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Abstract. Stateless clusters such as Hadoop clusters are widely deployed to

drive the business data analysis. When a cluster needs to be restarted for cluster-

wide maintenance, it is desired for the administrators to choose a maintenance

window that results in: (1) least disturbance to the cluster operation; and (2) max-

imized job processing throughput. A straightforward but naive approach is to

choose maintenance time that has the least number of running jobs, but such an

approach is suboptimal.

In this work, we use Hadoop as an use case and propose to determine the optimal

cluster maintenance time based on the accumulated job progress, as opposed the

number of running jobs. The approach can maximize the job throughput of a

stateless cluster by minimizing the amount of lost works due to maintenance.

Compared to the straightforward approach, the proposed approach can save up to

50% of wasted cluster resources caused by maintenance according to production

cluster traces.

1 Introduction

With the rapidly growing scale of data volume, data processing is increasingly being

handled by clusters that consist of multiple machines. A data processing job may take

certain time to finish, hence the intermediate state (e.g., what input data are processed,

what are the partial output) of the job may change over the course of the processing. The

intermediate states can be persisted as the job processing runs, and the persisted inter-

mediate state can serve useful purposes such as progress tracking. However, persisting

such states also incur additional design complexity and storage overhead. Depending

on whether the intermediate state can be persisted or not, data processing clusters can

be characterised into two categories: stateful and stateless. Stateful clusters are able to

persist intermediate state of varying granularity (e.g., percentages of processed input

data), while stateless clusters do not persist such state. Examples of stateless clusters

are web server clusters and Hadoop clusters.

The distinction between stateful clusters and stateless clusters goes beyond progress

tracking and design complexity. One particular aspect is the impact on cluster mainte-

nance. When cluster-level maintenance is needed, the cluster temporarily goes offline

to perform hardware/software upgrade or change. After maintenance is done, the clus-

ter goes online again and begins to serve data-processing jobs. An interesting question
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is what happens to disrupted jobs due to maintenance, that is, can these jobs be re-

sumed seamlessly? Being able to resume disrupted jobs has the advantage of avoiding

repeated data processing and hence saving cost. For stateful clusters, job resuming is

possible, and the degree of the saving depends on the granularity of the saved state. On

the other hand, stateless clusters are unable to resume disrupted jobs. These jobs have

to be started from scratch after cluster maintenance.

For stateless clusters, since cluster maintenance has to disrupt ongoing jobs and the

partially finished jobs have to redo their work after the maintenance, choosing appropri-

ate cluster maintenance time is critical for the purpose of saving computing resources.

Choosing the most appropriate maintenance time is not as straightforward as people

typically think. Instead, we found that the naive and straightforward approach is far

from being optimal in terms of resource saving. In this work, we address this problem

of choosing optimal cluster maintenance time for stateless clusters. For easy grasping

the design, we use Hadoop as the use case to present our design.

Hadoop [1] clusters, being part of the data pipeline that drives many of today’s

business, are commonly used to carry out various types of data processing. A Hadoop

cluster typically consists of one or two NameNodes, one Resource Manager 1 and up

to thousands of DataNodes. The NameNode maintains the name space of the entire un-

derlying HDFS [2], and serves as the central point of control for client interactions. De-

pending on Hadoop versions and configurations, the NameNodes can be configured as

primary/secondary, active/standby or high availability (HA). Nevertheless, the NameN-

ode is the single point of failure of the Hadoop cluster for non-HA setup. The Resource

Manager keeps the state of Hadoop cluster resource usage (e.g., Memory and CPU)

and schedules the running of submitted Hadoop jobs. Each MapReduce-based Hadoop

job typically consists of a set of mapper tasks and another set of reducer tasks 2. The

mapper tasks will be scheduled first; and towards completing, the reducer tasks will be

invoked to take over the data output from mappers and continue the data processing.

Hadoop cluster may occasionally need maintenance for various reasons including

software upgrade (e.g., NameNode or Resource Manager upgrade), hardware failures,

configuration change, and problem debugging. In this work, the notion of “Hadoop clus-

ter maintenance” is defined as the entire cluster is not being able to run Hadoop jobs

during maintenance; and we do not differentiate the causes of cluster maintenance, be

it NameNode or Resource Manager. Whenever such cluster-wide maintenance is per-

formed, all the running Hadoop jobs are destroyed and outstanding works are forfeited.

Due to current limitations of Hadoop implementation, the job state is not persisted and

hence the jobs cannot be resumed from last state. Once the cluster maintenance is com-

pleted, unfinished jobs require resubmission after the NameNode is started again. As a

result, all unfinished jobs before maintenance will have to lose the partially done work,

and the corresponding Hadoop resources (e.g., CPU, Networking) are wasted. Note

that for a unfinished job, both completed and uncompleted map/reduce tasks will have

to rerun.

1 The previous version of Hadoop 1 does not have Resource Manager.
2 There are other frameworks such as Spark based, but they are not gaining significant popularity

at this time.
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Though it is invariably true that an unfinished Hadoop job requires a resubmis-

sion regardless of the maintenance time chosen before it is completed, the amount of

forfeited work varies with different maintenance time. The more forfeited work due

to maintenance, the less Hadoop throughput will be expected since the lost work will

be redone. The amount of forfeited work is directly affected by the number of map-

per/reducer tasks the job has invoked and their running time between the job startup

time and the maintenance starting time. In this work, we aim at improving Hadoop

cluster throughput by minimizing the forfeited work caused by cluster maintenance.

Assuming the maintenance window length is fixed (e.g., 1 hour), the key question

is when the maintenance should start. We further assume the maintenance is not urgent

enough for an immediate maintenance, hence any maintenance window suffices as long

as it is before some deadline (e.g., 1 day). This assumption in general holds for typical

software-upgrade caused maintenance. Though a straightforward approach of determin-

ing the maintenance time is to look at the number of running jobs (or tasks) and choose

the time when minimum number of jobs/tasks are running before the allowed deadline,

as we will demonstrate later, this approach is rather naive and hence not optimal.

To improve Hadoop cluster throughput, we propose to determine cluster mainte-

nance time based on the accumulated job progress instead of the number of running

jobs. The main objective is to minimize the forfeited work while improving Hadoop

throughput. We take into account the maintenance urgency and observe the amount of

accumulated work in order to choose the moment to make the maintenance. Hadoop

throughput is the critical performance metric analyzed. By using historical traces of a

busy Hadoop cluster, we evaluate the proposal and present the significant improvements

when comparing the proposal with the one where the maintenance time is chosen when

the least number of jobs are running (CL-based). Based on the data, the improvement

can be up to 42% in saving the wastage of Hadoop resource usage.

To summarize our work, we make the following contributions with this writing:

1. We consider the problem of determining optimal maintenance time for a stateless

cluster such as Hadoop cluster. We have explained that the naive approach of “num-

ber of running jobs” is sub-optimal;

2. We propose to use accumulated job progress as the maintenance criteria for deter-

mining cluster maintenance time;

3. We perform experimentation and instrumentation to validate the proposal;

4. We provide analysis of key Hadoop job statistics based on one of our busiest

Hadoop clusters.

For the remainder of the paper, after providing some necessary technical back-

ground in section 2, we then motivate the problem being addressed in this paper using

an example scenario in Section 3. We propose the design and solution in Section 4 and

perform performance evaluation and show the results in Section 5. We discuss several

issues/scenarios relevant to cluster maintenance in Section 6 and present related works

in Section 7. And finally Section 8 concludes the work.
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2 Background and Scope

We begin by providing background information regarding Hadoop architecture and

Hadoop job workflow.

2.1 Hadoop architecture and Hadoop EcoSystem

Inspired by Google File System [3], BigTable [4] and MapReduce [5], Hadoop is de-

signed to provide distributed data storage (via HDFS [2]) and distributed data process-

ing (via MapReduce [5]) at a massive scale. Hadoop has evolved from the core compo-

nents of HDFS [2] and MapReduce to a plethora of products and tools including [6, 7].

In addition to MapReduce framework, other frameworks such as Spark [8] are also be-

ing used. Our work considers how to determine the Hadoop cluster maintenance time.

Though with a focus on MapReduce framework, the problem and proposed solution

also apply to other frameworks.

Hadoop has two versions as of today. In the latest version of V2, a Hadoop cluster

consists of one or two NameNode, one Resource Manager Node and up to thousands of

DataNodes. The NameNode manages the HDFS namespace, while Resource Manager

does the job scheduling. Resource Manager works with application masters and node

managers running on each DataNode to schedule and run Hadoop jobs.

2.2 Hadoop job workflow

Hadoop jobs are submitted by Hadoop clients. Once a job is submitted, Resource Man-

agers will initiate an Application Master on a DataNode and collaborate with node

managers of DataNodes to invoke a set of containers as required by the Hadoop job.

Each container can run a single mapper or reducer. Mappers are firstly scheduled to

run, and towards the completion, the reducers will be invoked to fetch the data output

from mappers and perform reducing tasks. The data exchange between mappers and

reducers are typically referred to as “shuffling”.

Each container requests certain amount of memory (e.g., heap size) from the node

manager. Since the memory size of the entire Hadoop cluster is typically fixed and quite

limited for commodity hardware based Data Nodes, the number of concurrently running

containers is also limited. 3

The submitted Hadoop jobs will leave a state in Hadoop Job History server for later

retrieval. There is typically a limit on the number of job states kept by Job History

server.

3 Problem Definition and Motivation Scenarios

We provide a motivating scenario to illustrate the problem and the impact of choos-

ing different maintenance time on Hadoop performance.

3 Due to performance concerns, the total JVM heap size allocated to all containers on a Data

Node should not exceed the physical RAM size of the node.
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Fig. 1. Memory usage of a Hadoop cluster

3.1 Hadoop throughput is the critical performance metric

Current Hadoop implementations do not persist the job state during cluster maintenance
4. When the Hadoop cluster is restarted from maintenance, all unfinished jobs will need

to be re-submitted and start over.

In Figure 1 we plot 21 days memory usage of a busy Hadoop cluster. This cluster

has two NameNodes being configured with primary/secondary setup, and it consists of

about 2000 data nodes and totally 40 TB of available memory for running Hadoop jobs.

Each Hadoop container running in this cluster on average takes about 2GB of memory.

We can see that most of the time the cluster is saturated with memory usage, hence

the throughput is one of the critical performance metric we want to optimize. We also

see that cluster maintenance is occasionally performed, which can be seen from the

close-to-zero memory usage period.

Hadoop clusters are typically deployed for batch data processing and used by mul-

tiple clients. Thanks to the exploding size of today’s data and the increasing demand

for data processing driven by various business requirements, the throughput of Hadoop

clusters (i.e., number of jobs completed in an unit of time) is the primary performance

metric we should optimize.

3.2 Problem we are addressing in this work

Without careful considerations of the impact of different cluster maintenance time, a

poorly selected maintenance window will result in suboptimal Hadoop performance

in the forms of low job throughput and wasted computing resources. We have seen

cases that the Hadoop cluster maintenance window is chosen by Hadoop administrators

in a rather ad hoc fashion. Though urgent remedies of the cluster require immediate

maintenance, most of the maintenance requests including minor software upgrade are

non-urgent, hence we can afford a delayed maintenance up to certain deadline.

4 Efforts are going on to allow job state persistence [9], however facing the challenges of imple-

mentation complexity, usability and adoption cost.
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(a) A simplified scenario with 4 Hadoop jobs
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(b) What is the optimal NameNode maintenance time? T1, T2 or T3?

Fig. 2. An illustrative example showing why the straightforward approach is not optimal

In this work we assume the cluster maintenance duration (i.e., the amount of time

when the cluster is down for maintenance) is fixed (e.g., 1 hour), which is typically

true for most software updates 5. So the question that needs to be answered is when the

maintenance should start. Maintenance time determination answers this question. The

goal of determining optimal maintenance time is maximizing the throughput (i.e., the

number of completed jobs) of the Hadoop cluster.

A straightforward but naive approach we can easily come up with is choosing the

maintenance starting time with the minimum number of running jobs (or tasks). How-

ever, as we elaborate later, such an approach is not optimal.

3.3 Illustrative example

We use the following scenario to elaborate why the straightforward approach of de-

termining cluster maintenance time based on number of running tasks or jobs is not

optimal. For easy presentation, we denote such approach as Current-Load (CL) based

approach. Consider the a scenario where totally four Hadoop jobs are scheduled at dif-

5 The problem considered won’t change even with non-fixed maintenance duration; but having

this assumption simplifies the presentation.
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Fig. 3. Characteristics of profiled 135K Hadoop jobs (X-axis is the different buckets (num-

ber of tasks in a job); Y-axis is the number of Hadoop jobs in each bucket)

ferent time, as shown in Figure 2(a). For simplicity, we assume each job has only 1

mapper task and 1 reducer task.

In the figure we highlighted a few time points that are possible starting time for

cluster maintenance. The Current-Load based approach would choose the time of T2 to

start NameNode maintenance, since there is only 1 running Hadoop job at T2, while at

T1 and T3 there are 2 running jobs. However, starting maintenance at T2 would mean all

the accumulated works of job J2 will be lost, and the corresponding consumed Hadoop

processing resources (i.e., CPU, networking, IO) would be wasted. As shown in Figure

2(b), the amount of wastage is non-negligible.

On the other hand, if the maintenance time starts at T3, though the number of running

jobs is 2, the aggregated amount of wasted work (Cost3 +Cost4) is much less than

the wasted work (Cost2) if maintenance starts at T1. Since after maintenance all the

broke Hadoop jobs will need to be re-submitted, the forfeited work (i.e., mapping and

reducing) will in turn needs to be re-done, which is a waste of Hadoop processing

resources and reduced Hadoop job completion rate. Having less wasted work essentially

mean the Hadoop cluster can run more jobs in given amount of time, hence higher job

throughput.

3.4 Characteristics of Hadoop jobs

We also obtained the characteristics of the Hadoop jobs running on one experimental

Hadoop cluster. The job set includes totally 135, 808 Hadoop mapreduce jobs which

are retrieved from the job history server. For each of the jobs, we measure the following

metrics: (1) number of tasks (i.e., mappers and reducers) in a job; (2) total execution

time; and (3) aggregated resource usage (i.e., cost).

Since Hadoop mapreduce jobs consist of both mappers and reducers, and they need

to run in separate containers, the number of tasks for a Hadoop job is defined as the

summation of the mappers and reducers. The execution time of a Hadoop jobs is defined



8 Zhenyun Zhuang, Min Shen, Haricharan Ramachandra, Suja Viswesan

0

20000

40000

60000

80000

100000

[0, 1) [1, 2) [2, 3) [3, 4) [4, 6) [6, 10) [10, 

30)

[30, 

INF)

Hadoop job execution time (Minute)

Number of Hadoop jobs (Average: 186)

Fig. 4. Characteristics of profiled 135K Hadoop jobs (X-axis is the different buckets (Exe-

cution time in minute); Y-axis is the number of Hadoop jobs in each bucket)

as the summation of average mapping time and the average reducing time 6. For the

resource usage, we consider a custom metric of “container * (execution time)”, which

is the product of how many containers and how long on average a container (i.e., mapper

and reducer) runs. Based on our experiences with running the experimental cluster, the

top performance bottleneck of the Hadoop cluster is the limited number of concurrent

running containers, hence it makes a lot of sense to use the “container * time” as the

cost metric.

Figures 3, 4 and 5 display the characterizing results. For each of the metrics we

considered, we show the distributions of Hadoop jobs under different buckets. The av-

erage number of tasks a Hadoop job has is 211, the average execution time is 186

seconds, and the average cost of each Hadoop job is 37775 container*second, or about

10 container*hours. If cluster maintenance is performed during the runs of these jobs,

on average, half of the cost (i.e., 5 container*hours) incurred by each job will be lost.

3.5 Summary

We have thus far described that a straightforward Current-Load based approach fails to

consider the nature of Hadoop resource usage, and hence not optimal. Depending on

scenarios, the forfeited Hadoop work due to cluster maintenance can be significant.

By considering the resource used by running Hadoop jobs, a new approach which is

based on accumulated works can achieve better resource usage efficiency and higher job

throughput thanks to the minimum wasted resource usage. We denote the approach of

determining cluster maintenance time based on the amount of accumulated completion

of tasks as Accumulated-Work (AW) based approach.

6 The shuffling and reducing phases may overlap, so for simplification, we define the reducing

time as the maximum of reducing time and shuffling time reported by job history server.
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Fig. 6. Flow chart of AW-based maintenance determination algorithm

4 Solution

We now present the design and detailed algorithm of the proposed Accumulated-Work

(AW) based solution.

4.1 Overview

Our proposal depends on forecasting of future workload. Given the irregularities of

Hadoop jobs (i.e., starting/finishing time, number of tasks, run time), we devise a sim-

ple, but effective, predictor by assuming the distribution of those quantities will be sim-

ilar over some periods (e.g., on a day-to-day basis or week-by-week basis). For simplic-

ity, in this work we use the day-to-day model 7. Then the way to determine appropriate

maintenance time is by selecting the right threshold to trigger the maintenance.

The high level flow of the algorithm is illustrated in Figure 6. The algorithm consists

of a Hadoop workload profiling component that analyzes the load of the cluster, the job

7 Our particularly studied Hadoop cluster shows consistency of both day-to-day and week-to-

week pattern.
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Algorithm (a): Workload profiling and forecasting

Variables:

1 Tpro f ile: Cycle of profiling the Hadoop workload

1 For every Tpro f ile of time:

2 Start a new cycle of workload profiling;

3 Obtain workload profiles (e.g., percentiles);

Fig. 7. Main algorithm (A)

properties, etc. Then the algorithm forecasts the future workload (e.g., next 1 day) using

the forecasting component. Based on the forecasting result and urgency level of incom-

ing cluster maintenance request, a threshold value is chosen. The threshold value will be

used to determine the starting time of the next cluster maintenance. Whenever the mon-

itored cluster workload (e.g., number of running jobs as in CL-based approach, amount

of accumulated work as in AW-based approach) falls below the threshold, maintenance

can start.

The maintenance request may come with different urgency level in the form of

deadlines (e.g., within next 24 hours). Such urgency level is fed into the threshold de-

termination component with a function of T h = f (level). Many forms of the f function

can be defined, and the higher urgency, the larger threshold value (so that the mainte-

nance can be early kicked off). In this work, we choose a percentile-based approach

which will be elaborated in Section 4.4.

4.2 Cost metric and objective function

The proposed AW-based solution chooses the cluster maintenance time based on the

amount of accumulated works of the running Hadoop jobs. These works include both

mapper and reducer tasks. Each of these tasks runs for certain amount of time. There are

three types of tasks at a particular timestamp (i.e., time point): completed tasks (denoted

by Taskcompleted), running tasks (Taskrunning) and tasks that are waiting to be scheduled

(Taskwaiting). The accumulated work is the aggregated works of all completed and run-

ning mapper and reducer tasks. For Taskcompleted , the accumulated work is determined

by the running time of the particular task, that is, the difference between “finish time”

and “start time”. For Taskrunning, the considered run time is the difference between cur-

rent timestamp and the job’s “starting time”.

The cost metric of AW-based solution is the aggregated accumulated work from all

Hadoop jobs at any time point. Using AWTi
to denote the cost at time Ti, and AWTi,Job j

to denote the accumulated work of job Job j at Ti. So we have AWTi
= ∑AWTi,Job j

, and

AWTi,Job j
consists of the accumulated work of all Taskcompleted and Taskrunning.

The objective function of AW-based approach is to choose a time point Tk that the

minimum AWTi
is achieved. By comparison, the objective function of the baseline CL-

based approach is to achieve minimum number of concurrently running jobs.
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Algorithm (b): determining maintenance threshold

Variables:

1 AWthre: The threshold of the accumulated work for deciding maintenance time

2 Levelurg: The urgency level of maintenance

1 For every maintenance request issued;

2 Obtain forecasted workloads based on recent workload profiles;

3 Determine the maintenance urgency level Levelurg;

4 Determine AWthre based on forecasted workloads and Levelurg;

Fig. 8. Main algorithm (B)

Algorithm (c): determining maintenance time

Variables:

1 Tjh: Cycle of fetching from Hadoop Job History server

2 AWaggr: Currently aggregated computing resources used by all running jobs

3 AWthre: The threshold of the accumulated work for deciding maintenance time

4 Ji: A Hadoop job started but unfinished

5 Tmr A finished or running Hadoop mapper/reducer task

1 Every Tjh of time:

2 Obtain the snapshot of the job history information;

3 For every running job Ji:

4 Get all finished or running tasks Tmr;

5 Aggregate consumed resource to AWaggr;

6 If AWaggr > AWthre or deadline expires:

7 Maintenance starts;

Fig. 9. Main algorithm (C)

4.3 Workload profiling and forecasting

In order for both CL-based and AW-based approaches to work, it is important to profile

and forecast the workload of the Hadoop cluster. Profiling can be done by periodically

querying the state of the Hadoop cluster, such as retrieving information from Job His-

tory server. The profiling results can come in different forms such as probability density

functions; in this work, we consider a simplified form of percentiles for easier presen-

tation, as shown in Figure 7.

For workload forecasting, it can be achieved by applying various forecasting models

such as time series based ones like ARIMA [10]. Time series forecasting model breaks

the data values into three parts: seasonal, trending and noises. Depending on specific

scenarios, the workload may have different strengths on different parts. For instance,

for a Hadoop cluster that mostly serves regularly scheduled jobs such as weekly aggre-

gation of data or daily updates based on streaming data, the seasonal part will be very

strong. On the other hand, if a Hadoop cluster mainly run ad-hoc experimental jobs, the

noise part will dominate.
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4.4 Determining threshold for cluster maintenance

Once the forecasting model is established, then the Hadoop administrators can predict

the workload in the future. When a new cluster maintenance is needed within certain

time period (e.g., 1 day), the administrators can choose a threshold value for cluster

maintenance based on the forecasted workloads.

Based on our experiences with multiple Hadoop clusters, non-trivial clusters 8 typ-

ically exhibit irregular workloads and hence it is very difficult to characterize with rea-

sonable forecasting models. For instance, on the particular cluster we used for this study,

the running Hadoop jobs come from a mix of regularly scheduled ones and ad-hoc ones.

Moreover, the users and jobs of the cluster are undergoing a major shift. The trending

part, however, is not much.

To accommodate the generic cases where Hadoop clusters run irregular workloads,

we choose a percentile-based method to determine the threshold. Specifically, we pro-

file the previous days’ workload, and calculate the percentile values of the past periods.

Then we choose a particular percentile P (e.g., 5%) of the workload and base the main-

tenance time determination on the corresponding workload value.

Note the percentile value is determined by the maintenance urgency. For more ur-

gent maintenance, a larger percentile value is chosen in hope of kicking off the mainte-

nance early. On the other hand, if the maintenance is not urgent, smaller percentile value

is desired. One approach is to rate the maintenance urgency on a scale of 1 to 100, where

1 indicates the most urgent level, and then choosing the corresponding percentile value

as the threshold, as shown in Figure 8. With such a scaling of 1 to 100, the threshold

value can be easily obtained by treating the emergency level as the percentile values,

that is, AWthre = PLevelurg . For instance, for a low-emergency maintenance request rated

at level-1, a P1 value will be chosen, where P1 means a value where 1% of all values are

below it.

For CL-based approach, the forecasted workload indicates how many jobs are con-

currently running at any time in the forecasting period. The threshold value is based

on the profiled workload and maintenance urgency. The time stamps in the future that

have forecasted workload intensity falls below the threshold are the possible cluster

maintenance starting time.

For AW-based approach, the forecasted workload deducts the amount of accumu-

lated workload at any future time. Once the corresponding threshold value is chosen, a

process similar to that of CL-based approach, maintenance time can be similarly deter-

mined.

4.5 Determining cluster maintenance time

Once the cluster maintenance threshold is determined, the maintenance time can be

determined by comparing to the real-time workloads to the threshold value. This step

performs periodical querying of the Hadoop Job History server, as elaborated in Figure

9. Every time of Tjh, it obtains the snapshot of the job history information and extracts

8 Those clusters that have sufficiently large of number of data nodes and run heterogenous work-

load
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(a) Concurrent running jobs

(b) Accumulated work

Fig. 10. Statistics of the first day

all jobs. For every running job Ji, it gathers all finished or running tasks Tmr. Then it

iterate all the tasks and aggregates consumed computing resource to AWaggr. Finally, it

compares the aggregated AWaggr to the threshold value AWthre determined in Figure 8.

If AWaggr is less than AWthre, the maintenance can start. Meanwhile, if the maintenance

deadline (e.g., 1 day) has expired, the maintenance can start.

5 Evaluation

In this section, we will use the actual traces from our Hadoop cluster to illustrate how

to to apply the proposed AW-based approach that is based on accumulated work on

running jobs. For comparison, we also consider the baseline of CL-based approach,

which is based on the number of running jobs.
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(a) Concurrent running jobs

(b) Accumulated work

Fig. 11. Statistics of the second day

5.1 Methodology

We use the historical job information kept on Hadoop Job History server. For each

Hadoop job completed, the Job History server maintains the meta data of the job and its

mapper/reducer tasks. The meta data includes submission time, starting and finishing

time, user account, number of mappers and reducers, etc.

The considered Hadoop cluster is able to run 20K containers concurrently, and the

average job run time is only about 10 hours, hence there are up 48K mapper/reducer

tasks are completed in a single day. The Job History server, however, is only able to

keep most recent 20K jobs for our setup.

We have continuously collected 3-week of job history. We have to query the job

history server multiple times due to configuration limits. Therere two limits in history

server for how many jobs are kept, both are configurable. The first is the log retention

period, which determines how long to keep the job logs on HDFS. This is by default

set to 1 week. The second is the 20K limits, which is the maximum number of jobs that
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Fig. 12. Comparing the CDF (Cumulative Distribution Function) of two days

history server will load into memory and serve from the web page. For our busy cluster,

20K jobs only correspond to less than one-day of job history.

Even though we retrieve from Job History server frequently, due to the large number

of jobs and frequent cluster maintenances, we believe some jobs are still missed in

certain time periods. So we cleaned our data by eliminating some dirty periods. For

easier presentation, we use a 2-day period with clean data to elaborate the evaluation

results. The first day is used as the profiling period. 9 The second day is the period to

evaluate the approaches.

5.2 Profiling statistics of first day

For the first day, we obtain the meta data of each job, hence we know the running

time period (i.e., the start and finish time) and the number of mappers and reducers

running during this time period. Then we can deduct the number of running jobs and

the accumulated works of any time during the 24 hours. We plot the percentile values

of concurrent jobs and accumulated works in Figure 10(a) and (b), respectively.

For the Hadoop cluster maintenance, we consider three scenarios based on the main-

tenance urgency: low-urgency, medium-urgency and high-urgency. For low-urgency

maintenance request, we choose a threshold of 1%, essentially means about 1% of the

entire time, the maintenance is able to kick off. If the checking interval is every minute,

then on average, the expected starting maintenance time is 100 minutes (i.e., 1
1%

). Sim-

ilarly, for medium-urgency maintenance request, we consider two possible thresholds

of 2% and 5%, which respectively have maintenance waiting time of 50 minutes and

20 minutes. For high-urgency maintenance request, we choose two possible thresholds

of 10% and 20%, with expected maintenance waiting time of 10 and 5 minutes, respec-

tively.

For both CL-based and AW-based approachs, the possible time points of mainte-

nance (i.e., the time when the respective metrics fall below the corresponding particu-

lar percentile values.) are determined. The opportunity cost of each maintenance time

9 In production, the profiling efforts are running continuously.
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Fig. 13. Comparing the amount of forfeited work by CL-based and AW-based approach

under different maintenance urgency levels

point is obtained based on the amount of forfeited work. The cost unit of the accu-

mulated works is “container*second”, intuitively indicting the resource used by some

containers concurrently running for some time.

5.3 Cost results of second day

For the second day, we obtain the number of concurrent Hadoop jobs and the accumu-

lated Hadoop work for each timestamp, shown in Figure 11. These values will be used

to determine possible cluster maintenance kickoff time based on threshold values for

both CL-based and AW-based approaches.

The assumption of our design is the relatively stable distribution of accumulated

works across days. To understand how well the assumption holds, we plot the CDFs

(Cumulative Distribution Function) of these two days in Figure 12. From the figure, we

see very similar CDF curves.

We also compare the cost of both CL-based and AW-based approaches. For each ap-

proach, the threshold values corresponding to different urgency levels of cluster main-

tenance requests are listed in Table 1. Based on the threshold values, the timestamps

of all possible maintenance kicking off are recorded. Then the opportunity costs (i.e.,

the amount of forfeited Hadoop works) are obtained for each timestamp. Finally the

average values of all the possible opportunity costs are calculated for both approaches.

Table 1. Threshold values for kicking off cluster maintenance

Maintenance urgency Percentile CL-based AW-based

Low 1 7493 8745211

Medium1 2 7924 10.7M

Medium2 5 8884 12.9M

High1 10 9913 14.7M

High2 20 11652 24.3M
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The results of all 5 maintenance urgency levels are displayed in Figure 13. As shown

in the figure, AW-based approach consistently results in much lower opportunity com-

pared to CL-based approach. For some urgency levels (e.g., Low and Medium1), the

AW-based cost is only half of that of CL-based. For other urgency levels, the saving is

about 40%.

Specifically, at urgency level of High1, for CL-based approach, the average oppor-

tunity cost is about 21,157,000 container*second, or about 5877 container*hour. The

average cost of AW-based approach is about 12,240,000 container*second, or about

3,400 container*hours. Compared to CL-based approach of 5, 877 container*hours,

the difference is 2,477 container*hours for every cluster maintenance is done. In other

words, AW-based approach can save 42% of the wasted resources as resulted from CL-

based approach.

6 Discussions

In this section, we discuss several issues/clarifications related to the considered problem

and proposed approach.

6.1 HDFS federation

HDFS federation is aimed at solving the single-NameNode inefficiency by splitting

the entire HDFS namespace to multiple ones. Since different NameNodes correspond

to different namespaces, NameNode maintenance will still lose unfinished jobs which

access the particularly maintained namespace. In addition, even with HDFS federation,

people usually perform maintenance on all namespace at once.

6.2 HA (High availability) setup

HA is an advanced setup for Hadoop NameNode that can alleviate the single-node fail-

ure problem. When configured with HA, two NameNodes work together to allow seam-

less NameNode maintenance. One of the NameNode will be active at any time, while

the other be passive. When the active NameNode is down for any reason, the passive

NameNode will take over the responsibility. During NameNode-caused cluster mainte-

nance, NameNode will not lose unfinished jobs. However, the tasks might fail during

rolling upgrade, hence will need to be rescheduled. Moreover, for cluster maintenances

caused by other reasons (e.g., Resource Manager), Hadoop jobs are still lost.

6.3 Resource Manager maintenance

Though most of the cluster maintenances are caused by NameNode updates, Resource

Manager (RM) can also trigger cluster maintenance. RM node maintenance also loses

jobs. Therere features in YARN [11] that adds HA (High Availability) to RM. For now,

this HA feature only allows automatically resubmission of previously unfinished jobs.

New features are being added which preserve workloads.
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6.4 Maintenance announcement

The scenario we consider in this work is to automatically decide the cluster mainte-

nance time and execute the maintenance without the Hadoop users’ awareness and ac-

tions. A slightly different approach is to keep users informed beforehand by announcing

the forthcoming maintenance time so that users do not submit jobs that will not com-

plete before the maintenance starts. Such an approach does not really help maximizing

the key performance metric of Hadoop job throughput, since the cluster resources are

anyway wasted as users stop submitting jobs. In our experiences, we have seen such

under-utilization of the cluster before announced maintenance window.

Moreover, though users may be aware of the maintenance window from the an-

nouncement and stop submitting ad hoc jobs (e.g., the one-time running jobs), most

non-ad-hoc jobs (e.g., hourly running jobs) can rarely take advantage of the announce-

ment. Those jobs are scheduled to run periodically and are very inconvenient for the

users to pause and resume.

In addition, the AW-based approach can be used in tandem with the announcement-

based approach, as the algorithm and its associated observations can be used to deter-

mine the optimal maintenance time window to announce to users. In other words, if

AW-based profiling has identified the pattern of accumulated workloads, then a mainte-

nance window with smallest accumulated workloads can be chosen and be announced

to users.

7 Related Work

7.1 Hadoop performance optimization

Various optimizations have been proposed to improve Hadoop throughput and response

time [12–15]. In particular, [13] proposes to improve on the job execution mechanism.

[14] studies the impact of adopting SSD for storage. [15] proposes a new MapReduce

Scheduler for special environments. Our work is orthogonal with these works.

7.2 Workload forecasting

To forecast various types of computing workload (e.g., networking traffic, incoming

traffic), many models such as [10, 16] have been proposed. Work [17] proposes time

series based model to forecast when to add more network bandwidth. In another re-

cent work [18], a time series based forecasting model is used to predict LinkedIn’s

Espresso [19]/Databus [20] traffic. Work [21] proposes a real-time rolling grey fore-

casting method to achieve increase in forecast accuracy. Work [22] uses a novel self-

adaptive approach that selects suitable forecasting methods for a given context, and the

user only has to provide a general forecasting objectives.

7.3 Determining maintenance time

We searched thoroughly for related works in the areas of determining optimal clus-

ter maintenance time. Though there are some works [23, 24] dealing with maintenance
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scheduling for different systems, to our best knowledge, we haven’t seen any similar

work that attempts to optimize the maintenance time for Hadoop clusters. Moreover,

due to the unique characteristics of Hadoop mapreduce jobs during cluster mainte-

nance (i.e., combinations of mappers and reducers, lost intermediate job states dur-

ing cluster-wide maintenance), the impact of Hadoop cluster maintenance considerably

differs from other types of maintenance. For this reason, we believe our study exhibits

uniqueness with regard to these aspects.

8 Conclusion

This work presents an optimization technique to maximize overall throughput of a

“stateless system” such as Hadoop cluster system. We propose to use accumulated job

progress as the cluster maintenance criteria as opposed number of running jobs. Such a

design can significantly save the forfeited computing resources caused by cluster main-

tenance.
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