
Adaptive Space-shared Scheduling for
Shared-memory Parallel Programs

Younghyun Cho, Surim Oh, and Bernhard Egger

Computer Systems and Platforms Laboratory,
School of Computer Science and Engineering,

Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
{younghyun,surim,bernhard}@csap.snu.ac.kr

http://csap.snu.ac.kr

Abstract. Space-sharing is regarded as the proper resource manage-
ment scheme for many-core OSes. For today’s many-core chips and par-
allel programming models providing no explicit resource requirements,
an important research problem is to provide a proper resource allocation
to the running applications while considering not only the architectural
features but also the characteristics of the parallel applications.
In this paper, we introduce a space-shared scheduling strategy for shared-
memory parallel programs. To properly assign the disjoint set of cores to
simultaneously running parallel applications, the proposed scheme con-
siders the performance characteristics of the executing (parallel) code
section of all running applications. The information about the perfor-
mance is used to compute a proper core allocation in accordance to the
goal of the scheduling policy given by the system manager.
We have first implemented a user-level scheduling framework that runs on
Linux-based multi-core chips. A simple performance model based solely
on online profile data is used to characterize the performance scalability
of applications. The framework is evaluated for two scheduling policies,
balancing and maximizing QoS, and on two different many-core plat-
forms, a 64-core AMD Opteron platform and a 36-core Tile-Gx36 pro-
cessor. Experimental results of various OpenMP benchmarks show that
in general our space-shared scheduling outperforms the standard Linux
scheduler and meets the goal of the active scheduling policy.

1 Introduction

Modern operating systems (OSes) are still based on time-shared scheduling tech-
niques originally developed for single-core machines where – despite local run
queues – one system kernel maintains the entire information about the system
and manages all running tasks in the same manner. At the same time, cur-
rent parallel programming models such as OpenMP [10], TBB [24], Cilk [7], or
OpenCL [17] assume that each application can utilize all physically available
hardware resources without considering the current system workload.

In such a disjoint runtime model, OSes lack good scheduling policies when
multiple parallel programs are executed simultaneously. Averse effects of this ap-
proach include not only a low cache utilization caused by cache cold misses due

2 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

to context switches of an oversubscription of threads to single cores but also per-
formance interference caused by scheduling threads in a time-shared manner. For
example, the standard Linux scheduler, the Completely Fair Scheduler (CFS),
provides the same execution chances for each task [22]. Each task’s virtual (ex-
ecution) time is accumulated in proportion to the task priority. This per-task
resource management can cause severe performance interference between appli-
cations comprising a large number number of threads.

A promising approach to address this issue is space-shared resource alloca-
tion [29]. In the OS community, several research groups have introduced exper-
imental OS prototypes [5, 19, 31]. The presented prototypes commonly follow
the principle of space-partitioning for scalable many-core resource management.
In this new model, the role of the OS is divided into two parts. The coarse-
grained resource manager provides space-shared resource multiplexing while the
application-specific fine-grained resource manager manages an application’s re-
source management such as, for example, assigning the application’s tasks to
the allocated cores. Although the space-shared OSes introduced new OS design
principles, the scheduling and resource allocation schemes have lots of open is-
sues to be solved. For traditional parallel job scheduling, a lot of space-shared
scheduling schemes such as First-come First-served or Backfilling [13, 18, 21] have
been proposed. However, the prior art mostly focuses on supercomputers or dis-
tributed systems where the resource requirements of parallel jobs are typically
explicit. For today’s many-core chips and parallel programming models that
provide no explicit resource requirements, an important research issue of space-
shared scheduling is thus to provide a proper resource allocation to the running
applications while considering not only the architectural features but also the
characteristics of the parallel applications.

In this paper, we introduce a space-shared scheduling strategy for shared-
memory parallel programs. Many parallel applications exhibit varying resource
requirements and performance characteristics during the execution lifetime of
the application. It is therefore increasingly important to consider an application’s
dynamically changing workload. The proposed scheduling scheme considers all
parallel code section of an application. To properly assign the core resources, the
scheduler considers the performance characteristics of the currently executing
parallel code sections of all running applications. Based on profiled performance
information, the scheduler allocates the core resources in accordance with the
active scheduling policy which is given by the system manager.

We have first implemented a user-level scheduling framework that performs
the proposed scheduling strategy for OpenMP programs on Linux-based many-
core systems. In shared-memory systems, the memory access contention is one
of the major limiting factor of performance scalability. By extracting the shared-
memory access patterns, a simple performance model is used to characterize the
performance scalability of running applications. In this work, we implement two
Quality-of-Service (QoS) based scheduling policies: Equalizing QoS, and Maxi-
mizing QoS. The scheduling framework is evaluated for various OpenMP bench-
mark scenarios on two different many-core platforms, a 64-core AMD Opteron

Adaptive Space-shared Scheduling for Shared-memory Parallel Programs 3

NUMA system and a 36-core Tile-Gx36 processor. The empirical studies in this
paper show that our space-sharing scheme outperforms the current Linux stan-
dard scheduler and confirm space-sharing has potential as a resource manage-
ment scheme for current and future many-core systems.

The remainder of this paper is organized as follows. Section 2 discusses related
work. In Section 3, we introduce our approach to dynamic space-shared schedul-
ing. Section 4 describes our scheduler framework including the performance
model and the scheduling algorithm. In Section 5, we evaluate our scheduling
and show how our performance model and scheduling scheme meet the require-
ments of the active scheduling policy. Section 6 discusses where we see additional
room for further performance improvement and the research direction towards
better scheduling. Finally, we conclude this paper in Section 7.

2 Related Work

For shared-memory many-core systems several empirical scheduling techniques
have been proposed that consider applications’ performance characteristics.

Moore and Childers [20] introduce a utility model to characterize an appli-
cation’s scalability and performance interference between multi-threaded appli-
cations based on offline training. Their model finds the performance plateau of
an application and uses the information to choose the thread counts for multi-
threaded applications. Grewe et al. [14] decide thread counts of OpenMP appli-
cations based on prediction. The prediction relies on machine learning for the
selected performance features. Both works decide the proper thread count when
a parallel program is launched, but they do not consider varying workloads in an
application, and their techniques rely on additional efforts for offline training.

For more fine-grained resource management, Raman et al. [23] propose Par-
cae, a compiler-assisted dynamic tuning system. Their compiler generates flexible
codes for every OpenMP parallel section so that they can change the degree of
parallelism at runtime. They find the proper thread count by iteratively try-
ing different thread configurations based on a hill-climbing algorithm. However,
the hill-climbing approach often fails to find globally optimal thread counts.
Emani et al. [12] use a machine learning technique and compiler-assisted infor-
mation to predict better OpenMP thread counts. On the other hand, Creech et
al. [9] introduce SCAF that decides the proper thread count of OpenMP paral-
lel applications when it enters a parallel region. The scalability of an OpenMP
application is determined by creating and running a serial process concurrently
with the parallel section. An online profiler then compares the progress of the
serial process to that of the multi-threaded process based on the instructions
per cycle count. Since SCAF does not change the parallelism once the number
of threads has been determined, their method is useful for iterative programs in
that the serial process is executed once when a parallel section is first executed.
These works aim to improve the performance of parallel programs by dynam-
ically tuning the parallelism [23, 12] or managing thread counts for malleable
OpenMP parallel sections [9]. However, the techniques are technically not spa-
tial partitionings of core resources. In our work, we focus on a spatial mapping

4 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

of parallel programs such that the methodology can be applied to multi-level
space-shared OS models.

Sasaki et al. [25] consider the scalability of multiple multi-threaded applica-
tions and perform a spatial partitioning without offline information. The work
also focuses on balancing performance of co-located applications via spatial
scheduling. While their goal is similar to ours, their work does not explicitly man-
age applications’ parallel or serial sections. Instead, they monitor the throughput
of running multi-threaded programs and detect phase transitions. To understand
the performance scalability of applications, they run the same application on
three different core allocations at runtime and measure how the application’s IPS
(Instructions Per Second) changes for the different resource configurations. Our
scheduling scheme, on the other hand, considers various parallel programming
models by requiring a communication API between the space-shared scheduler
and the application runtimes. We also aim to characterize the application’s per-
formance scalability without runtime reconfiguration and adaptively change the
scheduling goals according to the input given by the system manager.

A number of researches take different approaches for many-core resource
management. Harris et al. [15] propose spatial scheduling for simultaneously
running OpenMP applications using scheduler activation in order to avoid per-
formance interference caused by time-sharing OS schedulers. Their technique is
restricted to the OpenMP runtime and does not consider applications’ perfor-
mance characteristics; each parallel region is assumed to scale well. Mesos [16]
is a data center operating system. For intra-node resource management, Mesos
uses Linux’s control groups for resource isolation of data center applications.
Unlike Mesos, our work focuses on explicitly space-partitioned core allocations
for general parallel programming models and efficient interaction mechanisms
between application runtimes and the space-shared scheduler.

3 The Space-Shared Scheduling Strategy

In this section, we introduce a space-shared scheduling strategy for schedul-
ing multiple shared-memory parallel applications. It is obvious that, even when
strictly adhering to a space-shared resource allocation scheme, the allocations
are of temporal nature and must be re-evaluated in order to efficiently utilize
the given hardware and achieve satisfactory performance. In general, applica-
tions can start and end at any given time which will require a re-computation of
the current resource allocation. More importantly, the resource requirements of
a parallel application are likely to vary over the course of its execution. For ex-
ample, in sequential sections, one core should be sufficient whereas the different
parallel regions of the application may each exhibit divergent characteristics and
will thus require a different resource allocation. Assigning the correct amount of
resources to all applications at any given time while satisfying both the overall
system’s and each application’s performance goals is thus undoubtedly a chal-
lenging problem.

Adaptive Space-shared Scheduling for Shared-memory Parallel Programs 5

Resource
Allocation

Scheduler

App 1: begin

App 2: begin

App 1: end

System-wide Re-scheduling
Notification to Scheduler
Synchronous Execution

(a) Synchronous scheduling

Resource
Allocation

Scheduler

App 1: begin

App 2: begin

App 1: end

System-wide Re-scheduling
No re-scheduling is performed
Notification to Scheduler

(b) Asynchronous scheduling

Fig. 1: Adaptive space-shared scheduling scheme.

3.1 Interaction with Application Runtimes

Parallel applications consist of several parallel and sequential regions, and the
different parallel applications typically posses divergent characteristics [4]. To
consider the varying performance characteristics of parallel applications, we pro-
pose an approach in which the space-shared scheduler interacts directly with the
parallel programming model runtimes of the applications.

A näıve but easy approach is to use synchronous communication between the
scheduler and the application runtimes. Figure 1 (a) illustrates the approach.
System-wide resource re-allocation is performed whenever an application enters
or exits a parallel region. However, this synchronous scheduling model suffers
from a number of problems. The synchronous communication model serializes
accesses of parallel applications to the scheduler, thereby effectively limiting
parallelism. In addition, re-evaluating the resource allocations whenever one of
the concurrently executing parallel applications enters or exits a (possibly very
short) parallel region leads to an unacceptably high overhead of the scheduler.

A better approach is to perform asynchronous communication and scheduling
as illustrated in Figure 1 (b). In this scheme, parallel applications communicate
with the scheduling runtime by sending their status (i.e., events about entering
and exiting parallel regions) to the scheduler and asynchronously execute their
jobs. The scheduler periodically wakes up to re-evaluate the current resource
allocation of the simultaneously running application. Since re-scheduling and
re-allocating resources to applications are comparatively expensive operations,
re-scheduling is not performed at every wake-up but only if the system state
is stable for a long enough period of time. Without that condition, an appli-
cation executing a short parallel regions in a loop might trigger a system-wide
re-scheduling of resources. Section 5 discusses the wake-up frequency and defines
what we consider to be a stable system state. The proposed scheduling approach
does not limit progress of parallel applications thanks to the asynchronous com-

6 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

munication model and, at the same time, is able to reduce frequent inefficient
resource re-allocations.

We need to define a method to communicate with the applications or the
application-specific runtimes. Applications have to notify the global scheduler
about their state. A parallel application is either executing a sequential code
section or in one of its parallel sections. We do not distinguish between different
sequential code sections, however, the scheduler considers the different parallel
sections of an application. The execution state of an application from the view-
point of the scheduler is defined as (a) sequential or (b) by the unique identifier
of a parallel section.

The calls to the scheduler can be inserted manually or automatically in to
the source code, made by a customized parallel programming runtime library,
or by intercepting the application’s calls to the runtime through dynamic li-
brary interpositioning. In this paper, we have implemented the last approach for
OpenMP applications, dynamic library interpositioning, because it is automatic
and neither requires access to the application’s source code nor modifications to
the parallel runtime library. An easy way to uniquely label parallel sections is
to use the address of the parallel code section. Section 4.2 elaborates the details
of this approach.

3.2 Application Runtimes and Programming Malleability

Since no application shares core resources with any other application in a space-
shared approach, we first need to reclaim the cores from an application before re-
distributing them to other applications. This functionality has to be implemented
without much runtime overhead in order to be beneficial.

To add or reclaim cores from an application, we need to consider what pro-
gramming model is used. The most prominent parallel programming models are
thread-based fork-join model (e.g., OpenMP), task-parallel models (e.g., Cilk,
TBB, or OpenMP 3.0) and data-parallelism (e.g., OpenCL, CUDA).

In the OpenMP fork-join model, it is impossible to reduce or increase the
number of parallel threads once the worker threads have been created and as-
signed with a portion of the workload at the entrance of a parallel region un-
less additional compiler or runtime support is provided. On the other hand,
task-parallel models and data-parallel models present opportunities to reclaim
and reassign resources during the execution of a parallel section. For example,
task-parallel programming models such as Cilk or TBB have a scheduler which
distributes tasks for all cores. Also, data parallel programming models such as
OpenCL, a possibly large number of work units (termed work groups in the
OpenCL model) are distributed to a pool of worker threads by the OpenCL
work group scheduler. For those programming models, increasing or decreasing
the number of active worker threads is easily achieved.

In this paper, we tackle the OpenMP programming model and thus focus on
scheduling a fixed number of threads. Instead of adjusting the number of threads,
we employ a thread-migration based approach. We allow different applications
to share core resources temporarily during a migration phase until the required

Adaptive Space-shared Scheduling for Shared-memory Parallel Programs 7

migrations have finished. Changing the thread count during execution is outside
of the scope of this paper and part of future work.

3.3 Performance Model and Scheduling Policies

A space-shared scheduler needs to provide sufficient resources to all running
applications while considering each application’s characteristics and hardware
features at the same time. Also, the resource manager should be able to compute
a proper resource allocation according to the specific scheduling policy. In order
to do so, the scheduler needs information about the applications’ runtime profiles.

There are some important features that affect an application’s performance
scalability. Memory access patterns, intercore-communication patterns, and the
(dynamic) working set input size can all affect the scalability of an applica-
tion. To understand the performance characteristics of parallel applications, prior
works usually employ offline training, [20], machine learning [14, 12], extracted
information through static program analysis [30], runtime resource reconfigura-
tion [23, 25, 9], or analytical approaches such as, for example, resource contention
modeling [28, 27].

In this work, we implement a performance model that solely relies on online
profile data. The model assumes that the memory access contention is the ma-
jor limiting factor of performance scalability. Section 4.3 shows this assumption
is valid to capture the trend of an application’s scalability. More sophisticated
shared resource contention modeling and additional performance information
from applications’ annotation or static analysis can potentially obtain more ac-
curate and versatile performance models and allow implementation of more so-
phisticated scheduling policies. Better analysis techniques and policies are part
of future work.

4 The Scheduling Framework

In this section, we discuss the details of the proposed scheduling framework that
performs dynamic space-shared resource allocation as outlined in Section 3. The
framework is implemented on Linux-based many-core platforms and performs
scheduling for GNU-OpenMP applications. Other parallel programming mod-
els can be easily supported by defining and implementing the communication
interface into the respective parallel programming library.

Figure 2 illustrates the system software stack of the framework. We explain
each component in the subsections below.

4.1 Core Mapping Scheme

In our scheduling framework, the scheduler allocates a cluster (a set of comput-
ing cores that share a common last-level cache (LLC)) as the default scheduling
granularity. Exceptions are allowed in two cases: (1) when a serial section is
scheduled or (2) when the number of running applications is bigger than the

8 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

Architecture
Description

Space-shared
Scheduler

Online
Profiler

Application
Runtime

Performance
Monitor

Monitor

Scheduler

Comm. Library

work-group
scheduler

space-shared
schedulerComm. Library

Application
Runtime

Linux kernel Functionalities

Worker
Core

Worker
Core

Worker
Core

Worker
Core

Worker
Core

Task Manager

App1 App2

Fig. 2: The scheduling framework.

number of clusters in the system. This is sensible because each application can
benefit from cluster-level management in terms of LLC sharing.

Furthermore, the core allocator tries to maintain shapes of minimal perimeter
inside each cluster. This has a positive effect on inter-core communication
and also reduces the number of migrations at runtime caused by resource re-
allocations. For some architectures, especially mesh-style NoCs, the overhead of
the cache coherence protocol is high if the communication distance is long.

4.2 Communication Library

The runtime environment manager is implemented in a component called mon-
itor (Figure 2). This monitor module runs as a daemon and interacts with the
application runtimes, the space-shared scheduler and the online profiler. The
monitor periodically tries to perform system-wide scheduling if all running ap-
plications execute in a specific parallel/serial code region for a sufficiently long
enough time. The wake-up frequency of the scheduler is an parameter that de-
pends on the target architecture platform.

Our scheduler needs to keep track of the contexts of all running applications.
In other words, the scheduler requires information whether a given application
is currently executing in a sequential or a parallel section. Since different parallel
sections exhibit different performance characteristics, it also needs to distinguish
between the different parallel sections.

In our implementation, the current context of an application is stored to a
global memory region that is shared with the scheduler. An OpenMP application
calls GOMP parallel start and GOMP parallel end when it enters and exits a
parallel region, respectively. Our framework intercepts these calls through library
interpositioning. The function pointer of the parallel section provided to the
GOMP parallel start upon entering a parallel code section is used to distinguish
between different parallel sections.

Adaptive Space-shared Scheduling for Shared-memory Parallel Programs 9

4.3 Online Profiler

A proper performance model is required in order to compute resource allocations
to the different parallel applications with respect the current scheduling policy.
Our online profiler collects important performance features by monitoring the
hardware’s performance counters and computes a performance model for each
encountered parallel code section of every application.

Our model is based on the idea that shared resource contention among
threads is one of important factors that affect applications’ performance scala-
bility. Tudor et al. [28] introduced an analytical memory contention model for
shared-memory parallel programs. In their work, the authors show that shared-
memory resource contention can be modeled using an M/M/1 queue.We apply
this idea to efficiently characterize the performance characteristics of the con-
currently executing applications.

Memory Contention Performance Model The performance (i.e., speedup)
model is organized as follows. The specific amount of work that a parallel sec-
tion of an application performs is denoted by the work cycles W . If a parallel
section uses N cores then the work cycles are divided by N . If the threads
are completely independent, i.e., in the absence of inter-core communication or
access to shared resources, the application’s parallel section speedup becomes
N . Most applications, however, access shared resources such as memory. The
shared-resource contention is denoted by C(N). In our model, we currently con-
sider only memory-level contention. We also don’t take into account other fea-
tures such as load-imbalance and data dependencies because experiments with
OpenMP benchmarks (especially in a parallel section) exhibit a much larger
sensitivity to the contention in memory accesses C(N).

To estimate the speedup, we measure the per-core last-level cache miss rate
of each application, denoted LLC. In addition, we compute LLC ALL, the sum
of the total LLC miss rates from all applications running in parallel. If N cores
are assigned to an application, the speedup model is given as follows:

SpeedUp(N,LLC,LLC ALL) =
W + C(1)

W/N + C(N)
(1)

To compute the shared memory contention overhead C(N), we first estimate
how many memory accesses happen during the given work cycles (W/N ∗LLC).
Then we can compute the total number of cycles required to finish the given work
cycles by multiplying the expected memory service time (T (N)) (i.e., latency
cycles) as shown below:

C(N) =
W

N
∗ LLC ∗ T (N) (2)

The service time is modeled by an M/M/1 queuing model. In this work, we
assume that if the system contains a number of memories, the memory accesses
are evenly distributed (interleaved) to each memory. We further assume that the

10 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

memory service times are the same regardless of the distance between memory
controllers and cores in the interleaved allocation scheme. The memory latency
cycles without any contention are modeled as L and the number of memories is
represented by M .

T (N) =
1

service rate− request rate
= 1/(

1

L
− LLC ALL

M
) (3)

This model efficiently generates a logarithmic scalability curve by model-
ing the increased contention overhead. However, this model is not theoretically
valid for our problem. Foremost, the model assumes an infinite number of re-
source competitors, but we only have a finite number of cores. This possibly
incurs negative or impractically large estimated latency cycles because the sim-
ple regression (LLC ∗N in Equation 3) increases LLC without considering the
service response (the response time reduces the LLC miss rate of a queuing com-
petitor). In addition, in modern memory architectures, there are a number of
distributed contention points. To overcome this limitation, we use a threshold
for the delay. Once the estimated latency reaches the pre-determined threshold
in memory-intensive applications, the estimated latency is fixed to the threshold
and the scalability curve becomes linear.

Examples of the Performance Model Figure 3 shows some examples of
the model. The baseline in Figure 3 (a) is obtained by running the applications
with a varying number of cores on the target machine, a 64-core AMD architec-
ture. Each benchmark is then executed standalone on all available cores and the
LLC miss-rate is obtained by monitoring the performance counters. The mod-
eled performance scalability is depicted in Figure 3) (b). Linear performance
scalability in the graph is caused by the capping the maximum service delay
with a threshold as outlined above.

The performance model does not capture various performance features such
as data dependencies, inter-core communication or synchronization patterns.
However, as long as the relation between the different applications’ scalabilities
are predicted correctly, the absolute error of the model is not of great importance
in order to computed a resource allocation.

Performance Counter Measurement The performance indicators required
by the performance model are obtained by monitoring the hardware performance
counters. We measure LLC miss events and total cycles.

Our framework is tested on a 64-core AMD Opteron platform and the Tile-
Gx36 platform. For the AMD platform [3], the LLC miss event counters are
provided on the AMD NorthBridge and we can obtain the count using the
”NBPMCx4E1 L3 Cache Misses” [11] as an event descriptor. The total num-
ber of cycles is a generalized CPU event which is already defined and measured
in the Linux kernel. On the other hand, the Tile-Gx36 does not have a spe-
cific last-level cache. Instead, the architecture uses DDC (Dynamic Distributed
Cache) techniques [2] in which local cache misses try to fetch their data from

Adaptive Space-shared Scheduling for Shared-memory Parallel Programs 11

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
p

ee
d

U
p

of Cores

EP
BP.PS1
BP.PS2
HOT.PS1
HOT.PS2
STREAM.PS1
STREAM.PS2

(a) Original performance

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
pe

ed
U

p

of Cores

EP
BP.PS1
BP.PS2
HOT.PS1
HOT.PS2
STREAM.PS1
STREAM.PS2

(b) Performance model

Fig. 3: Examples of the performance model. EP is taken from NPB3.3 [26], the others
(BP-backpropagation, HOT-hotspot, STREAM-streamcluster) are from Rodinia [8].
We show the results of benchmarks containing the small number of parallel sections
(PS).

distributed caches. For the Tile-Gx36 NoC architecture, we consider local cache
misses (from local cache to memory) and remote cache misses (from remote
cache to memory) at the same time. LLC is computed as the sum of the two.

4.4 Scheduling Algorithm

The main advantage of the performance model is that we can design different
scheduling algorithms to accommodate for specific scheduling policies. In this
work, our scheduling policies are based on the QoS (Quality-of-Service) which we
define as the normalized speedup compared to executing the application on fully
available hardware resources an no co-located applications. QoS is computed as
follow:

QoS =
SpeedUp On Given Resources

SpeedUp Executed Standalone
(4)

To maintain a polynomial-time algorithm, the scheduler implements greedy-
pareto policies (e.g., maximize QoS, balancing QoS). The algorithm first reserves
at least one allocation unit to each application. Whenever the scheduler reserves
a new allocation unit, it takes the best (pareto) solution according to the schedul-
ing policy.

Algorithm 1 decides the proper amount of core resources based on the bal-
ancing QoS policy. The computational complexity is O(N2M) where N is the
number of applications and M is the number of allocation units. This is an ac-
ceptable overhead because the number of executed applications is usually small.
Also, we allocate cluster as a default allocation granularity (refer Section 4.1)
which reduces the complexity as well.

After the core resources for all applications have been reserved, we consider
core clustering among applications when more than two applications are packed

12 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

Algorithm 1 Scheduling Policy: Balancing QoS
N = # of applications in the system
M = # of computing cores in the system
CPU[N] = # of reserved cores for each application, initialized to 1
LLC[N] = per-core LLC miss rate of each application

while sum(CPU) < M do
best app = −1
min variance = ∞
for i = 0 to N do

QoS[N] = estimated QoS for each applications
LLC ALL = summation of LLC miss rate from all applications
for j = 0 to N do

if i == j then
LLC ALL += LLC[j]*(CPU[j]+1)

else
LLC ALL += LLC[j]*CPU[j]

for j = 0 to N do
if i == j then

QoS[j] = SpeedUp(CPU[j]+1, LLC[j], LLC ALL) / SpeedUp(M, LLC[j], LLC[j]*M)
else

QoS[j] = SpeedUp(CPU[j], LLC[j], LLC ALL) / SpeedUp(M, LLC[j], LLC[j]*M)

if variance(QoS) < min variance then
min variance = variance(QoS)
best app = i

CPU[best app] += 1

into one cluster. For example, the Tile-Gx36 has 36 tiles in a single chip because
the machine has no specific LLCs. In addition, on the tiled architecture, the
clustering benefits from dynamic distributed caching technique because it can
reduce the the cost of maintaining cache coherence.

Another important consideration is to reduce the number of thread migra-
tions (i.e., re-assignment to a different core) caused by the system-wide reschedul-
ing. In this work, we have implemented a rather simplistic approach in which
the scheduler always allocates the cluster/core resources to applications in the
same order in order to minimize the number of migrations.

4.5 Task Manager

Another important consideration is the application of internal task scheduling
in the application-specific runtime. To assign an application’s tasks to specific
cores, the framework comprises a special kernel module. As our main concern
is not application-specific resource management but space-shared mapping, we
utilize the Linux kernel’s processor affinity mask to define the set of cores that
can be utilized by the threads of an application. The standard Linux scheduler is
responsible for thread allocation to the assigned cores and load-balancing. In this
way, we can focus on coarse-grained resource allocation techniques and leave the
application-specific fine-grained thread-to-core assignment to the Linux kernel.

5 Evaluation

5.1 Target Architectures

The scheduling framework has been evaluated on a 64-core AMD Opteron 6380
server platform [3] and the Tile-Gx36 platform [1]. The AMD Opteron server

Adaptive Space-shared Scheduling for Shared-memory Parallel Programs 13

represents a multi-socket multi-core NUMA system, and the Tile-Gx36 platform
is a representative of a mesh-style many-core processor. The main features for
performance evaluation of the two architectures are shown in Table 1.

Table 1: Target Architecture

Architecture AMD64 Tile-Gx36

processor Opteron6380 Tile-Gx8036

clock frequency 2.5GHz 1.2GHz

memory size 128GB 32GB

total cores 64 36

of cores per processor 8 36

of NUMA nodes 8 2

Linux kernel 3.13 2.6.40

scheduling frequency 33Hz 13Hz

scheduling steady state 2 periods 2 periods

5.2 Target Applications

Table 2: Target Application (A-AMD64, T-Tile-Gx36)

Application Description Serial time Standalone execution (Speed Up)

EP Embarrassingly parallel - A-21.4s(47.1) T-43.6(34.1)

CG Conjugate gradient - A-11.6s(9.3) T-40.1(34.2)

MG Multi-grid - A-17.2s(10.7) T-32.2(23.9)

F.M (Freqmine) FP-growth method A-5.8s T-7.1s A-25.5s(17.8) T-34.0(4.4)

S.C (Streamcluster) clustering - A-15.8s(7.7) T-34.7(15.2)

For the evaluation, we selected several OpenMP applications which have
specific characteristics from known benchmark suites. The three OpenMP appli-
cations (EP, CG, MG) from SNU-NPB3.3 [26], Freqmine from Parsec 3.0 [6] and
Streamcluster from the Rodiana [8] benchmark suite all exhibit different char-
acteristics: EP is CPU intensive, CG issues irregular memory accesses, MG is
a memory-intensive benchmark, Freqmine is CPU-intensive with a long sequen-
tial part, and Streamcluster is also a memory-intensive benchmark. Execution
information about each benchmark is shown in Table 2. The standalone execu-
tion and speedup values in the table are obtained by executing the benchmarks
standalone on the AMD Opteron platform. For Tile-Gx36, we use the same
benchmarks but adjust the working set sizes because the Tile-Gx8036 processor
has less processing power than the AMD Opteron6380 processor.

One benchmark scenario comprises several parallel application benchmarks
executed simultaneously. The 10 benchmark scenarios are composed of different
application benchmarks representing different workload patterns in order to show
the broad applicability of the proposed method.

There are some considerations of the applications’ executions with respect to
evaluation of performance. First of all, the working set size (execution time) is

14 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

an important factor for performance evaluation. For example, if the working set
sizes are too different between applications, then the normalized performance
may vary too much. Therefore, we manually adjust the working set sizes for
the target applications to have a similar turnaround time when they are exe-
cuted standalone on the target architecture. Furthermore, we use the system’s
memory interleaving option (using numactl tool to manage NUMA settings) such
that memory allocations are evenly distributed across the available memory con-
trollers.

To evaluate the scheduling performance for simultaneous applications, we
measure the performance for each application and compute the summation of
the performance metrics (QoS, speedup, and turnaround time) from simulta-
neous applications. In addition, we compute the standard deviation for each
performance metric to quantify how balanced the applications’ performances
are.

5.3 Scheduling Policies

To evaluate the space-shared scheduling policies, we compare the scheduling
performance with not only the time-shared scheduler but also other simple space-
shared scheduling policies. In these experiments, the different schedulers/scheduling
policies are as follows.

• CFS - the Linux standard time-shared scheduler.

• Static Equal Partition - static equal core partitioning for each application.
In this scheme, system resource re-allocation is performed (not even when
an application finishes execution).

• Dynamic Equal Partition - dynamic equal core partitioning: perform dy-
namic scheduling whenever an application starts or finishes execution.

• Dynamic Equal QoS - our space-shared scheduling scheme where we perform
fine-grained resource management and strive to balance the QoS among ap-
plications whenever a core resource is reserved.

• Dynamic Max QoS - our space-shared scheduling scheme. The scheduling
policy is set to maximize the sum of the QoS of all applications.

5.4 Scheduling Scenario

We execute every combination of three applications from the five target applica-
tions as shown in Table 2 for each scheduling policy. Thus, the overall scheduling
runs comprise ten sets of applications. We provide the benchmark results of the
scheduling set for five different policies both on AMD64 and the Tile-Gx36 plat-
form. In each scenario, each application creates as many threads as physical
cores are available in the system, and the thread count is not changed during an
application’s lifetime.

Adaptive Space-shared Scheduling for Shared-memory Parallel Programs 15

QoS improvement (Normalized stdev): 0.3%(0.58) / 5.0%(0.42) / 9.2%(0.40) / 6.5%(0.92)

0

0.5

1

1.5

2

2.5

Q
o

S
app1 app2 app3

SpeedUp improvement (Normalized stdev): -22.3%(0.46) / -12.8%(0.60) / -13.1%(0.52) / 2.5%(1.01)

0

20

40

60

80

S
p

ee
d

U
p

app1 app2 app3

Turnaround time improvement (Normalized stdev): 2.8%(1.27) / 11.3%(0.77) / 13.2%(1.17) / 8.4%(0.88)

0

50

100

150

200

T
u

rn
a

ro
u

n
d

T
im

e(
s)

app1 app2 app3

Fig. 4: Benchmark Result: 64 core AMD Opteron platform. The five bars for each
scheduling scenario represent the results in the order CFS, Static Equal Partition,
Dynamic Equal Partition, Equal QoS, and Max QoS. The four values on the top of
each graph compare the performance (and standard deviation) of each scheduling policy
to CFS in terms of the performance metric from left (Static Equal Partition) to right
(Max QoS).

64-core AMD Opteron Platform Figure 4 shows the performance of the
framework on the 64-core AMD Opteron platform. The first graph in the figure
represents the summation of QoS among applications. The second graph shows
its speedup, and the last graph shows the turnaround time among applications.

An important consideration is the variance of the three target applications’
performances. We show the standard deviation of the performance of three si-
multaneous applications on the top of each bar. Longer lines indicate a bigger
standard deviation; a good scheduling scheme should provide low standard de-
viations.

For the QoS analysis, higher is better. QoS is an important metric, because
if a scheduler only considers maximum speedup then the scheduler may allocate
a large number of cores to the application which has the best scalability while
starving the others. In such a scenario, only one application would achieve a good

16 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

QoS improvement (Normalized stdev): 26.6%(1.10) / 33.9%(0.79) / 29.9%(1.06) / 27.0%(2.28)

0

0.5

1

1.5

2

Q
oS

app1 app2 app3

SpeedUp improvement (Normalized stdev): 11.2%(0.76) / 26.4%(1.02) / 20.6%(1.00) / 32.2%(1.60)

0

15

30

45

60

S
p

ee
d

U
p

app1 app2 app3

Turnaround time improvement (Normalized stdev): 20.0%(1.18) / 27.9%(0.74) / 23.7%(0.73) / 17.0%(1.54)

0

200

400

600

800

T
u

rn
ar

ou
n

d
T

im
e(

s)

app1 app2 app3

Fig. 5: Benchmark Result: 36 core Tile-Gx36 platform. The layout of the benchmark
results is equal to that in Figure 4.

scalability and a high QoS. To increase the overall QoS among applications, the
scheduler eventually needs to be aware of the target application’s scalability in
advance.

For example, consider the first scenario (app1: CG, app2: EP, app3: MG):
In the QoS graph, CFS provides a good QoS for EP, the most CPU-intensive
application in our target application set. However, the other applications starve
and fail to get a good QoS. This effect is also visible in the second (SpeedUp)
graph. Here, EP achieves the biggest speedup, whereas MG and CG do not
achieve satisfactory performance. On the other hand, the Equal QoS policy or the
Equal Partition policy provide more CPU time (physical cores) for CG and MG,
and as a consequence, the speedup of the two applications CG and MG increases.
Since CG and MG are less scalable than EP, the overall speedup of the Equal-
QoS policy is smaller than that of CFS. However, the overall QoS is increased
and the QoS becomes more balanced. We observe that the Equal-Partition and
the Equal-QoS policies manage to reduce the variance (i.e., standard deviation)
of the results.

Adaptive Space-shared Scheduling for Shared-memory Parallel Programs 17

The static policy provides a static allocation of cores to each application for
its entire lifetime and thus achieves a good resource isolation. As a consequence,
cores that become available when one of the application finishes early cannot
be reallocated to the running ones, which in turn causes a reduced overall per-
formance. The last scheduling policy, Max-QoS shows similar characteristics as
the Linux scheduler. The reason is that the Max-QoS policy determines that EP
achieves the best increase in QoS.

Across the scheduling scenarios, there is no scheduling policy that always
achieves the best performance; each scheduling policy shows a slightly different
behavior. However, in the general case, the space-shared scheduling schemes
outperform the Linux scheduler in terms of our performance metrics. The last
five bars in each graph show the average (geometric mean for QoS and speedup,
arithmetic mean for turnaround time) of the summation of three application
performances.We have found that in general the equal QoS policy is well suited
to meet the requirements of QoS among parallel applications on our 64-core
AMD Opteron machine.

The third graph in Figure 4 shows the sum of the turnaround times of each
application, i.e., lower is better. We observe that all space-shared policies out-
perform the CFS scheduler with Equal QoS performing best.

36-core Tile-Gx36 Platform Figure 5 shows the performance of scheduling
policies on the Tile-Gx36 platform for the same experimental scenarios.

Overall, all space-shared policies outperform the standard Linux scheduler
with the dynamic Equal partition policy performing best. This is in contrast to
the AMD64 NUMA platform where our scheduling policies performed better.

The reason is twofold: first, the lower computational power of the Tile-Gx36
platform causes less contention, and the speedups of the different applications be-
come similar. Second, while the overhead caused by the periodic re-allocation of
the resources is not an issue on the AMD machine, the effect is noticeable on the
slower Tile-Gx36 chip. Dynamic equal partition policy requires re-computations
only when an application starts or finishes.

An interesting observation is that Tile-Gx36 benefits by a significantly larger
performance improvement from space-partitioning compared to the results from
AMD64. The reason is that each core in the AMD system is a highly-efficient
super-scalar processor on which multiple threads from multiple applications can
be efficiently scheduled by using advanced hardware technologies. However, the
trend of many-core architectures suggests that future many-core chips will com-
prise simpler but many more cores in a single chip. Therefore, we believe that
space sharing will be an indispensable scheduling component for future many-
core resource management.

6 Discussion

In this section, we discuss our research direction for improved space-shared
scheduling based on the experience of this work.

18 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

First of all, the evaluations on two different platforms confirm that space-
shared resource allocation can outperform the Linux’s time-shared scheduling
that largely ignores the characteristics of concurrently running applications.
The proposed scheduling policies provide better performance in terms of QoS,
speedup, and turnaround time for most combinations of simultaneously executed
parallel applications.

Nevertheless, there are still lots of issues to be solved and a lot of room for
improvement. First, for scheduling OpenMP applications, our evaluation is fixed
to the default setting where every (OpenMP) parallel application is executed
with the same default number of threads (i.e., #threads = #cores). However,
Linux and OpenMP runtime systems may apply different resource management
schemes in dependence of the number of an application’s internal tasks. We also
need to consider other situations where application thread counts are not equal
to the number of physical cores in the system (e.g., when an application requests
a bigger number of threads than physically available cores, or vice-versa).

Second, although a space-shared scheduler requires sophisticated performance
models to characterize various performance features with high accuracy, the per-
formance model used in this paper is not accurate and captures only the scal-
ability trend. In addition, we used multi-socket multi-core NUMA systems for
the evaluation but did not consider NUMA-related performance issues in this
work. The advanced performance modeling and understanding how application’s
performance is varied according to the active NUMA policy are our future work.

Third, an important issue of space-shared resource allocation is how to man-
age the degree of parallelism (thread counts). Especially for data-parallel pro-
gramming models (OpenCL, Hadoop) or task-parallel runtimes (Intel TBB, Cilk)
we can reclaim and reassign resources in a more flexible way. We expect that by
avoiding thread overcommitment, we can achieve additional performance im-
provements. The mechanism for efficiently changing the parallelism from an
application runtime is our research consideration. We also further consider to
dynamically manage the parallelism even for the thread-based OpenMP pro-
gramming model by exploiting runtime and compiler support.

Lastly, our scheduling framework aims at providing (fine-grained) resource
allocation while considering a dynamically changing workload. However, known
parallel application benchmarks are usually based on a monotonous workload,
i.e., their behavior does not change enough for the benefits from a fine-grained
resource management scheme to become apparent. We consider to use various
real-world applications composed of several phases exhibiting different perfor-
mance characteristics or latency-sensitive (e.g., database) applications.

7 Conclusion

In this paper, we introduce an adaptive space-shared scheduling strategy for
shared-memory parallel applications to efficiently handle dynamically changing
workload characteristics. We have implemented a space-shared scheduling frame-
work with several scheduling policies such as achieving balanced or maximal per-
formance when simultaneously executing several OpenMP applications. Based

Adaptive Space-shared Scheduling for Shared-memory Parallel Programs 19

on a simple performance model that uses the last-level cache miss rates as its
main metric, our space-shared scheduler dynamically recomputes core resource
allocations.

The analysis of the results on our implementations for two different many-
core platforms, a 64-core AMD architecture and the Tile-Gx36, shows that, in
general, space-shared scheduling schemes provide better QoS compared to the
standard Linux time-shared scheduler. As a the main contribution of this work,
we show that the space-shared scheduling approach has a lot of potential on
current and future many-core systems.

The experiences gained from this work provide important guidelines towards
better space-sharing. As part of our future work we plan to investigate other
space-shared scheduling policies and to improving the performance model in or-
der to capture various application and architecture characteristics better. Also,
in this work, we have only focused on coarse-grained scheduling issues and left the
fine-grained task-to-core mapping to the Linux scheduler. To increase the per-
formance further, dynamically managing the active thread counts (i.e., control
the amount of parallelism) of applications is a logical next step of this research.

References

1. Tile-Gx36 Processor. http://www.mellanox.com/related-docs/prod_multi_
core/PB_TILE-Gx36.pdf. [online; accessed 28-Feb-2016].

2. UG130:Architecture manual. Tilera Corp.
3. AMD. AMD Opteron 6300 Series Processors. http://www.amd.com/en-us/

products/server/opteron/6000/6300. [online; accessed 28-Feb-2016].
4. Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,

Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California, Berkeley, Dec 2006.

5. Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singha-
nia. The multikernel: A new os architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Princi-
ples, SOSP ’09, pages 29–44, New York, NY, USA, 2009. ACM.

6. Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec
benchmark suite: Characterization and architectural implications. In Proceedings
of the 17th international conference on Parallel architectures and compilation tech-
niques, pages 72–81. ACM, 2008.

7. Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
Journal of parallel and distributed computing, 37(1):55–69, 1996.

8. Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous com-
puting. In Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, pages 44–54. IEEE, 2009.

9. Timothy Creech, Aparna Kotha, and Rajeev Barua. Efficient multiprogramming
for multicores with scaf. In Proceedings of the 46th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 334–345. ACM, 2013.

10. Leonardo Dagum and Rameshm Enon. Openmp: an industry standard api
for shared-memory programming. Computational Science & Engineering, IEEE,
5(1):46–55, 1998.

20 Adaptive Space-shared Scheduling for Shared-memory Parallel Programs

11. Advanced Micro Devices. BIOS and kernel developer’s guide (BKDG) for AMD
family 15h models 00h-0fh processors, 2012.

12. Murali Krishna Emani, Zheng Wang, and Michael FP O’Boyle. Smart, adaptive
mapping of parallelism in the presence of external workload. In Code Generation
and Optimization (CGO), 2013 IEEE/ACM International Symposium on, pages
1–10. IEEE, 2013.

13. Dror G Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Parallel job
schedulinga status report. In Job Scheduling Strategies for Parallel Processing,
pages 1–16. Springer, 2005.

14. Dominik Grewe, Zheng Wang, and Michael FP O’Boyle. A workload-aware map-
ping approach for data-parallel programs. In Proceedings of the 6th Interna-
tional Conference on High Performance and Embedded Architectures and Com-
pilers, pages 117–126. ACM, 2011.

15. Tim Harris, Martin Maas, and Virendra J Marathe. Callisto: co-scheduling parallel
runtime systems. In Proceedings of the Ninth European Conference on Computer
Systems, page 24. ACM, 2014.

16. Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D
Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for
fine-grained resource sharing in the data center. In NSDI, volume 11, pages 22–22,
2011.

17. Khronos Group. The open standard for parallel programming of heterogeneous
systems. https://www.khronos.org/opencl/. [online; accessed 28-Feb-2016].

18. David A Lifka. The anl/ibm sp scheduling system. In Job Scheduling Strategies
for Parallel Processing, pages 295–303. Springer, 1995.

19. Rose Liu, Kevin Klues, Sarah Bird, Steven Hofmeyr, Krste Asanović, and John
Kubiatowicz. Tessellation: Space-time partitioning in a manycore client os. In
Proceedings of the First USENIX Conference on Hot Topics in Parallelism, Hot-
Par’09, pages 10–10, Berkeley, CA, USA, 2009. USENIX Association.

20. Ryan W Moore and Bruce R Childers. Using utility prediction models to dynam-
ically choose program thread counts. In ISPASS, pages 135–144, 2012.

21. Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability, workloads,
and user runtime estimates in scheduling the ibm sp2 with backfilling. Parallel
and Distributed Systems, IEEE Transactions on, 12(6):529–543, 2001.

22. Chandandeep Singh Pabla. Completely fair scheduler. Linux Journal, 2009(184):4,
2009.

23. Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. Parcae: A system for
flexible parallel execution. SIGPLAN Not., 47(6):133–144, June 2012.

24. James Reinders. Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. ” O’Reilly Media, Inc.”, 2007.

25. Hiroshi Sasaki, Teruo Tanimoto, Koji Inoue, and Hiroshi Nakamura. Scalability-
based manycore partitioning. In Proceedings of the 21st international conference
on Parallel architectures and compilation techniques, pages 107–116. ACM, 2012.

26. Sangmin Seo, Jungwon Kim, Gangwon Jo, Jun Lee, Jeongho Nah, and Jaejin Lee.
SNU NPB Suite. http://aces.snu.ac.kr/software/snu-npb/, 2011. [online;
accessed 28-Feb-2016].

27. Bogdan Marius Tudor and Yong Meng Teo. A practical approach for performance
analysis of shared-memory programs. In Parallel & Distributed Processing Sympo-
sium (IPDPS), 2011 IEEE International, pages 652–663. IEEE, 2011.

28. Bogdan Marius Tudor, Yong Meng Teo, and Simon See. Understanding off-chip
memory contention of parallel programs in multicore systems. In Parallel Process-
ing (ICPP), 2011 International Conference on, pages 602–611. IEEE, 2011.

29. Andrs Vajda. Programming Many-Core Chips. Springer Publishing Company,
Incorporated, 1st edition, 2011.

30. Yuan Wen, Zheng Wang, and Michael O’Boyle. Smart multi-task scheduling for
OpenCL programs on CPU/GPU heterogeneous platforms. High Performance Com-
puting (HiPC), 2014.

31. David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin Modzelewski,
Adam Belay, Lamia Youseff, Jason Miller, and Anant Agarwal. An operating
system for multicore and clouds: mechanisms and implementation. In Proceedings
of the 1st ACM symposium on Cloud computing, pages 3–14. ACM, 2010.

