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Abstract. This work describes the goals and impacts of a large recon-
figuration of the job scheduling system, used in the Czech National Grid
and Cloud infrastructure MetaCentrum, which was implemented in early
2014. MetaCentrum, as a “long-tail” oriented provider, serves a varied
user-base consisting of both individual users and research groups. This
imposes strict requirements on the robustness of job scheduling algo-
rithms being employed, as the system must be capable of assigning a
highly heterogeneous set of workloads to a similarly heterogeneous set of
computational resources. Primary goals for MetaCentrum were always
to provide efficient and fair resource utilization with respect to different
users in the system. During the last few years, MetaCentrum has gone
through a period of rapid growth (1,500 CPU cores in 2009 vs. 10,600
CPU cores in 2014) forcing us to re-evaluate our scheduling approaches,
as the “old” configuration no longer satisfied our utilization and fairness
demands. This re-evaluation was supported by a significant body of re-
search, which included the proposal of new scheduling approaches as well
as detailed simulations based on real-life complex workload traces. First
of all, a new multi-resource aware fair-sharing algorithm (based on our
recent research) was deployed, with the goal of improving fairness with
respect to the growing heterogeneity of resources and users’ workloads.
Second, the queue configuration of the entire system was completely
reworked in order to decrease resource fragmentation and improve the
utilization and the impact of fairness policies. This paper summarizes the
effects of these changes using real-life data from the production system.
Moreover, we publish complex workload traces from MetaCentrum that
were used in this paper, since they represent a valuable source of data
concerning a highly heterogeneous production system. Last but not least,
we also present our advanced job scheduling simulator which is routinely
used for testing of new scheduling strategies prior their deployment in
the real system.
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1 Introduction

MetaCentrum serves various users and research groups. During the last 5 years,
MetaCentrum has grown from approximately 1,500 CPU cores (2009) to al-



2 Real-life Experience with Major Reconfiguration of Job Scheduling System

Fig. 1. Available CPU cores (left) and the number of jobs and used CPU years (right).

most 11,000 CPU cores (2014), with the number of processed jobs matching this
growth curve (see Fig. 1). The system is divided into two separate pools of re-
sources, each managed by a different job scheduler. The smaller pool (∼ 4, 900
CPUs) is managed by a custom-developed scheduler which uses planning (instead
of queues) [7] while the larger pool (∼ 6, 100 CPUs) is managed by a queue-based
scheduler based on TORQUE resource manager. While the plan-based scheduler
has been heavily optimized in the past, the original “historic” scheduling ap-
proaches used in the queue-based scheduler — which remained mostly the same
for a decade — were becoming clearly inefficient and had to be revised to better
reflect growing heterogeneity of both hardware resources and users’ workloads.
In this work, we focus on the queue-based scheduler which manages the major
part of MetaCentrum computing resources.

The goal of this work is to share our real-life experience with a major re-
configuration of a production system as it was a unique opportunity to apply
“theoretical” results in practice. Therefore, we summarize our previous efforts
and describe how the newly proposed modifications were evaluated and applied
in practice, i.e., we provide new results showing the improvement of system
performance achieved through a newly defined scheduling setup.

In case of MetaCentrum, there were two main issues with the historical setup:
an obsolete (unfair) fair-sharing mechanism and a rather inefficient queue con-
figuration. When solving these issues, we are building upon our earlier “the-
oretical” works where new multi-resource aware fair-sharing mechanisms were
proposed [9] and the impact and interactions of various system-specific policies
were described [10]. It is worth noticing that the improvement was solely achieved
by the newly configured queues and new fair-sharing mechanism, while the ac-
tual scheduling algorithm remained unchanged. Furthermore, we also provide
detailed information concerning MetaCentrum infrastructure and users’ work-
loads that were used both for the development of the new system configuration
as well as for later analysis of the suitability of the new solution [13]. They
represent valuable source of data, especially in terms of heterogeneity of system
resources and users’ workloads. Last but not least, we have prepared a largely
extended version of our jobs scheduling simulator Alea [2], which was heavily
used when developing the new system setup and provides advanced simulation
capabilities compared to its previous releases [8].
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This paper is organized as follows. Applied modifications of the scheduling
system are presented in the following section. Section 2.1 describes the queue re-
configuration, discussing differences between previous and current queue setup.
Section 2.2 presents the new mechanism used to guarantee user-to-user fairness
subject to heterogeneous users’ requests. Next, the impact of queue reconfigu-
ration on the overall performance is analyzed and the influence and suitability
of the new fair-sharing mechanism is discussed in Section 3. Complex MetaCen-
trum workloads and the advanced job scheduling simulator Alea are presented
in Sections 4 and 5 respectively. Section 6 concludes the paper and discusses the
future work.

2 Reconfiguration of MetaCentrum Scheduling System

Production resource management systems need to satisfy the constraints im-
posed by resource providers, the expectations of users and must be robust enough
to deal with short term fluctuations in the user base, its workloads and resource
outages. In our previous work [10], we have discussed the complexities of config-
uring a production resource management system, such as PBS Pro and Torque,
to satisfy all three of these requirements. The issue at the root of this prob-
lem is that production software is generally configured in a bottom-up fashion,
meaning that the desired behavior is achieved through a combination of various
policies.

The search for a new efficient setup of a resource management system is
then particularly problematic as relatively straightforward configuration changes
can have highly unexpected side effects arising from the interactions between
individual policies. The choice of queue configuration can have significant effect
on the way the scheduling algorithm selects jobs for execution [11], fair-sharing
mechanisms that establish fair job order may be seriously diluted by both the
scheduling algorithm [5] and the queue configuration [10], and too generous or
too restrictive queue limits may either cause resource fragmentation or excessive
resource saturation [16].

In this section we describe how we established the new queue configuration
to enable higher job throughput and fairer scheduling (Section 2.1). Also, we
briefly describe the newly applied multi-resource aware fair-sharing mechanism
that reflects heterogeneity of resources and users’ requests (Section 2.2).

2.1 Queue Reconfiguration

Detailed description of the queue reconfiguration, including the analysis of the
historical setup, design and verification of a new configuration was already pre-
sented in our previous work [10]. Therefore, in this section we will only provide
a summary of the core ideas that are required for the remainder of this paper
and we kindly invite the reader to seek out our previous work for more details.

Mainstream resource management systems generally utilize the concept of
queues to allow fine control over the systems behavior. Queue specific policies
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include per-user, per-group and per-queue limits [1, 17] concerning the maximum
number of running jobs and/or utilized amount of a particular resource type (e.g.,
CPU cores). Queues can also be configured to have access to only a subset of
available resources, e.g., limiting a queue to a particular cluster of machines. This
allows the establishment of resource pools, in which several queues compete for a
limited set of resources, thus preventing a (potentially dangerous) saturation of
the entire system. Of course, queues and their configuration can increase resource
fragmentation [5] as each job is limited to a single pool of resources. This may
however be necessary to deal with different classes of users and/or jobs accessing
the system. We need to be very careful and avoid saturating the system with
single class of jobs, as for example, saturating the system with long running jobs
(i.e., jobs with expected runtime of several weeks) will lead to great deterioration
in performance characteristics of the system, e.g., huge wait times for shorter
jobs will be inevitable since they would have to wait until those long jobs would
complete and free some resources.

Historical Queue Configuration For nearly a decade, MetaCentrum used
one configuration, that only underwent small tweaks through the years. This
configuration was originally designed manually by experts to fit the users’ work-
loads at the time. The configuration was designed in a self-balancing manner,
using overlapping resource pools with different sizes that were balanced out by
queue priorities, with the highest priority queue having access to only the small-
est resource pool. To achieve this, the system utilized three major queues (long,
normal, short) each with a different maximum walltime limitation (30 days,
24 hours, 2 hours), different priorities (70, 50, 60) and different limits defining
the maximum allowed number of concurrently running jobs of one user (70, 300,
250). Later (2010), a low priority (20) queue called backfill has been intro-
duced, that only accepted single node jobs (max limit per user is 1000) that
run up to 24 hours. It was designed for undemanding jobs and increases system
utilization during off-peak hours. To provide a fair access to the system, jobs in
these queues were dynamically ordered using priorities based on fair-share [5].
Next, queues were traversed one-by-one by the scheduling policy, starting with
the highest priority queue (long). The scheme of the historical setup is shown
in Fig. 2 (left).

After analyzing the behavior of this setup under the current users’ workloads,
we have determined that the major problem with this setup is the congestion
of the long queue. To understand the reason we first must understand the self-
balancing nature of the original setup. The long queue had to be limited to a
relatively small pool of resources (1440 CPU cores) as increasing this pool would
immediately lead to complete saturation of these resources with long jobs due
to the high priority of the long queue. It was the combination of the small
resource pool and the fact that the long queue was the only one accepting jobs
longer than 1 day, that lead to the new inefficiency observed in the system. The
users’ workloads have shifted enough that the majority of the CPU time was
now consumed by the long queue, despite the resource pool limitation. Shorter
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Fig. 2. Historical setup of queues (left) and the newly applied configuration (right).

jobs are much more frequent, as can be seen in Fig. 3, which shows job arrivals
(top) and CPU time distribution (bottom) with respect to queues and time (on
a weekly basis)1. As was observed, long queue only contained 2.75% of all jobs
but produced 51.5% of overall CPU utilization. It was then very clear, that it
should not have the smallest pool of available CPUs, but at the same time we
could not simply increase the resource pool (for reasons mentioned above).

Applied Queue Reconfiguration Several proposals of new queue configu-
ration have been considered and experimentally evaluated in a simulator [10].
The main goal was to increase the pool of available CPUs for longer jobs in a
safe fashion. In the first step, long queue has been refined into 5 queues. The
one with the longest maximum job walltime limit is called q 2w plus (up to 30
days) and has the maximum priority. Next, there are q 2w, q 1w, q 4d, q 2d with
decreasing priorities and walltime limits (2 weeks, 1 week, 4 days and 2 days, re-
spectively). Normal and short queues are now called q 1d and q 2h while q 4h

is a new queue with walltime limit being 4 hours. Once the long queue has
been replaced with several new queues it was possible (and safe) to increase the
number of available CPUs for selected newly created queues.

When setting up the new per-queue limits, several rules were applied that
were based either on simulation results or our empirical knowledge. The first rule
was that the number of available CPUs for a given queue should be — in gen-
eral — inversely proportional to the maximum walltime limit of a given queue. In
another words, it is safe to assign a large pool of resources to a queue that only
executes short jobs, since those CPUs — if necessary — will be free soon (short
jobs completes early). Also, the actual workload indicates that short jobs having
their walltime ≤ 1 day are in fact the most common jobs in MetaCentrum (see

1 Only major queues in the main system pool are considered. Auxiliary and specialized
queues are omitted as well as all results coming from the second scheduler.
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Fig. 3. Job arrivals (top) and used CPU time (bottom) per week and queue.

Fig. 4 (top)). On the other hand, it is very important to choose a rather conser-
vative limit for long jobs as those may execute for weeks or even months, thus
blocking resources over a long time period. Still, this “conservative” limit should
be as high as acceptable, since long jobs are responsible for the majority of sys-
tem utilization, at least this is the case in MetaCentrum (see Fig. 4 (bottom)).
Last but not least, it is known that excessive number of queues with dedicated
resources may cause resource fragmentation [5], leading to a low system utiliza-
tion and large wait times. Therefore, whenever it was possible, resources were
not dedicated exclusively to a given queue. Instead, several queues were allowed
to compete for the same set of resources as their pools were overlapping. In
such cases, it was observed that per-queue limits and fair-share are sufficient to
balance “queue-sharing” of resources.

At the same time, the effect of newly added queues on fairness was considered
as well. Using our complex workloads, we have performed detailed simulations
which revealed that multiple queues with fixed ordering are very unfair and
practically eliminate the impact of the fair-sharing algorithm. For example, if
a job has a low priority (due to the fair-share) but ends up in a high priority
queue (due to its expected walltime) it will often start much earlier than a
high priority job residing in a low priority queue. Clearly, this is highly unfair.
Therefore, the applied solution uses a little trick, where the queues are only used
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Fig. 4. Number of jobs according to their requested walltime (top) and corresponding
used CPU time (bottom) wrt. to requested walltime during 2013 – 2014 period.

to (1) maintain resource limits and (2) provide information on job’s maximum
walltime (if not specified directly by a user). Otherwise, all (major) queues have
the same priority, i.e., the ordering in which a job is being selected for execution
is now solely based on the priority of a given user which is established by fair-
share. Therefore, those queues are now only “virtual” and the actual scheduling
process is performed over one single queue ordered by fair-share, which contains
all jobs from those “virtual” queues. Fig. 2 (right) depicts the new setup of
queues.

2.2 Multi-Resource Aware Fair-Sharing

MetaCentrum serves the scientific community and provides its resources for free.
Therefore, money cannot be used to define the order in which users and their
(pending) workload will use the resources [19]. Instead, user-to-user fairness is
maintained by the well known fair-sharing [5] approach, which dynamically es-
tablishes fair user ordering.

Historical Fair-Sharing Algorithm Originally, the fair-sharing algorithm
considered only single resource (allocated CPU time) and then calculated users
priorities using the popular max-min approach [4], i.e., it assigned high priority
to a user with low CPU time utilization and vice versa. As discussed in the
literature, single-resource based fair-sharing is (highly) unfair for (highly) het-
erogeneous systems and workloads [4, 6, 9], which is the case of MetaCentrum.
The most critical problem regarding the original CPU time-based fair-sharing
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was that users with memory demanding workloads (and small CPU demands)
were constantly favored by the scheduler, causing serious blocking of memory-
heavy machines, poor fairness and low CPU utilization of large machines [9].
Therefore, the original single-resource aware fair-sharing algorithm was replaced
by a newly developed multi-resource aware solution that also reflects the con-
sumption of RAM memory.

Applied Multi-Resource Aware Fair-Sharing Algorithm Technical de-
tails as well as a detailed comparison with other existing techniques has been
already published in our recent work [9]. Therefore, we will only briefly mention
the main features of the newly applied solution. The new mechanism determines
a user priority Fu based on CPU and RAM requirements of that user’s (previ-
ously completed) jobs. Fu is computed by aggregating weighted walltimes of all
jobs (Ju) of given user u (see Formula 1). Each job walltimej is weighted by so
called job penalty Pj and machine speed factor Sj , which is used to reflect the
influence of machine speed on resulting walltime of a completed job. Sj normal-
izes a job walltime such that job executed on a slow machine is not additionally
penalized by its longer walltime (execution time), and vice versa. Job penalty
Pj expresses the amount of allocated CPU and RAM resources (see Formula 2).

Fu =
∑
j∈Ju

Pj · walltimej · Sj (1)

Pj = min
m∈Mj

(
max

(
cpuj

cpum
,

ramj

ramm

)
· cpum

)
(2)

Pj penalty extends the well known Processor Equivalent (PE) metric [5],
eliminating some serious problems related to job and resource heterogeneity.
The major difference is that instead of calculating the penalty according to ma-
chines assigned to a given job (actual “price”), it calculates what is the minimal
possible price (ideal price) according to the set of all suitable machines (Mj)
and job requests (cpuj , ramj). Simply put, for each job the set of all suitable
machines is constructed (Mj) and the “price” of executing that job is calculated
for each machine in Mj . Finally, Pj is set to the minimal found price. Then
Pj is independent of scheduler decisions and users have no reason to complain
or cheat as they are guaranteed to obtain the best price. Once Fu priorities
are calculated for all users, they are then ordered in the lowest Fu first order2.
The actual implementation also reflects aging [5] by periodically decreasing all
recorded consumption using the so called decay factor [1]. Using it we put higher
emphasis on a more recent resource consumption.

2 To be more precise, not users but their jobs in a queue are then ordered according
to corresponding Fu values.
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3 Results

This section analyzes the impact of queue reconfiguration on the overall perfor-
mance of the MetaCentrum system and the influence and suitability of the new
multi-resource aware fair-sharing mechanism.

3.1 Impact of Queue Reconfiguration

The new queue setup has been evaluated by comparing several statistical indi-
cators using historical workload data from two consecutive time periods. The
first period (October – December 2013) represented the old queue configuration
while January – March 2014 period represented the new configuration. Both
time periods lasted 92 days and the underlying infrastructure was identical dur-
ing that time. We could not have used longer time periods, since those would
contain several occasions when either old clusters were removed from the system
or new ones were included. Obviously, such resource fluctuation would make the
analysis less reliable. On the other hand, we do acknowledge that by comparing
two setups of a production system in two distinct time periods, we inherently
include differences in the underlying workloads, which could skew the presented
results. Yet, we believe that the presented results are representative, as not only
the metrics have shown improvements but also user feedback was positive.

We start with a comparison of the number of processed jobs which has in-
creased significantly. During the October – December 2013 period, 513,976 jobs
have been completed in MetaCentrum while in the January – March 2014 pe-
riod (new queue configuration) 854,972 jobs were completed, representing an
increase of 66.3%. At the same time, the overall CPU utilization has increased
significantly (43.2%) as can be seen by the naked eye in Fig. 5, which shows the
utilized CPU hours before and after queue reconfiguration. For simplicity, the
average CPU time usage in those two periods is highlighted in the figure using
dashed lines.

Fig. 6 (top) presents a closer look on the distribution of utilized CPU time.
It reveals that the largest increase in utilized CPU time is visible for jobs having
their walltime in the interval of 4 hours - 14 days. It confirms that the newly
introduced queues are being used regularly and users of the system are able
to recognize their benefits, e.g., larger pools of resources associated with these
shorter queues3.

Beside the overall utilization we have also analyzed job wait times which
are an important factor, especially for the users of the system. It would not be
surprising if the higher throughput and utilization caused that jobs are actually
waiting longer. This is a real-life phenomenon originating from the fact that
the system is more saturated, while users submit more jobs as they see the
improved performance. However, as we have observed, even with a significantly
larger throughput and utilization, job wait times remained decent. In fact, they

3 As was explained in Section 2.1, q 2w, q 1w, q 4d, q 2d, etc. queues now have larger
pools of available resources compared to the original long queue.
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Fig. 5. Comparison of used CPU days (in a given week) before and after queue recon-
figuration (left axis) and the average wait time per week (right axis).

were — on average — decreased by 17.9% (4.4 vs. 3.6 hours). A more detailed
view is available in Fig. 5, where the average job wait time per week is shown
(with the scale on the right side of the chart) along with the previously discussed
average used CPU time. As we can see, the average wait time is bellow 5 hours
on 11 occasions during January – March 2014. At the same time, there were
only six weeks during October – December 2013 when the average wait time
was bellow 5 hours. Certainly, this is a important finding which shows that the
new configuration allows for higher throughput and utilization while keeping the
wait times in an acceptable level. Another detailed view is presented in Fig. 6
(bottom). It shows how jobs are distributed with respect to their wait times.
As we can see, the new queue configuration leads to a shorter wait times for
majority of the jobs.

3.2 Impact of Multi-Resource Aware Fair-sharing

In the next step, we have analyzed the influence of the new fair-sharing mech-
anism. Again, we have used historical workload traces from the October – De-
cember 2013 (old, single-resource fair-sharing) and January – March 2014 (new,
multi-resource aware fair-sharing) periods.

First of all, we have plotted all jobs coming from the January - March 2014
period according to their CPU and memory requirements, as shows Fig. 7 (top).
For better visibility, both the x-axis and the y-axis are in log. scale. As can be
seen, the workload from MetaCentrum is truly heterogeneous. For example, a
job requesting 1 CPU may have its memory requirements anywhere between 1
GB and 2 terabytes of RAM4. Fig. 7 (top) demonstrates the huge heterogeneity

4 Jobs requesting less than 1 GB of RAM are not shown in Fig. 7 as they would end
up “bellow” the baseline of the log. scale-shaped graph.
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Fig. 6. Comparison utilized CPU hours wrt. to job walltime (top) and the distribution
of job wait times before/after queues were reconfigured (bottom).

of job requirements, which was the reason why the historic single-resource based
fair-sharing was impractical, i.e., extremely unfair.

In the second step, we have analyzed the workload from January – March
2014 period and selected all jobs that were affected by the new fair-sharing
algorithm, i.e., their “fair-sharing penalty” Pj was different when computed ac-
cording to the new multi-resource aware scheme. Those affected jobs are shown
in Fig. 7 (bottom). As we can see, the new multi-resource aware penalty function
works as ones intuition would suggest, i.e., higher penalties are assigned to those
jobs that request large amounts of RAM compared to their CPU requirements.
With a few exceptions5, the new fair-sharing algorithm targets jobs lying “above
the main diagonal”, i.e., those that have high RAM to CPU ratio, which is the
expected behavior.

We have also analyzed the increase of penalty values. For this purpose we took
jobs affected by the new penalty P (j) and measured the resulting percentage
increase of P (j) value with respect to the old, CPU-based version. Fig. 8 shows
the resulting distribution using the cumulative distribution function (the x-axis is
in log. scale). In this case, the CDF is a f(x)-like function showing the probability
that the percentage increase of P (j) for a given job j is less than or equal to

5 Those exceptions are jobs lying under the main “diagonal”, i.e., in the lower cen-
tral/right part of the plot. Such exceptions were expected as the new fair-sharing
scheme may also (rarely) assign smaller penalties compared to the original single-
resource aware mechanism.
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Fig. 7. The distribution of jobs requirements during January – March 2014 (top) and
the corresponding jobs affected by the new fair-sharing mechanism (bottom).

x. In another words, the CDF represents the fraction of jobs having their P (j)
increased by at most x percents. As can be seen, the improvement is often
significant. For example, nearly 60% of affected jobs have their P (j) at least two
times higher (penalty increase ≥ 100%).

In the next step, we have analyzed the impact of the new multi-resource aware
fair-sharing mechanism on the performance of affected jobs. This time, we have
compared those two time periods: October – December 2013 (old fair-sharing)
and January – March 2014 (new fair-sharing). Again, we have selected those
jobs that were affected by the new multi-resource aware fair-sharing scheme6.
Then we have computed the average wait time (and its standard deviation) of
such affected jobs for both periods, i.e, before and after the new fair-sharing was
deployed.

Fig. 9 shows the results of such a comparison. Apparently, with the new
multi-resource aware fair-sharing algorithm the average wait time of affected
jobs is significantly larger (18.3 vs. 11.4 hours). At the same time, standard
deviations of wait times are similar in both situations which indicates that the
overall increase of wait times is not accidental (a result of few extremes), instead

6 In case of the earlier period (October – December 2013) — which did not use the
new fair-sharing mechanism — these affected jobs were detected using the Alea job
scheduling simulator which is capable of emulating the new fair-sharing method.
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Fig. 8. The CDF showing the increase of penalty value (Pj) for affected jobs according
to the new fair-sharing mechanism.

Fig. 9. Comparison of avg. wait times wrt. the old and the new fair-sharing mechanism.

it is a common tendency. It means that the new fair-sharing is working as in-
tended, appropriately assigning higher penalties to (memory) demanding jobs,
thus prolonging their wait times.

3.3 Summary

The evaluation presented above was based on real-life data coming from Meta-
Centrum. So far, the results indicate that the two applied modifications, i.e.,
queue reconfiguration and new fair-sharing algorithm work as intended. First of
all, thanks to the newly configured queues the overall throughput and utilization
have increased significantly. At the same time, the average wait times were de-
creased. Also, the new multi-resource aware fair-sharing mechanism works better
than the original mechanism, since RAM demanding jobs now obtain appropriate
penalties as the consumption of RAM memory is considered when computing a
user priority. Unlike in the old fair-share, RAM intensive jobs are now penalized
similarly to CPU demanding jobs, resulting in a more fair behavior of the sys-
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tem. So far, no significant comments concerning the new fair-sharing approach
were recorder from either the users or the management team of MetaCentrum.

4 MetaCentrum Workload Traces

One of the contributions of this paper is that we are offering the scientific com-
munity a complex workload trace from the MetaCentrum system. This workload
starts in January 2013 and represents 2 years of job execution in MetaCentrum,
containing 5.8 millions jobs.

We believe that this workload may be valuable for several reasons. First of
all, MetaCentrum is a very heterogeneous environment. It contains variety of
resources, starting with small nodes (8 cores with 16 GB of RAM per node)
and going up through moderate nodes (16-64 cores with 64-256 GB of RAM per
node) to large and RAM-heavy machines (80-384 cores with 0.5-6.0 TB of RAM).
Beside common clusters, MetaCentrum also provides 3 GPU-enabled clusters
(konos, doom and gram) for CUDA-like computations. We have prepared a de-
tailed resource description file, which contains information about each cluster.
Here we specify the number of nodes, number of CPU cores per node, the amount
of RAM per node and the results of the Standard Performance Evaluation Cor-
poration’s SPEC CPU2006 benchmark (CFP2006 suite/fp rate base2006). Fur-
thermore, the availability of MetaCentrum’s clusters is provided too.

Similarly, jobs in the workload vary accordingly. The majority of jobs (71%)
is sequential while parallel jobs represent 29% of all jobs. On the other hand,
sequential jobs represent only 10% of used CPU time as parallel jobs use 90%
of CPU time. A more detailed view showing how jobs and CPU time are spread
over existing queues with respect to job parallelism is presented in Fig. 10, where
x-axis represents job parallelism and y-axis represents number of jobs and used
CPU time, respectively. The y-axis is in log scale in both cases. Fig. 10 (top)
shows that the “shape” of distribution of job parallelism is similar for all queues,
and most jobs (88%) belong to “short” queues (walltime ≤ 24 hours). On the
other hand, Fig. 10 (bottom) shows that “long” (walltime > 24 hours), parallel
jobs are those that are responsible for the majority of used CPU time. The
distribution of jobs and CPU time with respect to walltimes (i.e., queues) can
be found in Fig. 4, showing that “long” jobs — which represent only 12% of all
jobs — are responsible for 80% of used CPU time. Finally, an example of the
variability of job CPU and RAM requirements is shown in Fig. 7 (top).

The job workload is presented in more than usual detail. Beside common
parameters that are routinely provided, e.g., in the Standard Workload Format
(SWF) [3], we provide additional job specifications that influence job scheduling
and allow for more detailed simulations and analysis. Here we use input param-
eters of the qsub command. For example, 2:ppn=4:x86:linux:cl minos input
parameters mean that the job is requesting 2 nodes, with 4 processors per node
(ppn). Both nodes must be operated by linux-like OS, lie within minos cluster
and have x86 architecture. Similarly, 1:ppn=1:gpu=1:cl gram means that the
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Fig. 10. The number of jobs per queue (top) and the utilized CPU time per queue
(bottom) with respect to job parallelism.

job can only be executed on cluster gram and requires 1 node with 1 CPU and
1 GPU card7.

Last but not least, information about queues, their priorities and per-user
CPU limits are provided as well. The whole job workload formatted in an ex-
tended SWF format as well as related information concerning resources and
queues can be obtained at: http://www.fi.muni.cz/~xklusac/jsspp/.

5 Job Scheduling Simulator

Designing a well working scheduler for HPC, Cloud or a Grid-like system is a
complex task. One needs not only to consider the workloads the system will
need to process, but is also constrained by the requirements of the resource

7 A detailed description of qsub semantics is available at: https://wiki.metacentrum.
cz/wiki/Running_jobs_in_scheduler.
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Fig. 11. The structure of the Alea simulator.

providers and users. Simulators can simplify this task by allowing fast iterations
over different system configurations.

In MetaCentrum, simulations are used regularly for testing new setups and
features of the scheduling system as well as for designing new scheduling algo-
rithms. For this purpose, Alea job scheduling simulator [8] based on GridSim [21]
has been developed and is continuously upgraded [18]. It provides advanced fea-
tures that allow for detailed simulations. A high-level scheme of the structure of
the simulator is shown in Fig. 11.

The major role is played by the scheduler entity which represents the central-
ized scheduler. The scheduler holds current simulation data, handles communica-
tion and delegates scheduling decisions to a chosen scheduling algorithm. Variety
of scheduling algorithms is provided, including trivial First Come First Served
and its prioritized versions such as Shortest Job First, Earliest Deadline First,
etc. Also policies using backfilling are supported, including aggressive backfilling
(no reservations), EASY backfilling [20] and Conservative backfilling [15].

Of course, a simulator cannot work properly unless it is supplied with an
appropriate workload. Therefore, parsers for common workload formats are pro-
vided. However getting access to a historical workload that fits the expected
workload of the system is often a complicated process. One possible solution
to the problem of finding a matching workload is to simply generate one. So-
lutions for generating workloads, with varying degrees of complexity, have been
available for some time [14]. From models based on statistical analysis [12] that
generate jobs fitting a particular parameter distribution to dynamic models that
react to the behavior of the evaluated scheduler [22]. Alea takes a step ahead
and provides a dynamic workload generator which extends existing approaches
further and concentrates on modeling the behavior of users in the system using
user agents. Agents have access to scheduling information and therefore react
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to stimuli, such as a completion of a job. This allows us to model different user
behavior from very batch-oriented users that submit sets of jobs and wait for
the entire batch to complete, to interactive users that submit one job at a time,
wait for its completion, process the results and then submit a new job. Real-
istic modeling of day-night and week-weekend cycles is matter of course. This
approach allows for more thorough testing of scheduling setups, but also enables
testing of hypothetical scenarios. Determining how the system will behave if we
add, e.g., another user, becomes a matter of modifying a configuration file.

During the simulation, the result collector entity collects the data and —
using either default or user-provided metrics — stores results into CSV files and
(optionally) uses them for visualization. Importantly, Alea supports various fair-
sharing policies allowing for simulations where fairness is of importance. Also,
various queues including limits as well as complex job specifications (see Sec-
tion 4) are supported, resulting in much more realistic simulations.

This complexity of simulation capabilities resulted in a newly designed con-
figuration system [18]. In a user-friendly fashion, it allows to adjust parameters
of simulations by providing an intuitive way how to choose different data sets,
scheduling algorithms, measured metrics as well as additional features, e.g., the
type of fair-sharing algorithm. Alea is freely available at GitHub [2].

6 Conclusion and Future Work

In this paper we are sharing our experience with a major reconfiguration of the
job scheduling system in MetaCentrum. Our analysis measures the impact of
two major modifications — the queue reconfiguration and the new multi-resource
aware fair-sharing algorithm. Both the results and the feedback from the users
of the system indicate that the reconfigured system is more efficient than it
was previously. First of all, thanks to the new queue setup the throughput is
now much larger while job wait times remained decent. Concerning the new
fair-sharing algorithm, the results revealed that it works as intended, assigning
higher penalties to jobs with large requirements concerning RAM. The effect
of increased penalties was observed as well, i.e., wait times of RAM-heavy jobs
have increased compared to the period when single-resource based fair-sharing
was used. Last but not least, we are presenting our jobs scheduling simulator and
the complex workload traces from MetaCentrum to the scientific community.

Still, our work has some limitations. Although we have mentioned some gen-
eral rules (see Section 2.1), values of several (important) parameters such as
queue-related limits are currently based on an empirical knowledge or an (hand-
tuned) expert assessment. In the future we would like to develop more rigorous
methods that would allow for a (semi)automatic identification of proper and ef-
ficient system setups. For starters, it would be very helpful to have some method
that — given a current workload — would perform a dynamic adaptation of var-
ious queue-related limits.



18 Real-life Experience with Major Reconfiguration of Job Scheduling System

Acknowledgments. We highly appreciate the support of the Grant Agency of
the Czech Republic under the grant No. P202/12/0306. The support provided
by the programme “Projects of Large Infrastructure for Research, Development,
and Innovations” LM2010005 funded by the Ministry of Education, Youth, and
Sports of the Czech Republic is highly appreciated. The access to the MetaCen-
trum computing facilities and workloads is kindly acknowledged.

References

1. Adaptive Computing Enterprises, Inc. Maui Scheduler Administrator’s Guide, ver-
sion 3.2, January 2014. http://docs.adaptivecomputing.com.

2. Alea job scheduling simulator, February 2015. https://github.com/

aleasimulator/.
3. S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,

U. Schwiegelshohn, W. Smith, and D. Talby. Benchmarks and standards for the
evaluation of parallel job schedulers. In D. G. Feitelson and L. Rudolph, editors,
Job Scheduling Strategies for Parallel Processing, volume 1659 of LNCS, pages
67–90. Springer, 1999.

4. A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dom-
inant resource fairness: fair allocation of multiple resource types. In 8th USENIX
Symposium on Networked Systems Design and Implementation, 2011.

5. D. Jackson, Q. Snell, and M. Clement. Core algorithms of the Maui scheduler.
In D. G. Feitelson and L. Rudolph, editors, Job Sched. Strategies for Paral. Proc.,
volume 2221 of LNCS, pages 87–102. Springer, 2001.

6. C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allocation: Fairness-
efficiency tradeoffs in a unifying framework. In 31st Annual International Confer-
ence on Computer Communications (IEEE INFOCOM), pages 1206 – 1214, 2012.

7. D. Klusáček, V. Chlumský, and H. Rudová. Planning and optimization in
TORQUE resource manager. In High Performance and Distributed Computing
(HPDC). ACM, 2015. To appear.
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