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Abstract. Current production resource management and scheduling
systems often use some mechanism to guarantee fair sharing of com-
putational resources among different users of the system. For example,
the user who so far consumed small amount of CPU time gets higher
priority and vice versa. However, different users may have highly hetero-
geneous demands concerning system resources, including CPUs, RAM,
HDD storage capacity or, e.g., GPU cores. Therefore, it may not be fair
to prioritize them only with respect to the consumed CPU time. Still, ap-
plied mechanisms often do not reflect other consumed resources or they
use rather simplified and “ad hoc” solutions to approach these issues.
We show that such solutions may be (highly) unfair and unsuitable for
heterogeneous systems. We provide a survey of existing works that try to
deal with this situation, analyzing and evaluating their characteristics.
Next, we present new enhanced approach that supports multi-resource
aware user prioritization mechanism. Importantly, this approach is capa-
ble of dealing with the heterogeneity of both jobs and resources. A work-
ing implementation of this new prioritization scheme is currently applied
in the Czech National Grid Infrastructure MetaCentrum.
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1 Introduction

This paper is inspired by our cooperation with the Czech National Grid In-
frastructure MetaCentrum [18]. MetaCentrum is highly heterogeneous national
Grid that provides computational resources to various users and research groups.
Naturally, it is crucial to guarantee that computational resources are shared in a
fair fashion with respect to different users and research groups [14, 12]. Fairness
is guaranteed by the fairshare algorithm [11, 2], which is implemented within the
applied resource manager, in this case the TORQUE [3].

For many years the fairshare algorithm considered only single resource when
establishing users priorities. The fairshare algorithm measured the amount of
consumed CPU time for each user and then calculated users priorities such that
the user with the smallest amount of consumed CPU time obtained the highest
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priority and vice versa [14]. However, with the growing heterogeneity of jobs and
resources, it quickly became apparent that this solution is very unfair since it
does not reflect other consumed resources [17, 16].

An intuitive solution is to apply a more complex, multi-resource aware fair-
share algorithm. However, as we will demonstrate in Section 2, existing solutions
are not very suitable for truly heterogeneous workloads and systems. Often, these
solutions either use unrealistic system models or fail to provide fair solutions in
specific, yet frequent usage scenarios.

In this paper we present a new fair sharing prioritization scheme which we
have proposed, implemented and put into daily service. It represents a rather
unique multi-resource aware fairshare mechanism, which was designed for truly
heterogeneous workloads and systems. Based on an extensive analysis of pros and
cons of several related works (see Section 2) we have carefully extended widely
used Processor Equivalent (PE) metric which is available in Maui and Moab
schedulers [11, 1, 2]. The extension guarantees that the prioritization scheme is
not sensitive to job and machine parameters, i.e., it remains fair even when
the jobs and resources are (highly) heterogeneous. Importantly, the scheme is
insensitive to scheduler decisions, i.e., the computation of priorities is not in-
fluenced by the job-to-machine mapping process of the applied job scheduler.
Also, jobs running across different nodes are supported, and the solution reflects
various speeds of machines and performs corresponding walltime normalization
to capture the effects of slow vs. fast machines on resulting job walltime1.

This paper is structured as follows. In Section 2 we discuss the pros and
cons of existing works covering both classical CPU-based and multi-resource
aware fairness techniques using several real life-based examples. In Section 3 we
describe the newly proposed multi-resource aware fairness technique. Section 4
evaluates the proposed solution using historic MetaCentrum workload. We con-
clude the paper and discuss the future work in Section 5.

2 Related Work

Before we start, we would like to stress out that there is no widely accepted and
universal definition concerning fairness. In fact, different people and/or organi-
zations may have different notion of “what is fair” when it comes to multiple
resources [13, 9]. In our previous work [17], we have shown how different rea-
sonable fairness-related requirements may interact together, often resulting in
conflicting situations. Therefore, in the following text we present approaches and
viewpoints that were established and are currently applied in MetaCentrum.

2.1 Fairshare

All resource management systems and schedulers such as TORQUE [3], PBS-
Pro [19], Moab, Maui [1], Quincy [10] or Hadoop Fair and Capacity Schedulers [6,

1 Walltime is the time a job spends executing on a machine(s). It is an important
parameter used in the fairshare algorithm as we explain in Section 2.
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4] support some form of fairshare mechanism. Nice explanation of Maui fairshare
mechanism can be found in [11]. For many years, the solution applied in Meta-
Centrum TORQUE was very similar to Maui or Moab. It used the well known
max-min approach [9], giving the highest priority to a user with the smallest
amount of consumed CPU time and vice versa.

For the purpose of this paper, we assume that a user priority is established
by Formula 1 [11]. Here, Fu is the resulting priority of a given user u. Fu is
computed over the set Ju, which contains all jobs of user u that shall be used
to establish user priority. The final value is computed as a sum of products of
job penalty P (j) and the job walltime (walltimej). As soon as priorities are
computed for all users, the user with the smallest value of Fu gets the highest
priority in a job queue.

Fu =
∑
j∈Ju

walltimej · P (j) (1)

Formula 1 is a general form of a function that can be used to establish
ordering of users. It represents the simplest version, that does not use so called
decay algorithm [11]. Decay algorithm is typically applied to determine the value
of Fu with respect to aging, i.e., it specifies how the effective fairshare usage is
decreased over the time2. For simplicity, we will not consider the decay algorithm
in the formulas as its inclusion is straightforward and can be found in [11] or [17].

When computing Fu, a proper computation of the job penalty P (j) is the
key problem. Commonly, fairshare algorithms only consider a single resource,
typically CPUs. In such a case, the penalty function P (j) for a given job j is
simply P (j) = reqCPUj , where reqCPUj is the number of CPUs allocated to
that job3. Clearly, the penalty of a given user’s job j is proportional to the
number of CPUs it requires. To illustrate the problems related to a CPU-based
penalty we provide following real life-based Example 1 [17], which is based on a
workload coming from Zewura cluster, a part of MetaCentrum.

Example 1. Zewura consists of 20 nodes, each having 80 CPUs and 512 GB of
RAM. Fig. 1 (left) shows the heterogeneity of CPU and RAM requirements of
jobs that were executed on this cluster. Clearly, there are many jobs that use a lot
of RAM while using only a fraction of CPUs. Similarly, Fig. 1 (right) shows an
example of CPUs and RAM usage on a selected node within the Zewura cluster.
For nearly two weeks in July 2012, jobs were using at most 10% of CPUs while
consuming all available RAM memory. Those remaining 90% of CPUs were then

2 A fairshare usage represents the metric of utilization measurement [11]. Typically,
it is the amount of consumed CPU time of a given user.

3 In MetaCentrum, resources allocated (i.e., reserved) to a given job cannot be used
by other jobs even if those resources are not fully used. Therefore, when speaking
about CPU, RAM, etc., requirements we mean the amount of a given resource that
has been allocated for a job, even if actual job requirements were smaller. Similarly,
a job CPU time is the number of allocated CPUs multiplied by that job walltime.
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Fig. 1. Heterogeneity of jobs CPU and RAM requirements (left) and an example of
CPU and RAM utilization on one Zewura node (right).

useless because no new job could have been executed there due to the lack
of available RAM. More importantly, using the standard fairshare algorithm,
the owner(s) of these memory-demanding jobs were only accounted for using
10% of available CPU time. However, as intuition suggests, they should have
been accounted as if using 100% of machine CPU time because they effectively
“disabled” whole machine by using all its RAM [17].

Apparently, the classical — single resource-based — fairshare mechanism com-
puted according to consumed CPU time may be considered unfair as the users
with high RAM requirements are not adequately penalized with respect to those
users who only need (a lot of) CPUs. Of course, similar findings can be done
concerning other resources such as GPUs or HDD storage. For simplicity, we only
consider CPUs and RAM in the rest of the paper. The addition of additional
resources is possible and it is a part of our future work (see Section 5).

Although the single resource-based fairshare algorithm may seem inadequate,
many systems are still using it today [10, 5, 19]. Let us now discuss multi-resource
aware solutions that are already available in several mainstream resource man-
agers and schedulers.

2.2 Standard Job Metric

The latest documentation of PBS-Pro [19] suggests that an administrator must
select exactly one resource to be tracked for fairshare purposes, therefore it is not
possible to combine multiple consumed resources in fairshare. We have discussed
this issue with people from PBS Works4 and according to their advice, it is
possible to use so called standard job metric. It works as follows. First, a system
administrator defines resource requirements of so called “standard job”. These

4 PBS Works is a division of Altair which is responsible for PBS-Pro development. The
meeting took place at the Supercomputing 2013 conference in Denver, CO, USA.
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requirements should correspond to a typical small job, e.g., standardCPU = 1
CPU and standardRAM = 1 GB of RAM. Next, a job penalty of any actual
job is computed by Formula 2, i.e., P (j) is the number of standardized jobs that
are needed to cover resource requirements of a considered job j.

P(j ) = max

(
reqCPUj

standardCPU
,

reqRAMj

standardRAM

)
(2)

Although this metric is simple, we see an apparent problem — it is highly
sensitive with respect to the used setup of “standard job”. At the same time,
our existing workloads indicate that there is no “standard job” as is also visible
in Fig. 1 (left). Therefore, it is quite questionable to use this metric across all
users and the whole system.

2.3 Processor Equivalent Metric

Moab and Maui provide different, yet still simple solution called processor equiva-
lent (PE) [11, 2, 1], which allows to combine CPU and, e.g., RAM consumptions,
translating multi-resource consumption requests into a scalar value. PE is based
on the application of max function that determines the most constraining re-
source consumption of a job and translates it into an equivalent processor count
using Formula 3, where availCPU and availRAM are the total amounts of
CPUs and RAM in the system, respectively.

P(j ) = PE(j) = max

(
reqCPUj

availCPU
,

reqRAMj

availRAM

)
· availCPU (3)

Moab documentation illustrates the processor equivalent functionality using
following Example 2.

Example 2. Consider a situation that a job requires 20% of all CPUs and 50%
of the total memory of a 128-processor system. Only two such jobs could be
supported by this system. The job is essentially using 50% of all available re-
sources since the most constrained resource is memory in this case. The processor
equivalents for this job should be 50% of the processors, or PE = 64 [2].

Although the documentation states that “the calculation works equally well
on homogeneous or heterogeneous systems” [2], this is not true as problems may
appear once the system and workload become heterogeneous. Let us demon-
strate MetaCentrum-inspired Example 3 where PE fails to produce reasonable
job penalties.

Example 3. Consider a heterogeneous system with 2 types of nodes. First type
of nodes has 8 CPUs and 16 GB of RAM. Second type of nodes has 80 CPUs
and 512 GB of RAM. The system contains 10 nodes of type 1 and 1 nodes
of type 2. Together, the system has 160 CPUs (availCPU) and 672 GB of
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RAM (availRAM). Now a user submits a RAM-constrained job requiring 1 CPU
and 512 GB of RAM per node. This scenario emulates the situation discussed
in Example 1 which is depicted in Fig. 1 (right). The resulting job processor
equivalent (using Formula 3) is PE(j) = max(1/160, 512/672) · 160 = 121.9.
Using the interpretations of PE as found in Moab documentation [2], we can say
that memory is the most constrained resource for this job, thus PE(j) = 121.9
which means that approximately 76% of all available resources are used by this
job. However, this is not entirely true. Since that job requires 512 GB of RAM per
node, it can only be executed on that large (type 2) machine. At the same time,
the job uses all RAM of that (type 2) machine. As a result, this job “occupies”
all 80 CPUs of this machine. The question is, whether it is fair to “charge” the
user as if using 121.9 CPUs, as suggests the PE-based penalty. We think that
this is not fair.

Still, one may suggest that since the job is really using 76% of all available RAM,
it should be penalized by PE(j) = 121.9 (an equivalent of 76% CPUs). As it
turns out this interpretation is not correct, as we can easily construct following
counter example.

Example 4. Let us consider a scenario with a CPU-constrained job requiring 80
CPUs per node and 80 GB of RAM. The resulting job processor equivalent is
PE(j) = max(80/160, 80/672) · 160 = 80. It indicates that 50% of all available
resources are used by this job. Since that job requires 80 CPUs per node, it can
only be executed on that large (type 2) machine. At the same time, the job uses
all CPUs of that (type 2) machine. Then, also all RAM on this machine (512
GB of RAM) must be considered as unavailable. Using the same argumentation
as in case of Example 3, we must say that this job is occupying 76% of all RAM.
However, in this case the PE(j) is only 80 (an equivalent of 50% CPUs).

To sum up, Examples 3 and 4 show how two different jobs (RAM vs. CPU-
constrained) that occupy the same resources (one type 2 node) may obtain highly
different penalties. From our point of view, it means that the use of PE in
heterogeneous environments does not solve fairly the problem observed in Fig. 1
(right) and described in Example 1.

2.4 Other Approaches

So far, we have discussed solutions that are available within several mainstream
systems. However, there are also several works that propose novel multi-resource
aware scheduling methods. We have provided a detailed survey of those meth-
ods in our previous work [17], so we only briefly recapitulate here. For example,
Dominant Resource Factor (DRF) [9] suggests to perform max-min fairshare al-
gorithm over so called dominant user’s share, which is the maximum share that
a user has been allocated of any resource. Recently, DRF has been included into
the new Fair Scheduler in Hadoop Next Generation [6]. Simultaneous fair alloca-
tion of multiple continuously divisible resources called bottleneck-based fairness
(BBF) is proposed in [8]. In BBF, an allocation of resources is considered fair



Multi-Resource Aware Fairsharing for Heterogeneous Systems 7

if all users either get all the resources they wished for, or else get at least their
entitlement on some bottleneck resource, and therefore cannot complain about
not receiving more. The tradeoffs of using multi-resource oriented fairness algo-
rithms including newly proposed Generalized Fairness on Jobs (GFJ) are dis-
cussed in [13]. Especially, the overall utilization is of interest. Unlike DRF, GJF
measures fairness only in terms of the number of jobs allocated to each user,
disregarding the amount of requested resources [13]. From our point of view,
such a notion of fairness is impractical as it allows to cheat easily by “pack-
ing” several small jobs as a one large job. Also, all these approaches make the
assumption that all jobs and/or resources are continuously divisible [7]. How-
ever, for common grid and cluster environments, this is rarely the case, thus
these techniques are rather impractical for our purposes. In our recent short
abstract [16], we have presented a possible extension of the fairshare algorithm
to cover heterogeneity of resources. However, the abstract provided neither de-
tailed analysis of related work, neither a detailed explanation or an evaluation
of the solution itself. Moreover, the proposed techniques did not support some
important features, e.g., computation of penalties for multi-node jobs.

In the previous text we have illustrated several problems that complicate the
design of a proper multi-resource aware job penalty function (a key part of the
fairshare algorithm). Existing mainstream solutions often rely on too simplified
and sensitive approaches (“standard job”-based metric) or they fail to provide
reliable results for heterogeneous systems and workloads (PE metric). Other
works such as DRF, GFJ or BBF then use system models that are not suitable
for our purposes.

3 Proposed Multi-Resource Aware Fairshare Algorithm

In this section we describe the newly developed multi-resource aware fairshare
mechanism which is currently used to prioritize users in MetaCentrum. It has
several important features that we summarize in the following list:

1) multi-resource awareness: The solution reflects various consumed resources
(CPU and RAM by default) using modified processor equivalent metric.

2) heterogeneity awareness: Processor equivalent metric is used in a new
way, guaranteeing the same penalties for jobs that occupy the same resources.
This modification solves the problems related to the heterogeneity of jobs
and resources described in Section 2.3.

3) insensitivity to scheduler decisions: Job penalty is not sensitive to sched-
uler decisions, i.e., a given job penalty is not influenced by the results of the
job-to-machine mapping process being performed by the job scheduler.

4) walltime normalization: We reflect various speeds of machines and per-
form so called walltime normalization to capture the effects of slow vs. fast
machines on resulting job walltime.

5) support for multi-node jobs: The solution calculates proper job penal-
ties for multi-node jobs that may have different per-node requirements.
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In the following text we describe how these features are implemented, starting
with the new penalty function that allows features 1-3, then proceeding to wall-
time normalization (feature 4). For simplicity, we first describe how the scheme
works for single node jobs and then proceed to the description of multi-node
job support (feature 5). Finally, we briefly describe how the solution has been
implemented in TORQUE.

3.1 Proposed Penalty Function

The newly proposed penalty function is based on an extension of processor equiv-
alent (PE) metric (see Formula 3) presented in Section 2.3. As we have shown in
Examples 3 and 4, PE cannot solve the problems observed in Example 1. It may
provide misleading and unfair results when measuring the usage of the system,
by producing different penalties for jobs that occupy the same resources. The
origin of the problem observed in Example 3 and 4 is that the system and jobs
are heterogeneous, thus only a subset of nodes may be suitable to execute a
job. Then, it is questionable to compute job penalty with respect to all available
resources. A simple solution addressing this problem is to compute PE only with
respect to a machine i that has been used to execute that particular job j as
shows Formula 4. Instead of using global amounts of CPUs and RAM, here the
availCPUi and the availRAMi are the amounts of CPUs and RAM on that
machine i, respectively5.

PE (j , i) = max

(
reqCPUj

availCPUi
,

reqRAMj

availRAMi

)
· availCPUi · node costi (4)

This reformulation solves the problem observed in Example 3 and 4 as those
RAM and CPU-heavy jobs now obtain the same penalties (PE(j, i) = 80).
Sadly, PE(j, i) brings a new disadvantage. Now, the PE calculation is sensitive
to scheduler decisions [16]. Consider following example.

Example 5. Let a job j requests 1 CPU and 16 GB of RAM. Clearly such job
can be executed both on type 1 and type 2 nodes. However, when j is executed
on a type 1 node, then PE(j, 1) = max(1/8, 16/16) · 8 = 8 while if j is executed
on a type 2 node, then PE(j, 2) = max(1/80, 16/512) · 80 = 2.5.

Since a user has limited capabilities to influence scheduler behavior, such
metric is highly unfair as it may assign highly variable penalties for identical jobs.
Therefore, we use this metric in a different way. In the first step, we construct
the set Mj which is the set of all machines that are suitable to execute job j.
Then we compute the “local” processor equivalent PE(j, i) for each machine i
such that i ∈ Mj using Formula 4. Finally, we compute the job penalty P (j)
using Formula 5.

5 The additional parameter node costi is optional and can be used to express (real)
cost and/or importance of machine i, e.g., GPU-equipped nodes are less common
(i.e., more valuable) in MetaCentrum. By default, node costi = 1.0.
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P(j) = queue costj · min
i∈Mj

PE(j, i) (5)

Job penalty P (j) is based on the minimal PE(j, i), i.e., it uses the cheapest
“price” available in the system. It is important to notice, that it represents the
best possible fit and P (j) remains the same disregarding the final job assignment.
Therefore, we can guarantee that P (j) is insensitive to scheduler decisions. At
the same time, we avoid the problems related to heterogeneity, since we only
consider those machines (Mj) that are suitable for that job j. The use of this
penalty has one major benefit — our users are satisfied as we always choose the
best price for them, disregarding the final scheduler decision. Therefore, they are
not tempted to fool the system by “playing” with job parameters or with job-to-
machine mapping, which could otherwise degrade, e.g., the system throughput.

As can be seen in Formula 5, we also use queue cost parameter. It can be
used to further increase or decrease job penalty depending on the user’s choice of
queue. By default, all queues have the same cost (1.0). However, it is sometimes
useful to increase the price for, e.g., those queues that are used for very long jobs
or provide access to some specialized/expensive hardware. To sum up, the pro-
posed penalty shown in Formula 5 is multi-resource aware, reflects heterogeneity
of jobs and resources, and provides results that are not sensitive to scheduler
decisions, i.e., it supports the features 1, 2 and 3 described at the beginning of
Section 3.

3.2 Walltime Normalization

Job walltime is a very important parameter that is used along with the job
penalty to establish the final user ordering (see Formula 1). However, in hetero-
geneous systems like MetaCentrum, the walltime of a job may depend on the
speed of machine(s) where that job is executed. Fig. 2 illustrates this situation
by showing the per-CPU-core results of the Standard Performance Evaluation
Corporation’s SPEC CPU2006 benchmark (CFP2006 suite/fp rate base2006) for
major MetaCentrum clusters. In order to further illustrate the heterogeneity of
resources, the figure also shows the total number of CPU cores on each cluster,
as well as the number of CPU cores per node and the amount of RAM per node.

The figure demonstrates large differences in machine performance. Especially
those “flexible” jobs that can be executed on many clusters can end up with
highly variable walltimes. In addition, if a job ends up on a slow machine, its
walltime will be higher, thus the fairshare usage of its owner will increase even
more. Clearly, this scheduler-dependent job assignment results in a highly unfair
behavior of the fairshare algorithm and explains the importance of walltime
normalization. As far as we know, walltime normalization is not typically applied
and it is not even mentioned in the documentation of PBS-Pro, TORQUE, Maui
or Moab. Therefore, we have decided to apply simple walltime normalization,
where the resulting walltime of a job j is multiplied by the SPEC result (SPECj)
of the machine that was used to execute that job j. We assume that the resulting
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Fig. 2. Heterogeneity of SPEC CPU2006 results, CPU cores and RAM for major Meta-
Centrum clusters.

job walltime is inversely proportional to the SPECj . Since this is not true for
some applications, our users can directly specify a desired speed of machine(s)
upon each job submission, by providing the minimum and the maximum eligible
SPEC. In that case, only those machines satisfying these constraints remain in
the set of eligible machines Mj . Once the walltime normalization is applied, the
resulting priority of a given user u is now computed using Formula 6.

Fu =
∑
j∈Ju

walltimej · SPECj · P (j)

=
∑
j∈Ju

walltimej · SPECj · queue costj · min
i∈Mj

PE(j, i) (6)

Beside features 1-3, this formula also supports feature 4. Still, it is only
suitable for single node jobs. In practice, users may submit jobs that require
several nodes to execute. Moreover, the specifications concerning each requested
node may be different. Such a situation requires more complex function which
we describe in the next section.

3.3 Multi-Node Jobs

The last feature 5 mentioned at the beginning of Section 3 enables us to cor-
rectly compute fairshare priority with respect to multi-node jobs, that may have
heterogeneous per-node requirements. We assume that a given multi-node job j
requests r nodes. For each such node, there is a separate resource specification6.

6 It is obtained by parsing node specification requests obtained by qsub command.
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Resource requests concerning k-th node (1 ≤ k ≤ r) are denoted as reqCPUk,j

and reqRAMk,j . To compute the job penalty, following steps are performed for
all requested nodes. At first, we find the set of machines that meet the k-th
request and denote it as Mk,j . Then, for every suitable machine i such that
i ∈ Mk,j we compute the corresponding “local” processor equivalent, denoted
as PEk(j, i) (see Formula 7). Then, the “price” for the k-th request is the mini-
mal (cheapest) PEk(j, i). The resulting job penalty P (j) is the sum of minimal
prices, multiplied by the queue cost as shown in Formula 8. In the next step,
we normalize the walltime of the job. Since the job uses r different machines,
we have r (possibly different) SPEC values, where the k-th value is denoted as
SPECj,k. As the walltime is the time when the whole job completes, it is most
likely influenced by the slowest machine being used, i.e, the machine with lowest
SPEC result. Therefore, the walltime is normalized by the minimal SPECj,k.
Together, the fairshare priority Fu is computed as shows Formula 9.

PEk(j, i) = max

(
reqCPUk,j

availCPUi
,
reqRAMk,j

availRAMi

)
· availCPUi · node costi (7)

P(j) = queue costj ·
r∑

k=1

min
i∈Mk,j

PEk(j, i) (8)

Fu =
∑
j∈Ju

walltimej · min
1≤k≤r

(SPECj,k) · P (j) (9)

3.4 Implementation in TORQUE

To conclude this section, we just briefly describe computation of the proposed
multi-resource aware fairshare priority function (see Formula 9) within the TOR-
QUE deployed in MetaCentrum7.

The computation is done in two major steps. In the first step, a job pe-
nalty P (j) is computed upon each job arrival, i.e., prior to a job execution.
This computation is performed by the scheduler. P (j) is refreshed during each
scheduling cycle until a job starts its execution. As soon as a job starts, the
TORQUE server obtains information about machine(s) being used by that job,
especially those corresponding value(s) of SPEC and node cost(s). At this point,
the server has all information required to recompute a fairshare priority Fu of
a corresponding user. If needed, job queues are then reordered according to a
newly computed fairshare priority.

It is important to notice, that a fairshare priority Fu of a user is updated
immediately after his or her job starts its execution. Otherwise, a priority of
that user would remain the same until at least one of his or her jobs completes,
which is potentially dangerous. Since an exact walltime of a running job is not
known until that job completes, the maximum walltime limit is used instead as
an approximation. As soon as that job completes, its actual walltime is used

7 This enhanced TORQUE can be obtained at: https://github.com/CESNET/torque.
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accordingly and a fairshare priority Fu of a corresponding user is recomputed
from scratch (replacing previous approximation). If needed, job queues are then
reordered accordingly.

4 Experimental Analysis

In this section we describe how the new multi-resource aware fairshare works
on a real workload. For the purpose of evaluation we have used workload from
MetaCentrum which covers first six months of the year 2013. This log contains
726,401 jobs, and is available at: http://www.fi.muni.cz/~xklusac/jsspp/.
We have used Alea [15] job scheduling simulator to demonstrate the effects of
our new prioritization mechanism. Alea is commonly used in MetaCentrum to
evaluate suitability of newly developed solutions. Using the simulator, we have
emulated both previous (CPU-based) as well as the new multi-resource aware
fairshare mechanism and then analyzed their differences. The proposed prioriti-
zation scheme consists of two main parts — the new penalty function P (j) and
the walltime normalization. Therefore, we have performed two major experi-
ments that cover these main parts of the proposed solution.

First, we have analyzed which jobs are affected by the new penalty func-
tion (see Formula 8). We have plotted all jobs from the workload according to
their heterogeneous CPU and RAM requirements (see Fig. 3), and we have high-
lighted those jobs that have different (higher) value of the new penalty function
compared to the old (CPU-based) version.

Fig. 3. The heterogeneity of CPU and RAM requirements of jobs from the workload.
Dark boxes highlight those jobs that are affected by the new penalty function.
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Fig. 4. CDF of resulting changes in P (j) value (left) and the histogram of job-to-cluster
suitability (right).

The results correspond to our expectations, i.e., the new P (j) assigns higher
penalties to those jobs with high RAM to CPU ratio. Such jobs represent less
than 2% of all jobs, and generate more than 5% of the overall CPU utilization.
Also, approximately 40% of users now have at least one job that would obtain
higher penalty, compared to the original solution.

Next, we took those jobs with higher penalty (those affected by the new
P (j)) and measured the percentage increase of the new P (j) (with respect to
the old, CPU-based version). Fig. 4 (left) shows the results using a cumulative
distribution function (CDF). In this case, the CDF is a f(x)-like function showing
the probability that the percentage increase of P (j) for given job j is less than
or equal to x. In another words, the CDF represents the fraction of jobs having
their P (j) less than or equal to x. As can be seen, the improvement is mostly
significant. For example, for nearly 90% of considered jobs their new P (j) has
increased at least by 20%. Also, 40% of considered jobs have their P (j) at least
two times higher (≥ 100%).

In the next step, we have measured the influence of the new P (j) on the
overall performance of the system. For this purpose we have measured the dis-
tribution of job wait times and bounded slowdowns when the original and the
new P (j) has been used, respectively. Jobs were scheduled from a single queue
that was dynamically reordered according to continuously updated job priorities.
Only the job at the head of the queue was eligible to run, i.e., we intentionally
did not use backfilling. The reason is that backfilling can dilute the impact of the
job prioritization algorithm [11], and therefore make it much harder to analyze
the effect of new prioritization scheme. For similar reasons, walltime normal-
ization has not been used in this experiment. Our results in Fig. 5 show that
there is no danger when using the new priority function. In fact, the cumulative
distribution functions (CDF) of wait times and slowdowns were slightly better
for the new P (j).

While the wait times and slowdowns were generally lower for the new prior-
itization scheme (see Fig. 5), this was not true for those jobs that — according
to the new P (j) — now obtain higher penalties. This is an expected and desir-
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Fig. 5. Comparison of wait times (left) and bounded slowdowns (right) distributions.

able behavior. For example, in this experiment the wait times of such jobs have
increased by 33 minutes on average.

In the final experiment, we have measured the possible influence of walltime
normalization. As was demonstrated in Fig. 2, there are significant differences in
the performance of clusters in MetaCentrum. At first, we have analyzed a job-
to-cluster suitability by measuring how many clusters can be used to execute a
given job. A cluster is capable to execute a job if it satisfies all job requirements
as specified upon job submission. Typically, a job requires a set of CPUs, a
fixed amount of RAM (per node), and data storage capacity. Moreover, it may
require additional properties such as geographical locality of cluster(s), operating
system, CPU architecture, etc8. Fig. 4 (right) shows the histogram of job-to-
cluster suitability. The x-axis shows the number of suitable clusters and y-axis
shows the percentage of jobs that can run on this number of clusters. There are
26 main clusters in MetaCentrum, but there are no jobs that can be executed
on every cluster. Therefore, the x-axis is bounded by 13, which is the maximum
number of clusters that some jobs can use (approximately 20% of jobs). Most
jobs in the workload (93.6%) can execute on at least 2 clusters and more than
50% of jobs can use at least 7 clusters.

Since we have observed that many jobs are rather flexible, we have decided to
measure the possible effect of walltime normalization on a job. For each job we
have found the set of suitable clusters. Next, we have found the cluster(s) with the
minimum and the maximum SPEC (denoted as SPECj,min and SPECj,max),
and SPECj of the original cluster that has been used to execute that job (this
information is available in the original workload log). Fig. 6 (left) shows the
CDFs of SPECj,min, SPECj,max and SPECj , respectively. It clearly demon-
strates how large can be the differences among the original, the “slowest” and the
“fastest” suitable cluster, i.e., how important is to perform some form of wall-
time normalization. Without doing so, we can significantly handicap those jobs
(and users), that were assigned to slow machines. Beside poorer performance,

8 Detailed description is available at: https://wiki.metacentrum.cz/wiki/Running_
jobs_in_scheduler.
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Fig. 6. CDFs of the minimal (SPECj,min), the maximal (SPECj,max) and the ac-
tual SPEC values (SPECj) as observed in the workload (left). The CDF showing the
maximum possible differences in SPEC values (right).

slow machines also imply higher walltimes, thus further increasing the fairshare
usage of corresponding job owners.

To further highlight this issue, we have computed the absolute difference be-
tween the “slowest” and the “fastest” suitable cluster (SPECj,max−SPECj,min)
for every job j. The results are shown in the CDF in Fig. 6 (right). We can clearly
see how large the differences are. For example, the maximal possible difference
in SPEC values is greater than 11 for 89% of jobs, while the maximal possible
difference is greater than 22 for 50% of jobs. Again, this example demonstrates
how important is to perform some form of walltime normalization. Otherwise,
the resulting priority ordering of users is likely to be (very) unfair.

5 Conclusion and Future Work

This paper addresses an urgent real life job scheduling problem, focusing on fair
sharing of various resources among different users of the system. The novelty
of our work is related to the fact that we consider multiple consumed resources
in heterogeneous systems when establishing users priorities. We have discussed
the pros and cons of several existing approaches, using real life-based examples.
Next, we have provided the description and the analysis of the multi-resource
aware fairshare technique which is currently used in the Czech National Grid
Infrastructure MetaCentrum. The main features of this solutions are the ability
to reflect both CPU and RAM requirements of jobs, the ability to handle hetero-
geneity of jobs and resources, the insensitivity to scheduler decisions, walltime
normalization, and the support of multi-node jobs.

We plan to further analyze the performance and suitability of the produc-
tion solution as well as possible problems that may appear in the future. The
proposed solution is used for about 6 months (from November 2013) in the pro-
duction system with 26 clusters and no significant comments from the users were
recorded so far. It is important that the solution is capable of working in the
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real production environment, even tough we still need to extend the set of imple-
mented features (e.g., GPU-awareness, peer-to-peer fairshare synchronization) to
become fully functional in larger scale. Therefore, our further development will
focus on more complex usage scenarios that are based on MetaCentrum needs.
For example, it is quite obvious that the PE-based metric may be too severe
for jobs requiring special resources that are not needed by all jobs, e.g., GPUs.
If a given job consumes all GPUs on a machine, it does not mean that such a
machine cannot execute other jobs. Therefore, we will try to find some suitable
relaxation of this metric for such special situations. Another example of a “prob-
lematic” resource is a storage capacity (e.g., local HDD/SSD or (hierarchical)
data storages). Here the problem is that consumed capacity is rarely constrained
by a job lifetime and therefore cannot be simply incorporated into the PE-based
metric.

Also, we want to develop a new variant of fairshare, where selected groups of
users can have their “local” and “global” priorities, that would be used depending
on whether their jobs are executed on their own infrastructure or within the
public pool of resources, respectively. Finally, as MetaCentrum is planning to
use several TORQUE servers simultaneously using a peer-to-peer model, we will
need to synchronize computations of fairshare priorities among several servers.
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