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Abstract. In many clusters and datacenters, application frameworks
are used that offer programming models such as Dryad and MapReduce,
and jobs submitted to the clusters or datacenters may be targeted at
specific instances of these frameworks, for example because of the pres-
ence of certain data. An important question that then arises is how to
allocate resources to framework instances that may have highly fluctu-
ating workloads over their lifetimes. Static resource allocation, a tradi-
tional approach for scheduling jobs, may result in inefficient resource
allocation because of poor resource utilization during off-peak hours.
We address this issue with a strategy for the dynamic deployment of a
component-based framework by extending a resource manager respon-
sible for scheduling jobs in multi-cluster environments. This extension
allows scheduling multiple concurrent instances of the framework as long-
running utility jobs that share computational resources of the cluster. In
order to accommodate the fluctuating resource demands of frameworks,
we consider two provisioning policies for dynamic resource allocation:
OnDemand and Proactive provisioning. We evaluate the effectiveness of
both policies by comparing them with static resource allocation on the
das4 multi-cluster system. Our results shows that dynamic resource allo-
cation gives at least 30% improvement over the static resource allocation
with respect to both the utilization of the resources and the reject rate
of the applications within the framework.

Keywords: cluster, datacenter, framework, scheduling, dynamic deployment,
resource utilization.

1 Introduction

The growing demand for computational resources has resulted in an increased
popularity of clusters, grids, clouds and other data center environments. Various
frameworks have been developed for these systems to accommodate domain-
specific applications such as MapReduce [1] and Dryad [2] for parallel data-
intensive applications, Pregel [3] for large-scale graph processing, and various
component-based frameworks for specific application domains such as video pro-
cessing [4]. Once installed in a cluster or datacenter, these frameworks act as



utilities to which users can submit jobs that adhere to the programming models
of the frameworks. The immediate question that arises is how many resources
to allocate to framework instances in the face of time-varying workloads. In this
paper, we address this question with the design, the implementation, and the
analysis of a dynamic resource allocation mechanism for scheduling component-
based frameworks in clusters.

There are different reasons for having the schedulers in clusters and datacen-
ters schedule framework instances rather than separate, single jobs, and leave
the scheduling of the single jobs to the frameworks themselves. First, it relieves
schedulers of large clusters and datacenters of a potentially very high load of
scheduling decisions. Secondly, it may be difficult to teach the schedulers about
all the intricacies of potentially many frameworks that may influence the quality
of scheduling decisions. Thirdly, frameworks typically require their own config-
uration and deployment steps of variable complexity. For instance, some frame-
works require a distributed file system to be set up with a certain replication
factor (e.g., HDFS [5] for MapReduce), whereas others may need name servers or
component repositories to be installed. Although these frameworks may require
complex and potentially time-consuming deployment, once deployed, they act
as long-running utilities serving large numbers of users who may submit highly
fluctuating workloads and the cost of their deployment can be amortized across
many jobs.

A common approach for allocating resources to framework instances is static
resource allocation, where each framework instance runs on a fixed number of re-
sources over its lifetime. However, even though many frameworks have their own
resource management, static allocation may lead to periods of over- and under-
utilization of the allotted resources and is therefore not a suitable solution. In
contrast, dynamic resource allocation reflects changing resource requirements
of a framework instance by changing the fraction of resources allotted to the
framework during its lifetime. In this approach, each framework instance is al-
lotted a minimum number of resources, sufficient for its initial deployment. As
the load submitted to the framework changes over time, its resource allocation
is continuously adapted, in order to achieve continuously a high utilization.

There are several challenges in using dynamic resource allocation for allocat-
ing cluster resources to frameworks. First, framework extendibility is essential
in the context of dynamic resource allocation, but unfortunately, not all frame-
works are extendible. Secondly, most frameworks are developed independently
and their local resource managers are not capable of communicating with exter-
nal resource managers. Thirdly, resource provisioning policies at the cluster side
have to meet the fluctuating resource demands of all competing frameworks.

In previous work, we have designed and implemented the koala [6] resource
manager for multi-cluster systems such as the das4 [7]. The original purpose of
koala was to support co-allocation, i.e., the allocation of processors in multiple
clusters to single parallel (mpi) applications. Later we have incorporated sup-
port for scheduling various application types into koala, e.g., Bags-of-Tasks [8],
workflows [9], and malleable applications [10]. In all of these cases, the jobs



submitted to koala are single applications. In contrast, previous work on sup-
port in koala for scheduling of MapReduce clusters [11] addresses scheduling
of multiple jobs as a part of single MapReduce instances.

The purpose of this paper is to present the design, the implementation, and
the analysis of an extension of the koala resource manager for the dynamic
deployment of the fluent framework [4,12] as long-running utility jobs. In our
case, the “jobs” scheduled by koala are instances of the fluent framework
rather than single jobs. Our extension of koala provides two-level resource
management. At the first level, koala allocates resources to the frameworks,
and at the second level, local resource managers within each framework instance
use the allotted resources for the deployment of jobs submitted to them. Fur-
thermore, these local resource managers can negotiate resource allocation with
koala: additional resources may be requested or unused resources may be re-
leased. Our final aim is to create a generic extension to koala that allows a
wide range of frameworks to be scheduled dynamically in cluster and datacenter
environments. The research reported in this paper contributes towards that goal
by:

– An extension of the koala resource manager for the dynamic deployment
of the fluent framework as a long-running utility (Sections 2 and 3).

– The introduction of two provisioning policies, OnDemand and Proactive, for
the dynamic resizing of fluent framework instances (Section 3).

– The experimental evaluation of the proposed extension including the policies
by means of synthetic workloads in a real cluster environment (Section 4).

2 The fluent Framework

fluent is a distributed component framework for run-time composition of com-
ponent-based applications [4, 12]. Figure 1 visualizes the building blocks of the
framework, called framework entities, in terms of a client-server architecture.
From a logical point of view, the server side of the framework is organized in
three layers: the Master layer, the Orchestrator layer, and the Runtime layer.
Besides the framework entities divided across the three layers, the server side
of the framework consists of two types of file-based storage for storing re-usable
applications and components: a Global repository and a Local repository. From
a deployment point of view, the framework entities which are deployed on a
physical node define the node’s role as either a client, a master, an orchestrator
or a worker node. A single physical node can have multiple roles, with the only
restriction that two worker nodes cannot be placed on a single physical node.

The client side of the framework comprises client nodes with GUITool entities
deployed on them. The GUITool is a user interface for managing components and
applications which are stored and deployed on the server side of the framework.
For that purpose, this entity offers a set of interfaces that cover various aspects
of application management such as discovery of available components, composi-
tion of applications, deployment of composed applications, and monitoring and



Fig. 1. The client-server architecture of the fluent framework.

dynamic reconfiguration framework entities. A single GUITool corresponds to
a single user of the framework, but a single client node may contain multiple
GUITools.

The server side of the framework comprises master, orchestrator and worker
nodes distributed across the Master, the Orchestrator, and the Runtime layers,
respectively. A master node is reserved for the FrameworkManager entity and
the Global repository. The FrameworkManager entity is the central part of the
fluent framework that provides a registry-based entity subscription and entity
discovery service to the rest of the framework. The FrameworkManager entity
manages information where other entities are hosted and allows dynamic con-
figuration of all framework entities. The Global repository is a file-based storage
that holds two types of data: available components in the form of shared libraries
and applications composed of these components in the form of description files.
A single master node exists within the fluent framework with a single Frame-
workManager installed on it.

An orchestrator node is used for deployment of Orchestrator entities which
provide key functionality to compose, deploy, and monitor an application. An
Orchestrator entity acts as an application manager which enables placement of
application components on worker nodes. A single instance of it manages a single
application at a time. The number of possible orchestrator nodes within the
framework depends on the number of applications running concurrently within
the framework. A single orchestrator node may host multiple Orchestrators.

A worker node has a Local repository and a DeviceManager entity deployed
on it. The DeviceManager entity is the basic processing unit in the framework
which is responsible for application execution and monitoring the resource usage
by the application. Components of deployed applications are isolated in separate
containers within the DeviceManager called Docks. A Dock entity is a wrapper
for application components that manages the connections between them. A sub-
set of the Global repository is installed on a worker node in the form of a Local
repository which holds components and applications available locally. A common
deployment of the framework comprises multiple worker nodes with a single De-
viceManager installed on each of them.



An application running in the framework involves a single Orchestrator that
orchestrates deployment of its components on a single or across multiple Docks
according to the deployment specification in the application description file.

Since the numbers of nodes employed by the two of the layers, Orchestrator
and Runtime, depend on the current load in the framework, both layers need to
be dynamic in order to enable dynamic deployment of the framework in cluster
environments. As part of the FrameworkManager, there is a resource manager
capable of handling dynamic changes of physical resources, but it does not handle
scheduling of applications over worker nodes in the framework. We address this
issue by extending the resource manager with a scheduler that is responsible
for scheduling applications submitted to it. This scheduler places application
components on worker nodes according to the FCFS scheduling policy with
preference to reuse partially busy nodes before using the idle nodes.

3 KOALA Extension for Dynamic Scheduling of

Frameworks

In this section, we describe the mechanisms and policies for dynamic resource
allocation by koala to the fluent framework, as a representative of component-
based frameworks. First, we describe the koala resource manager used for
scheduling jobs in multi-cluster environments. Then we present the additional
components that are needed and how they should work together so that koala is
able to achieve dynamic deployment of frameworks such as fluent. Finally, we
discuss the resizing mechanisms and the provisioning policies used for dynamic
allocation of resources.

3.1 The koala Resource Manager

koala [6] is a resource manager for scheduling jobs in multi-cluster environ-
ments, where each cluster consists of a number of compute nodes used for com-
putations only, and a single head node used as an access point to the cluster.
The kernel part of the resource manager is the scheduler that schedules jobs by
placing them on suitable cluster sites according to its placement policies. Once
the compute nodes are allocated to the job, the actual job submission to those
nodes is done by specialized interfaces called runners that provide the ability
to submit and monitor jobs of different application types. In the past we have
implemented runners for rigid parallel applications [6], cycle scavenging jobs [8],
workflows [9], malleable applications [10], and map-reduce jobs [11].

3.2 System Architecture

In this paper, the ”jobs” scheduled by the koala resource manager are fully
functional fluent framework instances. Scheduling such a framework instance
involves the deployment of the three server-side layers of the fluent framework
on the cluster nodes allocated by the koala scheduler in such a way that each



node executes framework entities from a single layer only. The framework is
deployed on exactly one node dedicated to the Master layer, at least one node
dedicated to the Orchestrator layer, and multiple nodes dedicated to the Run-
time layer. We distinguish two types of phases in dynamic scheduling of the
framework-based job: the initial and the resizing phase. The initial phase covers
the initial deployment of the framework on a minimal number of nodes required
for the job execution, which is given as an input to the job in the form of a job
description file (jdf). Required nodes are allocated by koala, and distributed
among the three layers. In the resizing phase, the numbers of nodes dedicated
to the Orchestrator and the Runtime layers are changed based on the load sub-
mitted to the framework. The latter changes are negotiated with koala where
nodes are the unit of resource allocation.

To add support to the koala scheduler for scheduling framework-based jobs
on a multi-cluster system, we have extended the original koala architecture
with two components: a runner called the FrameworkRunner (FR), and a global
job manager called the FrameworkJobManager (FJM), which keeps track of all
running fluent instances. Figure 2 provides a high level overview of the newly
introduced koala components and their iterations involved in scheduling a sin-
gle fluent framework on a multi-cluster system.
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Fig. 2. The sequence of steps involved in scheduling a single fluent framework by the
koala scheduler.

The FJM has been added to the scheduler part of the koala resource man-
ager and supports the deployment of multiple frameworks. For that purpose, it
maintains connections of every framework instance deployed through koala and
their metadata such as a unique framework identifier, the location of the config-
uration files, the deployed sites, and the location of the master node. Whenever
the GUITool needs access to the deployed framework, it can obtain this infor-
mation from the FJM.



The FR is used for scheduling framework-based jobs which requires a job
description file as an input. This job submission interface consists of two com-
ponents: a schedule demon Schedd that interfaces with the koala scheduler,
and a deployment daemon Deployd that interacts with the fluent framework
deployed through the FR. Schedd communicates with the koala scheduler in
order to provide the desired number of nodes to the framework scheduled by
it, whereas Deployd deploys the framework entities on the nodes allotted by
the koala scheduler. Deployd handles the communication with the deployed
framework, and is responsible for all changes in the deployment of the fluent

instances. A single FR corresponds to a single fluent instance scheduled for
deployment.

The interaction between these components and a framework instance sched-
uled for deployment starts with the job submission (step 1 in Figure 2). The
Schedd component of the FR processes the jdf, received as an input from a job
submission side, and subsequently requests (step 2) the desired number of com-
pute nodes from the koala scheduler. After the successful allocation of these
nodes, Schedd registers (step 3) the submitted framework with the newly intro-
duced FJM. Subsequently, the control is transferred to the Deployd component
which interacts with local resource managers of the clusters, e.g., SGE, to deploy
the framework entities and to install the file system which contains the reposito-
ries of the framework (step 4). These four steps capture the interactions in the
initial phase.

In the second phase, two events may cause dynamic resizing of the framework:
the submission of a new job to the framework or the completion of a running
job application by the framework. In response to a submission of a new job, the
FrameworkManager requests deployment of Orchestrator entities (step 5), for all
applications in the job, from the FR, for which either an additional node may be
requested (step 6) from the koala scheduler or an already allocated orchestrator
node can be used (step 7). Based on the resizing mechanisms described in the
next section, the FR resizes the Orchestrator layer.

Once a novel Orchestrator entity has been deployed by Deployd, it subse-
quently takes care of deploying the job applications in fluent. This is not
depicted in Figure 2 since it is an intra-framework activity. koala is not aware
of the application deployment until the framework detects a lack of suitable
worker nodes and requests additional ones from the FR (step 8). As a response
to such a request, Schedd may either request additional nodes from the koala

scheduler (step 5), which are subsequently deployed as worker nodes by Deployd
(step 9), or may reject the request based on the provisioning policies described
in the next section.

3.3 Resizing Mechanisms and Provisioning Policies

In addition to allocating compute nodes for the initial deployment of a frame-
work, the FR dynamically resizes two layers of a deployed framework: theOrches-
trator and the Runtime layers. For each layer, we introduce a resizing mechanism
to handle changes in the number of compute nodes allocated to the framework.



The mechanism for resizing the Orchestrator layer is based on the current
number of Orchestrators deployed on orchestrator nodes. The Orchestrator layer
of a framework instance is extended by an additional node when the average
number of deployed Orchestrators exceeds a threshold. The threshold value is
empirically chosen based on the performance analysis described in Section 4.
When an orchestrator node is idle during a period of time, which means there
are no Orchestrators deployed on it, the node is removed from the Orchestrator
layer and return to koala. The resizing mechanism is such that at least one
orchestrator node is always available for Orchestrator deployment.

The mechanism for resizing the Runtime layer is regulated by one of two
provisioning policies called the OnDemand and the Proactive policy. In the
OnDemand policy, fluent takes the initiative for resizing the Runtime layer
by following the pattern of job submissions to a framework instance. In con-
trast, in the Proactive policy it is the koala resource manager that takes
initiative for resizing by keeping the utilization of a framework instance within
certain bounds without knowing any details about the framework activities. In
both policies, koala sets the maximum number of worker nodes allowed per
framework instance to a value Fmax which is a general static value applied to
all instances. fluent does not support application migration but it does allow
partially busy worker nodes. When fluent deploys new applications, it tries to
pack them on partially busy, rather than idle, worker nodes.

The OnDemand policy resizes the Runtime layer based on framework re-
quests of two types called grow requests and shrink requests. This policy allows
the initial deployment of the framework with the minimal number of nodes, a
single master and a single orchestrator node, whereas the worker nodes are de-
ployed dynamically as part of the resizing. When a fluent instance does not
have sufficient idle worker nodes for the deployment of a newly submitted job,
it sends a grow request for the number of additional worker nodes it needs for
the job. We assume the framework knows how many nodes are required for job
execution, and we will show how fluent calculates the number of nodes needed
for our example applications in Section 4. The FR adds the requested number
of worker nodes to the Runtime layer of the framework, unless the value Fmax is
exceeded or koala does not have free resources. A shrink request is sent when
the framework instance has worker nodes that have been idle for a time period
of length at least tidle, to which the FR responses by removing these idle worker
nodes from the Runtime layer. The value of the parameter tidle is empirically
chosen with the performance analysis described in Section 4.

The Proactive policy, on the other hand, resizes the Runtime layer in re-
sponse to requests by the koala scheduler. This policy does require worker
nodes as part of the initial deployment of the framework; this number can be
changed because of resizing, but will never go below the number of nodes used
in the initial deployment. By adding to and removing nodes from the Runtime
layer, the policy tries to keep the average cpu utilization of the Runtime layer
between two threshold values Umin and Umax, which are specified on the sched-
uler side. Based on monitoring information, the koala scheduler expands the



Runtime layer by the same number of worker nodes as in the initial deployment
when the average cpu utilization of the Runtime layer exceeds Umax, and con-
tracts it by the number of idle worker nodes when the average cpu utilization of
the Runtime layer drops below Umin. Again, when koala wants to shrink the
Runtime layer, it only removes nodes that have been idle for at least tidle.

When koala cannot meet the framework requirements and rejects grow
requests, depending on the application type, the framework will either queue
the submitted application until the current worker nodes can deploy them or
reject the application, e.g., in a video surveillance case (see Section 4).

4 Performance Evaluation

In this section, we present a performance evaluation of dynamic resource alloca-
tion to the fluent framework as a utility in the das system. First, we describe
the experimental setup and the types of applications supported by the fluent

framework with an emphasis on the applications we use in the experiments.
Then we describe the conducted experiments and the workloads used in the
experiments. Finally, we analyze the obtained results.

4.1 Experimental Setup

For the purpose of the evaluation, we use the das multi-cluster system as the
experimental environment. The das4 [7] is the fourth generation of this system
which is distributed accross research institutes and organizations in the Nether-
lands. The system consists of six clusters and comprises roughly 200 compute
nodes with properties as shown in Table 1. The Sun Grid Engine(sge) to which
koala interfaces, operates as the local resource manager on each of the das

clusters.

Table 1. Specification of compute nodes in the das multi-cluster system

Processor Dual quad-core Intel E5620 at 2.4 GHz

Memory 24 GB RAM

Network 10 Gbit/s Infiniband, 1 Gbit/s Ethernet

Disk 2 ATA OCZ Z-Drive R2 with 2 TB (RAID0)

OS Linux CentOS-6

JVM jdk 1.6.0 27

The experiments were performed within a single cluster with 32 compute
nodes and a single head node. The initial deployment of the fluent framework
comprises a single master node, a single orchestrator node, and multiple worker
nodes. The number of worker nodes used for the initial deployment of the frame-
work depends on the experiment and the provisioning policy. The components



available for an application composition are placed in the Local Repositories in-
stalled on each worker node, whereas the Global Repository exist as an union
of the Local Repositories .The Infiniband network is used for inter-framework
communication among the framework entities due its low latency in data trans-
mission. The clients are deployed on the head node.

The worker-node idle time parameter tidle and the utilization threshold values
Umin and Umax used in the provisioning policies are determined as part of the
calibration experiment. Since the Proactive policy requires data about cpu

utilization of the allocated nodes, we collect the cpu utilization statistics of
every node with a sampling interval of 40 second using the open-source ”audria”
utility tool [13] and the standard Linux monitoring tool ”pidstat”.

4.2 fluent Applications

fluent applications are component-based applications, and they are composed
from fully independent components with well-defined interfaces and specified
behavior. Components are reused across multiple applications and can be dy-
namically orchestrated to build various applications. A fluent application is
represented by an application description file in which the used components are
defined, together with the bindings between them and deployment information.

The fluent framework has been conceived as a general-purpose framework,
but was originally used as a framework for video processing multimedia appli-
cations in the area of surveillance and transport logistics in the scope of the
ViCoMo project [14]. Therefore, the framework comes with libraries of compo-
nents that provide video encoding/decoding, streaming, and customized support
typically used in video processing applications. The surveillance applications are
computationally intensive applications with fluctuating resource requirements
over their long lifetimes, and require short deployment time (response time).

Both long running computationally intensive and parallel data-intensive ap-
plications are conveniently supported by the fluent framework. In our experi-
ments, we use two applications: an application from the video processing domain
as a representative of the computationally intensive applications, and a more
general application that performs a word count on a file as a representative of
data-intensive applications. Each of these applications uses its own library of
components described below.

The video processing library used in a RemoteLaplace (RL) application con-
sists of two components. Both components have one interface and communicate
to each other by using a buffer or overwrite channels. The applications provided
by this library have a simple producer-consumer architecture. The first compo-
nent performs image sharpening by applying a Laplacian filter on the input video
stream which has been smoothed to remove noise. The component generates two
outputs shown in real-time, the original video and the transformed video. The
video transformation is based on two parameters that are provided remotely by
the second component which simulates user input by generating new values for
the parameters every s seconds. Therefore the computational load changes every
s seconds.



The library used in a StreamingWordcount (SWC) application consists of five
components, three core components and two auxiliary components that allow
applications to be structured with a variable number of core components. As
opposed to the communication between mappers and reducers by means of files
in MapReduce, these components communicate with each other by using buffer
channels. The main computing component of the library is amapper, which emits
key-value pairs for each word of the input block of text. The reader component
provides the mapper with input by reading and splitting the given input file
in multiple blocks, and emitting each of them separately. The counting part
is performed in the counter component which is responsible for generating the
output file. These three core components allow applications with only onemapper
computing component. In order to support parallel processing in data-intensive
applications, the auxiliary components are used for composing applications with
multiple mappers. The multiplexer auxiliary component splits up and redirects
its input across two outputs, whereas the demultiplexer component redirects two
received inputs to one output. Multiple levels of multiplexer and demultiplexer
components can be used, and the number of mappers in an application can be
2n, for n = 1, 2, . . . when using n levels of auxiliary components.

4.3 Experiments and workloads

We perform two types of experiments and classify them as either micro- or macro-
experiments. By means of two micro-experiments, we investigate the character-
istics of the operation of the framework and of the execution of single jobs. In
the first micro-experiment we asses the time required to install an instance of
the fluent framework, the time required to process a grow request, and the
time required to deploy a job submitted to a running instance of fluent. In the
second micro-experiment, we examine the cpu utilization of the Orchestrator
and the Runtime layers for both our application types to find out how many
applications fit on one node in both layers. Within this experiment, we deploy
the two applications separately.

The RL application has two components and its runtime is restricted to 300
sec; it operates on a video with a playing time of 300 sec at a frame rate of 60
fps and with a frame resolution of 320x239 pixels. The filter parameter s is set
to 30 s, which means that the transformation is performed 10 times during the
application life time. The SWC application has three components, a reader, a
single mapper, and a counter component. It processes a 10 MB file by reading
data blocks of 100 KB that are processed in sequence by the single mapper.
When deployed using a one-to-one mapping between components and cores, its
runtime is 44 minutes. In both the SWC and RL applications, the application
components are deployed within a single worker node.

By means of the macro-experiments, we evaluate the performance benefit of
dynamic resource allocation with the provisioning policies over static resource
allocation by submitting workloads consisting of many jobs. In the first macro-
experiment, we perform a sensitivity analysis of the parameters tidle, Umin and
Umax of the dynamic provisioning policies. In the second macro-experiment,



we assess the performance of the dynamic allocation of resources with our two
provisioning policies (OnDemand and Proactive) versus static allocation.

In this assessment we use a synthetic workload Wrl that consists of jobs each
running a number of RL applications to reflect the operation of multiple surveil-
lance video cameras started simultaneously, e.g., for monitoring a shopping mall
or a parking garage. Therefore, the arrivals of the applications in the workload
are modeled by a batch arrival process with the jobs (batches of applications)
arriving according to a Poisson process with rate λ = 0.0278 per second. The
size of the batches has a geometric distribution over the interval [1, 10] with
mean 2.5. We choose the arrival rate such that the framework with 20 worker
nodes has utilization of approximately 50%. Since every the RL video applica-
tion requires immediate deployment and sufficient resources over its lifetime, in
order to evaluate the performance, we use the reject rate; jobs can be partially
accepted and rejected if only several but not all of the video applications in its
batch fit on the available resources, and we define the reject rate as the per-
centage of all applications across all jobs in the workload that are rejected. In
addition we use the utilization as a metric, defined as the ratio of actually used
and the total number of (statically or dynamically) allocated resources. In this
experiment, the maximum number of worker nodes per framework, denoted by
Fmax, is set to 20 worker nodes.

4.4 Experimental results

The results from the first micro-experiment in which we investigate the overheads
of the fluent framework, show that the time needed for the initial deployment
of the framework is affected by the type (but not the number) of nodes involved in
the deployment. When the OnDemand policy is used, the initial deployment of
the framework involves only master and orchestrator nodes, and takes on average
11 s. In case of static allocation or dynamic allocation with the Proactive policy,
besides the master and orchestrator nodes, workers nodes are also involved in the
initial deployment of the framework, and it takes on average 45 s. The difference
between the initial deployment times in the two cases is due to the additional
time needed for the worker nodes to install the Local Repositories, which includes
the transfer of application components from the Global Repository.

For the deployment of a job, a running framework instance needs on average
62 ms when all worker nodes needed for deployment are available; this is the
time from the job submission on the client side until the applications included
in the job start operating on worker nodes, including the scheduling and the
placement time of their application components. The average overhead in the
framework for handling a grow request, denoted by Ogrow, which includes node
allocation by koala and the deployment of the suitable entities on them by the
FR, is approximately 30 s.

As to the results of the second micro-experiment, in which we investigate the
number of applications that can be hosted on a single node, Figure 3 shows that
the utilization of the Orchestrator layer is neither application-type nor applica-
tion-size specific. During the application deployment, around 20% of the cpu is
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needed at the beginning. This peak covers the deployment of the orchestrator
entity itself, and after it around 2% is needed for orchestrating an application.
The period of high cpu utilization lasts for 70s and it occurs only once per
Orchestrator lifetime.

We can conclude that a single orchestrator node can host multiple Orches-
trators with a potential delay of 70N/5 sec when N applications are submitted
simultaneously. As the jobs in the macro-experiment consist of at most 10 ap-
plications, the expected delay is at most 140 seconds. Based on these results, we
fix the threshold used in the resizing mechanism of the Orchestrator layer to 45.
When the number of Orchestrators deployed on an orchestrator node exceeds
this value, koala introduces a new node in the Orchestrator layer.
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Fig. 4. cpu utilization of a worker node in the Runtime layer for different applications.

With respect to the Runtime layer, Figure 4 (a) shows that the RL applica-
tion is computationally intensive with a fluctuating cpu utilization pattern over
its execution time. The fluctuating cpu utilization leads to the conclusion that
only a single application can be placed on a single node without overloading. On



the other hand, the SWC application (Figure 4 (b)) has very low cpu utilization,
around 5% during the mapper execution, with two short peaks at the beginning
and at the end of the application execution. These two peaks correspond to the
I/O operation for reading the input file and writing the results back to the disk
in the reader and counter components, respectively. Therefore, a single worker
node can host an SWC application with 20 mappers without overloading. As a
conclusion we can say the utilization of the Runtime layer varies depending on
the type of deployed applications.
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In the first macro-experiment, we conduct a sensitivity analysis of the param-
eters tidle, Umin and Umax of the provisioning policies. First we consider tidle, the
time worker nodes can remain idle before being released. We relate tidle to the
average overhead for handling a grow request Ogrow, and we assess effect of the
performance of scaling Ogrow by a factor n on the resource allocation overhead
and the resource idle time tidle,so by setting tidle = n ·Ogrow.

Figure 5 shows the behavior of the framework when processing the workload
Wrl for different values of the scaling factor n in terms of the total overhead
due to grow requests and the idle time of the allocated resources. The higher
the scaling factor, the lower the number of grow requests and so the less over-
head for resource allocation, but the higher the fraction of idle resources. In the
Proactive policy, where the value tidle is used as a control mechanism to ensure
that resources are not needlessly kept in the framework, we want to release the
nodes as soon as they become idle, so we fix the scaling factor at n = 2. In the
OnDemand policy, we fix the scaling factor at n = 6 for the RL application.

Figure 6 shows the behavior of the framework when processing the workload
Wrl for different values of the parameters Umin - Umax in terms of the reject
rate of applications and the idle time of the allocated resources. Since the total
overhead due to grow requests cannot be measured on the framework side, we
use the application reject rate as a metric to determine the values of Umin and
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Fig. 7. The amounts of resources allocated and used with static and dynamic allocation
for the workload with the RL application (over time and total).

Umax. As we can see in Figure 6, setting the utilization levels Umin and Umax

to 40% and 50%, respectively, gives the lowest number of rejected applications
and the smallest fraction of idle resources.

The results from the second macro-experiment show that both our policies
for dynamic allocation of resources improve the performance over static resource
allocation in terms of the resource utilization and the application reject rate. In
Figure 7 we show the amount of allocated and used resources over time, and
the total amount of leased resources (used and wasted) during the experiments
with the video application workload. Clearly, with the two dynamic policies,
the amounts of allocated resources follow the patterns of the used resources
pretty well, and the dynamic policies waste significantly less resources than static
allocation (Figure 7 (d)).

Table 2. The reject rate and the utilization with the RL application vs. the allocation
policy (all values are in %.)

Policy Reject Rate Utilization

Static 13% 46%
OnDemand 13% 73%
Proactive 21% 65%



In Table 2, we show the performance metrics for each of the policies when
processing the Wrl workload in terms of the reject rate of applications and the
the actual utilization of the allocated resources as the ratio of used and allo-
cated resources from Figure 7 (d). We find that the Proactive policy improves
resource utilization by approximately 30%, but it is not as good as the OnDe-

mand policy, which improves utilization by 37%. For the Proactive policy, the
improvement comes at the price of a higher reject rate, as shown in Table 2. As a
conclusion, we can say the OnDemand policy is more suitable for applications
with a batch arrival pattern such as the RL jobs, because it follows the pattern
of resource usages in the framework and in the same time keeps the reject rate
on the same level as the static allocation.

5 Related Work

The system that is closest to ours is Mesos [15], which provides a two-level
scheduling mechanism for sharing cluster resources across multiple frameworks,
and in particular shares data among the frameworks. Mesos periodically does re-
source offers to individual frameworks that can either accept or reject them, and
so it is the global scheduler that takes the initiative. In contrast, we design, imple-
ment and compare mechanisms in which either the frameworks explicitly express
their requirements and the global scheduler, koala, allocates the requested re-
sources, or the initiative lies with koala. As another difference, Mesos acts as
the owner of the cluster resources while koala does not own resources but is
built on top of, and interfaces to, the local cluster schedulers. The advantage of
this way of operation is that our way of supporting frameworks does not in any
way entail any change in the setup or deployment of the clusters.

YARN [16] is a resource manager that explicitly has multi-framework sup-
port, but it interfaces to application managers rather than framework managers
as koala does and so in fact, it still provides a single-level scheduling mech-
anism. However, as opposed to Mesos, it is request-based, like our OnDemand
policy. Omega [17] follows the interesting decentralized approach of shared-state
scheduling by having the schedulers of multiple frameworks compete for the
resources of the complete cluster without a central authority—optimistic con-
currency control is employed to mediate between conflicting allocation decisions
of the separate schedulers.

Other related work mostly covers automatic resource management and schedul-
ing of jobs in clusters and grids. Cluster and grid resource managers such as
Torque [18], Condor [19, 20], and Quincy [21], address jobs that require static
resource allocations during their execution.

6 Conclusion

In this paper we have presented an extension to the koala resource manager
that enables dynamic resource allocation to instances of the fluent framework.
We have designed and implemented two policies for provisioning resources to



frameworks, and we we have assessed the performance of the dynamic allocation
of resources with our two provisioning policies (OnDemand and Proactive) versus
static allocation. Our results show that both policies for dynamic allocation of
resources improve the performance over static resource allocation by at least
30%, with respect to both the utilization of the resources and the reject rate of
the applications within the framework.

As future work, we are planning to design a mechanism in koala for dy-
namically allocating resources in clusters and datacenters to frameworks that is
as generic as possible and that can accommodate many different frameworks. In
addition, we will refine our policies for doing the dynamic allocations and we will
analyze their performance with mixes of different frameworks in a single cluster
and other datacenter environments.
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