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Abstract. The performance of parallel schedulers is a crucial factor in
the efficiency of high performance computing environments. Scheduler
designs for practical application focusing on improving certain metrics
can only be achieved, if they are evaluated in realistic testing environ-
ments. Since real users submit jobs to their respective system, special
attention needs to be spent on their job submission behavior and the
causes of that behavior. In this work, we investigate the impact of dy-
namic user behavior on parallel computing performances and analyze
the significance of feedback between system performance and future user
behavior. Therefore, we present a user-based dynamic workload model
for generative simulations, which we use to analyze the impact of dy-
namically changing think times on simulations. We run several such sim-
ulations with widely known scheduling techniques FCFS and EASY,
providing first insights on the influence of our approach on scheduling
performances. Additionally, we analyze the performances by means of
different metrics allowing a discussion on user satisfying performance
measures.
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1 Introduction and Related Work

So far, a common technique to compare performances of different schedulers
is achieved by simulations using previously recorded workload traces. There are
many studies on analyzing properties of workloads, e.g., [9], resampling workload,
e.g., [14], or prediction of future workload, e.g. [2]. Figure 1 depicts this situation:
We use a previously recorded workload trace to measure the performance of a
certain scheduler.

According to Schwiegelshohn, this technique does not suffice to gain practi-
cal performance measures. Schwiegelshohn describes a gap between scheduling
in theory and its practical application [10]. According to him, there is a need
to “prevent misunderstanding between researchers and practitioners”, e.g., by
comprehensible interpretations and conclusions from analyses. Additionally, he
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Fig. 1. Measuring performance with workload traces.

describes the necessity of workload models including a simulation of interaction
of users and the system due to the spreading of the parallel computing con-
cept. In this work, we address both discussed aspects: We develop a simulation
framework for generative simulations of users interacting with a parallel comput-
ing system giving the opportunity to test schedulers in a real world simulation
environment.

We present and analyze the results of a generative simulation and argue why
these simulations must be of dynamic fashion. Since the process of users submit-
ting jobs to a computing environment and receiving a response once their job
was computed is based on user behavior. Users may react to sparse resources
changing the workload or submit times, which are then faced by a certain sched-
uler. Testing scheduler performances by using earlier recorded workload traces
suffices from a lack of these interactive effects. Therefore, we model a dynamic
and interactive simulation environment focusing on user feedback [4]. Figure 2
depicts this approach: The workload is not determined beforehand but the re-
sults of the scheduler influence the user in his future behavior. The performance
is an outcome of this generative process. Regarding this idea, each recorded
workload trace is only one instantiation of a dynamic interaction process.
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Fig. 2. Performance evaluation including feedback.

We can think of many different forms of feedback between users and a parallel
computing environment:

– People could start their daily work earlier or finish later, if the system does
not offer satisfiable performances.

– Contrary, they could begin their work later, or finish earlier, if the respon-
siveness of the system is good.

– In a system with poor performances, people could tend to work on weekends,
to find it less utilized, assuming that they prefer working on weekdays.



– Users could tend to change the characteristics of jobs they submit. Job pa-
rameters (size, length, etc.) may be adapted to get results faster or resources
are used more efficiently.

– In case the system is advanced by further resources, job characteristics might
be adjusted accordingly.

– Runtime estimates can have a major influence on scheduling performances
[12]. We can also think of them being tuned by users, to receive more satis-
fying results.

So far, little or none dynamic simulations were conducted in the context of
parallel scheduler evaluations. Although we discussed different possible forms of
feedback, we want to focus on think times, which is the interval between response
and submission of two consecutive jobs. This form of feedback is analyzed in
different works, e.g., [4].

Feitelson describes the reaction of users to system performances as “a mys-
tery” [6, p. 414]. The workload submitted by users and the system performance
should meet in a stable state. A growing demand leads to poorer system per-
formance (cf. Figure 3). This result can be obtained in a performance test with
increasing workload. Nevertheless, the actual user reaction is an open question.
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Fig. 3. Supply-and-demand curves crossing in stable state [6, p. 414].

Our simulations are based on the teikoku Scheduling framework [1] which is
extended by a workload generation module simulating dynamic user behavior.
Furthermore, the only feedback we model is dynamic think time. Future work
can adapt this model to simulate further feedbacks. We measure the performance
by four different metrics, which can all be interpreted as describing an impact
on user satisfaction. Results from simulations as provided in this paper can be
used to justify certain goals of optimization in applied scheduling strategies to
make results more comprehensible for practitioners.



This work is structured as follows. In the next section, we give an overview of
related work. Afterwards, we present the dynamic user model as the basis of the
simulation and discuss different feedback functions in Section 2. In Section 3, we
present the results of our simulation and discuss the influence of dynamic think
times. We close this work with a conclusion in Section 4.

2 User Model and Feedback

To develop our simulation environment, we make two a priori assumptions. First,
submission times and working habits are based an a weekly pattern, e.g., de-
scribed in [6, p. 394]. Regularly, people work from Monday to Friday followed by
the weekend from Saturday to Sunday. We assume that this observation holds
for the work with HPC environments to some extend, as well. Second, users do
not work all day long. We suppose that they start at a certain point in time and
finish work later, according to different days of the week. These assumptions
lead to the framework of our simulation. Given a weekly structure as the global
frame of user behavior, our simulation can run for an adjustable number of nw

weeks. Furthermore, we model nu individual users u ∈ U in the set of all users
U participating in a simulation run. Users might be more or less active, as Fei-
telson and Shmueli have analyzed [11]. We take care of this fact by introducing
the activity ratio

pa,u ∈ [0, 1], (1)

which is the percentage chance of a user being active in a certain week.
After describing this main structure of the simulation, we can now focus on

attributes describing the submission behavior of a single user. To model different
activity at different days of the week, we introduce a distribution describing this
activity

pd,u ∈ [0, 1] ∀d ∈ D = {mon, tue, . . . , sun}, ∀u ∈ U,
∑

d∈D

pd,u = 1 ∀u ∈ U. (2)

Every user has a certain point in time to start and to end his or her day. Addi-
tionally, we introduce variables

tb,u ∈ [0, 86400], (3)

te,u ∈ [0, 86400] ∀u ∈ U, (4)

tb,u < te,u

describing an individual start and end of their working day in seconds. In case
the submit time of a new job is not between tb,u and te,u, it is delayed until the
next day begins. Additionally, we focus on job characteristics. We restrict the
number of processors per job to powers of two, as other numbers of requested
processors are fairly uncommon [4]. The number of requested processors of a



job and its running time are not correlated over different systems [4]. However,
we assume that jobs in different applications tend to have same characteristics
regarding their sizes and running times, or that the same user submits jobs of the
same type. Therefore, we model a correlation of job characteristics according to
each user. For each user u, we give the probability of choosing a certain number
of processors for his job

pu,mj
∈ [0, 1],

∑

mj

pu,mj
= 1 ∀u ∈ U,mj ∈ {2i | i ∈ N}. (5)

The normal distributions of running times for a given number of processors

μu,mj
, (6)

σu,mj
∀u ∈ U,mj ∈ {2i | i ∈ N}, (7)

are set for each user respectively.
Keeping the model simple, we introduce a linear think time function. Two

variables represent each user’s specific think time behavior. Variables ttu,m and
ttu,b are used in the the linear function

ttu(rj) = ttu,m · rj−1 + ttu,b, (8)

giving the think time according to the response time of the last job ji−1 submit-
ted by user u.

Note that we do not model user sessions in detail, due to the difficulty of
extracting session information from workload traces [13]. In this work, our goal
is to describe effects caused by dynamic think times. Therefore, we restrict our
user models from users submitting jobs in parallel, while still waiting for their
results. Figure 4 depicts an overview of the described process.

Now we can analyze some situations for which we artificially set up a set of
users in a certain system before we extract data from existing workload traces
and run realistic, feedback-aware simulations. Although not all users might fit in
the proposed model due to different working habits, e.g., there might be people
starting their work one day and working over midnight to finish next day, we
hope that the simulation is a first step towards user-aware simulation.

We arbitrarily choose four workload traces to learn parameters ttu,m, and
ttu,b. Traces LANL CM5, KTH-SP2, OSC Cluster, HPC2N, ANL Intrepid, and
SDSC SP2 range from 213-437 users with 28,489-527,371 jobs, and 100-163,840
cores [5]. Figure 5 depicts a plot of the think times in the chosen traces. Only jobs
ji having a subsequent job ji+1 of the same user are considered. They must not
overlap, i.e., the beginning of ji+1 must be after ji finished. Furthermore, only
think times of less than 8 hours are considered: 0 < si+1 − ri < 28, 800 seconds,
with submit time si+1 of job ji+1 and response time ri of job i. Fitting a linear
function to the provided data, we receive ttu,m = 0.4826, and ttu,b = 1779, when
least-squares is applied.
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Fig. 4. Job submission workflow of user u.
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Fig. 5. Linear fit of think times in different workload traces.



3 Generative Simulations

We are interested in the effect on the following different measurements of per-
formances (cf. [3]). We consider the following four metrics.

– Average Response Time (ART): The sum of all response times (time passing
from job submission to receiving of the result) divided by the number of jobs

ART =

∑
j∈J rj

|J | .

– Average Weighted Response Time (AWRT): The response time of each job
is weighted by its size and divided by the number of jobs submitted in total,

AWRT =

∑
j∈J pj ·mj · rj∑

j∈J mj
.

– Average Waiting Time (AWT): All waiting times (time passing from job
submission to actual processing) are normalized by the number of jobs

AWT =

∑
j∈J wj

|J | .

– Average Slowdown (ASD): The slowdown is defined as the response time
normalized by the running time. We sum up all slowdowns and take the
average

ASD =

∑
j∈J

rj
pj

|J | .

We choose these metrics for the following reasons. Since we model the think time
as a function of response time, we implicitly assume that different time measures
of a job have a certain impact on users. The ART is the time a user has to wait
in total for a result and is therefore considered. Furthermore, the AWRT takes
the size of a job into consideration and might also be of interest for certain user
behavior. Additionally, we focus on the waiting time. While AWT expresses the
waiting times users face, SD expresses the proportional running time according
to the processing time (and therefore indicates on the proportional waiting time).

The value of the makespan is not considered due to the following two rea-
sons. First, weekly patterns with a break at weekends overturn the concept of the
makespan minimizing the overall computation time. Second, it is not a measure
for user satisfaction. In a parallel computing environment, users are not inter-
ested in the point in time when the last job among all jobs (possibly submitted
in the future) finishes but when each of their own submitted jobs finish.

In this work, we choose two commonly known scheduling techniques for com-
parison.

– First Come First Serve (FCFS): Using FCFS, jobs are computed in order of
arrival at the system.



– EASY backfilling (EASY)[8]: If the running time of a job is known or at
least an estimation is given, a queued job is preferred if enough machines
are available at the current point in time and the job does not take longer
then the so far scheduled jobs take.

In our simulations, EASY has an optimal working environment due to perfectly
known running times at forehand. Clearly, this is an advantage for the perfor-
mance of this scheduling technique. Future analyses may also consider mistakes
in runtime estimations, as they are not necessarily of good quality in practice
[7].

3.1 Artificial Simulations

In the artificial setup, we want to analyze potential differences and finding out
how far the performance of scheduling strategies is influenced according to the
previously discussed metrics. We therefore use the following user archetype: Each
user works from 9 a.m. to 5 p.m. (ub = 32400, ue = 61200) and working time is
evenly distributed among weekdays only, i.e.,

pd,u = 0.2 ∀d ∈ {mon, tue, wed, thu, fri}

and
pd,u = 0 ∀d ∈ {sat, sun}.

As we seek to find general insights on the influence of think time, we arbitrarily
choose the correlation that larger jobs take longer, which can be found in some
workloads [6, p. 378]. Therefore, we choose a Gaussian-like distribution for job
sizes. Length distributions grow from μu(2) = 20 seconds for two cores up to
μu(1024) = 14400 seconds for 1024 cores with standard deviation of σu(mj) =
μu(mj)

2 . Future work may address further correlations. To simulate realistic user
behavior, suitable values have to be extracted from workload traces or analyses
of user behavior.

As we want to investigate whether there is a difference when linear think
time is present, we compare it to constant behavior. Therefore, we choose the
following three different think time functions:

– Constant: 20 minutes, ttu,c20(rj) = 1200
– Constant: 120 minutes, ttu,c120(rj) = 61200
– Constant: 240 minutes, ttu,c240(rj) = 61200
– Linear: linear think time model,

ttlin(rj) = mu · rj + bu,mu = 1.051, bu = 1361 (cf. Section 2)

To simulate an interactive process, we generate ten users sampling and sub-
mitting jobs to a system s of size ms. Job sampling and submission is fulfilled
according to the described parameters and one certain think time function. Each
run simulates ten weeks. The number of cores present in the system ms decreases
from 1024, 512, 256 to 128 to simulate different utilization scenarios. Whenever



a user samples a job, which is greater than the currently simulated system size,
the job size is reduced to system size, i.e., mj ← min{ms,mj}. This means, the
probability that a job needs all cores of the system increases to

∑
mj≥ms

pmj .

Furthermore, each simulation is performed with schedulers FCFS and EASY (cf.
Section 3).

Summarizing, one simulation run has the following attributes:

– System size ms ∈ {1024, 512, 256, 128}
– Scheduler: FCFS or EASY
– Think time model: ttc20, ttc120, ttc240, or ttlin
– Simulation of ten weeks

All parameters describing a single user are summarized in Figure 6. To create

Parameter Value

Activity ratio pa 0.5
Start of day tb 32400
End of day te 61200

Activity within
week

mon tue wed thu fri sat sun

0.2 0.2 0.2 0.2 0.2 0 0

Job attributes

Cores mj 1 2 4 8 16 32 64 128 256 512 1024

Distribution pmj 0.0 0.0 0.05 0.05 0.1 0.15 0.3 0.15 0.1 0.05 0.05
μmj 0.0 20 38 75 150 300 600 1200 3600 7200 14400
σmj 0 10 20 38 75 150 300 600 1200 3600 7200

Think times

Parameter tt c20 c120 c240 lin

Think time ttu,m 0.0 0.0 0.0 0.4826
Think time ttu,b 1200.0 7200.0 14400.0 1779.0

Fig. 6. Basic parameters defining all users in our artificial simulation setup.

convincing data, we repeat each simulation configuration for 100 times.

Influence of Different Think Time Functions We cannot distinguish whe-
ther the length of think times are caused by the working habits and type of work
performed by users or if there is some psychological reason for such behavior.
However, these experiments will give arguments on positive or negative effects on
the metrics considered. Furthermore, we can analyze which metrics are influenced
more than others, which might allow us to draw conclusions on the needs of
users in parallel computing environments. Comparing the four different think
time models we also have to take the processed workload into account. Taking
the workload into consideration allows clearer comparisons as of the nature of
the analyzed problem: in a less utilized system the chance of better scheduling
results according to certain metrics might be easier. We measure the workload
in processor hours, which describe the amount of workload processed on the
system. All running times of all cores are summed up.



The results of all simulations are presented in Figure 7 and Figure 8. Each
row of box plot charts represents one system size (128, 256, 512, or 1024 cores).
Within each row, the values for the four metrics, as well as the processed work-
load are depicted for all four different think time functions named c20, c120,
c240, and lin. A single box plot is the graphical representation of all metric or
workload values gained at the 100 simulation runs. At the first glance, we can see
that the processed workload decreases for increasing constant think times. The
longer a user waits between job submissions, the less workload must be handled
by the system in the simulated ten weeks interval.

For both schedulers, FCFS and EASY, the metric values decrease according
to the decrease in workload. We find this pattern in all charts, except for the
ASD value when EASY is applied. For 512 and 1024 cores, think times of 20 and
120 minutes do not influence ASD significantly, i.e., for 512 cores the box plots
look fairly equal, while for 1024 cores the ASD is worse for the median, as well as
for the first and third quartile. A reason for that might be that our simulated job
submissions are not influencing the performance for these two special settings,
since we observe the decrease in all other simulations.

Interestingly, the linear think time model influences the metrics significantly,
as the following detailed analyses show. We compare the results gained for both
schedulers for the initial setup of 1024 cores, and the most reduced simulated
system of 128 cores. We use Figure 9 - Figure 12 to analyze differences in per-
formances. In each Figure, the 2.5 percentile Q2.5%, median, and 97.5 percentile
Q97.5% depict the performance of different runs of simulations for two different
think time models. Additionally, we highlight the difference in percentage be-
tween both simulations. We use three different ways to emphasize this difference
in percentage: In case the first think time model is better than the second, the
percentage value is bold. We use italic writing in case the difference is less than
the processed workload, e.g., 2% more workload is processed but the value for a
certain metric is only larger by 1%. Otherwise, the value is not emphasized.

In a 1024 cores system, the linear think time model leads to better results
compared to the constant model c120. In Figure 9, we compare lin to c120. Even
though more workload is processed for lin (the median is better by 8.1%), all
metric values are relatively better than the ones for c120. The median of AWRT
is only higher by 0.7%, ART by 1.2%, AWT by 1.2%, and ASD by 1.4%. All
quantiles are at least relatively better for lin compared to c120.

Similar results hold for the simulation of FCFS in a 128 cores system (cf.
Figure 10). Again, we compare lin and c120. The linear model produces 0.3%
more workload considering the median, but all four metrics are better between
12.1% and 4.4% for the linear workload generation. The same holds for Q2.5%

and Q97.5% which vary between 0.4% to 11.2%. This example clearly shows, that
at almost equal workload, linear think times outperform static think times. The
slowdown seems to be influenced most by the workload FCFS has to handle
compared to the influence on other metrics: while the difference of the median of
lin compared to c120 in the 1024 cores simulation is close to the to the differences
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Fig. 7. Simulation Results of artificial simulation with 128, 256, 512, 1024 and FCFS
scheduler.
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Fig. 8. Simulation Results of artificial simulation with 128, 256, 512, 1024 and EASY
scheduler.



FCFS 1024 Q2.5% Median Q97.5%

AWRT lin 23598.44 27720.71 31905.83
c120 23315.24 27532.03 33139.81

1.2% 0.7% -3.9%

ART lin 10985.66 13189.83 15842.24
c120 10588.10 13036.69 17367.84

3.6% 1.2% -9.6%

AWT lin 9278.85 11322.33 13828.88
c120 8855.86 11187.99 15280.66

4.6% 1.2% -10.5%

ASD lin 129.01 240.32 356.20
c120 141.30 236.85 376.36

-9.5% 1.4% -5.7%

WL lin 1305272612 1515061506 1694093600
c120 1200556728 1391623828 1625874940

8.0% 8.1% 4.0%

Fig. 9. Metric values for FCFS in artificial setup with 1024 cores.

FCFS 128 Q2.5% Median Q97.5%

AWRT lin 23862.72 27720.17 31576.47 -8.2
c120 24569.47 28935.14 34166.52

-3.0% -4.4% -8.2%

ART lin 16781.50 18964.58 22017.13
c120 16846.89 20547.47 24071.83

-0.4% -8.3% -9.3%

AWT lin 15055.25 17086.67 19782.00
c120 15172.02 18618.06 22002.97

-0.8% -9.0% -11.2%

ASD lin 209.74 366.45 581.06
c120 221.61 410.72 645.76

-5.7% -12.1% -11.1%

WL lin 214225436 239972934 267924464
c120 206598240 239365340 267277068

3.6% 0.3% 0.2%

Fig. 10. Metric values FCFS in artificial setup with 128 cores.



of all other metrics, it is the value of greatest difference between lin and c120
for 128 cores.

We now compare the performance of EASY with 1024 cores to the perfor-
mance if higher workload is generated in a 128 core scenario, and again choose
the c120 simulations to compare both results (cf. Figure 11).

The processed workload in the 1024 cores simulation with static think time
c120 is outperformed by 14.8% at median by lin. Except for AWT, with a Q2.5%

of 21.1%, all values of Q2.5%, median, and Q97.5% are relatively better according
to the linear think time respecting the difference in workload.

EASY 1024 Q2.5% Median Q97.5%

AWRT lin 29084.08 34692.37 41745.11
c120 24694.65 30978.13 36791.09

15.1% 10.7% 11.9%

ART lin 9187.50 10882.36 12750.43
c120 7247.76 10235.89 12481.95

21.1% 5.9% 2.1%

AWT lin 7463.42 9022.85 10761.17
c120 5564.28 8353.36 10486.81

25.4% 7.4% 2.5%

ASD lin 72.61 129.72 227.23
c120 63.89 121.96 223.41

12.0% 6.0% 1.7%

WL lin 1574387124 1832448410 2063426668
c120 1326863512 1561360172 1808671904

15.7% 14.8% 12.3%

Fig. 11. Metric values for EASY in artificial setup with 1024 cores.

In Figure 12, all values are depicted for EASY in a 128 cores simulation. The
processed workloads of lin and c120 are almost equal, with a median difference
of 0.2%. Except for the Q2.5% value of ASD, all values are at least relatively
better.

While ASD was influenced almost best in the 1024 cores setup with difference
of 6.0% at median (ART was best with 5.9%), we now observe the lowest differ-
ence of −4.0%. All three values for lin are worse compared to the differences for
the other metrics. We conclude, that ASD is most influenced by jobs submitted
with linear think time in different system sizes.

Furthermore, by simply reusing a workload trace without dynamic think
times, this significant difference in performance, from best difference to worst
difference among all considered metrics, would not have been discovered.

For both scheduling techniques considered, an adaptive think time behavior
leads to better performances. According to the four metrics considered, they
perform better if we compare lin to constant models, in case equal processed



EASY 128 Q2.5% Median Q97.5%

AWRT lin 25875.20 29462.72 36106.23
c120 25826.87 31617.68 37162.35

0.2% -7.3% -2.9%

ART lin 14939.06 17321.88 20617.80
c120 15373.38 18638.35 21449.06

-2.9% -7.6% -4.0%

AWT lin 110.62 176.66 306.30
c120 97.57 183.75 302.05

-2.2% -8.2% -4.2%

ASD lin 110.62 176.66 306.30
c120 97.57 183.75 302.05

11.8% -4.0% 1.4%

WL lin 237278984 259226294 285866200
c120 228554012 258636800 290397720

3.7% 0.2% -1.6%

Fig. 12. Metric values for EASY in artificial setup with 128 cores.

workload sizes are taken into account. Although the difference in performances
decreases in simulations with sparse resources, the statement still holds.

Several conclusions can be drawn towards user satisfaction regarding ASD.
ASD is not minimized when sparse resources are met and a linear think time
is applied. This value is influenced most in different setups. These observations
suggesting further analyzes on this metric specifically.

Performances of Scheduling Strategies We contrast the performances of
FCFS and EASY with the linear think time model. In Figure 13, and Figure 14,
we compare the results for 1024 and 128 cores, respectively.

EASY outperforms FCFS for ART, AWT, and ASD up to more than 85%,
for both, 1024, and 128 cores. Interestingly, we do not observe this for AWRT.
Seeing the differences in workload, performances for EASY and FCFS are almost
relatively equal. Dynamic think times seem to influence the scheduling techniques
significantly, as EASY does not outperform FCFS for this certain metric, even
though small jobs are favored by EASY and optimal job length estimates are
provided.

4 Conclusion

We introduced a generative simulation environment to analyze feedback effects.
We modeled user reactions to system performances in form of dynamic think
times. In several analyses, we showed that this dynamic reaction outperforms
static behavior. The results must be verified in further studies and more work
of this type is important to find arguments for or against certain metrics to
rate user satisfaction. Even psychological research should focus on the presented
aspects to understand human behavior in HPC environments more deeply.



EASY/
FCFS

1024 Q2.5% Median Q97.5%

AWRT F.lin 29084.08 34692.37 41745.11
E.lin 23598.44 27720.71 31905.83

18.9% 20.1% 23.6%

ART F.lin 9187.50 10882.36 12750.43
E.lin 10985.66 13189.83 15842.24

-19.6% -21.2% -24.2%

AWT F.lin 7463.42 9022.85 10761.17
E.lin 9278.85 11322.33 13828.88

-24.3% -25.5% -28.5%

ASD F.lin 72.61 129.72 227.23
E.lin 129.01 240.32 356.20

-77.7% -85.3% -56.8%

WL F.lin 1574387124 1832448410 2063426668
E.lin 1305272612 1515061506 1694093600

17.1% 17.3% 17.9%

Fig. 13. Comparison of EASY and FCFS in a 1024 cores system with linear think
time.

EASY/
FCFS

128 Q2.5% Median Q97.5%

AWRT F.lin 25875.20 29462.72 36106.23
E.lin 23862.72 27720.17 31576.47

7.8% 5.9% 12.5%

ART F.lin 14939.06 17321.88 20617.80
E.lin 16781.50 18964.58 22017.13

-12.3% -9.5% -6.8%

AWT F.lin 13303.00 15447.49 18586.51
E.lin 15055.25 17086.67 19782.00

-13.2% -10.6% -6.4%

ASD F.lin 110.62 176.66 306.30
E.lin 209.74 366.45 581.06

-89.6% -107.4% -89.7%

WL F.lin 237278984 259226294 285866200
E.lin 214225436 239972934 267924464

9.7% 7.4% 6.3%

Fig. 14. Comparison of EASY and FCFS in a 128 cores system with linear think time.



Further analyses of feedback effects can also lead to better scheduler de-
signs. Once we better understand the effects, their causes, and their influence on
schedulers, we can exploit them to find better schedules aiming to improve user
satisfaction.
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