
Controlled duplication scheduling of real-time
precedence tasks on heterogeneous

multiprocessors

Jagpreet Singh1 and Nitin Auluck2

1 Indian Institute of Information Technology Allahabad, Uttar Pradesh, India
jagpreets{@iiita,@iitrpr}.ac.in

2 Indian Institute of Technology Ropar, Rupnagar, Punjab, India
{nitin@iitrpr.ac.in}

Abstract. Duplication based heuristics have been widely utilized for
scheduling communication intensive, precedence constrained tasks on
multiple processors. Duplicating the predecessor of a task on the pro-
cessor to which the task is assigned can result in the minimization of the
communication cost. This helps in reducing the schedule length. How-
ever, this reduction comes at the cost of extra computing power required
to duplicate the tasks. We have tried to address this trade-off in this
paper. We propose “controlled” duplication algorithms for scheduling
real-time periodic tasks with end-to-end deadlines on heterogeneous mul-
tiprocessors. We observe that whether to duplicate tasks or not is decided
by the task deadlines. In the case that the deadline can be met without
duplication, more schedule holes are created. These holes can be used
to schedule other tasks. Simulations show that the proposed algorithms
efficiently utilize the holes and improve the success ratio by 15%− 50%
versus comparable algorithms.

1 Introduction

The requirement of scientific and industrial applications to generate logical as
well as time bound results have posed various challenges, namely: exploiting
the parallelism offered by the current hardware and completing applications un-
der strict timing constraints. Due to these requirements, heterogeneous systems
have gained widespread popularity. These systems allow for the combination of
high performance, low cost and different capability hardware with the help of
heterogeneous interconnections such as: Network on a chip (NoC) and Network
of Workstations (NoWs). The timing constraints are fulfilled by employing an
efficient real-time scheduler. The scheduling algorithm allocates and schedules
jobs to ensure that all the task instances in the task set meet their deadlines. If
a task set meets its deadlines, then it is said to be schedulable.

Definition 1. (Task Set). A task set (Fig. 1) models multiple real-time ap-
plications where each application (known as a task) is represented as a directed
acyclic graph (DAG) with release time, period and hard end-to-end deadline. The

Fig. 1. A Task Set

nodes of each DAG represent subtasks3 and the edges represent the precedence
constraints, as well as the communication cost between the subtasks.

In real-time systems, scheduling algorithms can be broadly classified into two
categories: static and dynamic. In static algorithms, information about the tasks
is known in advance, which is not the case in dynamic algorithms. Heuristics for
real-time scheduling on heterogeneous multiprocessors have been proposed for
both the static [16, 8, 3] as well as the dynamic [15, 23] environments. This paper
falls into the domain of static algorithms .

Scheduling a DAG on multiprocessors in real-time and non real-time systems
is a challenging problem [12, 13]. It has become harder with the introduction of
heterogeneous processing and networking components. Basically, the problem
on these two systems differs because of the properties of the task graph and the
objective. The majority of the algorithms in non real-time systems consider a
single task graph with an objective of minimizing the maximum schedule length,
also known as the makespan [12]. On the other hand, in real-time systems, the
input to the algorithm is a task set (periodic or non-periodic) consisting of a
number of independent or dependent tasks with deadlines. The main objective
is to meet the hard deadlines and decrease the tardiness of the soft deadlines,
where tardiness is the subtraction of the deadline from the schedule length.

More often that not, the real-time algorithms are inspired from or are an ex-
tension of a non-real time scheduling approach [15, 3, 4]. On the basis of the de-
sign, these algorithms for scheduling a DAG on multiprocessors (homogeneous &
heterogeneous) are broadly classified into: list-based and clustering based, with
or without duplication. List-based scheduling [15] assigns priorities to all the
ready jobs, stores them in a list and later assigns to processors according to the
priorities to minimize a particular cost function. In clustering, the jobs are com-
bined to form clusters on the basis of communication delays, data dependencies
etc. After that, the clusters are allocated to processors [3, 9].

Duplication has been widely used to achieve reliability and fault tolerance in
real-time and non real-time scheduling [15, 21]. It has also proved to be a vital
heuristic for minimizing the makespan [1]. By duplicating the heavily commu-
nicating jobs on a single processor, the interprocessor communication cost can
be minimized. The jobs are made to start earlier and hence, finish earlier, which

3 (the terms node, job and subtask have been used interchangeably)

(a) (b)

Fig. 2. For task set in Fig. 1, (a) represent schedule with duplication that misses the
deadline (b) schedule without duplication that meets the deadlines

reduces the overall makespan of the task graph. Duplication is a well researched
heuristic for non real-time scheduling of a single task graph on heterogeneous
multiprocessors [4–6, 18].

However, duplication in the context of meeting deadlines is still relatively un-
explored. We observe that, duplicating a job utilizes the extra computing power
(or a schedule hole) on a processing element (PE). This extra computing power
may be used to schedule jobs of other task instances. Therefore, although using
duplication can help a task graph instance to meet its deadline, it may cause the
other tasks to miss their deadlines because of the unavailability of the appropri-
ate schedule holes. Hence, an interesting tradeoff exists between the number of
duplicated jobs and the number of schedule holes available. This article identifies
this tradeoff and proposes controlled duplication based heuristics. Simulations
have shown that the proposed algorithms improve the success ratio by 15% to
50% vs. the other known non-duplication and duplication based algorithms, even
under higher processor utilizations and communication costs.

2 Motivation-W 2H2

The design of a duplication heuristic has two steps: “where to duplicate jobs”
and “how to perform duplication”. Mainly, there are two strategies that are used
for the first step: duplicating subtasks in schedule holes [5] or allocating extra
space other than the holes [4]. The first approach, also known as an insertion
based approach, adds more to the computational complexity of the algorithm to
find an appropriate schedule hole for duplication, but is more effective than the
second non-insertion based approach. A number of approaches have been used
for the second step: 1) duplicate a single immediate predecessor (SIP) [5], 2)
duplicate a chain of predecessors till the root node (COP) [4], 3) duplicate the
immediate predecessors, and then the ancestors (IPFA) [6].

Duplication in real-time systems adds two more challenges to the above:
“when to duplicate” and “how much duplication” is to be performed. Fig. 2

demonstrates these challenges. It shows schedules of two task instances: T1
(r = 0, p = 10, d = 7) and T2 (r = 0, p = 10, d = 8) of Fig. 1, where r, p
and d are defined as release time, period and deadline of the tasks respectively.
Both tasks are required to be scheduled on 3 processing elements P1-P3 and
have the same execution cost on all PEs. Since task T1 has a lesser deadline, it
is given the higher priority and is scheduled first. If T1 is scheduled with duplica-
tion, it finishes before its deadline at 7. However, task T2 is unschedulable now
(Fig. 2(a)). In the other case, scheduling T1 without duplication leaves enough
schedule holes on P2 and P3 which are then used by T2 to meet its deadline
(Fig. 2(b)).

The first challenge: “when to duplicate” exists because of our objective of
meeting deadlines. In case, the deadline of a task is higher (as for T1), there are
enough chances to meet it without duplicating any job, which can create more
schedule holes for other tasks to use, hence, increasing the schedulability. Inter-
estingly, finding whether a task graph can be scheduled under a certain dead-
line is an NP-Complete problem [11]. Here, we make use of tentative scheduling
which refers to temporarily scheduling the jobs of the task graph without dupli-
cation on processors, to evaluate the upper bound on the makespan. If the upper
bound meets the deadline, then the temporary schedule for that task becomes
the final schedule, otherwise it is removed. This upper bound approach has been
proposed in RTCDA-W 2H heuristic to implement the “when to duplicate” chal-
lenge. To further enhance the performance, if we decide to perform duplication
in the first step, our motive is to control the amount of duplication according
to the deadline, which is the next challenge of finding how much duplication
is required. The proposed RTCDA-W 2H2 extends RTCDA-W 2H with steps to
control the amount of duplication to propose a controlled duplication algorithm.
Hence, RTCDA-W 2H2 addresses all the four proposed challenges with respect
to duplication: where, how, when and how much (W 2H2). Further, we propose
RTCDA-Extended, which is based on Mixed Integer Programming (MIP), and
a search and repair method based extension of RTCDA-W 2H.

Next, we discuss the related work (Section 3) followed by the assumptions
and the system model in Section 4. Algorithms RTCDA-W 2H and RTCDA-
W 2H2 are described in Sections 5 and 6 respectively. Time complexities of the
algorithms are described in Section 7. Simulation results with a discussion are
presented in Section 8. Finally, Section 9 concludes the paper with possible future
directions.

3 Related work

Researchers have focused on developing heuristics driven by specific Quality
of Service (QoS) parameters such as Reliability [21], Fault-Tolerance [15] and
Security [22] [24]. Qin et al. [15] have presented two dynamic list scheduling
algorithms: DASAP (Dynamic AS early As Possible) and DALAP (Dynamic As
Late As Possible) for scheduling task graphs. Stavrinides et al. [19] demonstrate
a dynamic, list-based scheduling algorithm with a bin-packing heuristic. It has

been reported that exploiting schedule holes with bin-packing (First Fit, Best Fit
and Worst Fit) significantly improves the success ratio. Dave et al. [9] have used a
cluster-based algorithm named COSYN (CO-SYNthesis of Hardware-Software)
which is not only able to schedule the tasks, but also find an optimal hardware-
software architecture which involves the selection of processors, FPGAs, ASICs
and communication links.

S Ranaweera et al. in [16] used duplication for enhancing the schedulability
of periodic time critical applications for pipelined execution on heterogeneous
systems. Auluck et al. in [3, 2] proposed algorithms which are an extension of
the original duplication strategy proposed in [4]. The algorithm in [3], named
RT-DBA (real-time duplication based algorithm), is the closest to our work. RT-
DBA is a low complexity algorithm with a few shortcomings. This has motivated
the research in this paper. Firstly, it performs duplication for all the tasks in the
task set, which may not be always required, as our motive is not to minimize the
makespan, but to meet deadlines. A late deadline can be met without duplica-
tion. The over use of duplication can reduce possible schedule holes (created due
to precedence delays). These holes can be utilized by the other tasks in the task
set to meet their deadlines. Secondly, RT-DBA uses a very static approach for
scheduling and does not consider the current processor scheduling load. Lastly,
it does not utilize schedule holes for scheduling or duplication. Doing so can
help in achieving a better utilization of the computing power. We introduced
the idea of controlled duplication in [17]. The initial results of RTCDA were
presented with the upper bound evaluated using sequential scheduling of jobs of
a task on a single processor. This work enhances RTCDA [17] with an improved
upper bound using tentative scheduling and proposes an enhanced version of
the EDF algorithm to propose RTCDA-W 2H. In addition, we present one more
enhancement, RTCDA-W 2H2 that addresses the “how much” challenge.

4 System model

The system consists of a set P of m heterogeneous processors and a task set T
of n precedence-constrained task graphs. All the processors p ∈ P are connected
with a fully connected, contention free network. It is assumed that the local
memory of a processor is used for data exchange between assigned subtasks. A
vector of the form < G(Vi, Ei, µi, ci), rt(i), pe(i), dl(i) > represents a task ti ∈ T .
The first element of the vector is the directed acyclic graph G. The node set Vi
represents the jobs sijk (k is the instance, Vi remains the same during instances)
of ti and the edges in Ei represent the communication between the jobs. An edge
eij ∈ E represents the communication from node sijk to node silk. A positive
weight µi(j, pq) is associated with node sijk. This represents its computation cost
on processor pq ∈ P and the non-negative weight ci(j, l) associated with edge
eij ∈ E represents the communication cost from sijk to silk. The elements µi

and ci are matrices of the order vi × m and vi × vi (vi is the number of subtasks
in task ti). We further assume that the DAG has single entry and exit nodes.
If a DAG has multiple entry (exit) nodes, then they are connected to zero-cost

Table 1. Mathematical Notations used for Task Parameters

Notation Task Parameter

T Task set of independent periodic task graphs (DAGs)

P Set of available processors

n Number of tasks in the task set

m Number of processors

SQt & SQst Task and subtask schedule queues respectively

i, j, k Ids used for task, subtask and task instance respectively

q Processor id

ti ith task of T

Vi & vi Set & number of subtasks of task ti
pq & pub qth processor & the processor which gives the upper

bound

sijk jth subtask of kth instance of task ti
si(entry)k and
si(exit)k

Entry and exit subtasks of kth instance of task ti

rti, pei, dli Release time, period and deadline of task ti
ci(j, l) Communication cost from sijk to silk for all k

µi(j, q) Execution cost of sijk on pq for all k

µi(j) Average execution cost of sijk for all k

bl(sijk) & sl(sijk) b-level and s-level of sijk
aft(sijk) Actual minimum finish time of sijk after it is scheduled

pred(sijk) &
succ(sijk)

Predecessors and successors of sijk

Pz(sijk) Set of processors on which sijk is scheduled

HS
h (pq) & HF

h (pq)
HS

h &HF
h are the start and finish times of a hole between

sh & sh+1, where s1, s2, · · · , sh are the subtasks already
scheduled on pq

pseudo entry (exit) nodes with zero-cost edges. Performing this operation does
not affect the final schedule. Next, rt(i) is the release time of the task ti and
pe(i) represents its period. Hence, each task graph has an instance after every
pe time units. The release time, rt(ik) of the kth task instance of ti is evaluated
as rt(i) + (k − 1) ∗ pe(i). The deadline dl(i) is the relative end-to-end deadline
of the task ti, i.e., the exit node si(exit)k of the kth invocation of task ti should
finish by the absolute time dl(ik) = rt(ik) + dl(i), where dl(ik) is the deadline
of the kth invocation of the task ti.

5 RTCDA-W2H: “when to Duplicate”

5.1 RTCDA-W2H Concept

RTCDA-W 2H (Algorithm 1) proposes a solution to the challenge of “when to
duplicate”. Notations and mathematical equations used in RTCDA-W 2H are
described in Tables 1 and 2 respectively. The central idea of the algorithm is to

Table 2. Mathematical Equations for RTCDA and Subtask Parameters

(1) Release time of kth instance of ti rt(ik) = rt(i) + (k − 1) × pe(i)

(2) b-level and s-level of sijk
bl(si(exit)k) = µi(exit)
sl(si(entry)k) = zero

bl(sijk) = µi(j) + max
silk∈succ(sijk)

(
ci(j, l) + bli(silk)

)
sl(sijk) = max

silk∈pred(sijk)

(
ci(l, j) + sli(silk) + µi(l)

)
(3) Data Arrival Time (DAT) of si(entry)k and sijk (from its predecessors) on

pq

DAT (sijk, pq) = max
silk∈pred(sijk)

(
min

p∈Pz(silk)

(
EFT

if p=pq
(silk, p) || EFT

if p 6=pq
(silk, p) +

ci(l, j)
))

DAT (si(entry)k, pq) = rt(ik)

(4) Schedule hole (SH) on pq, where sijk can be scheduled
SH(sijk, pq) = HS

h if
[
HF

h −max
(
DAT (sijk, pq), HS

h

)]
> µi(j, q)

(5) Earliest Finish Time (EFT) of sijk on pq
EFT (sijk, pq) = max

(
DAT (sijk, pq), HS

h

)
+ µi(j, q), where HS

h = SH(sijk, pq)

(6) Earliest Finish Time (EFT) of sijk
EFT (sijk) = min

pq∈P
EFT (sijk, pq)

(7) Earliest Tentative Start Time (ETST) of sijk on pub

ETST (sijk, pub) = max
⋂

(DAT (sijk, pub), H
S
h

)
, where HS

h = SH(sijk, pub) and

Pz(sijk) = pub for all sijk ∈ Vi

evaluate a “without duplication” upper bound (UB) (step 5, algorithm 1) on
the makespan of every task instance using tentative scheduling. If the deadline

Algorithm 1: RTCDA-W 2H pseudocode

Data: Task Set T
Result: Return true if task set meets deadlines otherwise return false.

Schedule of Tasks on processors

1 Evaluate hyperperiod (hp);
2 Maintain task schedule queue (SQt) of all instances of tasks upto hp in T ;
3 while SQt is non empty do
4 Fetch the higher priority ready task instance (tik);

5 Evaluate Upper Bound (UBik) by calling

RTCDA-W 2H-Sched(tik, false, UB
ik);

6 if dl(ik) ≤ UBik then
7 Make tentative schedule from step 5 as the final schedule;

8 else
9 Schedule task graph with duplication, call

RTCDA-W 2H-Sched(tik, true, UB
ik);

10 if dl(ik) > UBik then Scheduling task set failed, return false;

11 return true;

of that instance is greater than or equal to the UB (step 6), then the tentative
schedule obtained while evaluating the upper bound in step 5 becomes the fi-
nal schedule (step 7), otherwise the task instance is scheduled with duplication
(step 8). RTCDA-W 2H is a combination of list-based and duplication scheduling
heuristics. It begins by calculating the hyper period (hp) of the task set T . The
hp is evaluated as the least common multiple of all tasks periods. The schedule
is generated from time unit zero till hp (steps 1-2). The same schedule is re-
peated after hp. Each task ti has hp/pe(i) number of instances in the generated
schedule. The separate priority schemes for tasks ti ∈ T and subtasks sijk ∈ Vi
are used to generate schedule queues (step 2). These priority schemes direct
RTCDA-W 2H to select a task instance among all tasks and a further ordering
of subtasks for allocation to the processing elements (section 5.2). A task tik, is
fetched from the head of SQt for processing. The next step is to evaluate the UB
using tentative scheduling (step 5) and scheduling with duplication if the UB
does not meet the deadline (section 5.3). Algorithm 2 is used for both “without
duplication” and “duplication” scheduling by setting the dupl parameter to false
and true respectively.

5.2 Assigning Priorities

The tasks in the task set are considered for scheduling, one at a time and are
prioritized according to a modified version of the earliest deadline first (EDF)
algorithm [14]. Since the information of all the tasks is available in advance,
the task schedule queue SQt is generated before the actual scheduling. The kth

task instance of a task i is given higher priority than the lth instance of task
j if the deadline of the former task dl(ik) is lesser than the latter i.e., dl(jl),
irrespective of their release times, which is not the case in the original EDF. In
EDF, a task starts its execution after it is released (if a processor is available)
and is preempted if another task with a lesser deadline arrives. However, as
our algorithm is non-preemptive, we assign a higher priority to a task which
is released later but has a lesser deadline. If two task instances have the same
deadline, then the ties are broken by assigning a higher priority to the instance
with the earlier release time rt(ik) (equation 1, Table 2).

After the selection of a task instance tik for scheduling, all the subtasks
sijk of tik are inserted in the subtask schedule queue (SQst) according to a
non-increasing order of their b-level (bl(sijk)) values. The ties are broken using
s-level (sl(sijk)) values. The b-level (s-level) stands for the bottom (start) level,
which is evaluated recursively in a bottom-up (top-down) fashion, traversing the
task graph starting from the exit (entry) node as shown in equation 2 in Table
2 (step 1, algorithm 2).

In the equations above, bl(si(exit)k) = µi(exit) and sl(si(entry)k) = zero,
whereas succ(sijk) and pred(sijk) is the list of immediate successors and prede-

cessors of sijk and µi(j) represents the average execution cost of subtask sijk.
The bl(sijk) value is the critical path from the subtask sijk to si(exit)k. We have
used b− level as the primary priority parameter because the critical path based
algorithms are known to generate better schedules. Secondly, sl is the distance

of a subtask sijk from si(entry)k. The subtask with lower s− level is given higher
priority, as it is present at a higher level in the task graph. It is worth noting
that sorting the nodes according to b− level also performs a topological sort on
all the sijk ∈ Vi, which satisfies the precedence constraints.

5.3 Scheduling a task instance with an upper bound

We define an upper bound (UBik) for every kth invocation of task ti. The UBik is
the time up to which the task instance tik can be scheduled without duplicating
any of its jobs. This bound is computed at run time considering the release time
rt(ik) of tik. One straightforward way to evaluate the upper bound is to use an
already proposed “without duplication” heuristic to schedule a DAG on hetero-
geneous multiprocessors. The heuristic will tentatively schedule all the jobs of
the task graph instance tik by considering the current load on all the processors.
Here, the upper bound is the actual finish time, aft(si(exit)k), of the exit job
si(exit)k. A well known “without duplication” low complexity insertion based
heuristic is Heterogeneous Earliest Finish Time (HEFT) [20]. HEFT greedily
allocates jobs to processors that give the earliest finish time. HEFT is very ef-
fective for scheduling applications with low communication costs. However, in
our experiments, we observed that as the communication cost among jobs in-
creases, the greedy approach of HEFT tends to generate schedule lengths even
greater than the sequential schedules or the trivial upper bound (TUB(ik)). The
TUB(ik) for a task instance tik is defined as the minimum schedule length when
all the jobs of tik are scheduled on a single processor. Again, we use tentative
scheduling to find TUB(ik). The processor which gives the TUB(ik) is called
the upper bound processor pub. RTCDA-W 2H uses a modified version of HEFT
(Algorithm 2) that generates schedules with a worst case length of TUB(ik) i.e.,
UBik ≤ TUB(ik).

The subtasks sijk ∈ Vi are inserted into SQst (step 2) for processing accord-
ing to their b-level (bl(sijk)) and s-level (sl) values (step 1). Before scheduling,
RTCDA-W 2H calculates the TUB(ik) and tentative earliest start time of all
sijk ∈ Vi (equation 7, Table 2) on processor pub if they execute according to
their order in SQst on processor pub (step 3). The pub represents the processor
on which the current task instance tik has the UBik. A subtask sijk is fetched
from the head of SQst till all the jobs are processed (steps 4 and 5). Next, the
algorithm finds the earliest finish time of sijk with or without duplication, as
decided by the input parameter dupl using algorithm 3 (step 6 of algorithm 2).
Algorithm 3 is called to evaluate EFT of sijk, where boolean parameter dupl
decides whether to duplicate jobs while calculating EFT or not. The parameter
pz in a call to Algorithm 3 stores the processor that gives the EFT (sijk).

Job sijk is tentatively scheduled on all the processors and pz is set to the
processor which gives that minimum finish time (steps 2 and 6, algorithm 3).
Equation 5 in Table 2 describes the evaluation of EFT (sijk, pq) on a particular
processor pq. Since RTCDA-W 2H is an insertion based algorithm, we look for
an earliest available schedule hole of minimum size equal to the execution cost of
sijk on pq i.e., µi(j, q) which can accommodate sijk. The start time of this hole

Algorithm 2: RTCDA-W 2H-Sched(tik,dupl,UBik)

Data: Task instance : tik, bool dupl, UB,Processor pub
Result: Schedule of task tik

1 Evaluate sl(si(exit)k) and bl(si(entry)k) of tik;
2 Insert the subtasks sijk ∈ Vi in SQst in non-increasing values of bl(sijk),

breaking ties in non-decreasing values of sl(sijk);
3 Evaluate TUB(ik)(tik, pub) and ETST (sijk, pub) for all sijk ∈ Vi

following their order in SQst;
4 while there are unscheduled subtasks in SQst do
5 fetch the subtask sijk from the head of SQst;
6 Find EFTsijk ← EFT (sijk, dupl, pz); // processor pz gives EFT;

7 if pz 6= pub then
8 shift = true;
9 foreach silk ∈ succ(sijk) do

10 if EFTsijk + ci(j, l) > ETST (sijk, pub) then shift ← false;

11 if shift then
12 Schedule(sijk, pz, dupl);

13 else Schedule(sijk, pub, dupl);

14 UBik = aft(si(exit)k);

Algorithm 3: EFT(sijk,dupl,pz)

Data: Subtask : sijk, duplication (true/false): dupl, Processor: pz
Result: Returns Earliest Finish Time of sijk, pz store the processor

on which sijk has EFT

1 EFT ← INFTY;
2 foreach pq ∈ P do
3 Temp← EFT(sijk,pq);
4 if dupl then
5 Perform duplication (in schedule holes) of immediate

predecessors in the order that they delay silk the most, if it
improve Temp;

6 if Temp < EFT then pz ← pq; EFT ← Temp;

7 return EFT;

HS
h should be greater than the data arrival time of sijk from its predecessors on

pq (equations 3− 5 in Table 2).
During the evaluation of EFT (sijk) (algorithm 3), we look for the possibility

of duplicating predecessors of sijk if it improves the EFT (sijk) on pz (steps 4-6).
RTCDA-W 2H is flexible in performing duplication. Here, we allow duplication
of immediate predecessors only and the predecessors are selected for duplication
according to a non-increasing order of the time that they delay sijk. Duplication
of a job is only performed if it improves the EFT (sijk).

In case the processor on which sijk has the earliest finish time is the same as
that of pub, sijk is scheduled on pub (step 13, algorithm 2). In the other scenario,

(a) (b)

(c) (d)

Fig. 3. (a) Example DAG showing precedence among jobs (b) Tentative schedule of
example DAG on upper bound processor P1 (c) Job 1 scheduled on P1 (d) Job 2
has EFT on P2. Duplication of Job 1 leads to updation in the tentative schedule of
remaining jobs and hence of UBold

RTCDA-W 2H makes sure that scheduling sijk on any processor pz other than
pub does not increase the worst case schedule length i.e., TUB(ik) by satisfying
the following condition for all silk ∈ succ(sijk) (steps 8-13, algorithm 2).

Condition-1: EFTsijk + ci(j, l) ≤ ETST (silk, pub)

If a subtask sijk satisfies the above equation, then it is scheduled on pz, other
wise on pub. Subroutine Schedule (steps 12 and 13, algorithm 2) has a similar
pseudo code as algorithm 2, except that it schedules the subtask after finding the
EFT . Condition-1 is the primary difference with the original HEFT algorithm.
Removing this condition will convert RTCDA-W 2H into HEFT. We call this
condition “selective duplication”, since it does not allow schedule lengths to be
greater than the trivial upper bound, TUB(ik). The results show that selective
duplication improves the performance of RTCDA-W 2H over the original HEFT
algorithm.

6 RTCDA-W 2H2: How much to Duplicate

RTCDA-W 2H2 proposes an extension to RTCDA-W 2H (when duplicating) by
inculcating an approach to dynamically improve the upper bound UBik after a
subtask is scheduled on a processor other than the upper bound processor pub.
After every update in UBik, we again determine if dlik ≥ UBik, if it’s true,

then the remaining subtasks are scheduled without duplication. Thus, even after
deciding that a task instance will be scheduled with duplication, RTCDA-W 2H2

controls the amount of duplication and hence solves the “how much to duplicate”
problem.

The concept of RTCDA-W 2H2 is elaborated with the scheduling of jobs with
precedence relations on two processing elements as depicted in an example DAG
shown in Fig. 3(a). All eight jobs of the task graph are assumed to be processed
in the order of their values from 1 − 8. Let’s say processor P1 gives the trivial
upper bound (UBold) of the task instance as shown in Fig. 3(b). The actual
scheduling starts with job 1 and EFT (job1) is evaluated. Let’s say Job 1 has an
EFT on the upper bound processor P1 and is scheduled on P1 (refer to 3(c)).
The unfilled boxes on P1 represent the tentative schedule where as the grey filled
boxes refer to the actual scheduling of jobs. The next job in the schedule queue
is job 2. Fig. 3(d) shows a state when job 2 has an EFT on processor P2 with
the help of a replicated copy of job 1. Job 2 can be scheduled on P2, which is
not an upper bound processor, only if both of it’s successor jobs 5 and 6 satisfy
the selective duplication Condition-1, i.e.,

EFT (2) + c(2, 5) ≤ ETST (5, P1)

EFT (2) + c(2, 6) ≤ ETST (6, P1)

If the above conditions are satisfied, job 2 is scheduled on P2. According
to the above procedure, RTCDA-W 2H continues with the scheduling of the
remaining jobs. However, in RTCDA-W 2H2, an additional step is performed
to update the value of the upper bound. It is observed that with the actual
scheduling of job 2 on P2, which is not the upper bound processor, three of
the unscheduled jobs have been affected in the tentative trivial upper bound
schedule on P1. Two of these jobs are the successors of job 2 i.e., job 5 and job
6 and the third is the next job in the schedule queue, job 3. We define a set AF
of all these affected jobs as follows:

Definition 2. Set of Shift Affected Jobs (AF). If a job sijk is scheduled
on a processor other than the upper bound processor, then the set of succ(sijk)
and the next job in the schedule queue is defined as the set AF .

For all the jobs silk ∈ AF , we evaluate a parameter shift(silk) as shown in
equation 1.

shift(silk) = ETST (silk, pub)−DAT (silk, pub) (1)

The parameter shift describes the maximum improvement in the ETST of the
affected jobs on pub in the tentative upper bound schedule considering available
schedule holes. The overall improvement in the upper bound is evaluated as:

min shift = min
silk∈AF

(
shift(silk)

)
(2)

UBik
new = UBik

old −min shift (3)

RTCDA-W 2H2 keeps improving the UBik whenever a job is scheduled on
a processor other than pub. As soon as dlik ≤ UBik

new, the remaining jobs are
scheduled without duplication, hence, controlling the amount of duplication. The
above discussed steps to update UBik should be added to the if -condition at step
11 of Algorithm 2 to implement the required functionality of RTCDA-W 2H2.
Hence, RTCDA-W 2H2 includes schemes to handle all W 2H2 challenges.

7 Time Complexity

The time complexity of RTCDA-W 2H2 and RTCDA-W 2H has been found to be
O(n2I2maxv

2
maxmdmax), where Imax, vmax and dmax are defined as the maximum

number of instances of a task in a task set, maximum subtasks in a task and
maximum in-degree of a task in a task set respectively. This time complexity is
higher than that of RTDBA [3] O(nImaxv

2
max) because both the proposed algo-

rithms are insertion based and take O(nImaxvmax) time in finding a particular
hole for scheduling jobs. However, the increase in the time complexity is reflected
in the performance of RTCDA-W 2H2 as described by better results. Since this
is a static variation of the scheduling problem, the increase in complexity has
been compensated with increasing performance of the heuristics.

For an instance of a task tik, the algorithm evaluates bl(sijk), sl(sijk) for all
the jobs. These two parameters can be found by a breadth-first search on the
DAG. It visits every vertex exactly once, so the time taken is O(vi). RTCDA-
W 2H2 spends a significant amount of time in searching for a valid schedule hole
for a subtask on a processor. Therefore, the time required to find a valid hole
is proportional to the number of holes present on a processor, which is further
equal to the number of jobs already scheduled on it. In the worst case, before
scheduling tn, all of the other tasks and their instances may have finished. Hence,
the total number of the scheduled jobs are as given by the equation:

nholes ≤
(hp
p1
× v1 +

hp

p2
× v2 + · · ·+ hp

pn−1
× vn−1

)
≤ vmax

(hp
p1

+
hp

p2
+ · · ·+ hp

pn−1

)
≤ vmax

(
I1 + I2 + · · ·+ In−1

)
≤ nImaxvmax (4)

In evaluating the upper bound UB of a task, we schedule all jobs on all the
processors with schedule holes, which gives O(nImaxv

2
maxm). While scheduling

a job, we find the EFT of the job on all the processors. Therefore, schedul-
ing all the jobs takes O(nImaxv

2
maxm) time. Each task duplication also consid-

ers the schedule holes between all previously scheduled tasks for the processor.
Therefore, each task duplication has a time complexity of O(nImaxvmax). The
maximum number of duplications would be dmax which gives the complexity
O(nImaxv

2
maxmdmax). The controlled duplication step can be done on O(vi)

Table 3. Simulation Parameters

Parameter Range Parameter Range

Number of tasks
in a task set

2− 100 Number of sub-
tasks in a task

10− 2000

Subtask execu-
tion cost

1− 100 Communication
to Computation
Ratio (CCR)

0.5, 1, 5, 10

Utilization
(UT)

0.3− 1.0 Heterogeneity
Factor (HF)

5− 40

time. Therefore, the total time becomes O(n2I2maxv
2
maxmdmax) for scheduling a

maximum of nImax instances.

8 Simulation Results

The proposed algorithms RTCDA-W 2H and RTCDA-W 2H2 have been com-
pared with RTDBA [3] and three real-time variants of the HEFT scheduling
algorithm viz. RTHEFT, RTHEFTD and RTHEFTUB. RTHEFT is the real-
time version of HEFT proposed in [20]. This algorithm schedules jobs of every
task instance with the earliest finish time heuristic without duplicating any job.
RTHEFTD, a “duplication” version of HEFT has been proposed by [5]. This
algorithm always uses duplication for scheduling task instances. RTHEFTUB
is essentially our RTCDA-W 2H, without doing the selective duplication step
proposed in Condition-1 i.e., RTHEFTUB can generate schedules more than
the trivial upper bound. The parameters used for the simulation are summa-
rized in Table 3. The number of processors are varied by keeping the ratio(
average subtasks in taskset

number of processors

)
as constant [7]. Total utilization UT of a task set

is the summation of the utilization of all the tasks in the task set. For a single
task, UT is defined as UT = average computation

m∗period , whereas average computation
is the summation of the averages of jobs execution costs in the task. Parame-
ters CCR, HF are averaged over all the tasks in the task set. CCR of a task is
defined as total communication

average computation . HF of a task corresponds to the average standard
deviation of the job execution costs. For a job sijk of a task ti, it is evaluated

as

√∑
pq∈P

(µi(j)− µi(j, pq))2. For every combination of CCR and UT, 1000 task

sets were generated by uniformly selecting the remaining parameters using a
well known real-time benchmark, Task Graphs For Free (TGFF) [10]. The task
deadlines have been set equal to their periods. All the algorithms have been im-
plemented in C++. Schedulability or Success Ratio (SR) is used as the primary
performance metric.

Definition 3. (Success Ratio). It is defined as the ratio of the number of task
sets that meet their deadlines to the total number of task sets considered [3] i.e
SR = number of tasksets meeting deadlines

total number of tasksets .

(a) CCR=0.5 (b) CCR=5

(c) CCR=10

Fig. 4. Effect of UT with fixed CCR

8.1 Effects of CCR and UT

Figs. 4 and 5 show the effect of varying CCR and UT on the algorithms. The
results show that RTCDA-W 2H2 and RTCDA-W 2H improve the SR more
than the others in every combination of CCR and UT. Among all algorithms,
RTHEFTD and RTDBA achieved the lowest SR values, even lesser than those
of RTHEFT, which is a “without duplication” algorithm. The primary reason
for this is that they “always” perform duplication of the jobs. Also, RTDBA
is not an insertion based algorithm. This reflects in its SR being lower than
RTHEFTD. All three proposed upper bound algorithms managed to improve
the SR by > 15% for UT>= 0.7 across all CCR values (Figs. 4 and 5). Hence,
these algorithms make an efficient use of schedule holes by switching between
“without duplication” and “duplication” scheduling algorithms at run time. In
Fig. 4(a), for a low CCR of 0.5, “without duplication” RTHEFT scheduled all
task sets with UT≤ 0.5. However, for higher utilizations and higher CCR val-
ues, upper bound based algorithms improved the SR by performing duplication
for the tasks which can not be scheduled without duplication. The gap in SR
values of RTHEFT and proposed duplication algorithms increases with increase
in CCR (Fig. 5). Importantly, duplications are less effective at a low CCR value
= 0.5, however, upper bound algorithms first tentatively schedule tasks with-
out duplication and then try duplication, only when the “without duplication”
approach fails. This helps in increasing the SR by 10− 20%.

(a) UT=0.8 (b) UT=0.9

(c) UT=1.0

Fig. 5. Effect of CCR with fixed UT

Generally, the SR for all the algorithms decreases with an increase in UT at all
CCRs. This scenario is a combined effect of increasing the demand of computing
power with an increase in UT and the delay caused by communication costs.
However, duplications helps in achieving an SR close to 70% for UT=0.9. At
maximum UT=1.0, all the algorithms perform poorly. However, RTCDA based
algorithms are able to schedule 20% of the task sets. The UT=1.0 describes a case
when the CPU is 100% utilized. However, heterogeneity in the computation costs
help scheduling 20% of the task sets (refer to Section 8.2 for details). RTCDA-
W 2H and RTCDA-W 2H2 have performed slightly better than RTHEFTUB
by making use of selective duplication that bounds their schedule lengths to
the trivial upper bound at higher CCR values. The major difference in their
SR can be seen at CCR value = 10 across different utilizations (Fig. 5), due to
RTHEFTUB generating schedules larger than the trivial upper bound. RTCDA-
W 2H2 is able to schedule 5− 10% more task sets than RTCDA-W 2H due to a
control in the amount of duplication while scheduling.

8.2 Effects of Heterogeneity

To study the effect of heterogeneity, task sets are generated by keeping CCR
and UT fixed to 1.0 and 0.8 respectively and by varying the execution costs in
a range of 1 − 50. The parameter HF is varied from 1 to 20 as shown in Fig.

Fig. 6. Effect of Heterogeneity

6. A low value of HF=1, depicts less variation in the execution costs of jobs
on multiprocessors. Hence, for a UT=0.8, a task set will require approximately
80% of the total CPU computing power to meet all deadlines, because each
job will execute almost for its average execution cost. The remaining 20% of the
computing power is only utilized by duplicated copies of jobs to reduce the delay
caused by the higher communication cost. Hence, more jobs are delayed. This
reduces the success ratio. With the increase in HF, the SR has been found to
increase, because more variation in execution costs causes jobs to schedule on
processors with execution cost less than their averages hence, providing more
computing power for duplication. RTCDA-Extended is able to improve the SR
more than the other variations in this case as well.

9 Conclusion

We have observed that duplication is not always required for the scheduling of
real-time static tasks. Whether to duplicate or not depends on the task dead-
lines. In addition, the controlled duplication strategy has addressed the W 2H2

duplication challenges. Increasing the simulation time using RTMIP and local
search techniques further improves the success ratio by > 20% for a maximum
utilization of 1.0. In the future work, we will look to decrease the time complexity
of the algorithms. Also, energy consumption of computation and communication
resources can be optimized for the cases where 100% SR is achieved.

References

1. Ahmad, I., Kwok, Y.K.: On exploiting task duplication in parallel program schedul-
ing. IEEE Trans. Parallel Distrib. Syst. 9, 872–892 (September 1998)

2. Auluck, N.: An integrated scheduling algorithm for precedence constrained hard
and soft Real-Time tasks on heterogeneous multiprocessors. In: Lecture totes in
Computer Science. vol. Volume 3207/2004, pp. 199–207 (2004)

3. Auluck, N., Agrawal, D.: Enhancing the schedulability of Real-Time heterogeneous
networks of workstations (NOWs). Parallel and Distributed Systems, IEEE Trans-
actions on 20(11), 1586–1599 (2009)

4. Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous envi-
ronment. IEEE Trans. Parallel Distrib. Syst. 15, 107–118 (February 2004)

5. Bansal, S., Kumar, P., Singh, K.: Dealing with heterogeneity through limited du-
plication for scheduling precedence constrained task graphs. J. Parallel Distrib.
Comput. 65, 479–491 (April 2005)

6. Baskiyar, S., Dickinson, C.: Scheduling directed a-cyclic task graphs on a bounded
set of heterogeneous processors using task duplication. J. Parallel Distrib. Comput.
65, 911–921 (August 2005)

7. Davare, A., Chong, J., Zhu, Q., Densmore, D.M., Sangiovanni-Vincentelli, A.L.:
Classification, customization, and characterization: Using MILP for task allocation
and scheduling. Tech. Rep. UCB/EECS-2006-166, EECS Department, University
of California, Berkeley (Dec 2006)

8. Dave, B., Jha, N.: COFTA: hardware-software co-synthesis of heterogeneous dis-
tributed embedded systems for low overhead fault tolerance. Computers, IEEE
Transactions on 48(4), 417–441 (1999)

9. Dave, B., Lakshminarayana, G., Jha, N.: COSYN: hardware-software co-synthesis
of heterogeneous distributed embedded systems. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on 7(1), 92–104 (1999)

10. Dick, R.P., Rhodes, D.L., Wolf, W.: Tgff: Task graphs for free (1998)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the The-
ory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H.
Freeman, first edn. (Jan 1979)

12. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv. 31, 406–471 (December 1999)

13. Liu, C., Anderson, J.: Supporting graph-based real-time applications in distributed
systems. In: Proceedings - 17th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA 2011. vol. 1, pp. 143–152
(2011)

14. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a Hard-
Real-Time environment. Journal of the ACM (JACM) 20(1 (January 1973)), 46 –
61 (1973)

15. Qin, X., Jiang, H.: A dynamic and reliability-driven scheduling algorithm for par-
allel real-time jobs executing on heterogeneous clusters. Journal of Parallel and
Distributed Computing 65(8), 885–900 (Aug 2005)

16. Ranaweera, S., Agrawal, D.P.: Scheduling of periodic time critical applications for
pipelined execution on heterogeneous systems. In: Parallel Processing, Interna-
tional Conference on. p. 0131. Los Alamitos, CA, USA (2001)

17. Singh, J., Auluck, N.: Controlled duplication for scheduling real-time prece-
dence tasks on heterogeneous multiprocessors. In: High Performance Computing
(HiPC11) Student Research Symposium. Bangalore, India (Dec 2011)

18. Singh, J., Betha, S., Mangipudi, B., Auluck, N.: Contention aware energy efficient
scheduling on heterogeneous multiprocessors. IEEE Transactions on Parallel and
Distributed Systems Early Access Online (2014), 00000

19. Stavrinides, G.L., Karatza, H.D.: Scheduling multiple task graphs in heterogeneous
distributed real-time systems by exploiting schedule holes with bin packing tech-
niques. Simulation Modelling Practice and Theory 19(1), 540–552 (Jan 2011)

20. Topcuouglu, H., Hariri, S., Wu, M.y.: Performance-effective and low-complexity
task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst.
13, 260–274 (March 2002)

21. Tosun, S.: Energy and reliability-aware task scheduling onto heterogeneous MPSoC
architectures. The Journal of Supercomputing pp. 1–25 (Nov 2011)

22. Xie, T., Qin, X.: Security-Aware resource allocation for Real-Time parallel jobs on
homogeneous and heterogeneous clusters. Parallel and Distributed Systems, IEEE
Transactions on 19(5), 682–697 (2008)

23. YuHai, Y., Shengsheng, Y., XueLian, B.: A new dynamic scheduling algorithm
for Real-Time heterogeneous multiprocessor systems. In: Workshop on Intelligent
Information Technology Application (IITA 2007). pp. 112–115. Zhang Jiajie, China
(2007)

24. Zhu, X., Lu, P.: Multi-Dimensional scheduling for Real-Time tasks on heteroge-
neous clusters. Journal of Computer Science and Technology 24(3), 434–446 (2009)

