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Abstract. Many-core chips are especially attractive for data center op-
erators providing cloud computing service models. With the advance of
many-core chips in such environments energy-conscious scheduling of in-
dependent processes or operating systems (OSes) is gaining importance.
An important research question is how the scheduler of such a system
should assign the cores to the OSes in order to achieve a better energy uti-
lization. In this paper, we demonstrate that many-core chips offer new op-
portunities for extremely light-weight migration of independent processes
(or OSes) running bare-metal on the many-core chip. We then show how
this intra-chip migration can be utilized to achieve a better performance
per watt ratio by implementing a hierarchical power-management scheme
on top of dynamic voltage and frequency scaling (DVFS). We have im-
plemented and tested the proposed techniques on the Intel Single Chip
Cloud Computer (SCC). Combining migration with DVFS we achieve,
on average, a 25-35% better performance per watt over a DVFS-only
solution.
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1 Introduction

The recent trend to integrate more and more cores onto a single chip, so called
chip multiprocessors or CMPs [2, 19], has led to chip-level power and thermal
constraints becoming one of the primary design constraints and performance
limiters [1]. A higher power consumption not only leads to increased energy cost
but the higher die temperatures adversely affect chip reliability and lifetime.

Dynamic voltage and frequency scaling (DVFS) allows to lower the operating
voltage and frequency of a core to meet its required performance. For current
multi-core systems, each core can be controlled individually, however, for CMPs
the required logic for individually controlling the voltage and frequency for each
core is becoming too costly [12]. Cores are logically clustered into voltage and
frequency domains that share a common setting [8, 21]. Researchers have pro-
posed numerous techniques for individually-controllable and clustered cores [4,
5, 10, 20].

With the ongoing server consolidation, an ever increasing number of cores
per chip, and the overhead associated with maintaining a coherent global shared
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memory, it is more and more common to run several completely independent
(sequential or parallel) applications alongside each other on the same physical
many-core chip without a common underlying OS [3]. Instead, the independent
OSes or applications have full control over the assigned hardware resources and
are responsible for scheduling the work on the assigned cores and managing the
allocated physical memory. Hosting providers, for example, providing access to
bare-metal hosts can execute independent OSes on the different physical cores
of a CMP. Existing power management solutions for CMPs are built for a single
operating system kernel managing all running (groups of) tasks. To the best
of our knowledge, no solutions for CMPs running independent OSes have been
proposed.

In this paper, we propose an extremely light-weight OS migration method
for independent OSes running on CMPs and show that the scheduler can exploit
this OS migration to significantly increase the effectiveness of DVFS policies
for CMPs. We have implemented an energy-aware scheduler exploiting light-
weight OS migration in the Linux operating system running on the Intel Single-
chip Cloud Computer (SCC) [9]. Compared to a state-of-the-art hierarchical
power management with DVFS but no OS migration [10], the proposed ap-
proach achieves 25-35% better performance per watt ratio over a wide range of
workloads.

The remainder of this paper is organized as follows: Section 2 presents re-
lated work. Section 3 introduces the many-core architecture. Section 4 describes
the implementation of the light-weight OS migration in detail. In Section 5, the
integration of OS migration into an energy-aware scheduler with hierarchical
power management for many-core chips is discussed. Section 6 presents the ex-
perimental setup, and Section 7 discusses the experimental results. Section 8,
finally, concludes the paper.

2 Related Work

There is a significant amount of work focusing on the design and implementation
of power management techniques for CMPs. Our focus lies on independent OSes
executing directly on the hardware in a space-shared manner on the CMP and
on exploiting the hardware capabilities of existing and future many-core systems
with regard to coarse-grained voltage and/or frequency domains.

One line of related work considers heterogeneous CMP designs in order to
consume less power with no or minimal performance loss. Kumar et al. [13]
propose heterogeneous CMPs composed of cores supporting the identical ISA
but consuming more or less energy depending on the core architecture. Ghiasi [7]
proposes CMPs with cores executing at different frequencies. Both works show
that such systems offer improved power consumption and thermal management.
Our work differs in that our approach modifies the voltage/frequency of cores
dynamically, without being bound to certain hardware heterogeneity.

Another line of research has focused on exploiting idle periods. Meisner et al.
propose PowerNap [16] and DreamWeaver [17]. Both assume hardware support
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for quick transitions between on- and off-states; the latter work batches wake-up
events to increase the sleep periods. Our work is orthogonal to such approaches,
with one limitation: applying DVFS may lead to a longer execution time which
in turn reduces the potential to sleep.

A number of researchers have proposed heterogeneous power management
techniques for CMPs [5, 10, 11, 14, 15, 18, 20]. Li et al. [14] provide an analyti-
cal model and experiments to show to what extent parallel applications can be
parallelized given a power-budget. Isci et al. [11] apply different DVFS policies
under a given power budget and show that their best policy performs almost as
good as an oracle policy having limited knowledge of the future. Meng et al. [18]
proposes an adaptive power saving strategy that adheres to a global chip-wide
power budget through run-time adaptation of configurable processor cores. Ran-
gan et al. [20] propose ThreadMotion, a technique that moves threads around in
order to improve power consumption. Their approach requires hardware support
to quickly move threads from one core to another. Our approach is similar, but
can be implemented on available CMPs without extra hardware support. Cai et
al. [5] propose to identify critical threads by measuring the slack of threads at
fork-join barriers; non-critical threads can then be executed at reduced speed. In
our work, we focus on independent OSes as opposed to threads within parallel
applications. Ma et al. [15] propose a scalable solution aiming at a mixed group
of single-threaded and multi-threaded applications. Unlike our approach with
is best-effort, they aim at minimal performance reduction while maintaining a
global power budget.

The work most closely related to ours is a hierarchical power manager for
the Intel SCC presented by Ioannou et al. [10]. We show that by adding OS
migration a significantly improved performance/watt ratio can be achieved.

3 Many-core Architectures

Many-core architectures exhibit a number of typical characteristics [22] in or-
der to effectively manage and utilize the large number of cores. In particular,
many-core architectures feature an interconnection network to enable on-chip
communication between the cores. This network is also employed when access-
ing shared resources such as memory. Atomic operations are provided to enable
efficient synchronization of multiple cores.

The technique described in this paper does not require any special hard-
ware support and is thus in principle applicable to any many-core architecture.
We provide a working implementation on Intel’s Single-Chip-Cloud Computer
(SCC) [9] as a proof of concept. We leverage the SCC’s two-level address transla-
tion (see next section) to implement zero-copy OS migration, but the same effect
can be achieved – although with some additional overhead – by directly modify-
ing a core’s memory translation tables. The remainder of this section describes
the architecture of the Intel SCC in more detail.
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Fig. 1. Intel SCC block diagram

3.1 The Intel Single-chip Cloud Computer

Architecture Overview The Intel SCC is a concept vehicle created by In-
tel Labs as a platform for many-core research. It consists of 48 independent
cores interconnected by a routed network-on-chip (NoC). The cores are Intel
P54C Pentium R© cores with bigger L1 caches (16KB) and additional support for
managing the on-chip scratchpad memory, the so-called message passing buffer
(MPB). The Intel SCC provides no cache coherence for the core-local L1 and
L2 caches. Always two cores are grouped together to form a tile; the 24 tiles are
organized on a 6 by 4 grid. Four memory controllers in the four corners of the
chip provide access to up to 64 GBs of memory. A system FPGA provides the
interface between the CMP and the management-console PC (MCPC). Figure 1
shows the SCC block diagram. For better readability, not all cores are shown.

Memory Addressing Each core provides the standard virtual-physical mem-
ory translation; all addresses leaving the core are 32-bit physical addresses. 32-bit
addresses are not wide enough to address the entire 64-GB address range; to al-
low access to a total of 4 GB of memory located somewhere in the SCC’s 64 GB
address space, an additional address translation takes place.

The address translation from core (physical) addresses to system addresses
is provided by a core-local lookup table (LUT). Each LUT has 256 entries and is
indexed by the top eight bits of the 32-bit core address. Without going into much
detail, a LUT entry contains an 8-bit destination ID destID designating one of
the four memory controllers (MC), and 10 address bits that are prepended to the
remaining 24 bits of the core address to form a 34-bit address. One LUT entry
thus maps 16 GB of memory. Together with the memory controller designation,
this translation allows to access the entire 64 GB memory space of the SCC.
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Fig. 2. Voltage and clock domains on the Intel SCC

DVFS Capabilities The SCC provides voltage and frequency control over the
cores and the NoC. The frequency can be controlled per tile, that is, the two
cores located on the same time always run at the same frequency and constitute
a clock domain (CD). The voltage can be regulated for a group of four tiles, i.e.,
a voltage domain (VD) comprises a total of eight cores. Figure 2 illustrates the
clock and voltage domains on the SCC. Voltage domains 2 and 6 are not shown
in the figure; they are logically the same and regulate the NoC and the system
interface.

Voltage and frequency are controlled and queried through registers. Each tile
has specific registers to set/read the tile’s frequency; voltage changes are simi-
larly controlled through a register interface. Frequency changes happen almost
immediately, however, measurements on the SCC revealed that voltage changes
may take up to 100ms to complete (this value was obtained by comparing the
progress of two cores, one control core running on a unchanged voltage domain,
and one running on the domain whose voltage was changed). In addition, volt-
age change requests can only affect a single domain; requests for several domains
must be serialized.

The SCC supports seven different supply voltage levels, however, only four
are of practical interest: 1.1V to run at a frequency of 800MHz, 0.9V to run
at 533MHz, 0.8V for 400MHz, and 0.7V for frequencies below 400MHz. The
frequency is set by writing a divisor between 2 and 16 for the 1600MHz clock
resulting in core frequencies from 800 to 100MHz.

Power Measurement The SCC provides a number of voltage and ampere
meters on-board. The total power consumed by the SCC chip is obtained by
multiplying the (constant) supply voltage with the supply current for the entire
SCC chip. The power consumption of individual voltage domains cannot be
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computed because only the per-domain supply voltage is available but not the
current consumed by the domain. We thus always report the total chip power in
our experiments in Section 7.

The sensors and meters can be read by the management console via telnet
from the system FPGA or by directly querying the system FPGA from a core
in the SCC. We chose the latter approach because of its comparatively low
overhead.

4 Zero-copy OS Migration

In order to optimize the execution of workloads on a CMP towards a specific
goal, the scheduler is often required to move workloads from one core to another.
Such goals include but are not limited to even heat dissipation and adherence to
a given power budget. In the first case, busy and idle workloads are distributed
evenly over the cores of the CMP to even out the sources of the heat generation.
The second case is motivated by the need to cluster workloads with similar per-
formance requirements in voltage and/or frequency domains to achieve optimal
results when applying DVFS.

A workload in this context can refer to anything from a thread of a parallel
application to an entire operating system running exclusively on a core. Clus-
tering threads or processes in the presence of an operating system with shared
memory amounts to re-scheduling them on a different core is straight-forward.
For applications exhibiting periodic behavior and fork-join parallel programs,
special techniques allow accurate estimation of the expected performance re-
quirements and thus more aggressive DVFS policies [10, 15, 20].

For independent programs (such as a Linux kernel) running bare-metal on
the assigned cores, migration is not trivial. In this section, we describe the tech-
nical details on how such kernels can be migrated from one core to another, the
scheduler’s migration policies are discussed in the section on power management
(Section 5).

4.1 Cooperative vs. Transparent Guest OS Migration

Moving an OS from one physical core to another can be implemented with or
without cooperation of the migrated OS. In a co-operative setting, the OS enters
a safe state in which it is moved to the newly assigned core and then resumed.
The OS itself takes care of changed memory mappings and the like. Transparent
OS migration, on the other hand, happens without any interaction or knowledge
of the migrated OS.

The main caveat is how to deal with the volatile state, i.e., the assigned
memory of the workload and values currently held in registers inside the CPU
core. If the CMP implements a global shared address space, the assigned mem-
ory does not have to be moved physically; the same physical addresses are still
valid on the new core. Since such designs cannot provide total isolation of inde-
pendently running workloads, CMPs often implement an additional step in the
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Fig. 3. OS Migration Steps

memory translation process from physical to system addresses. The physical-to-
system address translation operates in almost the same way virtual-to-physical
translation works: instead of per-process page tables, the CMP provides per-core
translation tables indexed by the higher part of the core address (see Section 3.1).
We exploit this additional translation step to realize an extremely light-weight
migration of OSes.

The volatile state of the OS also includes the data values kept in the registers
of the CPU core. Similar to a preemptive task switch, these register values need
to be saved on the source core and restored on the destination core. If the
CMP provides the means to read and write the register file of physical cores,
migration can be implemented without any cooperation from the migrated OS.
To this day, however, no many-core chip we are aware of provides such a feature.
As a consequence, a minimal amount of cooperation from the OS is necessary.

The following sections describe the necessary steps and the implementation
on the SCC in more detail.

4.2 Migration Steps

In the proposed implementation, zero-copy OS migration is orchestrated by a
migration manager that is part of the global scheduler. The steps are illustrated
in Figure 3. It reveals that migration is, in fact, rather a circular swap of two
(or more) OSes rather than a unidirectional migration from one core to another.
Since we require a minimal amount of cooperation from all involved cores, we
assume that a cooperative OS runs on all (including the currently unused) cores.
The migration signal is sent by the migration manager in form of an interrupt
to the affected cores. This interrupt is handled by the cooperative OS’ interrupt
handler which saves the necessary registers into a per-core designated memory
area. After all registers have been saved, the affected cores signal completion to
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the migration manager and completely flush their caches. The migration manager
then stops all cores involved in the migration by gating their clock, and swaps the
cores’ register values and the memory mappings. Next, the migration manager
signals completion of the migration by resuming the clock on the migrated cores.
The cores proceed by restoring the (new) register values from memory, exit
the interrupt handler and resume operation. In addition, all cores, including
the MCPC need to update internal network routing tables to reflect the new
locations of the cores (see Section 4.4 below).

4.3 Migrating Volatile State

The migrated cores save/restore register values to a designated memory area in
a custom interrupt handler. In principle, exactly the same registers need to be
saved/restored as when performing a context switch in a preemptive multitasking
system. After saving the registers, the migrated cores flush all caches and enter
a busy loop. It is impossible to flush a core’s cache externally; as a consequence
the code of the busy loop will reside in a migrated core’s instruction cache. In
addition, it is impossible to set the program counter immediately after resuming
the clock since we do not know what instruction of the busy loop the core
was executing when the clock was gated. However, we can ignore this technical
difficulty by assuring that the busy loop, including the code to save and restore
the registers, is located at identical virtual addresses on all migrated cores. Since
we currently only use a modified version of the sccLinux OS, this condition
is always met. If several different OSes are involved in migration, it may be
necessary to turn off virtual-to-physical memory translation temporarily and
re-enable it once the new page table base register has been set.

4.4 Networking

Cores on a CMP communicate with other cores through the NoC. IP addresses
are translated to the destination core’s x/y coordinates on the grid in the data
link layer of the network stack. Migrated OSes keep their IP addresses, hence
additional steps are necessary to update the IP to link-layer translation tables
in all cores on the chip.

On the SCC, two separate networks exist: one network for on-chip network-
ing, and a subnet for communication with the MCPC. Data packets sent on-chip
from one core to another are first stored in the MPB (see Section 3.1) on the
sender side. The sender then signals the receiver with an interrupt, and the re-
ceiver fetches the message data directly from the sender’s buffer. For migrated
cores the location of their MPB remains unchanged; storing/retrieving network
packets from the buffer is thus unaffected by migration. However, the target core
of a network interrupt is identified by its physical core ID which corresponds to
the x/y-coordinates of the core on the grid. In the original sccLinux the inter-
rupt target ID is computed from the core ID. In order to support migration,
a table containing the IP-to-coreID mappings is added and kept up-to-date by
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each core. After each migration, the migration manager thus notifies all cores
about the changes to the IP-to-coreID mapping table.

A very similar data structure is maintained by the MCPC to route data pack-
ets from external sources to each of the individual cores. The migration manager
notifies the MCPC through the system interface about migrations taking place
such that the MCPC can keep an up-to-date list of IP-to-coreIDs.

These two simple modifications are enough to keep networking, including
open connections, alive across migrations. DMA is not supported, and no other
devices exist on the SCC; input/output, including access to permanent storage,
are routed through the network.

5 Hierarchical Power Management

In order to remain scalable, power management techniques for many-core CMPs
are either organized in a hierarchical manner [10, 11, 15] or operate with inde-
pendent local agents [6]. Our goal is to apply OS migration in order to improve
the effectiveness of DVFS which necessitates a hierarchical design. This section
describes the organization of the hierarchical power manager and the DVFS and
migration policies in detail.

5.1 Organization

The structure of the hierarchical power manager reflects the structure of the
SCC with its different voltage and frequency domains. At the lowest level in the
hierarchy is a single core because individual cores exhibit different performance
values. The next level represents a tile which comprises two cores and represents
a clock domain. Decisions about which clock frequency to run at are made at
this level. One level up is the voltage domain. A voltage domain consists of four
tiles and represents the unit where voltage changes can be initiated. The highest
level models the entire chip.

5.2 Local Performance Monitoring and Prediction

On each active core, a local agent monitors the current performance of the
core. Depending on the load factor, it requests a higher, the same, or a lower
frequency from the next-higher level in the hierarchy. The local agent uses the
core’s performance monitoring unit (PMU) to gather statistics about the number
of executed and memory-bound instructions. At regular intervals the local agent
predicts the load of a core based on a weighted average of sampled PMU data.
When the core is not fully utilized, the optimal operating frequency can be
analytically computed. For purely CPU-bound benchmarks, for example, and
a utilization of 50% at 800MHz we expect 100% load at 400MHz. Frequency
values are discreet, the computed frequency is thus always rounded up to the
next higher available frequency.
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If the core is fully utilized, however, it is not clear by how much the fre-
quency should be increased. We have experimented with three policies: step-up
one, step-up two, and half-way step-up. The first two policies increase the oper-
ating frequency by one and two steps, respectively, while the half-way step-up
computes the requested frequency by adding half the difference of the current
frequency to the maximal frequency. Experiments have shown that in our frame-
work the performance and power consumption are indifferent in regard to the
three policies.

Performance is measured periodically; experiments have shown that values
between 0.5 and one second are short enough to quickly react to changing per-
formance requirements, but long enough to avoid too much noise in the signal.

5.3 Domain Managers

Each domain, clock, voltage, and global, maintains its own domain manager.
Each level only communicates directly with the level above or below, i.e., the
clock domain manager interacts with the voltage domain manager, the voltage
domain manager interacts downstream with the clock domain, and upstream
with the global domain manager. The functionality of the different domain man-
agers is elaborated in more detail in the following sections.

Clock Domain Manager For each clock domain, its clock domain manager
computes and sets the appropriate frequency. The frequency of a clock domain
is constrained by the current voltage level of the corresponding voltage domain
and computed based on the performance counters reported by the local agents
and the currently active DVFS policy (see Section 5.4 below). Each clock domain
manager maintains sorted lists of the current and requested frequencies for all of
its cores. The clock domain managers communicate with their voltage domain
manager by periodically sending the list of requested frequencies. The voltage
domain manager signals changes in the voltage level.

Voltage Domain Manager The voltage domain manager computes and sets
the operating voltage of a voltage domain. Due to the nature of DVFS, voltage
changes must happen in close collaboration with frequency changes: before low-
ering the voltage, all frequencies must be lowered to a values supported by the
lower voltage. Similarly, for higher voltages, the voltage must be increased before
the frequencies can be raised. Similar to the clock domain managers, voltage do-
main managers also maintain sorted lists of the current and requested voltages
per clock domain. The voltage domain managers communicate with the global
manager by periodically sending the list of requested frequencies and voltages
upstream.

Global Domain Manager The global manager gathers the sorted voltage/
frequency requests from the domain managers and determines which cores to
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migrate based on the migration policy. After migration has completed, the global
domain managers informs the voltage domain managers of the migration such
that the voltage may be changed immediately. This is not absolutely necessary
since the information will eventually be sent from the local agents to the voltage
domain managers, however, giving the voltage domain managers a chance to
react immediately to migration leads to better results.

5.4 Scheduler Power Management Policies

The goal of the scheduler’s power management policy is to optimize the perfor-
mance per watt ratio of the overall chip. Other policies, such as, for example,
even heat dissipation or adhering to a given power budget, are part of future
work.

The power management policy is implemented in the global domain manager.
The core migration and DVFS algorithms are invoked at regular intervals by the
scheduler. The DVFS and migration policy, though the former depends on the
latter, are completely separated in order to be able to freely combine different
migration and DVFS policies. The following sections describe our DVFS and
migration policies in detail.

OS Migration Policy Without migration OSes are pinned to their cores.
For voltage domains containing both very busy cores and idle cores there is no
optimal voltage setting: if the voltage is too low, idle cores run at the optimal
frequency but the performance of busy cores is severely affected because the
low voltage prevents the frequency domain manager from selecting the required
frequency. On the other hand, if the voltage is set high enough to satisfy the
performance needs of busy cores, idle cores waste energy because they operate
at a higher than necessary voltage.

OS migration enables consolidation of cores with similar performance re-
quirements into one voltage/frequency domain. This allows setting the volt-
age/frequency of the domain to a value that is close to the optimal value for
most involved cores.

A näıve algorithm is to sort the OSes by their performance requirements
and then assign them in order to the voltage and frequency domains. While
the resulting allocation of cores to domains is optimal for one time quantum,
this algorithm fails to consider the overhead of OS migration. The actual live
migration of an OS is very quick (≤ 3ms), each time an OS is migrated it will
experience a lot of cold misses in the local instruction and data caches which will
lead to both a performance reduction as well as increased memory traffic. The
migration algorithm must thus also consider the current positions of the OSes
and minimize the number of migrations.

We currently employ a buyer-seller heuristic where domain managers for a
given target frequency put up cores for sale that are expected to require a lower
than the given target frequency. A market manager then matches the sellers to
buyers. At the moment, the market manager has knowledge of all voltage do-
mains; however, a hierarchical model is possible if the number of voltage domains
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Fig. 4. Buyer-seller algorithm: (a) initial configuration, (b) configuration after running
the first round for v = 8, (c) configuration after running the second round for v = 5,
(d) final configuration after running the last round for v = 4. Bold values represent
tiles/cores migrated in that iteration.

prohibits a global analysis. A limitation of the current heuristic is that it does
not consider the location of a core’s data. Developing a memory-location and
contention aware OS migration policy is part of future work.

Figure 4 shows the effect of our heuristic. Figure 4 (a) displays the estimated
frequencies for each core before the buyer-seller algorithm starts. Figures 4 (b)-
(d) show the layout after each repetition for vi = 8, 5 and 4, respectively; (d)
represents the final configuration.

The heuristic returns the instructions to perform the actual migration in
form of several circular lists of cores that are to be migrated. This list is then
processed by the migration manager as discussed in Section 4.2.

DVFS Policies We implement two DVFS policies that are similar to policies
used in the hierarchical power manager for CMPs proposed by Ioannou et al. [10].
Their work has been implemented on the Intel SCC chip and thus provides a
good reference point. The policies proposed in [10] and reproduced here are:

– Allhigh: this policy runs all cores within a voltage domain at the highest
requested frequency.

– Tile: grants the requested frequency to each clock domain and sets the
voltage accordingly. Within each clock domain, the higher of the requested
frequencies is chosen. Note: in [10] this policy is denoted Simple.

We have not implemented the Alllow and Allmean policies since they sacrifice
too much performance in return for power savings.
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For both policies the voltages of the voltage domains are computed such
that all clock frequencies of the associated clock domains can be satisfied, i.e.,
vV D = maxi v(fCDi). v(f) for a given frequency f is a simple table lookup.

Phase Ordering and Frequency Considerations In order to achieve max-
imum power savings, migration should occur before applying DVFS. The fre-
quency of migration, voltage, and frequency changes is determined by the cost
of these operations: the time for migration is largely unaffected by the number
of cores being migrated because all involved cores can store/restore the volatile
state in parallel. Migrated cores are stopped and have their caches flushed while
unaffected cores continue to run during migration operations. Voltage changes
are quite expensive because the clock of all affected cores is stopped during the
rather long voltage adjustment. Frequency changes, on the other hand, are al-
most instantaneous and can thus be performed often. On the SCC specifically,
we have measured the following latency: ≤ 3ms for migration and ≤ 10ms for
voltage changes. On this particular architecture, migration is cheaper than volt-
age changes. In addition, the SCC only supports one voltage change at a time;
i.e., different domains cannot change the voltage in parallel. Nevertheless, for
our server/desktop benchmark scenarios with rather slow changes in the CPU
load, migration and voltage changes can be performed at every step. Section 7
discusses the benchmarks and results in more detail.

6 Experimental Setup

All experiments were conducted on an Intel Single-chip Cloud Computer. The
scheduler runs on a dedicated core in voltage domain 3 on the SCC itself. All
cores from the other voltage domains run a modified version of the sccLinux.

In addition to the scheduler we also run a few monitoring and logging pro-
cesses on dedicated cores in voltage domain 3. In order not to pollute the mi-
gration algorithm with these processes, voltage domain 3 is excluded from the
hierarchical power management. However, the reported results show the total
chip power and therefore also include the power consumed by vdom3.

A benchmark scenario comprises a number of OSes with distinct workloads
and an initial placement of the different OSes onto the SCC’s cores.

The workloads running on the cores are either synthetic workloads used to
demonstrate the operation of the proposed scheduler or represent profiled work-
loads that we have gathered by profiling 20 desktop and development computers
of graduate students over a period of several months.

The baseline of the experiments is obtained by running the benchmark sce-
nario on the SCC at full speed (800MHz) with no power management enabled.
Unlike the work in [10] we do not use a phase-detector based on message passing
since we are aiming at independent OSes running on a CMP. Instead, we apply
the workload prediction method based on a weighted average. We compare the
DVFS policies of [10] without OS migration, Allhigh and Tile, against the
same policies with OS migration.
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Fig. 5. Results for a simple alternating synthetic load

7 Results

We have conducted a wide range of experiments on the proposed scheduler.
To show the effect of OS migration on DVFS, we first present the results of a
synthetic periodic workload. The second example details the results of applying
the proposed method on a workload pattern obtained from desktop machines of
our graduate students. We conclude this section with the overall results over all
benchmark scenarios.

Synthetic Periodic Workload The setup and the results of this workload are
shown in Figure 5. The load pattern is shown in Figure 5 (a) and consists of
two simple periodic synthetic workloads that alternate between 10% and 90%
CPU load. The second workload s2 is slightly time-shifted compared to s1. The
initial OS distribution onto the different voltage domains of the SCC is shown in
the left chart of Figure 5 (b). Each domain initially contains three or four OSes
running one of the load patterns.

The results of running this benchmark scenario are shown in Figure 5 (b)
and (c). The right-hand of Figure 5 (b) and Figure 5 (c) show the normalized
power consumption, performance, and performance per watt, respectively, for the
Allhigh and the Tile policy, denoted AH and T, without and with (appended
+M postfix) OS migration.

We observe that both DVFS only and DVFS+migration suffer from a per-
formance loss. In the case of DVFS only, there are two reasons for this loss:
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first, a voltage change operation of an island stops execution on all cores, ad-
justs the voltage, and then resumes the core clock. This process is implemented
in hardware and takes about 10ms per voltage change. The second reason for
reduced performance is observed when the workload prediction model fails to
predict a sudden raise in the load and selects a too low operating frequency for a
workload. OS migration incurs additional overhead: migration requires stopping
and resuming all involved cores. Additionally, the changes in the routing tables
are propagated to all active OSes through external interrupt; processing these
interrupts on the individual cores also causes a minimal performance overhead.

Nonetheless, as can be seen from the normalized power consumption in Fig-
ure 5 (b) on the right-hand side, the reduction in power by far outweighs the
loss in performance. In terms of performance per watt (right-hand of Figure 5
(c)), both DVFS only and DVFS+migration show better results. In particular,
the proposed method of combining DVFS with OS migration achieves about a
30% improved performance per watt compared to DVFS-only policies.

Figures 5 (d) and (e), finally, visualize the effect of DVFS only and DVFS+
migration on the individual voltage domains’ frequency settings for the two
DVFS policies Allhigh and Tile. The frequency over time is shown for each
voltage domain for DVFS only (upper part) and DVFS+migration (middle part
of the figure). Higher frequency (and thus voltage) settings are represented by
darker levels of gray. The lower part of the chart shows the number of migrations
over time.

Comparing DVFS and DVFS+migration with the Allhigh DVFS policy
(Figure 5 (d)) clearly shows how migration is able to group OSes with simi-
lar performance characteristics together and thus select voltages that are closer
to the optimal value. In the Allhigh policy in particular, if only one core in a
particular voltage domain requests a frequency of 800MHz and thus the high-
est voltage setting, the entire domain will run at 1.1V . Since in this artificial
example the OSes are evenly spread over all voltage domains, without OS mi-
gration all domains run at maximum voltage most of the time. In comparison to
DVFS+migration, we clearly observe that the migration policy first migrates all
OSes into the first two domains, vdom0 and vdom1. About 30 seconds into the
benchmark, the OSes running load pattern s1 drop to 10% load which causes
another batch of migrations and results in grouping the OSes running the same
load pattern together. After this, the OSes running in the same voltage domain
observe similar load patterns and no more migrations are necessary. The DVFS
policy can select the appropriate voltage and frequency for the first two domains.

For the Tile DVFS policy we observe a similar pattern (Figure 5 (e)). Here,
the frequency can be set on a tile-basis. Again, DVFS only cannot consolidate
OSes with similar load patterns, resulting in voltage settings that are too high for
most cores in a domain. DVFS+migration, on the other hand, groups all OSes
into vdom1 and vdom4. We see that migration fails to group the OSes running
identical load patterns into distinct domains at first which causes some migration
activity after about one third of the benchmark’s runtime. From then on, the two
load patterns are nicely separated. Even though the load patterns are perfectly
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Fig. 6. Results for a profiled load pattern

synchronized at the beginning of the run, the overhead of DVFS and migration
causes them to drift apart slowly which then again triggers migrations.

Profiled Workload Figure 6 shows the results of a scenario based on actual,
measured workloads patterns. Seven different load patterns obtained from pro-
filing data of graduate students’ computers, s1 to s7, are assigned to a total of
40 OSes and initially placed onto the different voltage domains.

Compared to the synthetic workload, the performance loss (left-hand in Fig-
ure 6 (c)) is much less severe (1% and 2.5% for AH and AH+M, and 3% and 8%
for T and T+M, respectively). This is because profiled workloads exhibit smoother
workload changes; the local performance prediction is thus much more accurate.
The DVFS-only policies cannot group OSes with similar workload characteris-
tics together, and all voltage domains run at maximal voltage during most of
the benchmark (upper-hand VDOM charts in Figures 6 (d) and (e)). As a con-
sequence only minimal total energy savings are obtained (1% and 7% for AH and
T).

With OS migration, however, the scheduler is able to group workloads ex-
hibiting similar load patterns into voltage domains as shown by the lower-hand
VDOM charts in Figures 6 (d) and (e). The total energy savings are significant
(23% and 26% for AH+M and T+M) and lead to a much better performance per
watt increase compared to DVFS only (1% and 4% for DVFS only, 26% and
26% for DVFS+migration).
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Table 1. Normalized power, performance, and performance per watt (PPW)

AH AH+M T T+M
BM Power Perf PPW Power Perf PPW Power Perf PPW Power Perf PPW

1 99.2 99.9 100.8 77.2 97.7 126.5 73.6 97.4 104.0 74.2 93.5 126.0
2 88.2 98.8 112.0 62.6 96.3 153.8 80.3 96.6 120.2 62.2 94.0 151.2
3 92.1 99.5 108.0 63.7 100 157.2 84.9 97.8 115.3 62.5 96.4 154.1
4 98.1 99.9 101.9 77.1 98.6 127.9 91.9 96.5 105.0 71.7 90.7 126.6

Avg. 94.4 99.5 105.7 70.2 98.2 141.4 82.7 97.1 111.1 67.7 93.7 139.5

Overall Results Table 1, finally, displays the normalized power, performance,
and performance per watt over the baseline, respectively, for the Allghigh and
the Tile policy, denoted AH and T, without and with (appended +M postfix) OS
migration for three different benchmark scenarios all based on profiled workload
patterns (details the benchmark scenarios are given in Appendix A).

Independent of the workload at hand, migration OSes before applying a
DVFS policy results in a significantly reduced power consumption at the expense
of a very moderate performance degradation. Taking the DVFS-only policy as
the baseline, Allhigh+Migration achieves a 36% better power-per-watt energy
efficiency than Allhigh at a relative performance loss of only 1.3%. Similarly,
Tile+Migration outperforms Tile by 28.4% at a performance loss of 3.4%.
We observe that Tile outperforms Allhigh without migration whereas with
migration they achieve similar performance. The reason is that OS migration is
able to group OSes with similar performance requirements into voltage domains
such that the superior Tile DVFS policy has less effect.

8 Conclusion

In this work, we show that energy-aware space-shared scheduling of independent
programs running on a CMPs is feasible and the potential to achieve significantly
energy savings. We provide a working implementation on the Intel Single-chip
Cloud Computer where the individual OSes run bare-metal on the assigned cores,
and the global scheduler communicates with cores through interrupts.

Techniques for reducing power consumption of CMPs rely on well-known
DVFS techniques. The special organization of CMPs into frequency and voltage
domains makes direct application of previous work difficult. We employ zero-
copy OS migration implemented in a energy-aware scheduler to consolidate OSes
with similar workloads onto the same frequency and voltage domains, thereby
allowing DVFS policies to achieve a larger power reduction at the cost of a
minimal performance penalty.

The proposed energy-aware scheduler with its integrated hierarchical power
management supporting intra-core live migration is put to a test with a wide
range of workloads. Experimental results conducted on a real system show that,
on average, the proposed techniques achieve an improvement of the performance
per watt by 25-35% over previous DVFS approaches.



18 Scheduling for Better Energy Efficiency on Many-core Chips

Acknowledgments

This research was supported by the Basic Science Research Program through
the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT & Future Planning (2012R1A1A1042938 and NRF-2008-0062609).
ICT at Seoul National University provided research facilities for this study.

References

1. Tilak Agerwala and Siddhartha Chatterjee. Computer architecture: Challenges
and opportunities for the next decade. IEEE Micro, 25(3):58–69, 2005.
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Appendix A Profiled Workload Benchmark Scenarios

This appendix describes the details of the benchmarks evaluated in this work.
Each benchmark scenario consists of two parts:

– Two or more workload pattern that describe how the workload changes over
time.

– An initial assignment of the workloads to the 48 cores of the exercised Intel
SCC.

Each workload pattern (WL), denoted S{1-7} in the tables below, lists the
CPU workload for every epoch (10 or 15 seconds, depending on the benchmark)
for the duration of one period (300 seconds). A workload never stops, it keeps
repeating the workload pattern period after period. Note that all workloads are
pure CPU-based workloads; memory-based workloads are part of future work.

The core assignment tables below show what workload pattern are assigned
to which cores when the experiment starts. In our setup, voltage domain 3 runs
various logging and monitoring services and is thus not available for user bench-
marks. The power measurements include the power consumed by vdom3 because
power is only reported for the entire chip and not for individual voltage domains.

A benchmark ends after a predefined number of seconds (in our example after
300 seconds). The total progress of each workload is measured externally and
thus includes all overheads caused by migration, voltage changes or slowdowns
cause by too low frequency settings.

A.1 Synthetic Benchmark Scenario based on Periodic Workloads

The synthetic benchmark consists of two identical workload patterns shifted in
time. Each voltage domain contains workloads of both patterns. The purpose
of this benchmark is to demonstrate the potential of combining DVFS with OS
migration. The results of this benchmark are shown in Figure 5.

Workload patterns:
WL

Epoch (1 epoch = 15 sec)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

S1 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 10
S2 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10 95 95 10 10

Core assignment:
vdom0 vdom1 vdom3 vdom4 vdom5 vdom7
- - - - n/a n/a - - - - - -
S2 - S2 - n/a n/a S2 S2 S2 - S2 -
- - - - n/a n/a - - - - -
S1 S2 S1 S1 n/a n/a S1 S1 S1 S2 S1 S1

A.2 Benchmark Scenarios based on Profiled Workloads

The following four benchmarks are based on the usage patterns of Linux and
Windows desktop computers. Initially, each voltage domain is loaded with differ-
ent workload patterns. These benchmarks demonstrate the effect of the proposed
technique when applied to a multi-user setup (i.e., virtual desktops of employees
on a server machine).

The detailed result of the first benchmark are shown in Figure 6, and Table 1
lists the combined results for all four benchmark scenarios shown here.
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Benchmark 1 (BM1) Workload patterns:

WL
Epoch (1 epoch = 10 sec)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
S1 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 46 27 86 63
S2 69 57 68 60 55 66 61 63 69 58 56 57 63 59 62 58 57 67 68 64 61 71 78 63 71 82 69 14 0 2 4
S3 28 84 41 12 83 48 55 0 35 69 42 59 17 46 59 49 51 2 46 47 80 40 4 73 41 53 47 18 100 42 45
S4 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 80 66 56 32
S5 71 53 26 9 34 25 23 38 37 26 96 92 34 41 89 100 100 12 17 30 27 21 31 35 41 84 89 63 100 96 84
S6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 96 63 100 27 0 0 0 0 0 0 0 0 0 0 0
S7 5 4 5 7 2 4 5 6 6 4 100 6 2 4 1 1 0 1 2 2 4 2 2 4 6 6 6 5 2 10 5

Core assignment:
vdom0 vdom1 vdom3 vdom4 vdom5 vdom7
S4 S6 S4 S4 n/a n/a S5 S5 S5 S6 S5 S5
S3 S3 S3 S7 n/a n/a S3 S3 S4 S4 S2 S2
S2 S5 S2 S2 n/a n/a S2 S6 S2 S7 S3 S4
S1 S1 S1 S5 n/a n/a S1 S4 S1 S3 S1 S1

Benchmark 2 (BM2) Workload patterns:

WL
Epoch (1 epoch = 10 sec)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
S1 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 46 27 86 63
S2 82 39 55 42 96 42 100 33 53 20 20 10 11 14 13 11 13 13 1 5 1 0 23 45 61 42 83 83 20 15 3
S3 28 84 41 12 83 48 55 0 35 69 42 59 17 46 59 49 51 2 46 47 80 40 4 73 41 53 47 18 100 42 45
S4 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 10 15 30 27
S5 71 53 26 9 34 25 23 38 37 26 96 92 34 41 89 100 100 12 17 30 27 21 31 35 41 84 89 63 100 96 84
S6 53 21 52 48 33 92 89 100 39 38 29 41 48 4 64 45 36 31 42 41 42 35 15 80 93 62 10 23 48 32 0

Core assignment:
vdom0 vdom1 vdom3 vdom4 vdom5 vdom7
- - - - n/a n/a - - - - - -
S5 S6 S5 S6 n/a n/a S3 S6 S4 S5 S4 S5
- - - - n/a n/a - - - - - -
S1 S4 S1 S2 n/a n/a S1 S2 S2 S3 S1 S3

Benchmark 3 (BM3) Workload patterns:

WL
Epoch (1 epoch = 10 sec)

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
S1 42 77 25 11 34 36 30 14 33 26 22 58 100 52 30 13 15 0 21 39 48 43 40 41 40 42 41 40 39 36 35
S2 45 15 6 27 25 9 64 55 27 28 18 51 46 100 56 20 25 25 12 0 0 0 0 0 0 0 0 0 0 0 0
S3 71 53 26 9 34 25 23 38 37 26 30 23 34 41 39 29 29 12 17 30 27 21 31 35 41 84 89 63 100 96 2
S4 11 22 20 10 27 12 45 100 22 9 4 14 9 43 19 6 17 18 14 21 5 5 5 6 25 16 7 0 0 0 0
S5 42 66 40 67 57 67 66 71 75 72 31 38 59 54 86 80 68 55 95 100 89 85 86 77 64 0 0 0 0 0 0

Core assignment:
vdom0 vdom1 vdom2 vdom4 vdom5 vdom7
S5 - - - n/a n/a S5 - S5 - S5 -
- - S5 - n/a n/a S4 - S4 - S4 -
S2 S4 S2 S4 n/a n/a - S3 S2 S3 S2 -
S1 S3 S1 S3 n/a n/a S1 S2 S1 - S1 S3

Benchmark 4 (BM4) Workload patterns:

WL
Epoch (1 epoch = 10 sec)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
S1 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 46 27 86 63
S2 82 39 55 42 96 42 100 33 53 20 20 10 11 14 13 11 13 13 1 5 1 0 23 45 61 42 83 83 20 15 3
S3 8 20 21 30 80 100 24 50 36 54 83 92 91 73 27 1 0 1 1 1 1 0 1 1 10 1 21 17 33 5 7
S4 27 49 31 32 62 77 80 44 0 6 1 1 8 73 87 81 80 91 100 99 89 67 13 52 0 0 10 10 15 30 27
S5 53 21 52 48 33 92 89 100 39 38 29 41 48 4 64 45 36 31 42 41 42 35 15 80 93 62 10 23 48 32 0

Core assignment:
vdom0 vdom1 vdom2 vdom4 vdom5 vdom7
- - - - n/a n/a - - - - - -
S3 S4 S3 S4 n/a n/a S3 S4 S3 S4 S3 S4
- S5 - S5 n/a n/a - S5 - S5 - S5
S1 S2 S1 S2 n/a n/a S1 S2 S1 S2 S1 S2


