
Experimental Analysis of the Tardiness of
Parallel Tasks in Soft Real-time Systems

Manar Qamhieh & Serge Midonnet
{manar.qamhieh,serge.midonnet}@univ-paris-est.fr

Université Paris-Est, France

Abstract. A parallel application is defined as the application that can
be executed on multiple processors simultaneously. In software, paral-
lelism is a useful programming technique to take advantage of the hard-
ware advancement in processors manufacturing nowadays. In real-time
systems, where tasks have to respect certain timing constraints during
execution, a single task has a shorter response time when executed in
parallel than the sequential execution. However, the same cannot be
trivially applied to a set of parallel tasks (taskset) sharing the same pro-
cessing platform, and there is a negative intuition regarding parallelism
in real-time systems. In this work, we are interested in analyzing this
statement and providing an experimental analysis regarding the effect
of parallelism soft real-time systems. By performing an extensive sim-
ulation of the scheduling process of parallel taskset on multiprocessor
systems using a known scheduling algorithm called the global Earliest-
Deadline First (gEDF), we aim at providing an indication about the
effects (positive or negative) of parallelism in real-time scheduling.

Keywords: parallelism, stretching techniques, real-time systems, soft real-time
systems, scheduling simulation, global earliest deadline first.

1 Introduction

Uniprocessor platforms have been widely used in computer systems and applica-
tions for a long time. However, making processors smaller and faster has become
more challenging for manufacturers recently due to the physical constraints such
as heating and power problems. As a result, manufacturers are moving toward
building multicore and multiprocessor systems so as to overcome these physical
constrains. In the last few years, we have witnessed a dramatic increase in the
number of cores in computational systems, such as the 72-core processor of the
TILE-Gx family from Tilera, and the 192-core processor released by ClearSpeed
in 2008.

Unfortunately, there is a gap between the advancement in software and hard-
ware, and most of the currently used applications are still designed to target
uniprocessor systems as execution platforms [1]. In order to get full advantage of
multicore and multiprocessor systems, parallel programming has been employed



so as to perform computations and calculations simultaneously on multiple pro-
cessors. Lately, it has gained a higher importance although it has been used for
many years.

The concept of parallel programming is to write a code that can be executed
simultaneously on different processors. Usually, these programs are harder to
be written than the sequential ones, because it is necessary to keep the parallel
partitions independent in order to execute them correctly on different processors
at the same time (avoiding precedence constraints and manage resource sharing).
This condition might not be affected by reasons like shortage in processors which
requires the use of partitioning.

From practical implementation’s point of view, there exist certain libraries,
APIs and models created specially for parallel programming like POSIX threads[2]
and OpenMP [3]. Except these are not designed normally for real-time systems.
In embedded systems, software usually is subjected to certain timing constraints,
such as operational deadlines and the frequency of job arrivals. These constraints
affect the correctness of its results along with the correctness of the calculations,
and these systems are referred to as real-time systems.

Based on the criticality of the timing constraints, real-time systems are classi-
fied as either hard or soft. In hard real-time systems, the consequences of deadline
misses can cause catastrophic effects, while soft real-time systems can tolerate
delays in the execution of tasks, and a deadline miss only degrades the quality
of service provided by the application. Avionic and transportation systems are
examples of hard real-time systems, while communication and media systems
(such as in video surveillance) are considered as soft real-time systems.

In real-time systems, many researches focused on the sequential task model in
the case of multiprocessor systems [4]. In comparison, Few studies are conducted
on the different models of parallel tasks, such as the multi-threaded segment and
the Directed Acyclic Graph (DAG) model [5, 6]. Mainly, a parallel task model is
divided into three categories:

– rigid if the number of processors is assigned externally to the scheduler and
can’t be changed during execution,

– moldable if the number of processors is assigned by the scheduler and can’t
be changed during execution (this is the model we consider in this paper),

– malleable if the number of processors can be changed by the scheduler during
execution.

In real-time systems, it has been believed that parallelism has negative effect
on the schedulability of tasksets, as it has been stated in [7]. In this paper, the
authors proposed to stretch the parallel tasks of the Fork-join model1 as a way
to avoid parallelism, and their results encourage the execution of parallel tasks
as sequentially as possible. The reason why this was possible is that fork-join

1 A fork-join model is parallel task model in which the incoming jobs are split on
arrival for service by numerous processors and joined before departure. It is the base
of the OpenMP parallel programming API.



tasks have schedulable utilization bounds slightly greater than and arbitrarily
close to uniprocessors.

In this work, we aim at providing a basic intuition regarding the validity of
this assumption, and we will study the effect of parallelism on the scheduling of
tasksets on multiprocessor soft real-time systems. We use experimental analyses
through extensive simulations as an indication tool towards our purpose. By
choosing soft real-time systems, we can measure the performance of parallel
tasks by calculating the tardiness of their jobs (how many time units a job needs
after its deadline to complete its execution) in such systems when executed in
parallel and sequentially, without worrying about the catastrophic effects of not
respecting the timing constraints. To the best of our knowledge, we are not aware
of similar researches or studies done regarding this assumption.

The structure of this paper is denoted as follows: Section 2 describes our
parallel task model which is used in this paper, and it also includes two stretching
transformations we propose in order to execute parallel tasks as sequentially as
possible. These transformations are necessary as comparison references to the
parallel execution. Then Section 3 contains a description about soft real-time
systems and some details and discussion about an upper bound of tardiness
found in literature. The contributions of this paper are included in Section 4,
which provides a description about the simulation process used in this work, and
the analysis of the conducted results. Finally, we conclude this paper by Section
5 which includes future work as well.

2 System model and its transformations

2.1 Parallel Task Model

In this work, we consider a taskset τ that consists of n parallel sporadic implicit-
deadline real-time tasks on a platform of m identical processors. Each task τi,
where 1 ≤ i ≤ n, is a parallel task that consists of a number of identical sequential
threads, and it is characterized by (ni, Ci, Ti), where ni is the count of the
threads belong to τi that can execute in parallel, Ci is the worst-case execution
time (WCET) of τi which equals to the total WCET of its threads, and Ti is
the minimum inter-arrival time (or simply the period) between successive jobs
of the task, which defines the sporadic task. As in an implicit-deadline task, the
deadline Di of task τi, which is defined as the time interval in which τi has to
complete its execution, is equal to the period of the task.

Let τi,j denote the jth thread of τi, where 1 ≤ j ≤ ni. All the threads of
the same task share the same period and deadline of their task. Let Ci,j be

the WCET of thread τi,j , where Ci =

ni∑

j=1

Ci,j . the utilization of thread τi,j is

defined as Ui,j =
Ci,j

Ti
, and the utilization of the parallel task τi is defined as

Ui = ni∗Ci

Ti
=

ni∑

j=1

Ui,j .



Each parallel task τi generates an infinite number of jobs. Let Jki denote the
kth job of task τi. It has an absolute activation time rki at which the jobs becomes
available for execution, and an absolute deadline dki . The time between two
successive jobs of task τi is at least Ti time units. An example of our considered
parallel task is shown in Figure 1(a), in which task τi consists of 8 threads and
has a deadline and a period equal to 11.

� � ��

� � ��

� � ��

� � ��

�������	�

�




	

� � ��

� � ��

� � ��

� � ��

�������	�

� 


�

� 


� �

	

� � ��

� � ��

� � ��

�������	�

� 


�

� 
 � �

	
� � ��

�

� ����

� � ��

� � ��

� � ��

�������	�

� 


�

� 
 �

	
� � ��

�

�

	��
����


��	����


��������

���
���

���	����


��������

���
����

���	����

(a) All the threads of task τi execute in
parallel.

� � ��

� � ��

� � ��

� � ��

�������	�

�




	

� � ��

� � ��

� � ��

� � ��

�������	�

� 


�

� 


� �

	

� � ��

� � ��

� � ��

�������	�

� 


�

� 
 � �

	
� � ��

�

� ����

� � ��

� � ��

� � ��

�������	�

� 


�

� 
 �

	
� � ��

�

�

	��
����


��	����


��������

���
���

���	����


��������

���
����

���	����

(b) The threads of task τi execute as se-
quentially as possible without any migra-
tions or preemptions due to transforma-
tion.

� � ��

� � ��

� � ��

� � ��

�������	�

�




	

� � ��

� � ��

� � ��

� � ��

�������	�

� 


�

� 


� �

	

� � ��

� � ��

� � ��

�������	�

� 


�

� 
 � �

	
� � ��

�

� ����

� � ��

� � ��

� � ��

�������	�

� 


�

� 
 �

	
� � ��

�

�

	��
����


��	����


��������

���
���

���	����


��������

���
����

���	����

(c) All the threads of task τi execute
as sequentially as possible. At most one
constrained-deadline thread results.

� � ��

� � ��

� � ��

� � ��

�������	�

�




	

� � ��

� � ��

� � ��

� � ��

�������	�

� 


�

� 


� �

	

� � ��

� � ��

� � ��

�������	�

� 


�

� 
 � �

	
� � ��

�

� ����

� � ��

� � ��

� � ��

�������	�

� 


�

� 
 �

	
� � ��

�

�

	��
����


��	����


��������

���
���

���	����


��������

���
����

���	����

(d) The transformation in Subfigure 1(c)
is modified so as to get rid of the
constrained-deadline thread.

Fig. 1. An example of a parallel task τi that consists of 8 threads and it has a deadline
and period equal to 11. The rectangles represent the threads of the task, and the
numbers within them indicate their indexes.

In real-time systems, a scheduling algorithm is defined as the algorithm that
assigns priorities to the active jobs in the system, and it chooses which jobs can
execute on the available processors at time t. If active jobs are authorized to
migrate between processors, which means that a job can start its execution on
one processor and then continue on another, then the scheduling algorithm is
called global. In multiprocessor systems, few optimal algorithms2 exist for global
scheduling of tasksets. These algorithms suffer usually from high overhead costs
consist of large number of jobs migrations and preemptions. However, there
exist non-optimal algorithms that have good performance with lower costs such
as the global earliest deadline first (gEDF), which we will use in this paper.
gEDF algorithm assigns the highest priority to the job with the earliest absolute

2 An optimal algorithm is the one that can schedule successfully any feasible taskset.
If the optimal algorithm fails in scheduling a taskset, then no other algorithm can
schedule it.



deadline. It belongs to the fixed job priority family, in which the priority of
the job is fixed during its execution but jobs of the same task have different
priorities. Also we consider a preemptive scheduling, in which a higher priority
job can interrupt the execution of a lower priority job, and the interrupted job
can start its execution on a different processor.

Based on the categories of the parallel tasks in real-time systems, our con-
sidered parallel task model is a moldable model and not rigid, which means that
for a task τi consists of ni parallel threads, the execution behavior of the task
depends on the number of available processors and the scheduling algorithm,
and it is not obligatory to execute all the parallel threads together. So, these
threads can execute either in parallel or sequentially based on the decisions of
the scheduler. When a job Jki is activated at time t, all the ni parallel threads
are activated as well. But if there exist less than ni available processors at time
t, then the scheduler executes partial set of the threads in parallel while the rest
are executed later.

In this paper, we considered a simplified task model of parallelism, in order to
better show the effect of parallelism on the scheduling of soft real-time systems.
Our task model can be considered as a Fork-join task model, in which each task
consists of one parallel segment, and the costs of fork and join events of the
threads are included in the execution time of each thread. In the future, we aim
to extend the work to include more realistic parallel task models such as the the
multi-threaded task model and the Directed Acyclic Graphs (DAGs).

2.2 Stretching Parallel Tasks

In order to provide an analysis of the effect of parallelism on the scheduling of
soft real-time systems, we will study the scheduling of a parallel taskset τ when
executing on m identical processors using gEDF scheduling algorithm while con-
sidering some execution scenarios, that vary from parallel execution to sequential
execution. As we described earlier in Section 2.1, the threads of a parallel task
can execute either in parallel or sequentially based on the availability of proces-
sors and on the decisions of the chosen scheduling algorithm.

Hence, each parallel task τi in taskset τ can execute based on the following
execution scenarios:

– the Parallel Scenario: all the threads τi execute in parallel, and they are
activated at the same activation time of their parallel task τi (please refer
to Figure 1(a)),

– the Fully-Stretched Scenario: all the threads of τi execute as sequentially as
possible, and τi is transformed into a set of fully stretched threads and at
most two parallel threads (please refer to Figure 1(c)). A straight-froward
transformation is provided in the following section in order to fully stretch
the parallel threads.

– the Partially-Stretched Scenario: all the threads of τi execute as sequentially
as possible, without causing interruptions and migrations due to transfor-
mation (please refer to Figure 1(b)). This transformation will be explained
in more details in the following section.



The Parallel Scenario:
The Parallel scenario represents the default execution behavior of our parallel

task model. According to this scenario, the threads of each parallel task are
activated by the activation event of the original task, and they have its deadline
and minimum arrival time between the jobs. Hence, all the threads have the
same priority according to gEDF, and they have the same utilization. So, the
scheduling of the parallel tasks on m identical processors can be treated as
the scheduling problem of a taskset of (ni,∀τi ∈ τ) sequential sporadic implicit-
deadline threads. An example of the parallel scenario is shown in Inset 1(a), in
which each thread of task τi has a worst-case execution time of 4 and a deadline
equal to 11.

However, the maximum tardiness of a parallel task is determined by the
maximum tardiness of all of its threads among all possible scenarios of jobs’
activation.

Fully-Stretched Scenario:
The purpose of the Fully-Stretched transformation is to avoid the parallelism

within the tasks when possible, by executing them as sequentially as possible.
So, instead of activating all the parallel threads of a certain task at the same
time (as in the Parallel scenario), this transformation determines which threads
are activated in parallel and which are delayed to be executed sequentially. The
objective is to transform the majority of the parallel threads of each task into
fully-stretched threads which have a WCET equals to the period (utilization
equals to 1). As a result, we can dedicate an entire processor for each transformed
thread, which will guarantee their scheduling by the use of partitioned scheduling
(tasks are assigned to a processor have to execute on this processor without
authorizing migrations). Hence, the rest of the threads (not fully stretched) are
the ones to be scheduled using gEDF, which will reduce their tardiness.

The Fully-Stretched Transformation is straight forward due to the simplicity
of the considered parallel model. Let us consider a parallel task τi which consists
of ni threads and each thread τi,j has a WCET of Ci,j . The Fully-Stretched
transformation will generate the following sets of modified threads τ ′i,j :

– A set of fully-stretched threads τ ′stretch: which consists of bUic threads each
has a total WCET equals to the original period, and utilization U ′i,j = 1,
where τ ′i,j ∈ τ ′stretched. If the capacity of the processor cannot contain entire

threads (i.e. Ti

Ci,j
is not an integer), then a thread will be forced to execute

on 2 processors in order to fill the first one. As a result, the transformation
will cause at most bUic threads to migrate between processors.

– When the utilization of the parallel task is not integer, then there exist a
set of threads that cannot fill an entire processor. Let the total remaining
execution time be denoted as Crem = (Ui−bUic)∗Ti. The remaining threads
are divided into the following two types:

• At most, one implicit-deadline thread τ ′imp from each transformed par-
allel task is generated. This thread is created by merging the remaining



threads that did not fit into the stretched tasks without the thread that
is used to partially fill the last processor. The WCET of τ ′imp is calcu-

lated as Cimp = (bCrem

Ci,j
c ∗ Ci,j), and it has a deadline and period equal

to the original parallel task τi.
• At most one constrained deadline3 thread τ ′cd is generated, which has

a WCET calculated as Ccd = Crem − Cimp. Its period is the same as
the original task τi, and it has a deadline calculated as Dcd = (Di −
(Ci,j − Ccd)). This thread contains the remaining execution time of the
thread that had to fill the last stretched processor. The conversion from
an implicit-deadline thread into a constrained deadline one is necessary
to prevent the sequential thread from executing in parallel since its ex-
ecution is divided between two processors.

Back to the example in Figure 1, Inset 1(c) shows an example of the Fully-
Stretched transformation when applied on task τi shown in Inset 1(a). As shown
in the figure, the original task consists of 8 threads each has a WCET equals
to 4 and a deadline equals to 11. After transformation, the fully-stretched tasks
τ ′stretch contains two threads. The first consists of threads τi,1, τ ′i,2 and a part
of τi,3. While the second task consists of the rest of the τi,3, threads τi,4, τi,5
and a part of thread τi,6. The remaining execution time of thread τi,6 forms the
constrained deadline independent thread τ ′cd, with a deadline Di,6 = 9 as shown
in the figure. Threads τi,7 and τi,8 are merged together, in order to form a single
implicit-deadline task with a WCET equals to 8 and a deadline equals to 11.

The advantage of the Fully-Stretched Transformation is that, at most, two
threads (τ ′imp and τ ′cd) are scheduled using gEDF, and they are the ones that
may cause a tardiness during the scheduling process. While the rest of the gener-
ated threads ({τ ′stretch}) are scheduled using partitioned scheduling algorithms,
and they are guaranteed to respect their deadline each on a single processor
independently.

Partially-Stretched Scenario:
A modification to the Fully-Stretched transformation can be proposed so as to

avoid the thread migrations between processors. In this transformation, we au-
thorize the parallel threads to be stretched up to the maximum possible thread-
capacity of a processor, which can be at most the deadline of the parallel task.
Let x denote the thread-capacity of a particular processor (all identical proces-
sors have the same value), which is calculated as x = b Di

Ci,j
c. This means that

each processor can contain at most x complete threads executing sequentially.
The result of the transformation is a set of bCi

x c implicit-deadline threads each
has a WCET equals to (x ∗ Ci,j). Also, at most on implicit-deadline thread
which has a WCET equals to (Ci− ((x ∗Ci,j) ∗ bCi

x c)). The resulted threads are
scheduled using gEDF on m identical multiprocessors.

As shown in the example in Figure 1, parallel task τi from Inset 1(a) is trans-
formed using the Partially-Stretched Transformation, and the result is shown in

3 A constrained deadline real-time task has a deadline no more than its period.



Inset 1(b). The processor capacity of task τi is equal to 2, and the result of trans-
formation is 4 sequential implicit-deadline threads characterized by (8, 11, 11). It
is clear that the Partially-Stretched transformation does not force any threads
to migrate prior to the scheduling process, and this is the advantage of this
transformation over the Fully-Stretched Transformation.

The worst-case execution time of a task is a pessimist value, and usually the
jobs do not execute up to this value. In the case of a global work-conserving
scheduling algorithm, when a job finishes its execution earlier than expected by
the WCET, then the scheduler will not allow to leave a processor idle while there
are active jobs ready to execute, and it will allow an active job to be released
earlier. In the case of partitioned scheduling, the scheduling algorithm assigns
tasks to processors, and then migration between processors is not allowed. Hence,
if a job finishes its execution earlier than expected and there are no active jobs
waiting on this processor, the processor will stay idle even of there are active
jobs waiting on the other processors.

Also, it had been proved in [8] that fixed job priority algorithms (which in-
clude gEDF) are predictable, i.e. a schedulable taskset is guaranteed to stay
schedulable when one or more of its tasks execute for less than its worst-case
execution time. This property is another advantage of global scheduling over par-
titioned scheduling. We can conclude that the Parallel and Partially-Stretched
scenarios, which use gEDF to schedule all the threads of the taskset, behave
better than the Fully-Stretched scenario (which uses partitioned scheduling for
most of the executed tasks) in the case of lower execution time of jobs. Hence,
the processors will be efficiently used.

Advantage of stretching over parallelism in real-time systems:
The scheduling of real-time tasksets on multiprocessor systems is more compli-

cated than the uniprocessor systems. A famous problem had been shown in [9]
called the Dhall effect, in which a low utilization taskset can be non-schedulable
regardless of the number of processors in the platform. Later, it had been proved
in [10] that this problem happens when a low utilization taskset contains a high
utilization task. We will show using an example, that this problem happens in
the case of the Parallel Scenario, while the stretching scenarios solves it. The
used example is inspired from [10].

Let us consider a taskset τ that consists of 2 tasks that executes on 3 unit-
speed processors (m = 3). The first task τ1 has a deadline equal to 1, and it
consists of 3 threads each has a WCET equals to 2ε, where ε is slightly greater
than zero. The second task τ2 has a deadline equals to 1 + ε, and it has a single
thread with WCET equals to 1. The utilization of each task is calculated as
U1 = 2mε and U2 = 1

1+ε . Hence, the total system’s utilization approaches to 1
since ε→ 0. The taskset is shown in Figure 2.

When gEDF is used, at time t = 0, the first job of task τ1 has a higher
priority than the job of task τ2, because it has an earlier absolute deadline. All
the threads of τ1 have the same priority of τ1, and according to the Parallel



� � ��

��

�����

�����

����	

���

���

���


�


�
���


��
���������

� � ��

��

�����

�����

����	

��� ��� ���


� 
�

���

(a) Parallel Scenario: All the threads of the task τ1, which
have the highest priority according to gEDF, execute on all 3
processors. While the highest utilization task τ2 is delayed and
hence it misses its deadline.

� � ��

��

�����

�����

����	

���

���

���


�


�
���


��
���������

� � ��

��

�����

�����

����	

��� ��� ���


� 
�

���

(b) Stretched Scenario: Parallel threads of task τ1 are executed
as sequentially as possible. Then, task τ2 have the chance to
execute at time 0.

Fig. 2. An example shows how stretching a parallel task helps in solving the Dhall
effect problem.

Scenario, they will execute in parallel and they will occupy all the available
processors in the systems. At time t = 2ε, the threads finish their execution, and
then task τ2 can start its own. Unfortunately, task τ2 misses its deadline. The
scenario is shown in Inset 2(a).

However, when a stretching scenario is used (either fully-stretched or partially-
stretched transformation has the same result), the parallel threads of the low
utilization task will be forced to execute sequentially and hence they will occupy
lower number of processors. As a result, the higher utilization task (τ2 in the
example) will start its execution earlier and it will respect its deadline. Inset 2(b)
shows the effect of stretching on the Dhall effect problem, and how it solved it.

3 The effect of parallelism on the tardiness of Soft
real-time systems

In soft real-time systems, a deadline miss during the scheduling process of a
taskset does not have catastrophic effects on the correctness of the system as
in hard real-time systems. However, a deadline miss of a task will reduce the
quality of service (QoS) provided by the application. So, in order to keep the
QoS at an acceptable rate and better analyze it, it is necessary to determine an
upper bound of tardiness for each task in a system regarding a specific scheduling
algorithm.



A tardiness of a job in real-time systems is defined as its delay time, i.e. the
time difference between the deadline and the actual finish time of this job. For
a real-time task that generates a number of jobs, the tardiness of one job has
a cascaded effect on the successor jobs, since the next jobs have to wait for the
delayed one to finish its execution before they can start their own execution,
which means that they will be delayed as well. The tardiness of a task is defined
as the maximum tardiness among its generated jobs.

A

3/4
3/4
3/4

3, 4
3, 4
3, 4
3, 4

DP2
DP3

DP1

DP4

t

t

1
2
3
4

Task E, P

Proc. Speed DPS service

Job arrivals

t

1

1

1P3

P2

P1
Proc. Speed MPS service

4
3

1
2

{1, 2, 3, 4}

{3, 4}

{1, 2, 3, 4}

t

{4}

{1, 2, 3, 4}
B

3/4

)|t|α(

2

111

s=15

1211873 15 16

b=8

1

2
3
4

2
3
4

2
3
4

2
3
4

2
3
4

2
3
4

2
3
4

2
3
4

1 1 1 1

11

1 4

3

2

4

3

2

4

4

2

343

1

Figure 2. Comparing the MPS and the DPS.

possible schedules. The figure clearly shows that, whereas
the DPS correctly schedules all the jobs, the MPS misses e.g.
the deadline of job J1

4 at time 4. Upon J1
4 completion, task

4 has lateness 3. The situation gets worse during the second
period, and both J2

3 and J2
4 miss their deadline at time 8.

Hereafter we will consider the following two systems: a
generic MPS and its reference DPS. We will refer to these
systems as the MPS and the DPS, respectively. We can now
define the class of schedulers we will focus on.

Definition 2 We say that a priority-driven scheduler for the
MPS is a DPS Finish Time (DPS-FT) scheduler, if, denoted
with P j

i the priority of the generic job Jj
i , we have that

∀Jj
i , J l

k

{
P j

i = P l
k ⇐⇒ F j

i = F l
k

P j
i > P l

k ⇐⇒ F j
i < F l

k

(1)

and, at each time instant, the available processors are allo-
cated to the highest priority jobs. Ties are arbitrarily broken.

In other words, in a DPS-FT scheduler the ordering among
job priorities is the opposite of the ordering between job fin-
ish times in the DPS. Since ∀Jj

i F j
i = dj

i , EDF is a DPS-FT
scheduler. Hereafter, we will assume that a DPS-FT sched-
uler is used to schedule jobs in the MPS.

Under the assumptions of constant speed processors and
of tasks with constant job length, any DPS-FT scheduler
is equivalent to EDF (i.e. it generates the same schedules).
However, all the following lemmas and theorems will be ac-
tually proved in the more general case where all the proces-
sors have the same time-varying speed R(t), and where each
dedicated processor has time-varying speed RDPS

i (t) = Ui ·
R(t). In this case, the class of DPS-FT schedulers can also
include schedulers different from EDF. While this general-
ization does not complicate the proofs, it paves the way for
future more general results.

We define as WMPS
i (t) and WDPS

i (t) the amount of ser-
vice provided by, respectively, the MPS and the DPS to the
i-th task during [0, t]. We define the total amount of ser-
vice provided by the MPS and the DPS during [0, t] as, re-

R Speed of any of the processors
M Number of processors in the system
WS(t) Total amount of service delivered by the sys-

tem S during [0, t]
WS

i (t) Amount of service received by the i-th task
during [0, t] in a system S

L(J) Length (num. of execution cycles) of job J
Jj

i The j-th job of the i-th task
aj

i , sj
i , f j

i Arrival time, start time, finish time of Jj
i

F j
i (Virtual) finish time of Jj

i in the DPS
Li (Worst-case) length of i-th task
Ei (Worst-case) execution time of i-th task
Lmax Maximum job length over all the tasks
Emax Maximum execution time over all the tasks
lagi(t) Lag of task i (WDPS

i (t) − WMPS
i (t)).

Table 1. Notations used in this paper.

spectively, WMPS(t) ≡ ∑
i WMPS

i (t) and WDPS(t) ≡∑
i WDPS

i (t). We define as lag of the i-th task at time t
the following quantity:

lagi(t) ≡ WDPS
i (t) − WMPS

i (t)

For brevity, given two time instants t2 > t1, we define
WMPS

i (t1, t2) ≡ WMPS
i (t2) − WMPS

i (t1). We use the
same short notation for WDPS

i , WMPS , WDPS and lagi.
In the proofs we will often use the following property:

since RDPS
i ≤ R ∀i, the lag of a task can not increase during

the service of one of its job chains. For example, in Fig. 2.A
the lag of task 4 increases during [0, 3], and it is equal to 9

4
at time 3. Conversely, it decreases during [3, 6], and it is e.g.
equal to 2 at time 4.

Since the lag of a task may be a useful figure of merit, in
this paper we report an upper bound to the maximum per-
task lag in addition to the one on the maximum lateness. The
notations introduced until now are summarized in Table 2.1.

3. Maximum lag and maximum lateness

In this section we enunciate and briefly discuss the follow-
ing theorems, which constitute the main results of this paper.

Theorem 1 If an MPS comprised of M identical processors
is scheduled using a DPS-FT scheduler, the following guar-
antees on the lag experienced by any task hold:

∀i, t lagi(t) ≤ (1−Ui

M
)·Li+Ui·(

M

M − 1
)M−3·Lmax (2)

∀Jj
i lagi(f

j
i ) ≤ Ui ·

[
M − 1

M
· Li + (

M

M − 1
)M−3 · Lmax

]

(3)

Theorem 2 If an MPS comprised of M identical constant
speed processors is scheduled using a DPS-FT scheduler, the
following guarantees on the job lateness hold:

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05) 
0-7695-2490-7/05 $20.00 © 2005 IEEE 

A

3/4
3/4
3/4

3, 4
3, 4
3, 4
3, 4

DP2
DP3

DP1

DP4

t

t

1
2
3
4

Task E, P

Proc. Speed DPS service

Job arrivals

t

1

1

1P3

P2

P1
Proc. Speed MPS service

4
3

1
2

{1, 2, 3, 4}

{3, 4}

{1, 2, 3, 4}

t

{4}

{1, 2, 3, 4}
B

3/4

)|t|α(

2

111

s=15

1211873 15 16

b=8

1

2
3
4

2
3
4

2
3
4

2
3
4

2
3
4

2
3
4

2
3
4

2
3
4

1 1 1 1

11

1 4

3

2

4

3

2

4

4

2

343

1

Figure 2. Comparing the MPS and the DPS.

possible schedules. The figure clearly shows that, whereas
the DPS correctly schedules all the jobs, the MPS misses e.g.
the deadline of job J1

4 at time 4. Upon J1
4 completion, task

4 has lateness 3. The situation gets worse during the second
period, and both J2

3 and J2
4 miss their deadline at time 8.

Hereafter we will consider the following two systems: a
generic MPS and its reference DPS. We will refer to these
systems as the MPS and the DPS, respectively. We can now
define the class of schedulers we will focus on.

Definition 2 We say that a priority-driven scheduler for the
MPS is a DPS Finish Time (DPS-FT) scheduler, if, denoted
with P j

i the priority of the generic job Jj
i , we have that

∀Jj
i , J l

k

{
P j

i = P l
k ⇐⇒ F j

i = F l
k

P j
i > P l

k ⇐⇒ F j
i < F l

k

(1)

and, at each time instant, the available processors are allo-
cated to the highest priority jobs. Ties are arbitrarily broken.

In other words, in a DPS-FT scheduler the ordering among
job priorities is the opposite of the ordering between job fin-
ish times in the DPS. Since ∀Jj

i F j
i = dj

i , EDF is a DPS-FT
scheduler. Hereafter, we will assume that a DPS-FT sched-
uler is used to schedule jobs in the MPS.

Under the assumptions of constant speed processors and
of tasks with constant job length, any DPS-FT scheduler
is equivalent to EDF (i.e. it generates the same schedules).
However, all the following lemmas and theorems will be ac-
tually proved in the more general case where all the proces-
sors have the same time-varying speed R(t), and where each
dedicated processor has time-varying speed RDPS

i (t) = Ui ·
R(t). In this case, the class of DPS-FT schedulers can also
include schedulers different from EDF. While this general-
ization does not complicate the proofs, it paves the way for
future more general results.

We define as WMPS
i (t) and WDPS

i (t) the amount of ser-
vice provided by, respectively, the MPS and the DPS to the
i-th task during [0, t]. We define the total amount of ser-
vice provided by the MPS and the DPS during [0, t] as, re-

R Speed of any of the processors
M Number of processors in the system
WS(t) Total amount of service delivered by the sys-

tem S during [0, t]
WS

i (t) Amount of service received by the i-th task
during [0, t] in a system S

L(J) Length (num. of execution cycles) of job J
Jj

i The j-th job of the i-th task
aj

i , sj
i , f j

i Arrival time, start time, finish time of Jj
i

F j
i (Virtual) finish time of Jj

i in the DPS
Li (Worst-case) length of i-th task
Ei (Worst-case) execution time of i-th task
Lmax Maximum job length over all the tasks
Emax Maximum execution time over all the tasks
lagi(t) Lag of task i (WDPS

i (t) − WMPS
i (t)).

Table 1. Notations used in this paper.

spectively, WMPS(t) ≡ ∑
i WMPS

i (t) and WDPS(t) ≡∑
i WDPS

i (t). We define as lag of the i-th task at time t
the following quantity:

lagi(t) ≡ WDPS
i (t) − WMPS

i (t)

For brevity, given two time instants t2 > t1, we define
WMPS

i (t1, t2) ≡ WMPS
i (t2) − WMPS

i (t1). We use the
same short notation for WDPS

i , WMPS , WDPS and lagi.
In the proofs we will often use the following property:

since RDPS
i ≤ R ∀i, the lag of a task can not increase during

the service of one of its job chains. For example, in Fig. 2.A
the lag of task 4 increases during [0, 3], and it is equal to 9

4
at time 3. Conversely, it decreases during [3, 6], and it is e.g.
equal to 2 at time 4.

Since the lag of a task may be a useful figure of merit, in
this paper we report an upper bound to the maximum per-
task lag in addition to the one on the maximum lateness. The
notations introduced until now are summarized in Table 2.1.

3. Maximum lag and maximum lateness

In this section we enunciate and briefly discuss the follow-
ing theorems, which constitute the main results of this paper.

Theorem 1 If an MPS comprised of M identical processors
is scheduled using a DPS-FT scheduler, the following guar-
antees on the lag experienced by any task hold:

∀i, t lagi(t) ≤ (1−Ui

M
)·Li+Ui·(

M

M − 1
)M−3·Lmax (2)

∀Jj
i lagi(f

j
i ) ≤ Ui ·

[
M − 1

M
· Li + (

M

M − 1
)M−3 · Lmax

]

(3)

Theorem 2 If an MPS comprised of M identical constant
speed processors is scheduled using a DPS-FT scheduler, the
following guarantees on the job lateness hold:

Proceedings of the 26th IEEE International Real-Time Systems Symposium (RTSS’05) 
0-7695-2490-7/05 $20.00 © 2005 IEEE 

Fig. 3. An example (from [11]) shows the tardiness of tasks during the scheduling of a
taskset consists of 4 tasks on 3 identical processors using gEDF.

Few researches have been done regarding the problem of identifying an upper
bound to the tardiness of sporadic sequential implicit-deadline tasks on multi-
processors when global EDF is used, such as in [11]4. In [13], an upper bound of
tardiness under preemptive and non-preemptive global EDF is proved. In this
work, we intend to present the latter tardiness bound in the case of preemptive
gEDF and discuss its usefulness in the calculations of tardiness in the case of
parallel tasks. In the future, we aim at calculating an adapted upper bound for
parallel tasks.

For the sake of explaining the upper bound of tardiness from [13], Consider
that τ is a sporadic taskset that is scheduled using gEDF on m identical proces-
sors. Each task τk ∈ τ is a sequential implicit-deadline task that has a WCET Ck
and a deadline Dk(equal to minimum arrival time or period). The upper bound
of tardiness of each task in τ is given in the following theorem:

Theorem 1 (from [13]). Global EDF (gEDF) ensures a tardiness bound of

Λ∑

i=1

εi − Cmin

m−
Λ−1∑

i=1

µi

+ Ck (1)

4 In [12], the authors mentioned that a proof published in [11] contains an error. Until
now, we are not aware of the availability of a correction for this error.



to every sequential task τk of a sporadic implicit-deadline task system τ with
Usum ≤ m, where:
εi (resp. µi) denotes the ith execution cost (resp. task utilization) in non-increasing
order of the execution costs (resp. utilization) of all the tasks.

Λ =

{
Usum − 1, Usumis integral
bUsumc, otherwise

(2)

The detailed proof of Theorem 1 can be found in [13]. The used approach is
based on comparing the processors allocations using gEDF with a concrete task
system in a processor sharing 5.

As we can notice from Equation 1, the tardiness is calculated as the worst-
case execution time of each task plus a fixed value w.r.t. the global parameters of
the taskset. By analyzing this bound, we conclude that the tardiness of a taskset
is reduced if, at least, one of the following is applied:

– a decrease in the value of the highest WCET and utilization of the tasks in
the set (ε and µ),

– an increase in the WCET of tasks in τ (Cmin),
– an increase in the number of processors,
– a decrease in the total utilization of the taskset (Usum) which affects the

value of Λ from Equation 2.

In our parallelism model described in Section 2, a thread in a parallel task is
considered as a sequential task. Hence, we can apply theorem 1 on each thread
τi,j ∈ τi ∈ τ individually. The tardiness of a job of a parallel task is the maximum
tardiness among its threads, and then the tardiness of a parallel task is the
maximum tardiness among its jobs.

It is worth noticing that the upper bound of tardiness is computed for spo-
radic implicit-deadline tasks. While the fully-stretched transformation generates
at most two threads that scheduled using gEDF and may be delayed, which are
τ ′cd and τ ′imp. As a solution to this problem, and in order to use the tardiness
bound from Theorem 1, we propose a modification to the constrained dead-
line threads τ ′cd to be be executing completely using gEDF, and it is converted
to implicit-deadline threads. An example of this modification is shown in the
example in Figure 1(d).

Let the tardiness of a parallel task τk ∈ τ be denoted by xk when it executes
in the parallel scenario described above (all threads are activated in parallel).
If task τk is partially stretched, then the threads of the parallel tasks will be
stretched which will increase the utilization and execution time of threads. On
another hand, the number of threads to be scheduled using gEDF is reduced on
m processors. So, after the partially-stretched scenario, the values of Cmin, ε and
µ will increase. Also, when task τk is fully-stretched, the resulted fully-stretched

5 A processor sharing is an idle fluid schedule in which each task executes at a precisely
uniform rate given by its utilization (from [13]).



threads (their utilization equals to 1) will be assigned dedicated processors, and
at most 2 threads from each parallel task will be scheduled using gEDF only. As a
result, the total utilization of the taskset τ will be reduced and also the number
of processors on which gEDF algorithm is used, in addition to the effects of
the partially-stretched scenario. The stretching scenarios have the advantage of
reducing the number of threads that may cause a tardiness due to deadline misses
when compared to the parallel scenario. Hence, the tardiness of the parallel tasks
will be reduced as a result.

Based on these effects, we can conclude that the tardiness bound of paral-
lel tasks is not comparable with the bound after stretching. Because stretching
scenarios change the taskset in a way that can increase and decrease the tardi-
ness bound at the same time. Hence, the theoretical tardiness bound of Theo-
rem 1 cannot determine the performance of parallel and stretched tasks in the
scheduling problem using gEDF, and it cannot be used as an indication to the
performance of parallelism in real-time systems. As a result, we will use exper-
imental analysis to simulate the scheduling of the different scenarios of parallel
task execution and to give us an indication on the performance.

4 Experimental Analysis

In this section, we show the simulation results of experiments conducted using
randomly-generated tasksets to evaluate the performance of parallel execution in
comparison with the stretching execution scenarios described in Section 2. The
results are obtained by simulating the scheduling of a large number of parallel
tasksets with different utilization on a platform of 8 identical processors when
global EDF is used.

The simulation process is based on an event-triggered scheduling. This means
that at each event in the interval [0, 3 ∗H), where H denotes the hyper period
of the scheduled taskset τ and defined as the least common multiple of periods,
the scheduler is awakened and it decides which jobs have the highest priorities to
execute on the available processors. According to EDF, the job with the earliest
absolute deadline will have the highest priority. We consider that a parallel job
is blocked either by the execution of a higher priority thread or by an earlier job
that has been delayed. During the simulation process, we calculate the tardiness
of each job of parallel tasks, in order to calculate the maximum tardiness of any
task and average tardiness of tasks in the set.

We used a simulation tool called YARTISS [14], which is a multiprocessor
real-time scheduling simulator developed by our research team. It contains many
scheduling algorithms and task models (including parallel tasks), and it can be
used easily for both hard and soft real-time systems.

For each system utilization from 1 to 8, we generated 50, 000 tasksets ran-
domly. The number of parallel tasks within each taskset is varied from 2 to 10
tasks/taskset. This variation affects the structure of tasks because, for a fixed
utilization, increasing the number of tasks will decrease their WCET in average
and as a result, the number of parallel threads per task will be lowered. Based



on this, we can control the percentage of parallelism within a taskset and it can
help in analyzing the effect of parallelism on scheduling as we will see below.

Regarding the generation of parallel tasksets, our task generator is based
on the Uunifast-Discard algorithm [15] for random generation of tasks. This
algorithm is proposed by Davis and Burns to generate randomly a set of tasks of
a certain total utilization on multiprocessor systems. The number of tasks and
their utilization are inputs of this algorithm. The taskset generator is described
briefly as follows:

– The algorithm takes two parameters n and U , where n is the number of
parallel tasks in the set and U is the total utilization of the taskset (U > 0).

– The Uunifast-Discard algorithm distributes the total utilization on the taskset.
A parallel task τi can have a utilization Ui greater than 1 which means that
its threads cannot be stretched completely, and it has to execute in parallel.

– The number of threads and their WCET of each parallel tasks are generated
randomly based on the utilization of the tasks. The maximum number of
threads is predefined as 10 threads per parallel task.

In order to limit the simulation interval and reduce the time needed to per-
form the simulation, which is based on the length of the hyper period of each
taskset, we used the limitation method proposed in [16], which relays on using a
considerate choice of periods of the tasks while generation so as to reduce their
least common multiple. Using this method, we implemented our task generator
to choose periods of tasks in the interval [1, 25200].

Analysis of experimental results

For each taskset, the maximum tardiness of any task and the average of the
maximum tardiness of all tasks are computed. The results are showed in Figure
4, which consists of 6 insets. Insets 4(a), 4(b) and 4(c) shows the maximum
tardiness of any task in the taskset, while Insets 4(d), 4(e) and 4(f) are for the
average tardiness. The comparison is done based on the execution scenarios of
the parallel tasks, either full parallelism, partially-stretched and fully stretched.

We have to note that the average tardiness is calculated while considering the
tasks that respected their deadlines (tardiness equals to zero), so as to give us
an indication on the number of deadline misses happened during simulation. As
a result, we can notice that the y-axis in figures (which represents the tardiness)
has lower values for average tardiness than for maximum tardiness.

The rest of this section discusses the results in details.

The effect of utilization of tasksets on tardiness.
Referring to Figure 4, most of the tasksets have negligible tardiness when

tasksets have utilization in the interval (1− 5). Then the tardiness increases dif-
ferently (based on the used scenario) for higher utilization. These results are quite
logical, since the number of processors in the simulation is always considered to
be m = 8. Hence, lower utilization tasksets means lower execution demand from



2 tasks/taskset, util 1-8 on 8 processors 

Utilisation Parallel Part Full

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.00 0.00 0.00

5 0.00 0.00 0.00

6 4.00 7.00 0.00

7 18.00 30.00 6.00

8 45.00 77.00 21.00

Maximum tardiness

M
ax

im
um

 ta
rd

in
es

s 
of

 a
 ta

sk

0.00

20.00

40.00

60.00

80.00

System’s utilisation
1 2 3 4 5 6 7 8

Parallel Part Full

(a) The maximum tardiness of a task
when the taskset consists of 2 parallel
tasks.

2 tasks/taskset, util 1-8 on 8 processors 

Utilisation Parallel Part Full

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.00 0.00 0.00

5 1.00 0.00 0.00

6 5.00 0.00 0.00

7 12.00 14.00 5.00

8 24.00 76.00 20.00

Maximum tardiness

M
ax

im
um

 ta
rd

in
es

s 
of

 a
 ta

sk

0.00

20.00

40.00

60.00

80.00

System’s utilisation
1 2 3 4 5 6 7 8

Parallel Part Full

(b) The maximum tardiness of a task
when the taskset consists of 6 parallel
tasks.

2 tasks/taskset, util 1-8 on 8 processors 

Utilisation Parallel Part Full

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.00 0.00 0.00

4 0.00 0.00 0.00

5 1.00 0.00 0.00

6 3.00 2.00 1.00

7 6.00 15.00 7.00

8 26.00 72.00 42.00

Maximum tardiness

M
ax

im
um

 ta
rd

in
es

s 
of

 a
 ta

sk

0.00

20.00

40.00

60.00

80.00

System’s utilisation
1 2 3 4 5 6 7 8

Parallel Part Full

(c) The maximum tardiness of a task
when the taskset consists of 10 parallel
tasks.

2 tasks/taskset, util 1-8 on 8 processors 

Utilisation Parallel Part Full

1 0.00 0.00 0.00

2 0.00 0.00 0.00

3 0.02 0.00 0.00

4 0.40 0.00 0.00

5 0.40 0.19 0.00

6 2.50 4.07 0.00

7 9.40 17.07 5.47

8 26.12 44.52 19.04

Maximum tardiness

Av
er

ag
e 

ta
rd

in
es

s 
of

 ta
sk

 s
et

0.00

12.50

25.00

37.50

50.00

System’s utilisation
1 2 3 4 5 6 7 8

Parallel Part Full

(d) The average tardiness of tasks in
the taskset when it consists of 2 paral-
lel tasks.

2 tasks/taskset, util 1-8 on 8 processors 

Utilisation Parallel Part Full

1 0.000 0.000 0.000

2 0.000 0.000 0.000

3 0.021 0.000 0.000

4 0.153 0.000 0.000

5 0.255 0.004 0.001

6 0.931 0.123 0.025

7 2.110 2.722 1.061

8 4.837 16.681 4.029

Maximum tardiness

Av
er

ag
e 

ta
rd

in
es

s 
of

 ta
sk

 s
et

0.000

4.500

9.000

13.500

18.000

System’s utilisation
1 2 3 4 5 6 7 8

Parallel Part Full

(e) The average tardiness of tasks in the
taskset when it consists of 6 parallel
tasks.

2 tasks/taskset, util 1-8 on 8 processors 

Utilisation Parallel Part Full

1 0.000 0.000 0.000

2 0.000 0.000 0.000

3 0.009 0.002 0.002

4 0.025 0.017 0.010

5 0.103 0.049 0.019

6 0.508 0.254 0.180

7 0.700 1.558 0.804

8 2.846 8.973 5.260

Maximum tardiness

Av
er

ag
e 

ta
rd

in
es

s 
of

 ta
sk

 s
et

0.000

2.250

4.500

6.750

9.000

System’s utilisation
1 2 3 4 5 6 7 8

Parallel Part Full

(f) The average tardiness of tasks in the
taskset when it consists of 10 parallel
tasks.

Fig. 4. A comparison of maximum tardiness of a task and the average tardiness of all
tasks in a taskset on a system of 8 identical processors. We compare the performance of
the 3 scenarios of parallel execution: Parallel threads, partially-stretched threads and
fully-stretched threads.



processors and it increases schedulability and reduces deadline misses. Starting
from Utaskset > 5, we can notice an increase in tardiness for both maximum and
average tardiness values, which varies based on the execution scenario.

However, we can conclude by looking at these results, and specially when
Utaskset = 8, that the partially-stretched transformation has always the highest
tardiness values, which means that it is the least appealing execution scenario
from the schedulabilit’sy point of view. This is expected since the partially-
stretched transformation delays the execution of part of the parallel threads of
a task so as to execute sequentially. This is done even if there are available
processors for them to execute earlier than the defined activation time specified
by the transformation.

The performance of the other two scenarios (parallel and fully-stretched) are
not comparable at this point, and they are affected by the utilization of parallel
tasks and the number of threads in each task, and this will be discussed in the
next paragraph.

The effect of the number of tasks per taskset on tardiness.
The difference between the parallel and the fully-stretched execution scenarios

of parallel tasks is shown in Figure 4. We can notice that both, the maximum and
the average values, behave in the same way when we change the number of tasks
per taskset. Since the Uunifast-Discard algorithm we used for generating tasksets
divides the total utilization of taskset on the number of tasks per taskset, varying
the number of tasks while fixing the system’s utilization will vary the utilization
assigned for each task. In our parallel task generator, the maximum possible
number of threads depends on the total execution time of the task (respectively,
its utilization). So, lowering the task utilization means a lower execution time
which increases the probability of generating tasks with low number of parallel
threads.

Referring to the results of simulation for the maximum tardiness of any task
in the taskset in Insets 4(a)-4(c) (same analyses are applied to the average tar-
diness),we can notice that the tardiness of the parallel scenario decreases when
we increase the number of tasks per taskset, which means that it has a better
scheduling performance. When the number of tasks is equal to 2 per taskset, the
fully-stretched execution scenario has a full dominance over the parallel scenario,
and its maximum tardiness is almost half the one from the parallel scenario, as
shown in Inset 4(a) (respectively Inset 4(d)). However, when the number of tasks
is increased to be 6 instead of 2, we can notice that the tardiness of the parallel
scenario is closely higher than the fully-stretched scenario. Also, the tardiness
is almost identical when the processors are fully charged up and tasksets have
utilization equal to 8. This is shown in Inset 4(b) (respectively Inset 4(e)).

The scheduling of the parallel scenario is clearly better than the fully-stretched
scenario when the number of tasks is 10 per tasksets, as shown in Inset 4(c) (re-
spectively Inset 4(f)). We can notice that the fully-stretched scenario has a higher
tardiness when tasks have lower utilization, and hence, the parallel scenario has
a better schedulability in this case. This can be explained by noticing that in this



case the number of parallel threads are low, and parallel tasks have utilization
relatively close to the utilization of a sequential task. The parallel scenario gives
the scheduling algorithm more freedom in scheduling the parallel threads, by ac-
tivating them all at the same time. While the fully-stretched scenario forces the
parallel tasks to execute sequentially even if this approach might cause delays in
the scheduling process.

From the results conducted by simulation, we have now an experimental
indication on the effect of parallelism on the scheduling of real-time systems. It
is possible now to overrule the typical assumption that parallelism has always
negative effects on scheduling. As we have shown above, the parallel scheduling
is better than its sequential alternatives when tasks have low number of parallel
threads. According to this, the scheduler can get better scheduling decisions
while parallelizing the execution of certain tasks on multiple processors than the
sequential execution. This result matches the motivation of parallelism and its
practical uses in non-real time systems.

5 Conclusion

In this paper, we were interested in studying the effect of parallelism in real-time
systems. The problem is summarized as the scheduling of sporadic implicit-
deadline parallel tasks on multiprocessors using global earliest deadline first
(gEDF) as scheduling algorithm. The parallel tasks are either executed in a
parallel scenario in which all the threads of the parallel tasks execute in parallel
as soon as possible, or in a stretching scenario, in which the threads are exe-
cuted as sequentially as possible. We proposed two stretching scenarios based on
the number of thread migrations and preemptions required by the transforma-
tion: partially and fully stretched. In the latter, threads are stretched to form
transformed threads with utilization equal to 1, but it requires higher number
of migrations and preemptions between processors and jobs.

Using extensive simulation, we showed that parallelism did not cause major
negative effects on the scheduling of real-time systems. Admitting that sequen-
tial execution of tasks has better results in general than parallelism, There are
certain cases where parallelism behaves better and has lower tardiness values
than stretching. Based on these remarks and results, we can overrule the com-
mon assumption in real-time systems against parallelism, and that tries to avoid
parallel structure in order to get better scheduling results.

In the future, we aim at extending our work, and provide theoretical analyses
to support our experimental results, by providing an upper bound of tardiness
adapted to parallel real-time tasks on multiprocessor systems. Also, we are look-
ing forward to analyze scheduling algorithms other than gEDF algorithm that
we used in this paper. Based on this, we can classify the common scheduling
algorithms in real-time systems based on their ability to schedule parallel tasks
with low tardiness bounds.

Finally, we aim at generalizing our task model of parallel tasks, so as to in-
clude more complicated structures of parallel threads, such as the multi-threaded



segment model and the Directed Acyclic Graphs. Such task models are used to
represent practical parallel programming APIs.

References

1. “Mixed criticality systems,” European Commission Workshop on Mixed Criticality
Systems, Brussels, Belgium, February 2012.

2. “Posix threads programming.” [Online]. Available:
https://computing.llnl.gov/tutorials/pthreads/

3. “OpenMP.” [Online]. Available: http://www.openmp.org
4. R. I. Davis and B. Alan, “A survey of hard real-time scheduling algorithms and

schedulability analysis techniques for multiprocessor systems,” ACM Computing
surveys, pp. 1 – 44, 2011.

5. A. Saifullah, D. Ferry, K. Agrawal, C. Lu, and C. Gill, “Real-Time Scheduling of
Parallel Tasks under a General DAG Model,” Washington University in St Louis,
Tech. Rep., 2012.

6. S. K. Baruah, V. Bonifaciy, A. Marchetti-Spaccamela, L. Stougie, and A. Wiese, “A
generalized parallel task model for recurrent real-time processes,” in Proceedings
of the 33rd IEEE Real-Time Systems Symposium (RTSS), Dec. 2012, pp. 63–72.

7. K. Lakshmanan, S. Kato, and R. (Raj) Rajkumar, “Scheduling Parallel Real-Time
Tasks on Multi-core Processors,” in Proceedings of the 31st IEEE Real-Time Sys-
tems Symposium (RTSS). IEEE Computer Society, 2010, pp. 259–268.

8. R. Ha and J. Liu, “Validating timing constraints in multiprocessor and distributed
real-time systems,” in 14th International Conference on Distributed Computing
Systems. IEEE Comput. Soc. Press, 1994, pp. 162–171.

9. S. K. Dhall and C. L. Liu, “On a Real-Time Scheduling Problem,” Operations
Research, vol. 26, no. 1, pp. 127–140, 1978.

10. C. A. Phillips, C. Stein, E. Torng, and J. Wein, “Optimal time-critical scheduling
via resource augmentation (extended abstract),” in Proceedings of the Twenty-
ninth Annual ACM Symposium on Theory of Computing, ser. STOC ’97, 1997, pp.
140–149.

11. P. Valente and G. Lipari, “An upper bound to the lateness of soft real-time tasks
scheduled by edf on multiprocessors,” in Real-Time Systems Symposium, 2005.
RTSS 2005. 26th IEEE International, 2005, pp. 10 pp.–320.

12. ——, “An upper bound to the lateness of soft real-time tasks scheduled by EDF
on multiprocessors,” Scuola Superiore S.Anna, Tech. Rep. RETIS TR05-01, 2005.

13. U. Devi, “Soft Real-Time Scheduling on Multiprocessors,” Ph.D. dissertation, Uni-
versity of North Carolina at Chapel Hill, Chapel Hill, Sweden, 2006.

14. “YaRTISS simulation tool.” [Online]. Available: http://yartiss.univ-mlv.fr/
15. R. Davis and A. Burns, “Improved priority assignment for global fixed priority

pre-emptive scheduling in multiprocessor real-time systems,” Real-Time Systems,
vol. 47, no. 1, pp. 1–40, 2011.

16. J. Goossens and C. Macq, “Limitation of the Hyper-Period in Real-Time Periodic
Task Set Generation,” in Proceedings of the 9th International Conference on Real-
Time Systems (RTS), Mar. 2001, pp. 133–148.


