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Abstract. Memory bandwidth is a major resource which is shared among
all CPU cores. The development speed of memory bandwidth cannot
catch up with the increasing number of CPU cores. Thus, the contention
for occupying more memory bandwidth among concurrently executing
tasks occurs. In this paper, we have presented Bubble Task method which
mitigates memory contention via throttling technique. We made a mem-
ory contention modeling for dynamically deciding throttling ratio and
implemented both software and hardware versions to present trade-off
between fine-grained adjustment and stable fairness. Bubble Task can
lead to performance improvement in STREAM benchmark suite which
is one of the most memory hungry benchmark by 21% and fairness in
memory bandwidth sharing among SPEC CPU 2006 applications which
have different memory access patterns.

Keywords: Multicore processor, SMP platform, CPU execution throt-
tling, resource contention, bandwidth fairness

1 Introduction

The number of CPU cores on a chip has been increasing rapidly. Intel plans
to have an architecture that can scale up to 1,000 cores on a single processor [1].
However, the improvement speed of memory bandwidth, an important shared
resource, cannot keep up with the increasing number of cores. For example, 8
cores on Xeon E5-2690 in 2012 share 51.2GB/sec memory bandwidth, where 12
cores on Xeon E5-2695v2 introduced in 2013 share 59.7GB/sec memory band-
width [2]. Although the number of CPU cores increased by 50%, the memory
bandwidth only increases by about 16%. Considering this trend, Patterson an-
ticipated that off-chip memory bandwidth will often be the constraining resource
in system performance [3].

In this environment, numerous tasks can be concurrently executed on in-
creasing number of cores. The tasks share memory subsystems such as Last
Level Cache (LLC) and memory bandwidth while the sharing can lead to mem-
ory contention which makes system performance unpredictable and degraded [4]
[5] [6] [7].
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Several methods have been presented for mitigating the contention. Among
these methods, task classification is the most well known example. This method
decides which tasks share same LLC and memory bandwidth and avoids the
worst cases by minimizing performance interference [4] [6] [8] [9]. However, task
classification cannot mitigate the contention when most of running tasks are
memory intensive tasks on a physical node as Ahn et al. [10] pointed out. In this
paper, we present Bubble Task which can dynamically recognize and mitigate un-
avoidable memory contention via throttling approach. It can reduce concurrent
memory access and thus improve resource efficiency. Also, memory bandwidth
can be more fairly distributed by our throttling policy.

The primary contributions of this paper are the following:

— We presented a simple model, memory contention model, to show the level of
contention. Bubble Task Scheduler can efficiently decide per-core throttling
ratio with respect to current contention level.

— We evaluated Bubble Task by using STREAM and lmbench benchmark
suites which are the most well known of memory stressors. Bubble Task
can lead to performance improvement in both stress tests.

— We implemented both software and hardware versions Bubble Task. We
compared the versions in terms of trade-off between fine-grained adjustment
and stable fairness.

The focus of our method lies on long-running, compute-bound and indepen-
dent tasks. Also, we assume that the tasks hardly perform I/O operations and
never communicate with one another while a task is the sole owner of a CPU
core. The rest of the paper is organized as follows: Section 2 discusses the related
work. Section 3 presents our contention model and describes our Bubble Task
Scheduler. Section 4 shows the experimental results. Section 6 concludes this

paper.

2 Related Work

Various solutions have been developed to mitigate the contention for shared
resources via scheduling. Jiang et al. [8] presented the methodology regarded as
a perfect scheduling policy. Their method constructs a graph where tasks are
depicted as nodes connected by edges, the weights of which are the sums of the
levels in performance degradation due to their resource contention between the
two tasks. The methodology analyzes which tasks should share the same resource
to minimize performance degradation caused by resource contention. However,
it is feasible only for offline evaluation in contrast to ours. The overhead in
graph construction is O (nz)(n is the number of tasks). It is not a practical
method if the number of tasks is considerably large. Xie et al. [9] introduced the
animalistic classification, where each application can belong to one of the four
different classes (turtle, sheep, rabbit and devil). Basically, it is hard to classify
each application which has various usage patterns for sharing resources with
only four classes. Moreover, some applications may belong to multiple classes
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such as both devil and rabbit classes. Also, the application is sensitive to the
usage patterns of co-located tasks by polluting cache lines seriously. Thus, Xie’s
methodology may lack accuracy.

Zhuravlev et al. [4] proposed pain classification and Distributed Intensity (DI)
which remedies the shortcomings of above mentioned methodologies in terms of
practicality and accuracy. In their method, task has two scores, sensitivity and
intensity. In their method, task has two scores, sensitivity and intensity. The
higher locality the task has, the higher sensitivity score does the task get. The
locality of shared cache is measured by using the stack distance profile [11] and
miss rate heuristic. Intensity is defined by the number of LLC references per
one million instructions. Their method avoids co-locating the high sensitive task
with the high intensive task. Also, they presented a detailed analysis to identify
which shared resource in a CPU platform is an major factor causing performance
degradation.

The methodology proposed by Kim et al. [6] is similar to Zhuravlev’s classi-
fication. But, their classification and scheduling algorithm are much simpler to
classify many tasks and stronger to deal with them. However, this classification
methods cannot make effect in cases where there are so many memory intensive
tasks. Bubble Task can throttle specific cores and can lead to the mitigation of
memory subsystems.

Ahn et al. [10] presented a migration method among physical nodes in vir-
tualized environments to deal with the unavoidable cases and their method also
avoids remote accesses on Non-Uniform Memory Access architecture via VM
live migration. However, Bubble Tasks is an intra-node method which does not
consider virtualization and migration method among physical nodes.

Throttling method was presented by Zhang et al. [12] to control the execution
speed or resource usage efficiency before us. They proposed hardware execution
throttling method using Intel’s duty-cycle modulation mechanism [13]. Their
hardware approach can lead to more stable fairness due to its fine-grained exe-
cution speed regulation than previous software approach presented by Fedorova
et al. [14]. However, they did not present dynamic throttling policy. Bubble Task
method adapts per-core throttling by using our memory contention model which
can dynamically decide how much a CPU core should be throttled. We refered to
their approach and implemented both software and hardware versions of Bubble
Task.

3 Bubble Task

Bubble Task dynamically recognizes memory contention and decides the de-
gree of per-core throttling ratio with respect to current contention level. In this
section, we will introduce a new memory contention model and also show the cor-
relation between our model and the performance to demonstrate the usefulness
of the model. Lastly, we present our dynamic Bubble Task policy.
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3.1 Memory Contention Modeling

The contention for memory subsystems degrades performance. Figure 1 (a)
presents the runtime results with respect to the number of concurrently exe-
cuting STREAM applications on 8cores Xeon E5-2690. STREAM benchmark is
the most of the memory hungry application and the memory access patterns is
invariable from start to end as seen in Figure 1 (b). This means that the mem-
ory subsystems can be steadily stressed during the execution time of STREAM
application and the stress degree can be adjusted with respect to the number of
running STREAM applications concurrently accessing memory subsystems.

The more the number of STREAMSs, the more exponentially the performance
of STREAM applications degrades due to the high memory contention. In this
section, we will propose a new memory contention model which efficiently in-
dicates the degree of the contention for memory subsystems and evaluate the
correlation between our contention model and performance.

Figure 2 shows the average memory bandwidth and memory request buffer
full rate with respect to the number of STREAM applications [16] on 8cores
Xeon E5-2690. The memory bandwidth is the amount of retired memory traffic
multiplied by 64bytes(size of a cacheline) [18], and Intel provides off-core re-
sponse events which can permit measuring retired memory traffics [19]. Retired
memory traffic is the number of LLC miss events and prefetcher requests, and
the traffic eventually flows into integrated memory controller. There is no single
dominant component contributing to the contention for memory subsystems and
several components play an important role [5]. Retired memory traffic is thus a
good metric to monitor the overall utilization of memory subsystems including
LLC, prefetcher and memory controller.
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Fig. 1. Runtime comparision and memory bandwidth of STREAM benchmark

Memory bandwidth does not increase linearly even though the number of
STREAM applications increases. The bandwidth is saturated at a constant level,
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which is near the maximum memory bandwidth of E5-2690 (about 50GB/sec).
In contrast to the saturated memory bandwidth, memory request buffer full
rate increases exponentially as the number of STREAM applications grows. A
memory request buffer full event indicates a wasted cycle due to the failure in
enqueuing a memory request when the memory request buffer is full. To measure
it, we monitored SQ_FULL event [19]. As the number of STREAM applications
increases, more memory requests are simultaneously generated while the number
of failures increases because the capacity of memory request buffer is limited.
The memory bandwidth and memory request buffer full rate shown in Figure 2
are symmetric with respect to the y=a x z line. The more gentle the inclination
of memory bandwidth curve gets, the more exponential does the inclination of
memory request buffer full rate become.

We constructed our memory contention model based on the correlation be-
tween memory bandwidth and memory request buffer full rate as seen in Figure
2. Equation (1) shows our model. Memory contention level is the number of re-
tries to make a memory request retire. High memory contention level indicates
a lot of retries because many tasks compete in enqueuing their memory requests
into the buffer and hence the memory request buffer is often full. Also, many
retries imply the high contention for overall memory subsystems because the
retired memory traffic is closely connected to LLC, prefetcher and integrated
memory controller.
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Fig. 2. The correlation between memory request buffer full rate and memory band-
width with respect to the number of STREAM applications on 8core Xeon E5-2690

To evaluate the correlation between our memory contention model and per-
formance, we did the stress tests for memory subsystems similar to [15] on 2
different CPU platforms. The specifications of our CPU platforms are organized
in Table 1. We designated a STREAM application as a stressor because a stream
application has high memory intensity and the memory intensity of a STREAM
application is invariable from start to end. We used SPEC CPU applications. The
memory bandwidth for each target application is different (see the value in the
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x-axis of the point labeled solo in Figure 3 and 4). We do the stress tests on both
an 17-2600 (with four cores) and a Xeon E5-2690 (with eight cores). To stress
memory subsystems during the entire execution time of each target application,
the stressors continued to run until the target application terminated.

Memory contention level is a system-wide metric. It indicates the level of
overall contention in the CPU platform. We need to precisely figure out the
correlation between the level and performance of target application because the
sensitivity of each application to the contention for memory subsystems is differ-
ent. We thus use the sensitivity model presented in [6]. This sensitivity model is a
very simple model, but the model is effective and powerful. Equation (2) shows
the sensitivity model. The sensitivity model considers the reuse ratio of LLC
(LLCh;t ratio) and the stall cycle ratio affected by the usage of memory subsys-
tems. We calculated the predicted degradation of target application multiplying
the sensitivity of each application by the memory contention level increased by
both the target application and stressors as seen in Equation (3).

The results are shown in Figure 3(for E5-2690) and 4(for i7-2600). The blue
vertical line (left y-axis) of each graph indicates the runtime normalized to the
sole execution of the target application and the red line (right y-axis) shows the
predicted degradation calculated by Equation (3). X-axis indicates the system-
wide memory bandwidth. The predicted degradation is fairly proportional to the
measured degradation (normalized runtime).

As the predicted degradation increases, the measured degradation accord-
ingly increases on all CPU platforms. The memory bandwidth of Xeon E5-2690
increases as the number of stressors grows. The highest memory bandwidth
reaches the maximum memory bandwidth (about 50GB/sec) when the number
of stressors is 5 or 6. In contrast, the highest memory bandwidth of i7-2600
reaches the maximum memory bandwidth (about 21GB/s) when the number of
stressors is 1 or 2. In the cases of executing lbm, soplex and GemsFDTD, the
memory bandwidth decreases when each target application is executed with 3
stressors. The memory contention levels of the applications with 3 stressors are
much higher than that of the non-memory intensive application which is tonto
(Ibm:11.6; soplex:10.88; GemsFDTD:9.55; tonto:7.68).

The results imply that the system-wide memory bandwidth can be decreased
by too many retries in enqueuing memory requests into the buffer. The results
demonstrate that memory contention level effectively indicates the contention
degree closely correlated with the performance of target application.

Memory Contention Level yrrent
_ Memory Request Buf fer full rate (1)
N Retired memory traf fic rate

LLCmiss % CyClestall

Sensitivity = (1 —
( LLCreference CyCIe’retired
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H Descriptions [Xeon E5-2690 [i7-2600 H
# of cores 8 4
Clock speed 2.9GHz 3.4GHz
(Turbo boost: 3.8GHz) |(Turbo boost: 3.8GHz)
LLC Capacity 20MB 8MB
Max memory 51.2GB/sec 21GB/sec
bandwidth
CPU Category |Server level CPU Desktop level CPU
Microacrcitecture |Sandy-bridge Sandy-bridge

Table 1. The specifications of our SMP CPU platforms

Predicted Degradation;arget_application
= Memory Contention Levelsystem wide (3)

X SenSitivitytarget,application

3.2 Dynamic Bubble Task Policy

In Bubble Task policy, current throttling load is determined with respect to
current contention level and the load is distributed between CPU cores in pro-
portional to the per-core intensity ratio during the interval(1 second). Dynamic
Bubble Task policy is organized in Algorithm 1 and Bubble Task architecture is
described in Figure 5.

Current contention load is dynamically calculated with respect to current
contention level(Line 3 and 4). We adapted 21 and 200 for E5-2690 CPU in
maximum contention level and maximum throttling load, respectively. Average
intensity is the average traffic among CPU cores during the interval(Line 5)
and the CPU cores generating more memory traffics than average intensity are
selected as antogonists which should be throttled in next step. Current throttling
load is distributed between the cores in proportional to per-core memory traffic
ratio(From Line 6 to Line 15).

We implemented both software and hardware versions of Bubble Task. In
software version, Bubble Task Scheduler forks artificial Bubble Tasks which exe-
cute infinite while loop and dynamically adjusts the nice value of Bubble Task to
throttle target application on the same core. Bubble Task Scheduler sends new
nice value with respect to per-core throttling ratio to corresponding Bubble Task
and it adapts the nice value by using set priority system call. Figure 6 presents
throttling ratio of target application with respect to the nice value of Bubble
Task for CPU-bound application. Software version of Bubble Task can fulfill
fine-grained throttling control. However, it cannot throttle target application
without variation because software version requires context-switch between tar-
get application and corresponding Bubble Task (context-switch overhead) [12].

In contrast to software version, hardware version can fulfill precise per-core
throttling control without variation by using IA32_CLOCK_MODULATION reg-
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ister [19]. However, this method can throttle the CPU utilization of target ap-
plication by 12.5%(87.5%, 75%, 63.5%, 50%, 37.5%, 25% and 12.5%) and hence
it can be considered as more coarse-grained throttling control than software ver-
sion. There is trade-off between software and hardware versions. We will evaluate
and compare two versions in Section 4.2.

Algorithm 1: Dynamic Bubble Task Scheduling

1: Dynamic_Bubble_Task_Scheduling() begin
2: current_contention_level = get_contention_level()
3: current_throttling_ratio = current_contention_level / max_contention_level
4: current_throttling_load =
current_throttling_-ratio X maz_throttling_load
g: avg_intensity = get_avg_intensity()
7
8
9

: for each c in all CPU cores do
if avg_intensity < c.mem_traf fic then
intensity_sum += c.mem_traffic
: throttling_list.insert(c)
10: end if

11: end for

12: for each c in throttling_list do

13: per_core_throttling_ratio = c.mem_traffic / intensity_sum

14: c.throttle(per_core_throttling_ratio X current_throttling_-load)
15: end for

4 Evaluation

First, we did stress tests by executing STREAM [16] and Imbench [17] appli-
cations on 8cores Xeon E5-2690. Identical eight stressors, STREAM or Imbench,
are pinned on each core and Bubble Task Scheduler dynamically throttle the
CPU utilization of the stressors during the runtime. We monitored five perfor-
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mance metrics, retired_memory _traffic rate, LLC_miss rate, LLC_reference rate,
memory_request _buffer_full rate and runtime and next compared Bubble Task
method with naive Linux scheduler. We also executed four pairs of SPEC CPU
2006 applications, 2lbms, 2libquantums, 2GemsFDTDs and 2soplexs and com-
pared the bandwidth fairness between software version, naive and hardware ver-
sion.

4.1 Stress Test

We executed STREAM and lmbench sets which are known as the best of
memory stressor to identify how Bubble Task method can mitigate the con-
tention for memory subsystem and hence improve system performance. We used
software version Bubble Task method in this section because software version can
fulfill fine-grained throttling control. The major difference between software and
hardware versions will be handled in Section 4.2. We monitored 5 performance
metrics on E5-2690 and the results are presented in Figure 7. We normalized the
results of Bubble Task method to naive.

In case of STREAM, LLC reference rate and LLC miss rate decrease by about
10% (memory bandwidth also decreases by about 1%). In particular, memory
request buffer full rate decreases by 43%. Memory request buffer full is a metric
which can indicate the contention level for memory controller. The mitigation for
memory controller leads to performance improvement (about 21%) in STREAM
case because the contention for memory controller is more fatal in performance
than other resources [4] [5].

However, the reduction ratio of memory request buffer full rate is higher in
STREAM than Imbench but, performance improves more in lmbench case(about
50%). To establish the cause, we compared the absolute results between STREAM
and lmbench cases in Figure 8, not normalized results. Fundamentally, average
memory contention level presented in Equation 1 is higher in lmbench and ab-
solute mitigation degree of memory contention is higher in Imbench although
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relative mitigation degree is lower in lmbench. Also, LLC miss ratio is higher
in Imbench and absolute reduction ratio of LLC miss is more noticeable. As
a result, we conclude that Bubble Task can take effect more in high memory
contention case.
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4.2 Memory Traffic Fairness

Although we can identify that Bubble Task method can mitigate the con-
tention through stress tests, it can also improve the fairness of memory traffic
among executing tasks because Bubble Task Scheduler uses the policy which
throttles the tasks generating more memory traffics than average traffic as seen
in Algorithm 1(Line 13 and 14). In this section, we evaluated how Bubble Task
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method can guarantee the fairness of memory traffic among executing tasks and
compared between software and hardware versions.

To evaluate fairness, we executed 4 pairs of SPEC CPU 2006 applications
which have different memory access patterns with software version, naive and
hardware version and pinned an application on a core to prevent the contention
for CPU usage. We monitored per-task memory traffic from start to 1000 sec-
onds. Fairness results are presented in Figure 9.

With hardware version, standard deviation of memory traffic between exe-
cuting tasks is lower than naive by about 17% as seen in Figure 9 (b) and (c).
The victim tasks, soplex_0 and soplex_1, can occupy more memory traffic be-
cause Bubble Tasks Scheduler throttles other tasks unfairly occupying memory
traffic. Memory traffic can be distributed more fairly between executing tasks
with hardware version.

However, memory traffic of executing tasks is very changeable with software
version as seen in 9 (a) although victim tasks can occupy more memory traffic.
For example, the maximum memory traffic rate of soplex_1 with software version
is much higher than hardware version but, the minimum memory traffic rate is
lower. The memory traffic of all running tasks seriously fluctuates. Software
version can fulfill fine-grained throttling and precisely decrease CPU utilization
of high memory traffic tasks by adjusting the nice value of per-core Bubble Task
while context-switch overhead makes memory traffic fluctuating.

When we compare the runtime results between software and hardware ver-
sions, it becomes more clear how software version aggressively fulfills throttling
as seen in Figure 10. To figure out the overall effect of Bubble Task to every ap-
plication, we executed all applications at same time and continued to re-execute
the applications until all of them finished at once and the first execution times
were sampled. Software version can lead to more performance improvement in
soplex_0 and soplex_1, the most victims, than hardware version. However, other
applications are more degraded with software version because software version
aggressively decreases the CPU utilization of high memory intensive tasks via
fine-grained throttling control. Average performance is a little bit worse with
software version due to context switch overhead and unstable memory traffic.

The improvement in system performance did not happen with both Bubble
Task versions because the SPEC workload set cannot generate the high memory
contention seen in previous stress tests. However, average performance degrada-
tion ratio is under 2% while the fairness of memory traffic improves by about
17% with hardware version.

5 Conclusion

In this paper, we presented memory contention model and dynamic Bubble
Task policy. Bubble Task method dynamically decides current throttling load
with respect to current contention level and calculates per-core throttling load
in proportional to the memory intensity ratio among CPU cores during the
interval.
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Fig. 10. Performance comparision

We implemented and evaluated both software and hardware versions of Bub-
ble Task. Software version forks Bubble Tasks executing infinite while loop and
co-locate them with the tasks unfairly occupying memory bandwidth. Bubble
Task shares timeslice of the target task via context-switch mechanism. In con-
trast, hardware version uses IA32_CLOCK_MODULATION, Intel’s model spe-
cific register, and can throttle target task without context switch overhead.

The two versions have pros and cons each other. Software version provides
fine-grained throttling through the nice value control of Bubble Task and can
throttle the CPU utilization of target application more precisely while it can-
not guarantee stable fairness of memory traffic due to context switch overhead
and unstable memory traffic. In contrast, hardware version can guarantee stable
bandwidth fairness through low-overhead hardware throttling control although
hardware version provides coarse-grained throttling control.

Through stress test, we can conclude that the more serious the contention
for memory subsystems, the more Bubble Task method can take effect as seen
in Figure 7 and 8. Future multi-core CPU will be developed with the increas-
ing number of CPU cores but, memory bandwidth cannot catch up with the
CPU development speed. Thus, the contention for memory subsystems will oc-
cur more and more and then Bubble Task method will contribute to mitigate
the contention.
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