

2 http://www.megware.com,/
3 http://ark.intel.com/products/64595/Intel-Xeon-Processor-E5-2670-20M-Cache-2_
60-GHz-8_00-GTs-Intel-QPI



700

500
& 400

“q—,‘ B CG solver
5 W MPIBlast
é 300 Hydro

W Heat Algorithm 2

2 W Heat Algorithm 9

8

3

1thhﬂﬂﬁﬁ44444444

#CPU cores

Fig. 1. The scalability of our test applications. We only use one HT'C per core.

Each CPU has its own set of memory controller with its own dedicated
DRAM memory, yet there is only a single memory address space. Each core
can access every memory location. Accesses to memory of a remote CPU, how-
ever, have a higher latency and can lead to contention. Memory is distributed
among the CPUs by the OS using a first touch policy, which is the default on
Linux (i.e. a memory page is allocated as close as possible to the core first writ-
ing to it). The location of the memory page is not changed unless explicitly
requested by the OS or the user application. Our system is equipped with a
total of 128 GB of RAM (64 GB per CPU). Furthermore there are both a QDR
Infiniband network card and an Ethernet network card in the system, however
these were idle during our measurements. All data required for the benchmark
were stored on a local SSD.

Our energy measurements were carried out using a MEGWARE Clustsafe,
which measures the energy consumed by the whole system. MEGWARE Clust-
safe is a PDU developed by the company MEGWARE and typically used in
their HPC system installations to monitor and control the power consumed by
the system. Further, accumulated energy consumption can be provided to de-
velopers and system administrators by one counter per PDU outlet which can
be queried across the network. According to MEGWARE, Clustsafe measures
energy with an accuracy of +2%. We use Clustsafe to measure the energy on the
primary side comprising all compounts of the system including cooling, network
devices and storage.

3 Test applications

We used two example applications and two benchmarks in this paper:



70000

40000

20000
0
3 4 5 6 7 8 9 10 11 12 13 14 15 16

#CPU cores

| MPIBlast

Energy (J)

Fig. 2. Power required while running MPIBlast (Watts) and the energy required for
one run (Joule).

— a slightly modified version of MPIBlast 1.6.0*

an example application using the CG solver algorithm provided by the
LAMA [2] library

the PRACE application proxy benchmark Hydro

and the heat benchmark

3.1 MPIBlast

MPIBIlast is an application from computational biology. Using MPI-only, it is
a parallel version of the original BLAST (Basic Local Alignment Search Tool)
algorithm for heuristically comparing local similarity between genome or pro-
tein sequences from different organisms. To this end, the program compares
input sequences to sequence databases and calculates the statistical significance
of matches. BLAST is used to infer functional and evolutionary relationships
between sequences as well as help identify members of gene families.

Due to its embarrassingly parallel nature using a nested master-slave struc-
ture, MPIBlast allows for perfect scaling across tens of thousands of compute
cores [3]. The MPI master processes hand out new chunks of workload to their
slave processes whenever previous work gets finished. This way, automatic load
balancing is applied. MPIBlast uses a two-level master-slave approach with one
so-called super-master responsible for the whole application and possibly mul-
tiple masters distributing work packages to slaves. As a result, MPIBlast must
always be run with at least 3 processes of which one is the super-master, one
is the master, and one being a slave. The data structures used in the different
steps of the BLAST search typically fit into L1 cache, resulting in a low number

* http://mpiblast.org/



of cache misses. The search mostly consists of a series of indirections resolved
from L1 cache hits. MPIBlast was pinned using the compact strategy, i.e., the
threads are pinned closely together filling up CPU after CPU.

Our modified version of MPIBlast is available on GitHub®. In contrast to
the original MPIBlast 1.6.0 we removed all sleep() functions calls that were
supposed to prevent busy waiting. On our test-system, this resulted in underuti-
lization of the CPU. Removing sleeps increased performance by about a factor
of 2. Furthermore, our release of MPIBlast updated the Makefiles for the Intel
Compiler to utilize inter-procedural optimization (IPO) which also resulted in a
notable increase in performance.

In our benchmarks we used MPIBlast to search through the DNA of a fruit-fly
(Drosophila melanogaster)®. The DNA was queried with 4056 snippets created
from itself.

3.2 LAMA

LAMA is an open-source C++ library for numerical linear algebra, emphasizing
on efficiency, extensibility and flexibility for sparse and dense linear algebra
operations. It supports a wide range of target architectures including accelerators
such as GPUs and Intel MIC by integrating algorithm versions using OpenMP,
CUDA and OpenCL at a node level, and MPI to handle distributed memory
systems. We used the latest development version of LAMA committed to its
development branch on Sourceforge (commit 43a7ed”).

Our test application concentrates on LAMA’s standard implementation of
a conjugate gradient (CG) solver for x86 multi-core architectures. This purely
exploits multi-threading (no MPT), taking advantage of Intel’s MKL library for
basic BLAS operations within the step of the CG solver. Each solver iteration in-
volves various global reduction operations, resulting in frequent synchronization
of the threads. However, static workload partitioning is sufficient for load balanc-
ing among threads. Due to the nature of a CG solver, there is no way to exploit
caches by tiling or blocking. As involved data structures (vectors and sparse
matrices) do not fit into processor caches for reasonable use cases (which is also
the case in our setting), performance is fundamentally limited by main memory
bandwidth and inter-core/node bandwidth for reduction operations. Often, off-
chip bandwidth capacity of multi-core CPUs can already be fully exploited by 2
or 3 cores. Thus, for a CG solver implementation for such a multi-core CPU, we
expect to obtain the best performance with only a few cores, as using more, only
would result in higher congestion regarding memory accesses. We use scattered
pinning for for the CG solver, i.e., threads were distributed equally among the
CPUs. This allows the CG solver to use the memory bandwidth of both CPUs
with less threads.

® https://github.com/jbreitbart /mpifast
5 ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA /drosoph.nt.gz
" http://sourceforge.net/p/libama/git /ci/43a7ed



The CG solver of LAMA was applied on a matrix generated with LAMA’s
matrix generator. The sparse matrix has a size of 2000 * 2000 elements and is
filled with a 2-dimensional 5-point stencil.

3.3 HYDRO

HYDRO is not a low-level benchmark, but an application proxy benchmark that
is being used to benchmark European Tier-0 HPC systems. HYDRO serves as
a proxy for RAMSES?® [4], which is a Computational Fluid Dynamics applica-
tion developed by the astrophysics division in CEA Saclay. HYDRO contains
all performance relevant algorithms and communication patterns of the origi-
nal application, but it is simplified and trimmed down to only about 1500 lines
of code (compared to about 150,000 lines of code of the original RAMSES).
Subsequently, HYDRO was ported to various programming languages and par-
allel programming models including Fortran, C /C++, OpenMP, MPI, hybrid
MPI/OpenMP, CUDA, OpenCL and OpenACC [5]. Our experiments are based
on the hybrid MPI/OpenMP C99 implementation. Hydros’ performance, simi-
larly that of LAMAs CG solver is limited by main memory bandwidth, as its
data typically does not fit into L3 cache. For our tests we use two processes, i. e.,
one per CPU package, and increase the number of threads for each process as
this results in optimal performance for the benchmark.

3.4 Heat

Heat is a benchmark providing various implementations of an iterative Jacobi
method for solving the heat dissipation problem on a regular 2-D square domain.
The basic parallel implementation (called algorithm 2) uses OpenMP and uses
two simple loops to iterate over the matrix. As a result, it is inherently main
memory bandwidth limited. In contrast, algorithm 9 of this benchmark uses
diamond tiling [6] and as a result is not limited by main memory bandwidth,
but compute bound.

4 Application analysis

Figure 1 shows the scalability of all applications/benchmarks on our test-system.
The figure shows that the CG solver provides the best performance with 11
threads (42.7 seconds), however there is hardly any benefit compared to running
with 8 threads (44.0 seconds). Overall the CG solver only scales linearly up to
2 threads. Hydro and heat — algorithm 2 behave almost identical with a mini-
mum runtime at 12 cores (Hydro) and 10 cores (heat — algorithm 2), but both
hardly increase performance with more than 8 cores (Hydro) and 6 cores(heat
— algorithm 2). MPIBlast scales almost linearly up to 16 CPU cores and heat —
algorithm 9 scales almost linear up to 11 cores, but than hardly increases per-
formance any further. We only show even number of CPU cores for Hydro, as
we use two processes with equal number of threads.



40000

35000

25000

20000

15000
10000
5000
o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#CPU cores

Energy (J)

mLAMA

Fig. 3. The energy required for one LAMA CG solver run (Joule). We only use one
HTC per core.

Figure 3 shows both the average power used during the scalability runs in
Watts and the energy required to complete a single run of the CG solver in
Joule. The Watts measured by the different sensors are indicated by lines, and
the total energy integrated over the time required to complete a single run of
the CG solver (often called energy-to-solution) is indicated by bars. It should
be noted that the minimum energy-to-solution is not obtained when the CG
solver provides the best performance, but with 8 cores, instead. Again Hydro
(see fig. 4) behaves almost identically, as well as heat — algorithm 2 (see fig. 5).

8 http://www.itp.uzh.ch/~teyssier/ramses/RAMSES.html

45000
40000

35000

25000

Energy (J)

Hydro (J
20000 yare (1)

15000

10000

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#CPU cores

Fig. 4. The energy required for one Hydro run (Joule). We only use one HTC per core.



100000

70000

60000

W Heat - Alg. 2
40000
30000
20000
10000
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#CPU cores

Energy (J)

Fig.5. The energy required for one heat — algorithm 2 run (Joule). We only use one
HTC per core.

Figure 2 shows the same information for MPIBlast. MPIBlast scales well,
and the minimal energy-to-solution is obtained when using 16 CPU cores. Heat
— algorithm 9 again has the optimal energy-to-solution at the point where it
performs best. Figure 6 shows energy-to-solution for heat — algorithm 9.

5 Shared hardware resources within a HPC node

In this section we discuss the various shared hardware resources that can limit
co-scheduling performance.

At core level, each HTC has its own set of registers, but shares the instruc-
tion pipeline and both L1 and L2 caches with the second HT'C of the same core.
The instruction pipeline has dedicated hardware for floating point, integer and
SIMD instructions, which can be co-issued with various constrains. As a result,
co-scheduling an integer and floating point heavy application can potentially
increase the utilization of the CPU core, as we demonstrated before [1].

All cores on the same package share the L3 cache, the interconnect between
CPU packages and main memory bandwidth. Co-scheduling multiple applica-
tions with a large L3 cache working set results in a high number of L3 cache
misses and drastically reduces performance [7]. The same holds true for main
memory bandwidth. Co-scheduling multiple applications with high main mem-
ory bandwidth requirements drastically reduces the performance of both appli-
cations. Based on our experience, the inter-package interconnect is typically not
a limiting factor for co-scheduling.

Overall, based on our experience both main memory bandwidth and L3 usage
conflicts can degrade co-scheduling performance up to a point where it makes
no sense to use it. Co-scheduling different applications on a single CPU core



Energy (J)

W Heat —Alg. 9

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#CPU cores

Fig. 6. The energy required for one heat — algorithm 9 run (Joule). We only use one
HTC per core.

can increase performance further, but is not essential. As a result, for all shown
measurements in this paper we only use one HTC per CPU core. We leave out
L3 working set detection for future work, as Intel has just recently introduced its
Cache Allocation Technology (CAT)? that can be used to not detect L3 cache
working sets via hardware support, but is not supported at our test system.
Main memory bandwidth usage is the main topic of this paper moving forward.

6 Main Memory Bandwidth Utilization (libDistGen)

Unfortunately current x86 CPUs do not provide any direct way to measure
main memory bandwidth utilization, i.e., there is no performance counter that
provides this information. As a result, we must deduce this information from
other measurements. We leverage the fact that with co-scheduling an application
never uses all CPU cores and we can use the other cores to run small benchmarks.

In previous work [7], we showed that effective co-scheduling can be predicted
based on stack reuse histograms'?. Stack reuse histograms can be used to (esti-
mate) the cache working set as well as if an application is main memory band-
width limited. However, computing such a histogram typically results in multi-
ple orders of application slowdown, as the we must simulate a whole application
and analyse every memory access. As a result, we introduced a micro-benchmark
called DistGen that can be used to get similar results. DistGen can be config-
ured to produce memory accesses with certain stack reuse patterns. When co-

9 https://www-ssl.intel.com/content/www/us/en/communications/
cache-monitoring-cache-allocation-technologies.html

10 The Stack Reuse Distance, introduced in [8], is the distance to the previous access
to the same memory cell, measured in the number of distinct memory cells accessed
in between (for the first access to an address, the distance is infinity).



scheduled with an application, we can detect peaks in the stack reuse histogram
of the application based on the slowdown of DistGen. A detailed analysis can be
found in [7], however all previous work was designed for off-line analysis.

Based on the original DistGen, we now introduce libDistGen, a library de-
signed to be incorperated into schedulers or agents that collect on-line informa-
tion to be used by the scheduler. libDistGen interface is extremely simple and
consists of just three functions:

distgen_init() is called to initialize the library. The system must be idle when
this function is called, as we run various benchmarks to assess the maximum
performance of the system. Depending on the numbers of cores in the system
and the available memory bandwidth, this function call can take up to a
minute to complete.

distgen_membw _available() estimates the percentage of the currently avail-
able of main memory bandwidth for a given set of CPU cores compared to
maximum available memory bandwidth of these CPU cores. The runtime of
this function call is less than a second.

distgen_membw_max() is mostly available for debugging purpose. It returns
the maximum available memory bandwidth for a given set of CPU cores of
the system in GB/s.

distgen_membw_available() is implemented by processing an array with CPU
cores for which one should estimate the available main memory bandwidth.
The array is larger than the L3 cache of these CPUs. We measure the runtime
of the accesses to the array and compare these to measurements made during
distgen-init(). It is important to note, that these memory accesses will even-
tually complete, even if all other cores are running memory bandwidth limited
code. As a result, we will never directly measure an available memory band-
width of 0%, but memory bandwidth is typically equally distributed among the
cores at hardware level if all cores execute memory bandwidth limited code.
distgen_membw_available() is designed to consume as much main memory band-
width as possible by doing hardly any computation and only accessing one byte
per cache-line. These characteristics has to be considered, when interpreting the
return value of distgen_membw_available() in a scheduler.

We will release libDistGen as open source on GitHub after the acceptance of
this paper.

7 Poor Mans Co-Scheduler (poncos)

The Poor Mans Co-Scheduler (poncos) is our scheduler prototype build on top of
libDistGen and libponci'!, which is a small wrapper for Linux’s control groups
(cgroups). Control groups can be used to limit which CPU cores a set of ap-
plications are allowed to use as well as transparently freeze and restart these
applications. CGroups provide plenteous of other options and are typically used

" https://github.com/lrr-tum/ponci



to implement containers (like e.g., Docker), but we only use the functionality
named before.

For now, poncos reads a job queue from a file uses a straight forward co-
scheduling algorithm to run the applications listed in this file. Our algorithm
briefly follows a scheme of:

1. start the first application on a subset of the available CPU cores
2. wait until the initialization phase of that application is complete
. use distgen_membw_available() on the free CPU cores to detect the available
memory bandwidth for the free cores
. start the next application in the queue
. wait until the initialization phase of the new application is complete
. pause the old application (using cgroups)
. use distgen_membw_available() on the CPU cores of the paused application
to detect of available memory bandwidth
. restart the old application
9. decide of both applications can be co-scheduled
(a) yes: wait until one application has completed
(b) no: pause the new application and resume it after the old one has been
completed
10. continue with 4. until the queue is empty

~N O O w

oo

The current form of the algorithm expects a uniform behavior of the appli-
cation during runtime. This is not true for all HPC applications, but seemingly
for a large fraction of them, as other tools like for example [9] rely on the same
behavior and work fairly well. In general, phase detection in applications should
not be done via 1ibDistGen as this requires one application to be paused, but
phase detection should be done using hardware performance counters as demon-
strated by Chetsa et al. [10]. However, 1ibDistGen can also be used to provide
information per application phase (if the phase is long enough) and this infor-
mation can be used to decide if co-scheduling should be applied. For example,
one could decide to only co-schedule application if one of them has a memory
bandwidth limited application phase.

We currently do not detecting the end of the initialization phase, but rely on
timer that fits well with our test applications. However, in general this can be
done via the mechanisms described by Chetsa et al. [10].

As said before, distgen membw_available() will never return 0% memory
bandwidth available and one has to be careful when interpreting the return
value. When calling distgen_membw _available() to estimate the available mem-
ory bandwidth on half of the systems CPU cores, 50% means that there is
a memory bandwidth limited code running on the other half of the available
CPU cores and one should not co-schedule another memory bandwidth limited
application. Our scheduler currently prevents co-scheduling if the sum of all ap-
plications memory bandwidth estimations is above 90%. We use 90% instead of
100%, as we already noticed a decrease in performance once congestion on the
main memory gets closer to the maximum. However, this is expected behavior



Application distgen,membw,available()‘estimated usage for the application

Hydro 52.7 47.3
Lama 46.6 53.4
MPIBlast 92.5 7.5
Heat — Alg. 2 41.0 59.0
Heat — Alg. 9 76.5 23.5

Table 1. The main memory bandwidth available for half of the cores according to
libDistGen, while the other half is running the listed application. Estimated usage for
the application is compute via 1 — distgen_membw_available()

as the current hardware does not guarantee fair resource distribution and slow-
ing down a particular core can decrease overall application performance due to
synchronization.

We will release poncos as open source on GitHub after the acceptance of this

paper.

8 Evaluation

For our evaluation we split our test system in two scheduling domains each
consisting of 4 CPU cores per socket, i. e., a total of 8 cores. We choose this setup,
as memory bandwidth limited applications can typically not efficiently use more
than half of the cores of a socket. More cores only adds to the congestion on the
memory controller and decreases performances, as already discussed in section 4.

In general, libDistGen works as expected with every possible pair of the
applications and benchmarks listed in section 3. Table 1 lists the estimated
available main memory bandwidth required for the application, and based on
the algorithm described in the previous section, we can deduce that poncos will
prevent the co-scheduling of

— Hydro
— Lama
— Heat with algorithm 9

with each other, whereas all other combinations are fine. The resulting schedules
based on our setup is rather straight forward and we only show the results of 2
input queues.

The first queue only consists of the two heat variants:

— heat — algorithm 2 (heat -r 9000 -i 5000 -a 2 -t 8)
— heat — algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)
— heat — algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)
— heat — algorithm 2 (heat -r 9000 -i 5000 -a 2 -t 8)
— heat — algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)
— heat — algorithm 9 (heat -r 9000 -i 5000 -a 9 -t 8)



e eaa - -
Heat —Alg.
8 cored dedicated W Heat — Alg.
M Heat —Alg.
Heat — Alg.
. _

W Heat — Alg.
0 50 100 150 200 250 300 350 400 450 500

[ERT- - R - -

W Heat — Alg.

Runtime (s)

Fig. 7. The runtime of queue 1 with both dedicated scheduling and co-scheduling.

Figure 7 shows the runtime of queue one. In co-scheduling we only show the
critical path of the scheduling. The whole schedule was completes after both runs
of heat — algorithm 2 have ended, as all runs with heat — algorithm 9 could be co-
scheduled with an run of heat — algorithm 2. As we can see, co-scheduling in this
case increases overall application throughput, even though heat — algorithm 2
itself runs slower. The total energy consumption (see Fig. 8) of co-scheduling is
also better than dedicating all 16 cores to the individual applications, but just
dedicating 8 cores provides a better energy-to-solution.

Our second example queue consists of:

— LAMA CG solver
— MPIBIlast
— LAMA CG solver

The Figures 9 and 10 show the total runtime and energy-to-solution of the
schedules of queue 2. In Figure 9 we again only show the runtime of the critical
path, i.e., at the beginning LAMA is running by itself while we wait for the
initialization phase to be completed and than run our measurements. After that
MPIBIlast is started and runs until the completion of the queue. Both LAMA
runs are finished before the MPIBlast run is complete. We see a notable decrease
in both runtime and energy consumption when co-scheduling MPIBlast and
LAMA. These results match well with our previous manual fine tuning of the
MPIBlast / LAMA co-schedule previously published in [1].

Both queues have been selected so that co-scheduling is possible. In case
the queue does not allow for co-scheduling, we expect to see a small decrease
in performance and increase in energy consumption due to the additional mea-
surements. However, these effects seem to be within the order of measurements
noise, as we could not directly measure any clear overhead.



180000
160000
140000
120000

100000
B Total Energy

Energy (J)

40000
20000

0
Co-Scheduling 16 cores 8 cored dedicated 16 core dedicated

Fig. 8. The energy consumption of scheduling queue 1 with both dedicated scheduling
and co-scheduling.

9 Related Work

On server and desktop systems with multiple hardware thread contexts available,
as provided in multi-socket SMP systems or multi-core architectures, simultane-
ous scheduling of different applications is the norm. However, in HPC systems,
most larger compute centers hardly apply any co-scheduling. Co-scheduling is
typically used only for purely sequential jobs which cannot utilize all cores in a
single node.

A different approach with the same goal as co-scheduling is to use power
capping and dynamic voltage frequency scaling (DVFS) to reduce the power
consumption of existing systems. Such an approach can obviously not increase
the overall throughput of an HPC system, but increase its energy efficiency. For
example Wang et al. [11] discuss a scheduling heuristic that uses DVFS to reduce
overall system power consumption. The Adagio [12] tool uses DVFS to reduce
the idle time of the system by analyzing the time spent in blocking MPI function
calls and decreases the performance of CPU cores accordingly.

The Invasive Computing research project [13] works on an approach to have
applications dynamically react to changes of their resource requirements and
potential request additional resources or return resources that are no longer
used. Schreiber et al. [14] for example present applications that automatically
balance their work load.

Another approach to increase system efficiency is to work on the infrastruc-
ture used in the HPC centers. Auweter et al. [15] give an overview of this area
and describe how a holistic approach including monitoring the various jobs can
help to improve efficiency without modifying the applications itself.

Characterizing co-schedule behavior of applications by measuring their slow-
down against micro-benchmarks is proposed by different works. MemGen [16] is
focussing on memory bandwidth usage, similar to Bandwidth Bandit [17] which
is making sure not to additionally consume L3 space. Bubble-Up [18] is similar



16 core dedicated

8 cored dedicated
Lama

B MPIBlast
N Lama

Co-Scheduling 16 cores

o
8
5
2
8
8

120 140 160 180

Runtime (s)

Fig. 9. The runtime of queue 2 with both dedicated scheduling and co-scheduling.

tool accessing memory blocks of increasing size. All these tools are not designed
for optimizing the schedule at runtime.

10 Conclusions and Future Work

In this paper we presented a library for on-line application analysis to guide co-
scheduling and present a basic prototype scheduler implementation, which shows
that this information can actually be used to implement co-scheduling. Our
approach works well with all tested applications and overall system throughput
and energy consumption with co-scheduling varies based on the input.

In this paper, we only concentrated on main memory bandwidth, but other
resources like L3 cache usage are also important to identify if co-scheduling
should be applied. In future work, we will concentrate on L3 cache usage. Fur-
thermore, this work only explores co-scheduling on a single node. We plan to
extend our experiments to a multi-node setup.

As part of the FAST project'? we plan to integrated our approach with an
improved Slurm® scheduler that uses predetermined application statistics and
runtime measurements to co-schedule applications.

Acknowledgments

We want to thank MEGWARE, who provided us with a Clustsafe to test our
tool. The work presented in this paper was funded by the German Ministry of
Education and Science as part of the FAST project (funding code 01TH11007A).

2 http:/ /www.fast-project.de/
'3 http://slurm.schedmd.com/



40000

W Total Energy (J)

Energy (J)

20000

10000

Co-Scheduling 16 cores 8 cored dedicated 16 core dedicated

Fig. 10. The energy consumption of scheduling queue 2 with both dedicated scheduling
and co-scheduling.

References

1. J. Breitbart, J. Weidendorfer, and C. Trinitis, “Case study on co-scheduling for hpc
applications,” in 44th International Conference on Parallel Processing Workshops
(ICPPW), 2015, pp. 277-285.

2. J. Kraus, M. Férster, T. Brandes, and T. Soddemann, “Using lama for efficient
amg on hybrid clusters,” Computer Science-Research and Development, vol. 28,
no. 2-3, pp. 211-220, 2013.

3. H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W.-c. Feng, “Massively parallel
genomic sequence search on the blue gene/p architecture,” in High Performance
Computing, Networking, Storage and Analysis, 2008. SC 2008. International Con-
ference for. IEEE, 2008, pp. 1-11.

4. R. Teyssier, “Cosmological hydrodynamics with adaptive mesh refinement-a new
high resolution code called ramses,” Astronomy & Astrophysics, vol. 385, no. 1,
pp. 337-364, 2002.

5. P-F. Lavallée, G. C. de Verdiere, P. Wautelet, D. Lecas, and J.-M. Dupays,
“Porting and optimizing HYDRO to new platforms and programming paradigms
lessons learnt,” http://www.prace-project.eu/IMG /pdf/porting_and_optimizing-
hydro_to_new_platforms.pdf, 2012.

6. I. J. Bertolacci, C. Olschanowsky, B. Harshbarger, B. L. Chamberlain, D. G. Won-
nacott, and M. M. Strout, “Parameterized diamond tiling for stencil computations
with chapel parallel iterators,” in Proceedings of the 29th ACM on International
Conference on Supercomputing. ACM, 2015, pp. 197-206.

7. J. Weidendorfer and J. Breitbart, “Detailed characterization of hpc applications
for co-scheduling,” in Proceedings of the 1st COSH Workshop on Co-Scheduling of
HPC Applications, Jan. 2016, p. 19.

8. B. T. Bennett and V. J. Kruskal, “LRU stack processing,” IBM Journal of Research
and Development, vol. 19, pp. 353-357, 1975.

9. T. Klug, M. Ott, J. Weidendorfer, and C. Trinitis, “autopin — automated
optimization of thread-to-core pinning on multicore systems,” in Transactions on



10.

11.

12.

13.

14.

15.

16.

17.

18.

High-Performance Embedded Architectures and Compilers I1I, ser. Lecture Notes in
Computer Science, P. Stenstrom, Ed. Springer Berlin Heidelberg, 2011, vol. 6590,
pp. 219-235. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-19448-1_12
G. L. Tsafack Chetsa, L. Lefevre, J.-M. Pierson, P. Stolf, and G. Da Costa,
“Exploiting performance counters to predict and improve energy performance of
HPC systems,” Future Generation Computer Systems, vol. vol. 36, pp. pp. 287—298,
Jul. 2014. [Online]. Available: https://hal.archives-ouvertes.fr/hal-01123831

L. Wang, G. Von Laszewski, J. Dayal, and F. Wang, “Towards energy aware
scheduling for precedence constrained parallel tasks in a cluster with dvfs,” in
Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM Interna-
tional Conference on. IEEE, 2010, pp. 368-377.

B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz, V. W. Freeh,
and T. Bletsch, “Adagio: Making dvs practical for complex hpc applications,”
in Proceedings of the 23rd International Conference on Supercomputing, ser.
ICS ’09. New York, NY, USA: ACM, 2009, pp. 460-469. [Online]. Available:
http://doi.acm.org/10.1145/1542275.1542340

J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schréder-
Preikschat, and G. Snelting, “Invasive computing: An overview,” in Multiprocessor
System-on-Chip. Springer, 2011, pp. 241-268.

M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, and A. Breuer, “Invasive
compute balancing for applications with shared and hybrid parallelization,” Inter-
national Journal of Parallel Programming, pp. 1-24, 2014.

A. Auweter, A. Bode, M. Brehm, H. Huber, and D. Kranzlmiiller, “Principles of
energy efficiency in high performance computing,” in Information and Communi-
cation on Technology for the Fight against Global Warming. Springer, 2011, pp.
18-25.

A. de Blanche and T. Lundqvist, “Addressing characterization methods for mem-
ory contention aware co-scheduling,” The Journal of Supercomputing, vol. 71, no. 4,
pp. 1451-1483, 2015.

D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten, “Bandwidth bandit:
Quantitative characterization of memory contention,” in Code Generation and Op-
timization (CGO), 2018 IEEE/ACM International Symposium on, Feb 2013, pp.
1-10.

J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “Contention aware execu-
tion: Online contention detection and response,” in Proceedings of the 8th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, ser.
CGO ’10. New York, NY, USA: ACM, 2010, pp. 257-265.



